Supporting Information

Hydride Transfer Enabled Switchable Dearomatization of Indoles

in the Carbocyclic Ring and the Pyrrole Ring

Kang Duan,^{†, §} Hongjin Shi,^{†, §} Lin-Xuan Wang,[†] Shuai-Shuai Li,^{*, †} Lubin Xu,[†] Jian Xiao^{*, †, ‡}

[†] School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China

[‡] School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China

Table of Contents

1. General Information	S2
2. General Procedure	S2
3. Characterization of Products	S3
4. Crystal Structure and Data	S18
5. ¹ H and ¹³ C NMR Spectra	S20

1. General Information

Unless otherwise noted, all reagents and solvents were purchased from the commercial sources and used as received. Thin layer chromatography (TLC) was used to monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). TLC spots were visualized by UV-light irradiation on Spectroline Model ENF-24061/F 254 nm. The products were purified by flash column chromatography (200-300 mesh silica gel) eluted with the gradient of petroleum ether and ethyl acetate. Proton nuclear magnetic resonance spectra (¹H NMR) were recorded on a Bruker 500 MHz NMR spectrometer (CDCl₃ or DMSO- d_6 solvent). The chemical shifts were reported in parts per million (ppm), downfield from SiMe₄ (δ 0.0) and relative to the signal of chloroform-d (δ 7.26, singlet) or dimethyl sulfoxide-d₆ (δ 2.54, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublets of doublet) or m (multiplets). The number of protons for a given resonance is indicated by nH. Coupling constants were reported as a J value in Hz. Carbon nuclear magnetic resonance spectra (¹³C NMR) was referenced to the appropriate residual solvent peak. High resolution mass spectral analysis (HRMS) was performed on Waters XEVO G2 Q-TOF. All substituted 2-fluorobenzaldehydes, 4-hydroxyindole, and 4-hydroxycarbazole were purchased from adamas-beta. All o-aminobenzaldehydes and 2-ary-4-hydroxyindoles were prepared according to literature.^{1,2}

2. General Procedure

2.1 General Procedure for the Dearomatization of 4-Hydroxyindoles in the Carbocyclic Ring

A reaction tube was charged with *o*-aminobenzaldehyde **1** (0.1 mmol), 4-hydroxyindole **2** (0.12 mmol), $Sc(OTf)_3$ (10 mol %), **L4** (12 mol %), 5\AA MS (60 mg) and DCE (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the reaction mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:3) to afford the desired dearomatized indole **3**.

2.2 General Procedure for the Dearomatization of 4-hydroxycarbazoles in the Carbocyclic Ring

A reaction tube was charged with o-aminobenzaldehyde **1** (0.1 mmol), 4-hydroxycarbazole **4** (0.1 mmol), and HFIP (1.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent:

ethyl acetate/petroleum ether, 1:3) to afford the desired dearomatized carbazole 5.

2.3 General Procedure for the Dearomatization of the Pyrrole Ring of OH protected 4-Hydroxyindoles

A reaction tube was charged with *o*-aminobenzaldehyde 1 (0.1 mmol), 4-hydroxycarbazole 6 (0.1 mmol), and HFIP (2.0 mL). The mixture was stirred at room temperature under an air atmosphere. Upon completion of the reaction as indicated by TLC analysis, the mixture was concentrated in vacuum and the residue was directly purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether, 1:3) to afford the desired spiroindolenine **7**.

3. Characterization of Products

1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (27.6 mg, 95% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.62 (s, 1H), 7.08 (t, J = 7.6 Hz, 1H), 7.01 (d, J = 7.4 Hz, 1H), 6.93 (s, 1H), 6.74 (d, J = 9.9 Hz, 1H), 6.61 – 6.49 (m, 2H), 6.43 (s, 1H), 5.61 (d, J = 9.9 Hz, 1H), 3.69 (dd, J = 9.8, 5.8 Hz, 1H), 3.48 (t, J = 7.8 Hz, 1H), 3.21 (d, J = 15.6 Hz, 1H), 3.09 (dd, J = 16.6, 9.0 Hz, 1H), 2.54 (s, 1H), 1.89 (ddd, J = 15.9, 8.7, 5.4 Hz, 2H), 1.68 (dt, J = 11.8, 5.9 Hz, 1H), 1.18 (dd, J = 19.6, 10.2 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.6, 143.3, 140.3, 134.1, 129.3, 127.8, 121.8, 119.808, 119.2, 117.8, 115.4, 110.9, 105.5, 64.7, 48.1, 47.5, 39.1, 27.6, 23.5. **HRMS (ESI):** calcd. for C₁₉H₁₉N₂O [M+H]⁺: 291.1492, found: 291.1495.

8'-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (28.3 mg, 93% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.93 (s, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.82 – 6.75 (m, 1H), 6.64 (s, 1H), 6.59 (d, J = 10.0 Hz, 1H), 6.43 (d, J = 7.5 Hz, 1H), 6.35 (s, 1H), 5.86 (d, J = 10.0 Hz, 1H), 3.87 (dd, J = 9.9, 5.5 Hz, 1H), 3.48 (td, J = 8.7, 2.6 Hz, 1H), 3.42 (d, J = 15.5 Hz, 1H), 3.17 (dt, J = 16.4, 8.2 Hz, 1H), 2.61 (d, J = 15.6 Hz, 1H), 2.31 (s, 3H), 1.98 – 1.80 (m, 3H), 1.29 (dd, J = 12.6, 5.1 Hz, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 197.2, 142.9, 140.5, 137.1, 136.1, 128.9, 120.3, 119.5, 116.9, 116.2, 116.0, 111.0,

106.2, 64.7, 49.3, 47.1, 39.0, 27.5, 23.5, 21.6. **HRMS (ESI):** calcd. for C₂₀H₂₁N₂O [M+H]⁺: 305.1648, found: 305.1640.

8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5'*H*-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinolin]-4(1*H*)-one (3c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (16.1 mg, 45% yield, dr >20:1) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.54 (s, 1H), 7.11 (d, J = 7.7 Hz, 1H), 6.82 (d, J = 8.3 Hz, 2H), 6.69 (s, 2H), 6.63 (d, J = 10.0 Hz, 1H), 5.78 (d, J = 9.9 Hz, 1H), 3.90 (dd, J = 10.0, 5.5 Hz, 1H), 3.53 (t, J = 8.0 Hz, 1H), 3.47 (d, J = 15.9 Hz, 1H), 3.20 (dd, J = 16.7, 8.5 Hz, 1H), 2.67 (d, J = 16.0 Hz, 1H), 1.96 (dd, J = 17.2, 9.8 Hz, 2H), 1.91 – 1.80 (m, 1H), 1.38 – 1.21 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 196.3, 143.0, 140.1, 135.2, 129.8, 129.3, 126.8 (q, J = 273.4 Hz), 123.5, 120.4, 119.6, 116.6, 111.5 (q, J = 3.8 Hz), 106.6, 106.4 (q, J = 5.0 Hz), 64.8, 48.4, 47.2, 39.1, 27.5, 23.5. **HRMS (ESI):** calcd. for C₂₀H₁₈F₃NO₃ [M+H]⁺: 359.1366, found: 359.1370.

8'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (18.9 mg, 58% yield, dr >20:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.64 (s, 1H), 7.01 (d, J = 7.7 Hz, 1H), 6.94 (s, 1H), 6.75 (d, J = 9.9 Hz, 1H), 6.53 (d, J = 7.4 Hz, 2H), 6.44 (s, 1H), 5.58 (d, J = 9.9 Hz, 1H), 3.70 (dd, J = 9.7, 5.8 Hz, 1H), 3.49 (t, J = 8.6 Hz, 1H), 3.14 (d, J = 15.8 Hz, 1H), 3.09 (d, J = 8.3 Hz, 1H), 2.56 (s, 1H), 1.88 (dd, J = 17.2, 7.8 Hz, 2H), 1.74 – 1.64 (m, 1H), 1.22 – 1.10 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 195.3, 144.4, 140.3, 133.6, 132.2, 130.5, 121.9, 119.1, 118.8, 118.1, 114.6, 109.9, 105.6, 64.5, 47.7, 47.5, 38.6, 27.5, 23.5. **HRMS (ESI):** calcd. for C₁₉H₁₈ClN₂O [M+H]⁺: 325.1102, found: 325.1110.

4-oxo-1,1',2',3',3a',4-hexahydro-5'*H*-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinoline]-8'- carbonitrile (3e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (29.0 mg, 92% yield, dr >20:1) as a reddish brown solid.

¹**H NMR** (500 MHz, DMSO) δ 7.20 (d, J = 7.4 Hz, 1H), 6.95 (s, 1H), 6.92 (d, J = 7.5 Hz, 1H), 6.88 (s, 1H), 6.76 (d, J = 9.9 Hz, 1H), 6.44 (s, 1H), 5.53 (d, J = 9.9 Hz, 1H), 3.77 – 3.66 (m, 1H), 3.54 (t, J = 8.8 Hz, 1H), 3.21 (d, J = 16.2 Hz, 1H), 3.15 – 3.05 (m, 1H), 2.63 (d, J = 16.2 Hz, 1H), 1.89 (dd, J = 18.2,

8.2 Hz, 2H), 1.70 (dd, J = 11.7, 5.7 Hz, 1H), 1.27 – 1.08 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 199.8, 148.3, 145.1, 137.9, 134.9, 130.5, 126.8, 126.7, 124.9, 123.8, 123.3, 123.1, 123.1, 117.7, 117.6, 115.1, 110.4, 69.3, 52.3, 51.9, 43.8, 32.3, 28.2. **HRMS (ESI):** calcd. for C₂₀H₁₈N₃O [M+H]⁺: 316.1444, found: 316.1440.

methyl(*E*)-3-(4-oxo-1,1',2',3',3a',4-hexahydro-5'*H*-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinolin]-8'-yl)acrylate (3f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (31.8 mg, 85% yield, dr >20:1) as a white solid.

¹**H NMR** (500 MHz, CDCl₃) δ 8.87 (s, 1H), 7.66 (d, J = 15.9 Hz, 1H), 7.04 (d, J = 7.3 Hz, 1H), 6.83 – 6.72 (m, 2H), 6.64 (t, J = 12.5 Hz, 3H), 6.41 (d, J = 15.9 Hz, 1H), 5.80 (d, J = 9.8 Hz, 1H), 3.88 (s, 1H), 3.81 (s, 3H), 3.52 (t, J = 8.3 Hz, 1H), 3.46 (d, J = 16.1 Hz, 1H), 3.19 (d, J = 8.4 Hz, 1H), 2.65 (d, J = 16.0 Hz, 1H), 2.01 – 1.88 (m, 2H), 1.87 – 1.78 (m, 1H), 1.29 (d, J = 10.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 200.9, 172.8, 143.3, 129.3, 127.8, 119.0, 115.3, 110.3, 99.3, 98.8, 74.4, 62.3, 46.7, 42.1, 37.3, 27.9, 25.9, 23.4. HRMS (ESI): calcd. for C₂₃H₂₃N₂O₃ [M+H]⁺: 375.1703, found: 375.1705.

8'-((4-methoxyphenyl)ethynyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (21.0 mg, 50% yield, dr > 20:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.63 (s, 1H), 7.48 (d, J = 8.6 Hz, 2H), 7.04 (d, J = 7.6 Hz, 1H), 6.98 (d, J = 8.6 Hz, 2H), 6.93 (s, 1H), 6.75 (d, J = 9.9 Hz, 1H), 6.69 (d, J = 7.6 Hz, 1H), 6.63 (s, 1H), 6.43 (s, 1H), 5.59 (d, J = 9.9 Hz, 1H), 3.79 (s, 3H), 3.70 (dd, J = 9.8, 5.7 Hz, 1H), 3.52 (t, J = 8.2 Hz, 1H), 3.19 (d, J = 15.9 Hz, 1H), 3.12 (dd, J = 16.7, 9.0 Hz, 1H), 2.56 (d, J = 16.0 Hz, 1H), 1.96 – 1.81 (m, 2H), 1.68 (dt, J = 11.5, 5.7 Hz, 1H), 1.18 (dd, J = 18.7, 11.2 Hz, 1H). ¹³**C NMR** (126 MHz, DMSO) δ 195.3, 159.8, 143.2, 140.4, 133.8, 133.3, 129.5, 121.8, 121.8, 120.8, 119.1, 118.4, 118.0, 114.8, 112.8, 105.5, 89.6, 88.4, 64.6, 55.7, 47.8, 47.4, 39.1, 27.5, 23.5. **HRMS (ESI):** calcd. for C₂₈H₂₅N₂O₂ [M+H]⁺: 421.1911, found: 421.1915.

8'-(thiophen-2-yl)-1',2',3',3a'-tetrahydro-5'*H*-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinolin]-4(1*H*)-one (3h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (18.9 mg, 51% yield, dr >20:1) as a brown solid.

¹**H NMR** (500 MHz, DMSO) δ 11.64 (s, 1H), 7.59 – 7.47 (m, 1H), 7.45 (s, 1H), 7.12 (s, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.95 (s, 1H), 6.82 (d, *J* = 7.5 Hz, 1H), 6.76 (s, 2H), 6.45 (s, 1H), 5.65 (d, *J* = 9.9 Hz, 1H), 3.80 – 3.68 (m, 1H), 3.58 (t, *J* = 8.4 Hz, 1H), 3.26 – 3.11 (m, 2H), 2.56 (d, *J* = 15.8 Hz, 1H), 1.90 (d, *J* = 22.7 Hz, 2H), 1.74 – 1.65 (m, 1H), 1.21 (dd, *J* = 21.2, 10.7 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.5, 144.9, 143.6, 140.3, 134.0, 133.4, 129.9, 128.7, 125.2, 123.4, 121.8, 119.8, 119.2, 117.9, 113.0, 107.6, 105.6, 64.7, 48.2, 47.5, 38.9, 27.6, 23.5. **HRMS (ESI):** calcd. for C₂₃H₂₁N₂OS [M+H]⁺: 373.1369, found: 373.1372.

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (26.6 mg, 82% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.65 (s, 1H), 7.10 (d, J = 8.2 Hz, 2H), 6.94 (s, 1H), 6.76 (d, J = 9.8 Hz, 1H), 6.53 (d, J = 8.3 Hz, 1H), 6.44 (s, 1H), 5.57 (d, J = 9.8 Hz, 1H), 3.76 – 3.62 (m, 1H), 3.48 (t, J = 8.3 Hz, 1H), 3.17 (d, J = 15.8 Hz, 1H), 3.12 – 3.00 (m, 1H), 2.56 (d, J = 15.9 Hz, 1H), 1.87 (d, J = 21.8 Hz, 2H), 1.69 (d, J = 5.5 Hz, 1H), 1.23 – 1.09 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 200.0, 146.9, 145.1, 138.4, 133.5, 133.4, 132.1, 132.1, 126.7, 126.6, 123.9, 123.5, 122.9, 122.8, 116.8, 110.3, 69.4, 52.5, 52.4, 43.5, 32.3, 28.3. HRMS (ESI): calcd. for C₁₉H₁₈ClN₂O [M+H]⁺: 325.1102, found: 325.1108.

7'-methoxy-1',2',3',3a'-tetrahydro-5'*H*-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinolin]-4(1*H*)-one (3j)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (17.6 mg, 55% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.59 (s, 1H), 6.92 (s, 1H), 6.71 (dd, J = 17.0, 7.6 Hz, 3H), 6.49 (d, J = 8.5 Hz, 1H), 6.41 (s, 1H), 5.62 (d, J = 9.9 Hz, 1H), 3.64 (d, J = 7.6 Hz, 3H), 3.63 – 3.54 (m, 1H), 3.42 (t, J = 8.0 Hz, 1H), 3.20 (d, J = 15.8 Hz, 1H), 3.10 – 2.99 (m, 1H), 2.47 (s, 1H), 1.92 – 1.75 (m, 2H), 1.66 (dd, J = 11.9, 5.9 Hz, 1H), 1.19 – 1.08 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 195.6, 150.5, 140.3, 137.9, 134.3, 121.7, 121.0, 119.2, 117.8, 115.4, 113.5, 111.9, 105.5, 64.9, 55.8, 48.7, 48.1, 39.1, 27.5, 23.6. HRMS (ESI): calcd. for C₂₀H₂₁N₂O₂ [M+H]⁺: 321.1598, found: 321.1602.

6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3k)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (27.7 mg, 90% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.66 (s, 1H), 7.09 (dd, J = 15.1, 7.9 Hz, 1H), 6.95 (d, J = 1.7 Hz, 1H), 6.77 (d, J = 9.9 Hz, 1H), 6.44 (d, J = 2.5 Hz, 1H), 6.42 – 6.34 (m, 2H), 5.59 (d, J = 9.9 Hz, 1H), 3.64 (dd, J = 9.8, 5.9 Hz, 1H), 3.54 – 3.46 (m, 1H), 3.16 – 3.08 (m, 1H), 2.96 (d, J = 16.1 Hz, 1H), 2.65 (d, J = 15.3 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.70 (ddd, J = 12.4, 7.3, 1.7 Hz, 1H), 1.22 – 1.12 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.2, 161.3 (d, J = 239.4 Hz), 144.8 (d, J = 7.6 Hz), 140.3, 133.4, 128.4 (d, J = 10.1 Hz), 121.9, 119.1, 118.2, 107.0, 106.4 (d, J = 20.2 Hz), 105.6, 101.8 (d, J = 22.7 Hz), 64.1, 47.8, 47.2, 31.5, 27.5, 23.4. **HRMS (ESI):** calcd. for C₁₉H₁₈FN₂O [M+H]⁺: 309.1398, found: 309.1402.

6'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3l)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (27.5 mg, 85% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.67 (s, 1H), 7.09 (t, J = 8.1 Hz, 1H), 6.98 – 6.94 (m, 1H), 6.77 (d, J = 9.9 Hz, 1H), 6.69 – 6.63 (m, 1H), 6.54 (d, J = 8.0 Hz, 1H), 6.48 – 6.43 (m, 1H), 5.60 (d, J = 9.9 Hz, 1H), 3.65 (dd, J = 9.7, 5.9 Hz, 1H), 3.49 (td, J = 9.1, 2.3 Hz, 1H), 3.14 (dd, J = 16.6, 9.2 Hz, 1H), 3.01 (d, J = 16.4 Hz, 1H), 2.75 (d, J = 16.4 Hz, 1H), 1.97 – 1.85 (m, 2H), 1.71 (ddd, J = 12.2, 8.6, 3.9 Hz, 1H), 1.21 – 1.14 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.1, 144.6, 140.3, 133.8, 133.5, 128.5, 122.0, 119.1, 118.2, 117.1, 115.7, 109.9, 105.6, 64.0, 47.9, 47.7, 36.6, 27.5, 23.5. **HRMS (ESI):** calcd. for C₁₉H₁₈ClN₂O [M+H]⁺: 325.1102, found: 325.1104.

6'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3m)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (32.4 mg, 88% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 11.67 (s, 1H), 7.01 (t, J = 8.0 Hz, 1H), 6.97 – 6.93 (m, 1H), 6.81 (d, J = 7.9 Hz, 1H), 6.78 (d, J = 9.9 Hz, 1H), 6.56 (d, J = 8.2 Hz, 1H), 6.45 (s, 1H), 5.60 (d, J = 9.9 Hz, 1H), 3.65 (dd, J = 9.7, 5.9 Hz, 1H), 3.48 (t, J = 8.7 Hz, 1H), 3.13 (dd, J = 16.8, 8.9 Hz, 1H), 3.02 (d, J = 16.3 Hz, 1H), 2.72 (d, J = 16.3 Hz, 1H), 1.97 – 1.82 (m, 2H), 1.75 – 1.65 (m, 1H), 1.18 (dd, J = 14.9, 6.4 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.0, 144.7, 140.3, 133.5, 129.0, 125.1, 122.0, 119.1, 118.9, 118.6, 118.2, 110.4, 105.6, 64.1, 48.2, 47.6, 39.6, 27.4, 23.5. **HRMS (ESI):** calcd. for C₁₉H₁₈BrN₂O [M+H]⁺: 369.0597, found: 369.0595.

6'-(pyrrolidin-1-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3n)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (19.0 mg, 53% yield, dr >20:1) as a yellow solid.

¹**H** NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 7.08 (t, *J* = 8.1 Hz, 1H), 6.70 – 6.66 (m, 1H), 6.63 (t, *J* = 2.3 Hz, 1H), 6.44 (d, *J* = 9.9 Hz, 1H), 6.37 (d, *J* = 7.8 Hz, 1H), 6.26 (d, *J* = 8.0 Hz, 1H), 5.64 (d, *J* = 10.0 Hz, 1H), 3.91 (dd, *J* = 9.7, 5.3 Hz, 1H), 3.57 – 3.51 (m, 1H), 3.35 (dd, *J* = 15.9, 8.2 Hz, 2H), 3.19 (d, *J* = 15.6 Hz, 1H), 3.15 – 3.10 (m, 1H), 2.87 – 2.80 (m, 2H), 2.76 (d, *J* = 15.6 Hz, 1H), 1.92 – 1.83 (m, 5H), 1.80 – 1.73 (m, 2H), 1.28 – 1.25 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 197.8, 150.1, 143.9, 140.5, 135.9, 127.0, 120.4, 119.6, 116.4, 110.9, 106.1, 104.5, 104.0, 64.2, 51.3, 49.7, 48.1, 36.9, 27.7, 24.6, 23.7. HRMS (ESI): calcd. for C₂₃H₂₆N₃O [M+H]⁺: 360.2070, found: 360.2075.

6a',6b',7',8',9',10',10a',11'-octahydro-5'*H*-spiro[indole-5,6'-isoindolo[2,1-*a*]quinolin]-4(1*H*)-one (30)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (19.3 mg, 56% yield, dr >20:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.43 (s, 1H), 6.91 (t, *J* = 7.6 Hz, 1H), 6.82 (d, *J* = 7.1 Hz, 1H), 6.77 (s, 1H), 6.54 (d, *J* = 9.9 Hz, 1H), 6.36 (dd, *J* = 14.6, 7.6 Hz, 2H), 6.29 (s, 1H), 5.41 (d, *J* = 9.9 Hz, 1H), 3.82 (d, *J* = 9.7 Hz, 1H), 3.08 (d, *J* = 9.2 Hz, 1H), 3.02 (d, *J* = 15.2 Hz, 2H), 2.33 (s, 1H), 1.92 (d, *J* = 5.4 Hz, 1H), 1.60 (s, 1H), 1.48 (t, *J* = 14.9 Hz, 2H), 1.13 (d, *J* = 20.9 Hz, 6H); ¹³**C NMR** (126 MHz, DMSO) δ 195.9, 143.8, 140.1, 134.6, 128.9, 127.8, 121.8, 119.6, 119.3, 117.4, 115.1, 110.5, 105.5, 64.3, 55.4, 54.1, 47.5, 37.0, 28.6, 26.1, 25.2, 21.6. **HRMS (ESI):** calcd. for C₂₃H₂₅N₂O [M+H]⁺: 345.1961, found: 345.1960.

2-methyl-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3p)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (23.2 mg, 70% yield, dr 4:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.58 (s, 1H), 6.90 (d, *J* = 6.7 Hz, 1H), 6.83 (d, *J* = 7.5 Hz, 1H), 6.72 (d, *J* = 9.9 Hz, 1H), 6.58 (s, 1H), 6.44 - 6.39 (m, 2H), 5.88 (d, *J* = 9.9 Hz, 1H), 3.49 (dd, *J* = 8.8, 4.7 Hz, 1Hz), 5.88 (d, *J* = 9.9 Hz, 1H), 5.89 (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.9 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.8 Hz), 1Hz (dd, *J* = 8.8, 4.7 Hz), 5.88 (dd, *J* = 9.8 Hz), 1Hz (dd, *J* = 8.8 Hz),

1H), 3.46 - 3.40 (m, 1H), 3.36 (d, J = 8.5 Hz, 1H), 3.22 (d, J = 15.8 Hz, 1H), 2.36 (d, J = 15.9 Hz, 1H), 2.23 (s, 3H), 1.76 (d, J = 6.2 Hz, 1H), 1.71 - 1.63 (m, 1H), 1.62 - 1.49 (m, 4H), 1.31 (dd, J = 21.6, 15.0 Hz, 2H), 1.24 (d, J = 9.6 Hz, 1H); 13 **C NMR** (126 MHz, DMSO) δ 196.1, 147.0, 140.3, 136.1, 135.3, 129.2, 121.6, 119.5, 118.3, 118.0, 116.6, 114.9, 105.3, 66.0, 51.7, 50.8, 38.9, 30.6, 29.3, 29.1, 26.4, 21.6. **HRMS (ESI):** calcd. for C₂₂H₂₅N₂O [M+H]⁺: 333.1961, found: 333.1960.

2-methoxy-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3q)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (20.9 mg, 60% yield, dr 5:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.58 (s, 1H), 6.91 (s, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.72 (d, J = 9.9 Hz, 1H), 6.40 (s, 1H), 6.25 (s, 1H), 6.21 (d, J = 8.2 Hz, 1H), 5.89 (d, J = 9.9 Hz, 1H), 3.71 (s, 3H), 3.55 (dd, J = 7.6, 5.1 Hz, 1H), 3.43 (d, J = 7.8 Hz, 1H), 3.37 (d, J = 7.9 Hz, 1H), 3.17 (d, J = 15.6 Hz, 1H), 2.35 (d, J = 15.6 Hz, 1H), 1.75 (s, 1H), 1.65 (s, 1H), 1.59 – 1.48 (m, 3H), 1.40 – 1.30 (m, 2H), 1.26 – 1.21 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 196.1, 159.1, 147.8, 140.2, 135.5, 129.8, 121.6, 119.4, 116.6, 113.8, 105.4, 102.7, 99.6, 65.6, 55.2, 51.9, 50.6, 38.7, 30.2, 29.3, 26.4. HRMS (ESI): calcd. for C₂₂H₂₅N₂O₂ [M+H]⁺: 349.1911, found: 349.1916.

2-chloro-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3r)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (23.9 mg, 68% yield, dr 8:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.62 (s, 1H), 6.99 – 6.90 (m, 2H), 6.73 (d, J = 10.7 Hz, 2H), 6.58 (d, J = 7.7 Hz, 1H), 6.41 (s, 1H), 5.86 (d, J = 9.8 Hz, 1H), 3.60 (d, J = 6.6 Hz, 1H), 3.48 – 3.36 (m, 2H), 3.16 (d, J = 15.9 Hz, 1H), 2.41 (d, J = 16.0 Hz, 1H), 1.73 (s, 1H), 1.62 (d, J = 7.3 Hz, 2H), 1.51 (d, J = 4.4 Hz, 2H), 1.42 – 1.25 (m, 3H); ¹³**C NMR** (126 MHz, DMSO) δ 195.7, 147.8, 140.2, 135.1, 131.8, 130.6, 121.7, 120.1, 119.2, 116.9, 116.0, 112.6, 105.5, 65.1, 51.3, 50.3, 38.6, 29.7, 29.3, 29.2, 26.3. **HRMS** (**ESI**): calcd. for C₂₁H₂₂ClN₂O [M+H]⁺: 353.1415, found: 353.1413.

2-bromo-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3s)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product

(30.9 mg, 78% yield, dr 4:1) as a white solid.

¹**H NMR** (500 MHz, DMSO) δ 11.64 (s, 1H), 6.97 – 6.89 (m, 2H), 6.87 (s, 1H), 6.74 (t, J = 10.0 Hz, 2H), 6.43 (s, 1H), 5.88 (d, J = 8.5 Hz, 1H), 3.60 (s, 1H), 3.44 (dd, J = 31.0, 11.2 Hz, 2H), 3.16 (d, J = 16.2 Hz, 1H), 2.42 (d, J = 16.0 Hz, 1H), 1.75 (s, 1H), 1.70 – 1.49 (m, 4H), 1.41 – 1.24 (m, 3H); ¹³C **NMR** (126 MHz, DMSO) δ 195.7, 148.1, 140.2, 135.0, 131.0, 121.8, 120.6, 120.3, 119.3, 118.9, 116.9, 115.4, 105.5, 65.1, 51.3, 50.4, 38.6, 29.7, 29.3, 29.2, 26.4. **HRMS (ESI):** calcd. for C₂₁H₂₂BrN₂O [M+H]⁺: 397.0910, found: 397.0911.

2-phenyl-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3t)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (26.1 mg, 71% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.11 (s, 1H), 7.75 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 7.3 Hz, 2H), 7.29 (t, J = 7.1 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 7.1 Hz, 1H), 6.93 (s, 1H), 6.82 (d, J = 9.8 Hz, 1H), 6.55 (t, J = 6.8 Hz, 2H), 5.70 (d, J = 9.8 Hz, 1H), 3.80 – 3.68 (m, 1H), 3.50 (t, J = 8.4 Hz, 1H), 3.25 (d, J = 15.6 Hz, 1H), 3.12 (d, J = 8.4 Hz, 1H), 2.59 (d, J = 15.6 Hz, 1H), 1.92 (s, 2H), 1.80 – 1.68 (m, 1H), 1.26 – 1.19 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 200.3, 148.0, 146.3, 139.7, 139.4, 136.6, 134.1, 132.6, 132.2, 129.4, 125.1, 124.5, 122.4, 120.2, 115.6, 107.5, 107.5, 69.5, 53.0, 52.3, 43.9, 32.4, 28.3. **HRMS (ESI):** calcd. for C₂₅H₂₃N₂O [M+H]⁺: 367.1805, found: 367.1808.

2-(p-tolyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3u)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (19.0 mg, 50% yield, dr > 20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.04 (s, 1H), 7.64 (d, J = 5.9 Hz, 2H), 7.25 (d, J = 5.5 Hz, 2H), 7.06 (d, J = 33.2 Hz, 2H), 6.86 (s, 1H), 6.80 (d, J = 9.4 Hz, 1H), 6.55 (s, 2H), 5.68 (d, J = 9.3 Hz, 1H), 3.72 (s, 1H), 3.50 (s, 1H), 3.25 (d, J = 15.4 Hz, 1H), 3.11 (d, J = 7.2 Hz, 1H), 2.58 (d, J = 15.7 Hz, 1H), 2.34 (s, 3H), 1.91 (s, 2H), 1.72 (s, 1H), 1.32 – 1.11 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 200.3, 148.0, 146.1, 141.5, 139.6, 139.5, 134.7, 134.1, 133.9, 132.6, 129.4, 125.1, 124.5, 122.4, 120.2, 115.7, 106.9, 106.8, 69.5, 52.9, 52.3, 32.4, 28.3, 26.0. **HRMS (ESI):** calcd. for C₂₆H₂₄N₂O [M+H]⁺: 381.1961, found: 381.1966.

2-(4-fluorophenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3v)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (25.0 mg, 65% yield, dr 5:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.08 (s, 1H), 7.77 (dd, J = 8.6, 5.4 Hz, 2H), 7.27 (t, J = 8.8 Hz, 2H), 7.08 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 7.4 Hz, 1H), 6.89 (s, 1H), 6.78 (d, J = 9.9 Hz, 1H), 6.53 (t, J = 7.5 Hz, 2H), 5.68 (d, J = 9.9 Hz, 1H), 3.71 (dd, J = 9.7, 5.8 Hz, 1H), 3.49 (t, J = 8.1 Hz, 1H), 3.22 (d, J = 15.5 Hz, 1H), 3.10 (d, J = 7.4 Hz, 1H), 2.56 (d, J = 15.7 Hz, 1H), 1.88 (d, J = 22.9 Hz, 2H), 1.76 – 1.67 (m, 1H), 1.23 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.5, 161.7 (d, J = 244.4 Hz), 143.2, 141.5, 135.0, 133.7, 129.3, 127.8, 126.7 (t, J = 7.6 Hz), 120.3, 119.7, 117.6, 116.3, 116.2, 115.4, 110.9, 102.7, 64.7, 48.2, 47.5, 39.1, 27.6, 23.5. **HRMS (ESI):** calcd. for C₂₅H₂₂FN₂O [M+H]⁺: 385.1711, found: 385.1710.

1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:6) afforded the product (24.8 mg, 73% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.13 (s, 1H), 8.04 (d, J = 7.0 Hz, 1H), 7.49 (d, J = 7.3 Hz, 1H), 7.32 – 7.17 (m, 2H), 7.09 (t, J = 7.5 Hz, 1H), 7.03 (d, J = 7.0 Hz, 1H), 6.93 (d, J = 9.9 Hz, 1H), 6.55 (t, J = 8.8 Hz, 2H), 5.99 (d, J = 9.9 Hz, 1H), 3.79 (dd, J = 9.2, 6.0 Hz, 1H), 3.49 (t, J = 7.7 Hz, 1H), 3.31 (s, 1H), 3.12 (d, J = 8.2 Hz, 1H), 2.61 (d, J = 15.8 Hz, 1H), 1.97 – 1.78 (m, 2H), 1.78 – 1.63 (m, 1H), 1.19 (d, J = 10.2 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 194.9, 146.9, 143.2, 140.5, 137.3, 129.3, 127.9, 124.5, 124.0, 123.0, 120.9, 119.6, 118.1, 115.5, 112.7, 111.0, 110.7, 64.7, 48.7, 47.5, 40.5, 40.4, 40.3, 40.3, 40.2, 40.1, 39.9, 39.8, 39.7, 39.5, 39.1, 27.7, 23.5. **HRMS (ESI):** calcd. for C₂₃H₂₁N₂O [M+H]⁺: 341.1648, found: 341.1653.

8'-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (21.3 mg, 60% yield, dr 3:1) as a light yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.12 (s, 1H), 8.04 (d, *J* = 6.8 Hz, 1H), 7.50 (d, *J* = 8.2 Hz, 1H), 7.30 – 7.19 (m, 2H), 6.96 – 6.90 (m, 2H), 6.38 (d, *J* = 9.5 Hz, 2H), 6.00 (d, *J* = 9.9 Hz, 1H), 3.78 (dd, *J* = 9.6, 5.9 Hz, 1H), 3.49 (t, *J* = 7.7 Hz, 1H), 3.28 (d, *J* = 15.6 Hz, 1H), 3.12 (dd, *J* = 16.7, 8.8 Hz, 1H), 2.58 (d, *J* = 15.6 Hz, 1H), 2.25 (s, 3H), 1.87 (dd, *J* = 19.3, 8.3 Hz, 2H), 1.77 – 1.68 (m, 1H), 1.21 (dd, *J* = 21.2, 11.8 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 195.0, 146.9, 143.1, 140.7, 137.3, 136.7, 129.2, 124.5, 124.0, 122.9, 120.9, 118.0, 116.8, 116.4, 112.7, 111.6, 110.7, 64.7, 49.0, 47.5, 38.8, 27.7, 23.5, 21.8. **HRMS (ESI):** calcd. for C₂₄H₂₃N₂O [M+H]⁺: 355.1805, found: 355.1808.

8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-

4(9H)-one (5c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (33.5 mg, 82% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.17 (s, 1H), 8.10 – 7.97 (m, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.32 – 7.19 (m, 3H), 6.95 (d, J = 9.9 Hz, 1H), 6.84 (d, J = 7.7 Hz, 1H), 6.76 (s, 1H), 5.96 (d, J = 9.9 Hz, 1H), 3.84 (dd, J = 9.9, 5.8 Hz, 1H), 3.58 (t, J = 7.9 Hz, 1H), 3.33 (s, 1H), 3.17 (dd, J = 17.0, 8.9 Hz, 1H), 2.73 (d, J = 16.2 Hz, 1H), 1.97 – 1.86 (m, 2H), 1.75 (dt, J = 10.0, 5.6 Hz, 1H), 1.27 – 1.17 (m, 1H).; ¹³**C NMR** (126 MHz, DMSO) δ 194.4, 147.0, 143.5, 139.8, 137.3, 130.0, 127.4 (d, J = 302.4 Hz), 124.5, 124.2, 124.1, 123.1, 120.9, 118.5, 112.8, 111.3 (q, J = 3.8 Hz), 110.7, 106.4 (d, J = 3.8 Hz), 64.7, 47.9, 47.5, 38.8, 27.6, 23.5. **HRMS (ESI):** calcd. for C₂₄H₂₀F₃N₂O [M+H]⁺: 409.1522, found: 409.1526.

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (18.7 mg, 50% yield, dr 1.4:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.16 (s, 1H), 8.04 (d, J = 7.4 Hz, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.31 – 7.21 (m, 2H), 7.12 (s, 2H), 6.95 (d, J = 9.9 Hz, 1H), 6.60 – 6.53 (m, 1H), 5.96 (d, J = 9.9 Hz, 1H), 3.79 (dd, J = 9.6, 5.9 Hz, 1H), 3.50 (t, J = 8.1 Hz, 1H), 3.29 (d, J = 16.0 Hz, 1H), 3.12 (dd, J = 16.9, 8.7 Hz, 1H), 2.66 (d, J = 16.0 Hz, 1H), 1.90 (dd, J = 16.7, 9.0 Hz, 2H), 1.74 (dd, J = 11.7, 5.8 Hz, 1H), 1.23 – 1.16 (m, 1H).; ¹³**C NMR** (126 MHz, DMSO) δ 194.5, 146.9, 142.1, 140.0, 137.3, 128.8, 127.4, 124.5, 124.1, 123.1, 121.7, 120.9, 118.8, 118.4, 112.8, 112.2, 110.7, 64.7, 48.2, 47.7, 38.7, 27.6, 23.5. **HRMS** (**ESI**): calcd. for C₂₃H₂₀ClN₂O [M+H]⁺: 375.1259, found: 375.1265.

6'-methoxy-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5e)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (20.7 mg, 56% yield, dr 14:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.09 (s, 1H), 8.11 (d, J = 7.6 Hz, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.25 (dt, J = 23.9, 7.2 Hz, 2H), 7.11 (t, J = 8.1 Hz, 1H), 6.40 (d, J = 10.3 Hz, 1H), 6.38 – 6.26 (m, 3H), 4.13 – 4.05 (m, 1H), 3.70 (d, J = 13.0 Hz, 3H), 3.50 (t, J = 7.5 Hz, 1H), 3.33 – 3.21 (m, 2H), 2.93 (d, J = 16.4 Hz, 1H), 1.85 (dd, J = 19.2, 8.6 Hz, 2H), 1.58 – 1.49 (m, 1H), 1.22 (dd, J = 20.0, 9.8 Hz, 1H); ¹³**C NMR**

 $(126 \text{ MHz}, \text{DMSO}) \delta 182.0, 157.7, 153.7, 144.3, 143.5, 137.1, 132.1, 128.4, 124.3, 123.6, 122.1, 121.0, 112.3, 112.1, 106.3, 105.2, 99.3, 63.5, 55.7, 48.0, 39.0, 34.1, 27.8, 23.3.$ **HRMS (ESI):** $calcd. for <math>C_{24}H_{23}N_2O_2 [M+H]^+$: 371.1754, found: 371.1750.

6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (24.0 mg, 67% yield, dr 4:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.18 (s, 1H), 8.05 (d, J = 6.9 Hz, 1H), 7.51 (d, J = 7.4 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.12 (dd, J = 15.3, 7.9 Hz, 1H), 6.97 (d, J = 9.9 Hz, 1H), 6.41 (dd, J = 15.8, 8.2 Hz, 2H), 5.98 (d, J = 9.9 Hz, 1H), 3.76 (dd, J = 9.6, 5.9 Hz, 1H), 3.52 (t, J = 7.6 Hz, 1H), 3.16 (dd, J = 16.8, 8.8 Hz, 1H), 3.08 (d, J = 16.2 Hz, 1H), 2.75 (d, J = 16.0 Hz, 1H), 1.94 – 1.83 (m, 2H), 1.75 (dd, J = 11.1, 5.5 Hz, 1H), 1.23 (dd, J = 19.8, 10.1 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 194.5, 161.3 (d, J = 239.4 Hz), 147.0, 144.8 (d, J = 5.0 Hz), 139.8, 137.3, 128.5 (d, J = 11.3 Hz), 124.5, 124.1, 123.1, 121.0, 118.5, 112.8, 110.7, 107.2, 106.2 (d, J = 20.1 Hz), 102.0 (d, J = 22.4 Hz), 64.2, 47.8, 47. 8, 31.4, 27.6, 23.4. **HRMS (ESI):** calcd. for C₂₃H₂₀FN₂O [M+H]⁺: 359.1554, found: 359.1558.

6'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (27.2 mg, 65% yield, dr 1:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.20 (s, 1H), 8.05 (d, J = 6.8 Hz, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.35 – 7.21 (m, 2H), 7.05 (t, J = 7.9 Hz, 1H), 6.98 (d, J = 9.8 Hz, 1H), 6.85 (d, J = 7.7 Hz, 1H), 6.61 (d, J = 8.0 Hz, 1H), 6.00 (d, J = 9.8 Hz, 1H), 3.81 – 3.73 (m, 1H), 3.50 (d, J = 7.2 Hz, 1H), 3.17 (t, J = 13.5 Hz, 2H), 2.81 (d, J = 16.4 Hz, 1H), 1.99 – 1.84 (m, 2H), 1.80 – 1.71 (m, 1H), 1.29 – 1.18 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 194.2, 147.0, 144.8, 139.9, 137.3, 129.1, 125.1, 124.5, 124.1, 123.1, 120.9, 119.1, 118.6, 112.8, 110.7, 110.6, 64.2, 55.4, 48.8, 47.7, 27.6, 23.6. **HRMS (ESI):** calcd. for C₂₃H₂₀BrN₂O [M+H]⁺: 419.0754, found: 419.0759.

4-fluoro-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-carbazol]-4'(9'H)-one (5h)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product

(32.8 mg, 85% yield, dr 3.3:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.16 (s, 1H), 8.10 – 8.02 (m, 1H), 7.51 (d, J = 7.4 Hz, 1H), 7.31 – 7.21 (m, 2H), 7.15 – 7.07 (m, 1H), 6.97 (d, J = 9.9 Hz, 1H), 6.67 (d, J = 8.4 Hz, 1H), 6.49 (t, J = 8.8 Hz, 1H), 6.24 (d, J = 9.9 Hz, 1H), 3.53 (t, J = 10.3 Hz, 2H), 3.39 (dd, J = 16.7, 9.1 Hz, 1H), 3.22 (d, J = 16.7 Hz, 1H), 2.60 (d, J = 16.4 Hz, 1H), 1.85 – 1.76 (m, 1H), 1.70 (d, J = 5.4 Hz, 1H), 1.63 – 1.50 (m, 3H), 1.31 (dd, J = 14.3, 7.4 Hz, 3H); ¹³**C NMR** (126 MHz, DMSO) δ 195.2, 161.3 (d, J = 240.6 Hz), 148.9 (d, J = 7.2 Hz), 147.0, 140.8, 137.3, 127.8 (d, J = 10.1 Hz), 124.4, 124.0, 123.0, 120.9, 117.4, 112.8, 111.2, 110.5, 108.4 (d, J = 19.5 Hz), 103.3 (d, J = 22.0 Hz), 66.2, 50.9, 50.7, 31.7, 30.5, 29.0, 28.5, 26.7. **HRMS** (**ESI**): calcd. for C₂₅H₂₄FN₂O [M+H]⁺: 387.1867, found: 387.1871.

4-chloro-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-carbazol]-4'(9'H)-one (5i)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (31.4 mg, 78% yield, dr 3.3:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 12.18 (s, 1H), 8.14 – 8.00 (m, 1H), 7.51 (d, J = 7.2 Hz, 1H), 7.30 – 7.22 (m, 2H), 7.12 (t, J = 8.1 Hz, 1H), 6.98 (d, J = 9.9 Hz, 1H), 6.83 (d, J = 8.4 Hz, 1H), 6.79 (d, J = 7.8 Hz, 1H), 6.24 (d, J = 9.9 Hz, 1H), 3.53 (dd, J = 15.3, 6.4 Hz, 1H), 3.47 (dd, J = 9.4, 4.7 Hz, 1H), 3.39 (dd, J = 20.1, 10.8 Hz, 2H), 3.26 (d, J = 17.0 Hz, 1H), 2.66 (d, J = 17.0 Hz, 1H), 1.85 – 1.78 (m, 1H), 1.74 – 1.67 (m, 1H), 1.64 – 1.57 (m, 2H), 1.57 – 1.50 (m, 1H), 1.34 – 1.25 (m, 3H); ¹³**C NMR** (126 MHz, DMSO) δ 195.0, 146.9, 140.8, 137.3, 128.0, 124.0, 123.0, 120.9, 117.7, 117.4, 113.7, 112.7, 66.0, 51.9, 50.8, 36.7, 30.5, 28.9, 28.4, 26.6. **HRMS (ESI):** calcd. for C₂₅H₂₄ClN₂O [M+H]⁺: 403.1572, found: 403.1571.

1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7a)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (18.6 mg, 64% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.72 (s, 1H), 7.77 (s, 1H), 7.19 (t, *J* = 7.6 Hz, 1H), 7.14 – 7.04 (m, 2H), 7.02 (d, *J* = 7.0 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.57 (d, *J* = 6.8 Hz, 2H), 4.45 – 4.31 (m, 1H), 3.86 (d, *J* = 16.2 Hz, 1H), 3.42 (s, 1H), 3.27 (q, *J* = 7.9 Hz, 1H), 2.45 (d, *J* = 16.2 Hz, 1H), 1.86 (s, 2H), 1.54 (d, *J* = 5.7 Hz, 1H), 0.92 – 0.80 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 175.4, 157.2, 154.1, 144.2, 129.5, 128.7, 127.9, 125.1, 119.7, 115.8, 114.4, 112.7, 111.4, 59.4, 58.0, 47.5, 32.4, 27.7, 23.2. **HRMS (ESI):** calcd. for C₁₉H₁₉N₂O [M+H]⁺: 291.1492, found: 291.1491.

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7b)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (26.2 mg, 81% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.75 (s, 1H), 7.76 (s, 1H), 7.19 (t, *J* = 7.8 Hz, 1H), 7.16 – 7.02 (m, 3H), 6.75 (d, *J* = 8.1 Hz, 1H), 6.55 (d, *J* = 8.6 Hz, 1H), 4.37 (dd, *J* = 9.6, 6.1 Hz, 1H), 3.81 (d, *J* = 16.4 Hz, 1H), 3.42 (d, *J* = 10.4 Hz, 1H), 3.24 (q, *J* = 8.3 Hz, 1H), 2.48 (d, *J* = 16.6 Hz, 1H), 1.86 (d, *J* = 5.1 Hz, 2H), 1.58 – 1.49 (m, 1H), 0.91 – 0.80 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 175.0, 157.3, 154.1, 143.1, 129.7, 128.2, 127.5, 124.8, 121.7, 119.1, 114.5, 112.7, 112.6, 59.4, 57.6, 47.7, 32.1, 27.8, 23.3. **HRMS (ESI):** calcd. for C₁₉H₁₈ClN₂O [M+H]⁺: 325.1102, found: 325.1113.

7'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7c)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (22.8 mg, 62% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.75 (s, 1H), 7.76 (s, 1H), 7.26 – 7.17 (m, 3H), 7.06 (d, *J* = 7.5 Hz, 1H), 6.75 (d, *J* = 8.1 Hz, 1H), 6.51 (d, *J* = 8.6 Hz, 1H), 4.36 (dd, *J* = 9.8, 6.0 Hz, 1H), 3.81 (d, *J* = 16.4 Hz, 1H), 3.42 (td, *J* = 9.0, 3.5 Hz, 1H), 3.23 (q, *J* = 8.5 Hz, 1H), 2.48 (d, *J* = 16.8 Hz, 1H), 1.91 – 1.82 (m, 2H), 1.57 – 1.47 (m, 1H), 0.91 – 0.81 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 174.5, 156.8, 153.6, 142.9, 130.4, 129.9, 129.2, 124.3, 121.7, 114.0, 112.6, 112.3, 106.1, 58.9, 57.0, 47.2, 31.6, 27.3, 22. 8. **HRMS (ESI):** calcd. for C₁₉H₁₈BrN₂O [M+H]⁺: 369.0597, found: 369.0605.

6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7d)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (23.4 mg, 76% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.78 (s, 1H), 7.80 (s, 1H), 7.21 (t, *J* = 7.8 Hz, 1H), 7.16 – 7.09 (m, 1H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 6.42 (t, *J* = 8.5 Hz, 2H), 4.33 (dd, *J* = 9.3, 6.3 Hz, 1H), 3.61 (d, *J* = 16.7 Hz, 1H), 3.43 (d, *J* = 8.0 Hz, 1H), 3.32 – 3.25 (m, 1H), 2.55 (s, 1H), 1.86 (s, 2H), 1.59 – 1.50 (m, 1H), 0.87 (t, *J* = 9.5 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 174.9, 160.9 (d, *J* = 240.7 Hz), 159.9, 157.3, 154.2, 145.9, 145.8 (d, *J* = 8.8 Hz), 129.8, 128.7 (d, *J* = 11.3 Hz), 124.7, 114.5, 112.8, 107.5, 106.3 (d, *J* = 20.3 Hz), 102.3 (d, *J* = 22.2 Hz), 58.9, 57.2, 47.8, 27.7, 25.1, 23.2. **HRMS (ESI):** calcd. for C₁₉H₁₈FN₂O [M+H]⁺: 309.1403, found: 309.1408.

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (24.6 mg, 76% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.81 (s, 1H), 7.82 (s, 1H), 7.21 (t, J = 7.9 Hz, 1H), 7.10 (dd, J = 17.9, 7.9 Hz, 2H), 6.78 (d, J = 8.1 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 6.55 (d, J = 8.2 Hz, 1H), 4.33 (dd, J = 9.6, 6.2 Hz, 1H), 3.67 (d, J = 17.0 Hz, 1H), 3.40 (dt, J = 10.5, 7.2 Hz, 1H), 3.31 (dd, J = 16.8, 8.2 Hz, 1H), 2.60 (d, J = 17.0 Hz, 1H), 1.93 – 1.76 (m, 2H), 1.62 – 1.49 (m, 1H), 0.93 – 0.79 (m, 1H); ¹³C NMR (126 MHz, DMSO) δ 175.0, 157.3, 154.2, 145.7, 133.4, 129.9, 128.8, 124.6, 117.1, 116.2, 114.6, 112.8, 110.4, 58.8, 57.9, 47.7, 30.2, 27.7, 23.3. HRMS (ESI): calcd. for C₁₉H₁₈ClN₂O [M+H]⁺: 325.1108, found: 325.1110.

6'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7f)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (28.7 mg, 78% yield, dr >20:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.81 (s, 1H), 7.83 (s, 1H), 7.22 (t, *J* = 7.9 Hz, 1H), 7.11 – 7.01 (m, 2H), 6.85 (d, *J* = 7.8 Hz, 1H), 6.77 (d, *J* = 8.1 Hz, 1H), 6.60 (d, *J* = 8.2 Hz, 1H), 4.33 (dd, *J* = 9.5, 6.3 Hz, 1H), 3.65 (d, *J* = 16.9 Hz, 1H), 3.42 (dd, *J* = 11.9, 8.7 Hz, 1H), 3.34 – 3.28 (m, 1H), 2.55 (d, *J* = 16.9 Hz, 1H), 1.92 – 1.83 (m, 2H), 1.57 (dd, *J* = 10.6, 5.2 Hz, 1H), 0.92 – 0.82 (m, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 174.8, 157.1, 154.0, 145.7, 129.7, 129.1, 124.4, 124.3, 119.1, 118.4, 114.4, 112.6, 110.8, 58.7, 58.0, 47.5, 33.0, 27.5, 23.2. **HRMS (ESI):** calcd. for C₁₉H₁₈BrN₂O [M+H]⁺: 369.0602, found: 369.0600.

3-bromo-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-indol]-4'-ol (7g)

Flash column chromatography on a silica gel (ethyl acetate: petroleum ether, 1:3) afforded the product (30.0 mg, 76% yield, dr 1.5:1) as a yellow solid.

¹**H NMR** (500 MHz, DMSO) δ 9.75 (s, 1H), 7.92 (s, 1H), 7.24 – 7.15 (m, 2H), 7.11 (d, J = 2.2 Hz, 1H), 7.05 (d, J = 7.4 Hz, 1H), 6.71 (dd, J = 14.1, 8.5 Hz, 2H), 4.37 – 4.28 (m, 2H), 3.76 (d, J = 16.3 Hz, 1H), 3.40 (t, J = 4.8 Hz, 1H), 2.35 (d, J = 16.4 Hz, 1H), 1.72 (dd, J = 12.1, 6.1 Hz, 1H), 1.69 – 1.61 (m, 1H), 1.41 (ddd, J = 24.7, 13.6, 5.4 Hz, 4H), 1.31 (d, J = 8.6 Hz, 1H), 0.94 (dd, J = 9.2, 4.6 Hz, 1H); ¹³**C NMR** (126 MHz, DMSO) δ 174.9, 156.7, 153.3, 145.9, 130.3, 129.8, 129.2, 125.2, 122.8, 114.3, 113.9, 112.2, 106.8, 60.5, 59.6, 49.3, 31.6, 29.2, 29.1, 28.8, 25.7. **HRMS (ESI):** calcd. for C₂₁H₂₂BrN₂O [M+H]⁺: 396.0835, found: 396.0837.

Reference

- 1. Jurberg, I. D.; Peng, B.; Wçstefeld, E.; Wasserloos, M.; Maulide, N. Angew. Chem. Int. Ed. 2012, 51, 1950.
- 2. Huang, J.-R.; Qin, L.; Zhu, Y.-Q.; Song, Q.; Dong, L. Chem. Commun. 2015, 51, 2844.

4. Crystal Structure and Data

3d (CCDC 1828278)

Table	1	Crystal	data	and	structure	refinemen	nt for	3d
ruore	1.	Crystur	uuuu	unu	Surderare	rennemen	101	Ju.

Identification code		3d									
Empirical formula		$C_{19}H_{17}CIN_2O$									
Formula weight		324.80									
Temperature		293(2) K									
Wavelength		1.54184 A									
Crystal system, space group)	Monoclinic, P21/c									
Unit cell dimensions	a = 7.5569(2) A	alpha = 90 deg.								
	b = 17.7897	(4) A	beta = 95.909(3) deg.								
	c = 11.2378	(3) A	gamma = 90 deg.								
Volume		1502.73(7) A^3									
Z, Calculated density		4, 1.436 Mg/m^3									
Absorption coefficient		2.292 mm^-1									
F(000)		680									
Crystal size		0.09 x 0.08 x 0.08 mm									
Theta range for data collect	ion	4.67	to 67.25 deg.								
Limiting indices		-8<=]	h<=9, -13<=k<=21, -13<=l<=13								
Reflections collected / uniq	ue	9001	/ 2685 [R(int) = 0.0314]								
Completeness to theta $= 67$.25	100.0) %								
Max. and min. transmission	1	0.837	79 and 0.8203								
Refinement method		Full	-matrix least-squares on F^2								
Data / restraints / parameter	. 'S	2685	5 / 0 / 208								
Goodness-of-fit on F^2		1.13	9								
Final R indices [I>2sigma(I	[)]	R1 = 0.0419, wR2 = 0.1237									
R indices (all data)		R1 = 0.0518, wR2 = 0.1589									
Largest diff. peak and hole		0.319 and -0.382 e.A^-3									

7c (CCDC1922516)

Table 1. Crystal data and structure refinement for 7c.

Identification code	7c
Empirical formula	$C_{20}H_{21}BrN_2O_2$
Formula weight	401.30
Temperature	293(2) K
Wavelength	1.54178 A
Crystal system, space group	orthorhombic, Pna21
Unit cell dimensions	a = 20.4146(3) A alpha = 90 deg.
	b = 6.41670(10) A beta = 90 deg.
	c = 14.0402(2) A gamma = 90 deg.
Volume	1839.19(5) A^3
Z, Calculated density	4, 1.449 Mg/m^3
Absorption coefficient	3.168 mm^-1
F(000)	824
Crystal size	0.13 x 0.12 x 0.11 mm
Theta range for data collection	4.33 to 67.21 deg.
Limiting indices	-24<=h<=24, -7<=k<=6, -16<=l<=10
Reflections collected / unique	11838 / 2786 [R(int) = 0.0230]
Completeness to theta = 67.21	100.0 %
Max. and min. transmission	0.7220 and 0.6835
Refinement method	Full-matrix least-squares on F^2
Goodness-of-fit on F^2	1.093
Final R indices [I>2sigma(I)]	R1 = 0.0261, wR2 = 0.0698
R indices (all data)	R1 = 0.0271, wR2 = 0.0705
Largest diff. peak and hole	0.183 and -0.423 e.A^-3

6. ¹H and ¹³C-NMR Spectra

1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinolin]-4(1H)-one (3a)

8'-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3b)

8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5' <i>H</i> -spiro[indole-5,4'-pyrrolo[1,2- <i>a</i>]quinolin]-
4(1 <i>H</i>)-one (3c)	

	7.1115 7.009 6.012 6.012 6.012 6.011 6.024	46.73 6.773	1000 1000 1000 1000 1000 1000 1000 100	
		F ₃ C	N H	
9.0 8.5 8.0	1007 1007 7.5 7.0 6.5 e	60 .0 5.5 5.0 4.5 fl (ppm)	100 100 100 100 100 100 100 100 100 100	9011 5 2.0 1.5 1.0 0.5 0.0
		800 KH 140 KH 140 KH 150 KH	606.414 106.414 106.414 77.239 87.731	
		F ₃ C	Т <u>р</u>	
	1			
			artan ¹ unvalen ongener ongener gener and ¹ mer ongener panalan 1	
40 230 220 210 2	00 190 180 170 160	150 140 130 120 1 fl (ppm)	10 100 90 80 70	00 00 40 30 20 10 0

S22

8'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3d)

4-oxo-1,1',2',3',3a',4-hexahydro-5'*H*-spiro[indole-5,4'-pyrrolo[1,2-*a*]quinoline]-8'carbonitrile (3e)

methyl(E) - 3 - (4 - 0xo - 1, 1', 2', 3', 3a', 4 - hexahydro - 5'H - spiro[indole - 5, 4' - pyrrolo[1, 2 - a]quinolin] - 8' - yl)acrylate (3f)

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3i)

7'-methoxy-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3j)

6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3k)

6'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3l)

$\label{eq:constraint} 6'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one~(3m)$

6'-(pyrrolidin-1-yl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3n)

5	n v		0		. 6	00	x	3	3	3	Ś	ŝ	i oo	9	5	<u>v</u>	ŝ	6	0 0	0.0	1	_	0	4	x	9	4	~ ~		5	4	. (*	5	14	. 6	00	4 -			1 0	ο,	- <	5 0	D 0	2 0	χı	5	ο.	0.	4 0	χ	~ \	04	0 5	t v	s v) m	8
0) C	- ۱	- c	\sim	$\sim \circ$	9	9	9	9	9	4	4	· (m	()		0	1 0) V		n c	ית	6	5	5	∞	()	((^)	. (*	20	1 -	•	•	· ∞	$\sim \infty$	$\sim $	$\circ \circ$	$\circ \circ$	01	~ C	~ V	0 0	5	2 0	2 0	∞ o	∞	∞ (∞ o	∞ o	γC	~ (~ C	~ r	~ r	~ C	10	101	
×	i r-	ŝ p	- P	10	: ve	i vo	ý.	ý.	ý.	ý.	۰,	- vo	i vo	6	6	V V	i vo	i v	i e	ni e	n i	co.	è.	^m	ŝ	0	0		i m		i m	0		in	ic	ic	ic	i c	i c	vi c	j,	4.	4.	÷.,	4.	÷.,	÷.,	4.	4.	4.	÷.,	4.	4.	4	4	÷		. Y
				· · ·				-	-	-												· · · ·	1.1																																			

6a',6b',7',8',9',10',10a',11'-octahydro-5'*H*-spiro[indole-5,6'-isoindolo[2,1-*a*]quinolin]-4(1*H*)-one (30)

2-methyl-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3p)

2-methoxy-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3q)

2-chloro-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3r)

2-bromo-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,5'-indol]-4'(1'H)-one (3s)

$\label{eq:2-phenyl-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one~(3t)$

2-(p-tolyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3u)

2-(4-fluorophenyl)-1',2',3',3a'-tetrahydro-5'H-spiro[indole-5,4'-pyrrolo[1,2-a]quinolin]-4(1H)-one (3v)

1',2',3',3a'-tetrahydro-5'*H*-spiro[carbazole-3,4'-pyrrolo[1,2-*a*]quinolin]-4(9*H*)-one (5a)

8'-methyl-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5b)

8'-(trifluoromethyl)-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5c)

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5d)

6'-methoxy-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5e)

6'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[carbazole-3,4'-pyrrolo[1,2-a]quinolin]-4(9H)-one (5g)

4-chloro-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-carbazol]-4'(9'H)-one (5i)

1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7a)

7'-chloro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7b)

7'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7c)

6'-fluoro-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7d)

6'-bromo-1',2',3',3a'-tetrahydro-5'H-spiro[indole-3,4'-pyrrolo[1,2-a]quinolin]-4-ol (7f)

3-bromo-6a,7,8,9,10,11-hexahydro-5H-spiro[azepino[1,2-a]quinoline-6,3'-indol]-4'-ol (7g)