## **Supporting Information**

## External Photocatalysts-free Visible Light Induced Aerobic Oxidation and 1, 4-

## Bisfunctionalization of N-Alkyl isoquinolinium/quinolinium Salts

Youkang Zhou<sup>a</sup>, Wei Liu<sup>a,b</sup>, Zhiming Xing<sup>a</sup>, Jiali Guan<sup>a</sup>, Zhibin Song<sup>a,\*</sup>, and Yiyuan

Peng<sup>a</sup>

<sup>a</sup> Key Laboratory of Functional Small Organic Molecules, Ministry of Education,

College of Chemistry and Chemical Engineering, Jiangxi Normal University,

Nanchang 330022, China; E-mail: zbsong@jxnu.edu.cn; djtao@jxnu.edu.cn

## **Table of Contents**

| Figure S1SI-2                                                | 2  |
|--------------------------------------------------------------|----|
| Table S1SI-2                                                 | 2  |
| Figure S2SI-:                                                | 3  |
| Figure S3SI-7                                                | 3  |
| Table S2SI-                                                  | 4  |
| Figure S4SI-4                                                | 4  |
| Figure S5SI-                                                 | 5  |
| Figure S6SI-                                                 | 5  |
| General methodsSI-                                           | -6 |
| Experimental Procedures SI-                                  | 6  |
| NMR data of isoquinolinium/quinolinium salts and productsSI- | •6 |
| NMR spectra of all compoundsSI-2                             | 8  |



Gram scale: 1aa (7 mmol, 1.898 g), base. (10.5 mmol, 3.421g), solvent (175 mL), AT: ambient temperature ( $\approx$ 40  $^{\circ}C$ )

| Figure   | S1. A | Apparatus | and s | scalable | visible | light  | induced | synthesis   | of isoc | minolo | one 3        | a |
|----------|-------|-----------|-------|----------|---------|--------|---------|-------------|---------|--------|--------------|---|
| I ISUI ( |       | ippurutus | unu   | Sculuoic | 101010  | ingine | maacca  | 5 y meneoro | 01 1500 | Jamoit | $J_{\rm HC}$ | u |

| N <sup>+</sup><br>I | RT, Cs <sub>2</sub> (<br>Solv | CO <sub>3</sub> , Air, I <sub>2</sub><br>√ent | N<br>O<br>5a |
|---------------------|-------------------------------|-----------------------------------------------|--------------|
| Entry               | Solvent                       | Cs <sub>2</sub> CO <sub>3</sub>               | Yield        |
|                     |                               | (eq)                                          | a            |
| 1 <sup>b</sup>      | THF                           | 1.5                                           | 57%          |
| 2                   | THF                           | 1.5                                           | 35%          |
| 3                   | THF                           | 2                                             | 36%          |
| 4                   | THF                           | 4                                             | 45%          |
| 5                   | THF                           | 6                                             | 56%          |
| 6                   | THF                           | 8                                             | 62%          |
| 7                   | CH <sub>3</sub> CN            | 8                                             | 42%          |
| 8                   | Toluen                        | 8                                             | 59%          |
|                     | e                             |                                               |              |
| 9                   | DCE                           | 8                                             | 68%          |
| 10 <sup>с,е</sup>   | DCE                           | 8                                             | 74%          |
| 11 <sup>d</sup>     | DCE                           | 8                                             | 69%          |
| 12 <sup>b,c</sup>   | DCE                           | 1.5                                           | 74%          |

Table S1. Optimization of the reaction conditions for synthesis of benzimidazole.<sup>a</sup>

Reaction conditions: 1aa (0.2 mmol),  $Cs_2CO_3$  (1.5 - 8 equiv.),  $I_2$  (0.6 mmol, 3 equiv.), Solvent (5.0 mL), Reaction time: 5 hours under daylight and air atmosphere, RT: room temperature ( $\approx$ 25 °C) <sup>a</sup> Isolated yield. <sup>b</sup> Radiation for 5 hours under 20 W Blue LEDs and air atmosphere, AT: ambient temperature ( $\approx$ 50 °C). <sup>c</sup> DCE (2.0 mL). <sup>d</sup> Gram scale: 1aa (5 mmol, 1.356 g),  $Cs_2CO_3$  (40 mmol, 13.032g),  $I_2$  (15 mmol, 3.807g ), DCE (50 mL), Yield=69% (0.983 g). <sup>e</sup> no light.



Figure S2 ESI-MS spectrum of 3a from the reaction in presence of H<sub>2</sub>O<sup>18</sup>



Figure S3 ESI-MS spectrum of 5a from the reaction in presence of H<sub>2</sub>O<sup>18</sup>

| N <sup>+</sup><br>Br <sup>−</sup> | + NBS  | AT, B<br>Solv | Br<br>O<br>So                   |       |
|-----------------------------------|--------|---------------|---------------------------------|-------|
| <br>Entry                         | Solven | NBS           | Cs <sub>2</sub> CO <sub>3</sub> | Yield |
|                                   | t      | (eq.)         | (eq.)                           | а     |
| 1                                 | THF    | 1.5           | 1.5                             | 17%   |
| 2                                 | DCE    | 1.5           | 1.5                             | 12%   |
| 3                                 | MeCN   | 1.5           | 1.5                             | Trace |
| 4                                 | THF    | 2             | 1.5                             | 19%   |
| 5                                 | THF    | 3             | 1.5                             | 19%   |
| 6                                 | THF    | 3             | 2                               | 20%   |
| 7                                 | THF    | 3             | 4                               | 26%   |
| <b>8</b> <sup>b</sup>             | THF    |               | 4                               | Trace |
| 9                                 | THF    | 3             | 6                               | 23%   |
| 10                                | THF    | 3             | 8                               | 25%   |
| 11°                               | THF    | 3             | 8                               | Trace |

**Table S2**. Optimization of the reaction conditions for synthesis of 4-bromo-2-propylisoquinolin-1(2H)-one (**5q**).<sup>a</sup>

Reaction conditions: 1r (0.2 mmol),  $Cs_2CO_3$  (1.5-8 equiv.), Solvent (5.0 mL), Radiation for 5 hours under 20 W Blue LEDs and air atmosphere, AT: ambient temperature ( $\approx$ 50 °C); <sup>a</sup> Isolated yield. <sup>b</sup>Br<sub>2</sub>(3 eq.) replaces NBS. <sup>c</sup> Under no-light conditions.



Figure S4. The absorption spectra of isoquinolinium salt 1aa (10  $\mu$ M) in THF



**Figure S5.** The emission spectrum of **1aa** in THF (10  $\mu$ M,  $\lambda_{Ex}$  = 450 nm);



**Figure S6.** The absorption spectra of isoquinolinium salt **1aa** (10  $\mu$ M) and PDI (10  $\mu$ M) in THF under visible light irradiation (blue LED 20W)

## **General methods**

All reagents were purchased from standard suppliers (Sigma-Aldrich, Alfa Aesar, or TCI) and were used without further purification. THF was distilled over sodium. Column chromatography was conducted with silica gel (mesh 200-300) from the Qingdao Ocean Chemicals. The ESI-MS spectra were recorded by a Finnigan 8230 instrument. High resolution mass spectrometry (HRMS) spectra analysis was performed by electrospray ionization (ESI-microTOF). Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 400 spectrometer at 25 °C operating at 400 MHz for <sup>1</sup>H-NMR and 100 MHz for <sup>13</sup>C-NMR by using CDCl<sub>3</sub> or DMSO-*d*<sub>6</sub> as solvents and TMS as an internal standard. Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, m = multiplet, br = broad signal), coupling constant (Hz), and integration. The UV-Vis Spectra has been recorded on a Shimadazu UV 3100 UV-Vis spectrometer. The steady fluorescence spectra have been recorded on a Horiba FluoMax-plus spectrometer. Electron paramagnetic resonance (EPR) spectra were recorded on a Bruker EMXplus-9.5/12 spectrometer under visible light irradiation using mercury lamp.

## **Experimental Procedures**

General procedure for the preparation of isoquinolinium iodide or bromide salts



Using **1aa** as example, isoquinoline (5 mmol, 645.7 mg),  $CH_3I$  (10 mmol, 2.0 eq.) and  $CH_3CN$  (15 mL) were added to a pressure round-bottom flask. The reaction mixture was stirred at 90 °C with oil bath for 12 hours. After cooled to room temperature, the isoquinoline salt was precipitated by adding ethyl acetate. The pure product was obtained through filtration, washing with ethyl acetate and drying.

# General procedure for the preparation of isoquinolinium tetrafluoroborate salts (1ab and 2fb)

The round-bottom flask was charged with iodide salt **1aa** (1 mmol, 271.1 mg) or **2aa** (1 mmol, 397.3 mg),  $AgBF_4$  (1 mmol, 194.7 mg) and ethanol (10 ml). The reaction mixture was stirred at room temperature for 30 min. After filtering out the precipitate, the filtrate was collected. The pure product was obtained by drying under vacuum.

## General procedure for the preparation of isoquinolones and quinolones





Reaction conditions: 1 or 2 (0.2 mmol),  $Cs_2CO_3$  (0.3 mmol, 1.5 equiv. ), THF (5.0 mL), Radiation for 5-12 hours under 20 W Blue LEDs and air atmosphere, ambient temperature ( $\approx$ 50 °C), Isolated yield.

Using **3a** as example, a 50 ml test tube was charged with **1aa** (0.2 mmol, 54.3 mg),  $Cs_2CO_3$  (0.3 mmol, 97.8 mg, 1.5 eq) and THF (5 mL) with light irradiation by blue LEDs (20 W). The reaction mixture was stirred for 5 h under air. When the reaction was complete, the reaction mixture was filtered. The filtrate was collected. The pure product was obtained by column chromatography on silica gel (petroleum ether/ethyl acetate).

#### General procedure for the preparation of 4-iodoisoquinolinones 5



Using **5a** as example, a 10 ml test tube was charged with **1aa** (0.2 mmol, 54.3 mg),  $I_2$  (0.6 mmol, 152.3 mg, 3 eq.),  $Cs_2CO_3$  (1.6 mmol, 521.3 mg, 8 eq) and DCE (2 mL). The reaction mixture was stirred for 5 h under air. When the reaction was complete, the reaction mixture was poured into the saturated solution of  $Na_2S_2O_3$  (15 ml) and allowed to stir for 15 min. Then, the reaction mixture was extracted with ethyl acetate for three times. The combined organic phase was dried with anhydrous MgSO<sub>4</sub>. The pure product was obtained by column chromatography on silica gel (petroleum ether/ethyl acetate).

## Procedure for the preparation of 4-iodoisoquinolinones 5q from isoquinolinium bromide salt 1r



A 50 ml test tube was charged with 1r (0.2 mmol, 50.5 mg), *N*-Bromosuccinimide (0.6 mmol, 106.8 mg, 3 eq.), Cs<sub>2</sub>CO<sub>3</sub> (0.8 mmol, 260.6 mg, 4 eq) and THF (5 mL) with light irradiation by blue LEDs (20 W). The reaction mixture was stirred for 5 h under air. When the reaction was complete, the reaction mixture was filtered. The filtrate was collected. The pure product was obtained by column chromatography on silica gel (petroleum ether/ethyl acetate).

## NMR data for isoquinolinium/quinolinium salts and products 2-methylisoquinolin-2-ium iodide (1aa)



Yellow solid; 1.220 g in 5 mmol scale, 90 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.06 (s, 1 H), 8.73 (dd, J = 6.8, 1.1 Hz, 1 H), 8.60 (d, J = 6.8 Hz, 1 H), 8.50 (d, J = 8.3 Hz, 1 H), 8.37 (d, J

= 8.3 Hz, 1 H), 8.32-8.20 (m, 1 H), 8.15-8.00 (m, 1 H), 4.50 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.1, 137.2, 137.1, 136.4, 131.6, 130.6, 127.7, 127.5, 125.9, 48.4 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>10</sub>N<sup>+</sup>: 140.0808, found: 140.0808.

## 2-methylisoquinolin-2-ium tetrafluoroborate (1ab)



Grey solid; 0.189 g in 1 mmol scale, 82 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.97 (s, 1 H), 8.69 (d, J = 6.7 Hz, 1 H), 8.56 (d, J = 6.8 Hz, 1 H), 8.47 (d, J = 8.3 Hz, 1 H), 8.34 (d, J =

8.3 Hz, 1 H), 8.25 (t, J = 7.3 Hz, 1 H), 8.07 (t, J = 7.6 Hz, 1 H), 4.48 (s, 3H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 151.1$ , 137.2, 137.1, 136.3, 131.6, 130.6, 127.7, 127.5, 125.9, 48.4 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>10</sub>N<sup>+</sup>: 140.0808, found: 140.0807.

## 6-methoxy-2-methylisoquinolin-2-ium iodide (1b)



Light yellow solid;1.309 g in 5 mmol scale, 87 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.78 (s, 1 H), 8.57 (d, *J* = 6.7 Hz, 1 H), 8.36 (dd, *J* = 11.0, 8.1 Hz, 2 H), 7.76 (d, *J* = 2.1 Hz, 1 H), 7.66 (dd, *J* = 9.1, 2.3 Hz, 1 H), 4.39 (s, 3 H), 4.06 (s, 3 H) ppm; <sup>13</sup>C

NMR (100 MHz, DMSO- $d_{\delta}$ )  $\delta$  = 165.8, 149.2, 140.1, 136.6, 132.5, 124.4, 124.0, 122.9, 106.3, 57.1, 47.7 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>11</sub>H<sub>12</sub>ON<sup>+</sup>: 174.0913, found: 174.0913.

## 6-chloro-2-methylisoquinolin-2-ium iodide (1c)



Yellow solid; 1.360 g in 5 mmol scale, 89 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.06 (s, 1 H), 8.76 (d, J = 6.8 Hz, 1 H), 8.52 (dd, J = 7.6, 4.0 Hz, 3 H), 8.11 (dd, J = 8.9, 1.7 Hz, 1 H), 4.48 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.2,

142.2, 138.0, 137.5, 132.8, 132.3, 126.8, 126.1, 125.0, 48.6 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9ClN^+$ : 178.0418, found: 178.0419.

## 6-bromo-2-methylisoquinolin-2-ium iodide (1d)



Yellow solid; 1.523 g in 5 mmol scale, 87 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.05 (s, 1 H), 8.75 (d, J = 6.8 Hz, 1 H), 8.70 (s, 1 H), 8.50 (d, J = 6.8 Hz, 1 H), 8.43 (d, J = 8.8 Hz, 1 H), 8.23-8.21 (m, 1 H), 4.46 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.4, 138.0, 137.5, 134.9, 132.5, 131.8, 130.0,

126.3, 124.9, 48.6 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9BrN^+$ : 221.9913, found: 221.9911.

#### 2-benzylisoquinolin-2-ium bromide (1e)



White solid; 1.260 g in 5 mmol scale, 84 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.41 (s, 1 H), 8.89 (d, J = 6.8 Hz, 1 H), 8.63 (d, J = 6.8 Hz, 1 H), 8.56 (d, J = 8.3 Hz, 1 H), 8.38 (d, J = 8.3 Hz, 1 H), 8.29 (t, J = 7.6 Hz, 1 H), 8.10

(t, J = 7.6 Hz, 1 H), 7.63 (d, J = 6.4 Hz, 2 H), 7.49-7.43 (m, 3 H), 6.03 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.7$ , 137.6, 137.6, 135.3, 134.8, 131.8, 131.1, 129.8, 129.6, 129.4, 127.9, 127.8,126.8, 63.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>N<sup>+</sup>: 220.1121, found: 220.1123.

## 2-butylisoquinolin-2-ium iodide (1f)



Yellow solid; 1.393 g in 5 mmol scale, 89 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.17 (s, 1H), 8.85 (d, J = 6.7 Hz, 1 H), 8.64 (d, J = 6.8 Hz, 1 H), 8.52 (d, J = 8.3 Hz, 1 H), 8.38 (d, J = 8.3 Hz, 1 H), 8.28 (t, J = 7.5 Hz, 1H), 8.10 (t,

J = 7.6 Hz, 1 H), 4.76 (t, J = 7.4 Hz, 2 H), 2.07-2.00 (m, 2 H), 1.42-1.32 (m, 2 H), 0.95 (t, J = 7.4 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.4$ , 137.4, 137.3, 135.4, 131.7, 130.8, 127.8, 127.7, 126.3, 61.0, 32.9, 19.3, 13.9 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>13</sub>H<sub>16</sub>N<sup>+</sup>: 186,1277, found: 186,1278.

## 2-(naphthalen-1-ylmethyl)isoquinolin-2-ium bromide (1g)



White solid; 1.365 g in 5 mmol scale, 78 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.35 (s, 1 H), 8.86 (dd, J = 6.8, 1.1 Hz, 1 H), 8.64 (d, J = 6.8 Hz, 1 H), 8.58 (d, J= 8.3 Hz, 1H), 8.39 (d, J = 8.3 Hz, 1 H), 8.31-8.27 (m, 1 H), 8.23 (d, J = 7.9 Hz, 1 H), 8.08 (td, J = 8.3, 1.3 Hz, 3

H), 7.67-7.59 (m, 4 H), 6.58 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 150.7, 137.7, 137.7, 135.4, 134.0, 131.8, 131.2, 131.0, 130.6, 130.0, 129.5, 129.0, 128.0, 127.8, 127.8, 127.1, 126.7, 126.2, 123.4, 61.6 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>16</sub>N<sup>+</sup>: 270.1277, found: 270.1273.

#### 2-(4-nitrobenzyl)isoquinolin-2-ium bromide (1h)



White solid; 1.466 g in 5 mmol scale, 85 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.46 (s, 1 H), 8.93 (dd, J = 6.8, 1.2 Hz, 1 H), 8.69 (d, J = 6.8 Hz, 1 H), 8.58 (d, J = 8.3 Hz, 1 H), 8.41 (d, J = 8.2 Hz, 1 H), 8.34-8.29 (m,

3 H), 8.13 (dd, J = 11.3, 4.0 Hz, 1 H), 7.90 (d, J = 8.7 Hz, 2 H), 6.24 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 151.3$ , 148.4, 141.8, 137.8, 137.7, 135.4, 131.9, 131.2, 130.7, 127.9, 127.8, 126.9, 124.6, 62.5 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>O<sub>2</sub>N<sub>2</sub><sup>+</sup>: 265.0972, found: 265.0973.

#### 2-methyl-6-phenylisoquinolin-2-ium iodide (1i)



Yellow solid; 1.492 g in 5 mmol scale, 86 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.02 (s, 1 H), 8.72-8.68 (m, 2 H), 8.56 (dd, J = 7.7, 4.2 Hz, 2 H), 8.42 (dd, J = 8.7, 1.6 Hz, 1H), 7.99-7.97 (m, 2H), 7.63 (dd, J = 10.0, 4.6 Hz, 2 H), 7.58-7.55 (m, 1 H), 4.50 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 150.6, 147.9, 138.1, 137.7, 136.7, 131.3, 130.6, 130.2,

129.9, 128.3, 126.6, 125.9, 124.7, 48.4 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{14}N^+$ : 220.1121, found: 220.1124.

## 2-(4-bromobenzyl)isoquinolin-2-ium bromide (1j)



White solid; 1.497 g in 5 mmol scale, 79 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  10.38 (s, 1 H), 8.88 (dd, J = 6.8, 1.2 Hz, 1 H), 8.64 (d, J = 6.8 Hz, 1 H), 8.56 (d, J = 8.3 Hz, 1 H), 8.38 (d, J = 8.3 Hz, 1 H), 8.31-8.27 (m, 1 H),

8.11 (t, J = 7.6 Hz, 1 H), 7.73-7.64 (m, 2 H), 7.61 (d, J = 8.5 Hz, 2 H), 6.03 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  150.8, 137.7, 137.6, 135.3, 134.1, 132.6, 131.8, 131.7, 131.1, 127.9, 127.8, 126.8, 123.3, 62.9 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>BrN<sup>+</sup>: 298.0226, found: 298.0231.

## 2-(3-chlorobenzyl)isoquinolin-2-ium bromide (1k)



White solid; 1.236 g in 5 mmol scale, 74 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.46 (s, 1 H), 8.93 (dd, J = 6.8, 1.3 Hz, 1 H), 8.66 (d, J = 6.8 Hz, 1 H), 8.57 (d, J = 8.3 Hz, 1 H), 8.39 (d, J = 8.2 Hz, 1 H), 8.34-8.25 (m, 1

H), 8.14-8.10 (m, 1 H), 7.84 (s, 1 H), 7.66-7.63 (m, 1 H), 7.53-7.48 (m, 2 H), 6.08 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.0, 137.7, 137.6, 136.9, 135.2, 134.1, 131.8, 131.5, 131.2, 129.8, 129.5, 128.3, 127.8, 126.8, 62.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>ClN<sup>+</sup>: 254.0731, found: 254.0729.

#### 2-(2-bromobenzyl)isoquinolin-2-ium bromide (11)



White solid; 1.440 g in 5 mmol scale, 76 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.28 (s, 1 H), 8.79 (dd, J = 6.8, 1.3 Hz, 1 H), 8.68 (d, J = 6.8 Hz, 1 H), 8.61 (d, J = 8.3 Hz, 1 H), 8.42 (d, J = 8.2 Hz, 1 H), 8.34-8.30 (m, 1 H), 8.14-8.10 (m, 1 H), 7.79 (dd, J = 7.8, 0.8 Hz, 1 H), 7.54-7.42 (m, 3 H),

6.15 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.3, 137.9, 137.8, 135.5, 133.9, 133.6, 132.1, 132.0, 131.9, 131.3, 129.2, 127.9, 127.7, 126.7, 124.0, 63.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>BrN<sup>+</sup>: 298.0226, found: 298.0222.

#### 2,2'-(butane-1,4-diyl)bis(isoquinolin-2-ium) iodide (1m)



Light yellow solid; 1.789 g in 5 mmol scale, 63 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_{\delta}$ )  $\delta$  = 10.15 (s, 1 H), 8.82 (dd, J = 6.8, 1.0 Hz, 1 H), 8.63 (d, J = 6.8 Hz, 1 H), 8.49 (d, J = 8.2 Hz, 1 H), 8.37 (d, J = 8.2 Hz, 1

H), 8.30-8.26 (m, 1 H), 8.11-8.07 (m, 1 H), 4.79 (d, J = 23.4 Hz, 2 H), 2.12 (d, J = 27.8 Hz, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.6$ , 137.5, 137.4, 135.4, 131.7, 130.9, 127.8, 127.7, 126.4, 60.5, 27.5 ppm; HRMS [M+H]<sup>+</sup> calculated for  $C_{22}H_{22}N_2^{2+}$ : 314.1772, found: 314.1773.

## 2-(4-(tert-butyl)benzyl)isoquinolin-2-ium bromide (1n)



White solid; 1.317 g in 5 mmol scale, 74 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.43 (s, 1 H), 8.91 (dd, J = 6.8, 1.1 Hz, 1 H), 8.63 (d, J = 6.8 Hz, 1 H), 8.57 (d, J = 8.3 Hz, 1 H), 8.37 (d, J = 8.3 Hz, 1 H), 8.29 (dd, J = 11.2, 4.0 Hz, 1 H), 8.10 (t, J = 7.6 Hz, 1

H), 7.58 (d, J = 8.3 Hz, 2 H), 7.47 (d, J = 8.3 Hz, 2 H), 6.00 (s, 2 H), 1.26 (s, 9 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 152.4$ , 150.6, 137.6, 137.5, 135.3, 132.0, 131.8, 131.1, 129.2, 127.9, 127.8, 126.8, 126.4, 63.5, 34.9, 31.4 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>22</sub>N<sup>+</sup>: 276.1747, found: 276.1748.

## 2-(3-phenylpropyl)isoquinolin-2-ium bromide (10)



Light yellow oil; 1.115 g in 5 mmol scale, 68 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.28 (s, 1 H), 8.92 (dd, J = 6.8, 1.2 Hz, 1 H), 8.63 (d, J = 6.8 Hz, 1 H), 8.52 (d, J = 8.2 Hz, 1 H), 8.38 (d, J = 8.3 Hz, 1 H),

8.29-8.25 (m, 1 H), 8.11-8.07 (m, 1 H), 7.25 (s, 4 H), 7.18-7.13 (m, 1 H), 4.86 (t, J = 7.3 Hz, 2 H), 2.77-2.73 (m, 2 H), 2.53-2.37 (m, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta =$  150.6, 140.8, 137.4, 137.2, 135.4, 131.5, 130.8, 128.8, 128.7, 127.7, 127.6, 126.5, 126.3, 61.0, 32.3, 32.2 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>18</sub>N<sup>+</sup>: 248.1434, found: 248.1430.

## 4-bromo-2-methylisoquinolin-2-ium iodide (1p)



Yellow solid; 1.540 g in 5 mmol scale, 88 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.12 (s, 1 H), 9.24 (s, 1 H), 8.57 (d, J = 8.2 Hz, 1 H), 8.44-8.37 (m, 2 H), 8.18 (t, J = 7.4 Hz, 1 H), 4.47 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.2, 139.0, 137.7, 135.9, 132.5, 131.8, 127.7, 126.3, 121.4, 48.4 ppm; HRMS [M+H]<sup>+</sup>

calculated for C<sub>10</sub>H<sub>9</sub>BrN<sup>+</sup>: 221.9913, found: 221.9913.

## 2-methyl-4-phenylisoquinolin-2-ium iodide (1q)



Yellow solid; 1.388 g in 5 mmol scale, 80 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta = 10.08$  (s, 1 H), 8.80 (d, J = 1.1 Hz, 1 H), 8.59 (d, J = 8.2 Hz, 1 H), 8.26 (ddd, J = 8.3, 7.1, 1.2 Hz, 1 H), 8.11 (dd, J = 15.8, 7.8 Hz, 2 H), 7.72-7.64 (m, 5 H), 4.54 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.1$ , 137.9, 137.7, 135.7, 135.5, 133.5, 131.5, 131.4, 130.5, 130.1, 129.7, 127.9, 125.4, 48.4 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>N<sup>+</sup>: 220.1121, found:

220.1118.

## 2-propylisoquinolin-2-ium bromide (1r)



Light yellow solid; 0.932 g in 5 mmol scale, 74 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.29 (s, 1 H), 8.89 (d, J = 6.8 Hz, 1 H), 8.64 (d, J = 6.8 Hz, 1 H), 8.51 (d, J = 8.3 Hz, 1 H), 8.37 (d, J = 8.3 Hz, 1 H), 8.25 (t, J = 7.6 Hz, 1 H), 8.07 (t, J = 7.6 Hz, 1 H), 4.74 (t, J = 7.3 Hz, 2 H), 2.05 (dd, J = 14.6,

7.3 Hz, 2 H), 0.92 (t, J = 7.4 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.5$ , 137.4, 137.3, 135.4, 131.6, 130.9, 127.8, 127.7, 126.3, 62.4, 24.4, 10.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>12</sub>H<sub>14</sub>N<sup>+</sup>: 172.1121, found: 172.1123.

#### 2-pentylisoquinolin-2-ium bromide (1s)



Yellow solid; 1.078 g in 5 mmol scale, 77 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.28 (s, 1 H), 8.91 (dd, J = 6.8, 1.0 Hz, 1 H), 8.66 (d, J = 6.8 Hz, 1 H), 8.54 (d, J= 8.3 Hz, 1 H), 8.40 (d, J = 8.3 Hz, 1 H), 8.31-8.27 (m, 1 H), 8.10 (t, J = 7.6 Hz, 1 H), 4.78 (t, J = 7.4 Hz, 2 H),

2.09-2.02 (m, 2 H), 1.38-1.30 (m, 4 H), 0.88 (t, J = 6.9 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.4$ , 137.4, 137.3, 135.4, 131.6, 130.8, 127.8, 127.7, 126.3, 61.1, 30.7, 28.1, 22.1, 14.2 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>18</sub>N<sup>+</sup>: 200.1434, found: 200.1439.

## 1-methylquinolin-1-ium iodide (2a)



Yellow solid; 1.192 g in 5 mmol scale, 88 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.05 (s, 1 H), 8.72 (d, J = 6.7 Hz, 1 H), 8.59 (d, J = 6.7 Hz, 1 H), 8.49 (d, J = 8.3 Hz, 1 H), 8.36 (d, J = 8.3 Hz, 1 H), 8.26 (t, J = 7.6 Hz, 1 H), 8.08 (t, J = 7.6 Hz, 1 H), 4.50 (s, 3 H) ppm; <sup>13</sup>C

NMR (100 MHz, DMSO- $d_6$ )  $\delta = 151.1$ , 137.2, 137.1, 136.4, 131.6, 130.6, 127.7, 127.5,125.9, 48.5 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>10</sub>N<sup>+</sup>: 140.0808, found: 140.0810.

## 6-bromo-1-methylquinolin-1-ium iodide (2b)



Yellow solid; 1.505 g in 5 mmol scale, 86 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.55 (d, J = 5.6 Hz, 1 H), 9.21 (d, J = 8.4 Hz, 1 H), 8.82 (d, J = 1.3 Hz, 1 H), 8.45 (dt, J = 9.4, 5.6 Hz, 2 H), 8.23 (dd, J = 8.3, 5.8 Hz, 1 H), 4.64 (s, 3 H) ppm; <sup>13</sup>C

NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.2, 146.5, 138.3, 137.8, 132.5, 130.9, 123.7, 123.6, 122.0, 46.1 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>9</sub>BrN<sup>+</sup>: 221.9913, found: 221.9913.

#### 6-methoxy-1-methylquinolin-1-ium iodide (2c)



Yellow solid; 1.204 g in 5 mmol scale, 80 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.33 (d, J = 5.6 Hz, 1 H), 9.12 (d, J = 8.4 Hz, 1 H), 8.44 (d, J = 10.4 Hz, 1 H), 8.11 (dd, J = 8.3, 5.9 Hz, 1 H), 7.92 (d, J = 7.1 Hz, 2 H), 4.62 (s, 3 H), 4.02 (s, 3 H)

ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 159.7, 147.7, 145.6, 134.6, 131.7, 127.9, 122.9, 121.3, 108.5, 56.9, 46.0 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>11</sub>H<sub>12</sub>ON<sup>+</sup>: 174.0913, found: 174.0912.

#### 6-chloro-1-methylquinolin-1-ium iodide (2d)



Yellow solid; 1.265 g in 5 mmol scale, 83 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.55 (d, J = 5.6 Hz, 1 H), 9.22 (d, J = 8.4 Hz, 1 H), 8.68 (d, J = 1.9 Hz, 1 H), 8.57 (d, J = 9.4 Hz, 1 H), 8.34 (dd, J = 9.4, 2.1 Hz, 1 H), 8.24 (dd, J = 8.3, 5.8 Hz, 1 H), 4.65 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.2,

146.7, 137.6, 135.8, 134.9, 130.6, 129.2, 123.8, 122.2, 46.2 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9CIN^+$ : 178.0418, found: 178.0419.

### 1-(3-phenylpropyl)quinolin-1-ium bromide (2e)



Brown oil; 1.164 g in 5 mmol scale, 71 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.80 (dd, J = 5.8, 1.0 Hz, 1 H), 9.36 (d, J = 8.3 Hz, 1 H), 8.69 (d, J = 9.0 Hz, 1H), 8.60-8.49 (m, 1 H), 8.29 (ddd, J = 8.7, 7.1, 1.3 Hz, 1 H), 8.22 (dd, J = 8.3, 5.8 Hz, 1 H), 8.07 (t, J = 7.6 Hz, 1 H), 7.28-7.23 (m, 4 H), 7.19-7.16

(m, 1 H), 5.23 (t, J = 7.5 Hz, 2 H), 2.90-2.78 (m, 2H), 2.33 (dq, J = 15.4, 7.8 Hz, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 150.3$ , 147.9, 140.9, 137.9, 136.1, 131.2, 130.3, 130.2, 128.8, 128.7, 126.5, 122.6, 119.4, 57.5, 32.2, 31.5 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>18</sub>N<sup>+</sup>: 248.1434, found: 248.1434.

## 1-methyl-3-(naphthalen-1-yl)quinolin-1-ium iodide (2fa)



Yellow solid; 1.548 g in 5 mmol scale, 78 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.83 (d, J = 0.9 Hz, 1 H), 9.47 (s, 1 H), 8.61 (d, J = 8.9 Hz, 1 H), 8.54 (d, J = 7.9 Hz, 1 H), 8.38-8.33 (m, 1 H), 8.19 (dd, J = 6.0, 3.4 Hz, 1 H), 8.13 (t, J = 7.6 Hz, 2 H), 7.95 (d, J = 8.3 Hz, 1 H), 7.77 (q, J = 3.1 Hz, 2 H), 7.69-7.60 (m, 2 H), 4.73 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.6, 147.1, 138.1, 135.9, 133.9, 133.8, 132.8, 131.1, 131.0,

130.7, 130.4, 129.7, 129.4, 129.1, 128.0, 127.2, 126.1, 125.2, 119.5, 45.9 ppm; HRMS  $[M+H]^+$  calculated for  $C_{20}H_{16}N^+$ : 270.1277, found: 270.1277.

#### 1-methyl-3-(naphthalen-1-yl)quinolin-1-ium tetrafluoroborate (2fb)



Yellow solid; 0.286 g in 1 mmol scale, 80 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.83 (s, 1 H), 9.46 (s, 1 H), 8.61 (d, J = 8.9 Hz, 1 H), 8.53 (d, J = 8.0 Hz, 1 H), 8.35 (t, J = 7.7 Hz, 1 H), 8.16 (dt, J = 15.4, 6.0 Hz, 3 H), 7.95 (d, J = 8.2 Hz, 1 H), 7.78-7.75 (m, 2 H), 7.65 (dt, J = 14.5, 6.9 Hz, 2 H), 4.72 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 151.6, 147.1, 138.1, 135.9,

134.0, 133.9, 132.8, 131.1, 131.0, 130.7, 130.4, 129.7, 129.3, 129.1, 128.0, 127.2, 126.1, 125.2, 119.4, 45.8 ppm; HRMS  $[M+H]^+$  calculated for  $C_{20}H_{16}N^+$ : 270.1277, found: 270.1279.

## 1-methyl-6-phenylquinolin-1-ium iodide (2g)



Yellow solid; 1.422 g in 5 mmol scale, 82 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.51 (d, J = 5.5 Hz, 1 H), 9.31 (d, J = 8.4 Hz, 1 H), 8.83 (d, J = 1.9 Hz, 1 H), 8.63 (dt, J = 19.3, 5.6 Hz, 2 H), 8.21 (dd, J = 8.4, 5.7 Hz, 1 H), 7.97-7.95 (m, 2H), 7.62 (dd, J = 10.2, 4.7 Hz, 2 H), 7.55-.51 (m, 1 H), 4.69 (s, 3 H) ppm;

<sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 150.3, 147.5, 141.5, 138.2, 137.7, 134.6, 130.2, 129.9, 129.6, 127.9, 127.5, 122.9, 120.4), 45.9 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>N<sup>+</sup>: 220.1121, found: 220.1124.

## 1-(3-methylbenzyl)quinolin-1-ium bromide (2h)



White solid; 1.114g in 5 mmol scale, 71 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 9.84 (dd, J = 5.8, 1.1 Hz, 1 H), 9.42 (d, J = 8.3 Hz, 1 H), 8.55 (d, J = 8.6 Hz, 2 H), 8.32 (dd, J = 8.4, 5.8 Hz, 1 H), 8.23 (ddd, J = 8.7, 7.1, 1.4 Hz, 1 H), 8.04 (t, J = 7.7 Hz, 1 H), 7.30-7.27 (m, 2 H), 7.22-7.17 (m, 2 H), 6.39 (s, 2 H), 2.27 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 150.9, 148.6,

139.0, 138.0, 136.2, 134.3, 131.3, 130.5, 130.4, 129.9, 129.5, 128.3, 124.9, 123.0, 119.8, 60.4, 21.4 ppm; HRMS  $[M+H]^+$  calculated for  $C_{17}H_{16}N^+$ : 234.1277, found: 234.1281.

## 1-methyl-3-phenylquinolin-1-ium iodide (2i)



Yellow solid; 1.441 g in 5 mmol scale, 83 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  = 10.00 (s, 1 H), 9.66 (s, 1 H), 8.53 (t, J = 7.8 Hz, 2 H), 8.28 (ddd, J = 8.7, 7.1, 1.3 Hz, 1 H), 8.08 (dd, J = 14.9, 7.5 Hz, 3 H), 7.67 (dd, J = 10.2, 4.7 Hz, 2 H), 7.61-7.57 (m, 1 H), 4.74 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 149.7, 143.3, 137.7, 135.6, 134.0, 133.8, 131.0,

130.7, 130.3, 123.0, 129.7, 127.9, 119.4, 46.0 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{14}N^+$ : 220.1121, found: 220.1123.

#### 3-bromo-1-methylquinolin-1-ium iodide (2j)



Yellow solid; 1.470 g in 5 mmol scale, 84 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta = 9.91$  (d, J = 1.6 Hz, 1 H), 9.65 (d, J = 1.5 Hz, 1 H), 8.51 (d, J = 8.9 Hz, 1 H), 8.41 (dd, J = 8.3, 1.0 Hz, 1 H), 8.31 (ddd, J = 8.8, 7.0, 1.4 Hz, 1 H), 8.10 (t, J = 7.6 Hz, 1 H), 4.63 (s, 3)

H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 151.8$ , 148.6, 137.7, 136.1, 131.3, 130.1, 130.0, 119.7, 115.0, 45.8 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9BrN^+$ : 221.9913, found: 221.9914.

## 1-(naphthalen-1-ylmethyl)quinolin-1-ium bromide (2k)



White solid; 1.190 g in 5 mmol scale, 68 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta = 9.56$  (dd, J = 5.8, 1.1 Hz, 1 H), 9.50 (d, J =8.3 Hz, 1 H), 8.62 (dd, J = 8.2, 1.1 Hz, 1 H), 8.44 (d, J = 8.9 Hz, 1 H), 8.29 (dd, J = 8.3, 5.8 Hz, 1 H), 8.25-8.19 (m, 2 H), 8.08 (t, J =7.7 Hz, 2 H), 8.01 (d, J = 8.3 Hz, 1 H), 7.75-7.67 (m, 2 H), 7.42-7.39 (m, 1 H), 6.94 (s, 2 H), 6.81 (d, J = 7.1 Hz, 1 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta$  = 150.5, 148.9, 138.7, 136.4, 133.8,

131.4, 130.6, 130.4, 130.3, 129.8, 129.7, 129.4, 127.8, 127.2, 126.1, 125.4, 123.5, 123.1, 119.7, 58.4 ppm; HRMS  $[M+H]^+$  calculated for  $C_{20}H_{16}N^+$ : 270.1277, found: 270.1276.

## 1-methylpyridin-1-ium iodide (21)



Light yellow solid; 0.950 g in 5 mmol scale, 86 % yield; <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta = 9.02$  (d, J = 5.8 Hz, 2 H), 8.60 (t, J = 7.8 Hz, 1 H), 8.15 (t, J = 7.0 Hz, 2 H), 4.38 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, DMSO- $d_6$ )  $\delta = 146.0, 145.6, 128.2, 48.5 \text{ ppm}; \text{HRMS } [\text{M+H}]^+ \text{ calculated}$ for C<sub>6</sub>H<sub>8</sub>N<sup>+</sup>: 94.0651, found: 94.0653.

## 2-methylisoquinolin-1(2*H*)-one (3a)



Light yellow oil; 28 mg in 0.2 mmol scale, 86% yield from iodide salt; 25 mg in 0.2 mmol scale, 78% yield from tetrafluoroborate salt; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.42 (d, J = 8.1 Hz, 1 H), 7.60 (t, J = 7.5 Hz, 1H), 7.46 (dd, J = 13.7, 7.7 Hz, 2 H), 7.04 (d, J = 7.3 Hz,

1 H), 6.45 (d, J = 7.3 Hz, 1 H), 3.58 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta =$ 162.6, 137.1, 132.4, 132.0, 127.6, 126.8, 126.1, 125.9, 106.0, 37.0 ppm; HRMS  $[M+H]^+$  calculated for C<sub>10</sub>H<sub>10</sub>ON<sup>+</sup>: 160.0757, found: 160.0758.

## 6-methoxy-2-methylisoquinolin-1(2*H*)-one (3b)



Light yellow solid; 34 mg in 0.2 mmol scale, 90% yield; m. p. 90-91 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.33 (d, J = 8.9 Hz, 1 H), 7.04 (dd, J = 6.7, 3.6 Hz, 2 H), 6.84 (s, 1 H), 6.39 (d, J =7.3 Hz, 1 H), 3.89 (s, 3 H), 3.57 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.6$ , 162.4, 139.2, 133.1, 129.7, 120.0,

116.3 106.7, 105.7, 55.4, 36.8 ppm; HRMS  $[M+H]^+$  calculated for  $C_{11}H_{12}O_2N^+$ : 190.0863, found: 190.0862.

## 6-chloro-2-methylisoquinolin-1(2H)-one (3c)



White solid; 33 mg in 0.2 mmol scale, 85% yield; m. p. 132-133 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.34 (d, *J* = 8.6 Hz, 1 H), 7.47 (d, *J* = 1.7 Hz, 1 H), 7.40 (dd, *J* = 8.6, 1.8 Hz, 1 H), 7.08 (d, *J* = 7.3 Hz, 1 H), 6.38 (d, *J* = 7.3 Hz, 1 H), 3.58 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.0, 138.5, 138.4, 133.8,

129.5, 127.3, 125.1, 124.4, 104.9, 37.0 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9OCIN^+$ : 194.0367, found: 194.0368.

## 6-bromo-2-methylisoquinolin-1(2H)-one (3d)



White solid; 41 mg in 0.2 mmol scale, 86% yield; m. p. 146-147 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.26 (d, *J* = 8.6 Hz, 1 H), 7.64 (s, 1 H), 7.55 (dd, *J* = 8.6, 1.6 Hz, 1 H), 7.08 (d, *J* = 7.3 Hz, 1 H), 6.37 (d, *J* = 7.3 Hz, 1 H), 3.58 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.1, 138.6, 133.8, 130.0, 129.6, 128.3,

127.1, 124.8, 104.8, 37.1 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9OBrN^+$ : 237.9862, found: 237.9864.

## 2-benzylisoquinolin-1(2*H*)-one (3e)



Light yellow oil; 35 mg in 0.2 mmol scale, 74% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.46 (d, *J* = 7.7 Hz, 1 H), 7.65-7.61 (m, 1 H), 7.51-7.47 (m, 2 H), 7.35 - 7.31 (m, 4 H), 7.28 (dd, *J* = 9.8, 5.6 Hz, 1H), 7.08 (d, *J* = 7.4 Hz, 1H),

6.48 (d, J = 7.4 Hz, 1 H), 5.22 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.3$ , 137.0, 136.9, 132.2, 131.3, 128.8, 128.1, 128.0, 127.8, 126.9, 126.4, 125.9, 106.5, 51.7 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>ON<sup>+</sup>: 236.1070, found: 236.1069.

## 2-butylisoquinolin-1(2*H*)-one (3f)



Light yellow oil; 31 mg in 0.2 mmol scale, 78% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.43 (d, *J* = 8.0 Hz, 1 H), 7.61 (dd, *J* = 10.9, 4.1 Hz, 1 H), 7.48 (dd, *J* = 14.5, 7.6 Hz, 2 H), 7.06 (d, *J* = 7.3 Hz, 1 H), 6.48 (d, *J* = 7.3 Hz, 1 H), 4.02-

3.98 (m, 2 H), 1.77 (dt, J = 15.1, 7.5 Hz, 2 H), 1.41 (dq, J = 14.7, 7.4 Hz, 2 H), 0.96 (t, J = 7.4 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.1$ , 137.0, 132.0, 131.7, 127.8, 126.7, 126.4, 125.8, 105.9, 49.1, 31.4, 20.0, 13.7 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>13</sub>H<sub>16</sub>ON<sup>+</sup>: 202.1226, found: 202.1224.

## 2-(naphthalen-1-ylmethyl)isoquinolin-1(2H)-one (3g)



White solid; 36 mg in 0.2 mmol scale, 63% yield; m. p. 122-123 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.53 (d, *J* = 8.0 Hz, 1 H), 8.07-8.05 (m, 1 H), 7.87-7.82 (m, 2H), 7.64-7.60 (m, 1 H), 7.52-7.48 (m, 3 H), 7.43 (dd, *J* = 15.4, 8.1

Hz, 2 H), 7.33 (d, J = 7.0 Hz, 1 H), 6.96 (d, J = 7.4 Hz, 1 H), 6.38 (d, J = 7.4 Hz, 1 H), 5.68 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.2$ , 136.9, 133.9, 132.3, 132.2, 131.4, 130.4, 129.0, 128.8, 128.2, 127.1, 126.9, 126.2, 126.1, 126.0, 125.3, 123.5, 106.4, 48.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>16</sub>ON<sup>+</sup>: 286.1226, found: 286.1226.

## 2-(4-nitrobenzyl)isoquinolin-1(2H)-one (3h)



Brown solid; 17 mg in 0.2 mmol scale, 30% yield; m. p. 153-154 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.44 (d, J = 7.9 Hz, 1 H), 8.18 (d, J = 8.4 Hz, 2 H), 7.67 (t, J = 7.5 Hz, 1H), 7.55-7.46 (m, 4 H), 7.09 (d, J = 7.3 Hz, 1 H), 6.56 (d, J = 7.3 Hz, 1 H), 5.30 (s, 2 H) ppm; <sup>13</sup>C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta = 162.2, 144.2, 137.0, 132.6, 131.0, 128.5, 128.1, 127.3, 126.2, 126.1, 124.0, 107.1, 51.6 \text{ ppm}; \text{HRMS } [M+H]^+ \text{ calculated for } C_{16}H_{13}O_3N_2^+: 281.0921, found: 281.0920.$ 

## 2-methyl-6-phenylisoquinolin-1(2*H*)-one (3i)



White solid; 22 mg in 0.2 mmol scale, 47% yield; m. p. 139-140 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.48 (d, *J* = 8.3 Hz, 1 H), 7.72-7.65 (m, 4 H), 7.49-7.45 (m, 2 H), 7.42-7.38 (m, 1 H), 7.08 (d, *J* = 7.3 Hz, 1 H), 6.52 (d, *J* = 7.3 Hz, 1 H), 3.61 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.5, 144.8, 140.5, 137.6, 132.8, 128.9, 128.3, 128.1, 127.5, 126.1, 125.0,

124.0, 106.1, 37.0 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{14}ON^+$ : 236.1070, found: 236.1073.

## 2-(4-bromobenzyl)isoquinolin-1(2*H*)-one (3j)



White solid; 42 mg in 0.2 mmol scale, 67% yield; m. p. 159-160 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.49-8.40 (m, 1 H), 7.66-7.61 (m, 1 H), 7.51-7.43 (m, 4 H), 7.20 (d, J = 8.4 Hz, 2 H), 7.05 (d, J = 7.4 Hz, 1 H), 6.49 (d, J = 7.4 Hz, 1 H), 5.15 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz,

CDCl<sub>3</sub>)  $\delta$  = 162.2, 129.7, 128.1, 127.1, 126.3, 126.0, 121.9, 106.7, 51.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>BrON<sup>+</sup>: 314.0175, found: 314.0172.

## 2-(3-chlorobenzyl)isoquinolin-1(2H)-one (3k)



White solid; 41 mg in 0.2 mmol scale, 76% yield; m. p. 95-96 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.37 (d, *J* = 8.0 Hz, 1 H), 7.56 (t, *J* = 7.5 Hz, 1 H), 7.41 (t, *J* = 7.5 Hz, 2 H), 7.22 (s, 1 H), 7.14 (dt, *J* = 8.9, 4.7 Hz, 3 H), 6.98 (d,

J = 7.4 Hz, 1 H), 6.42 (d, J = 7.4 Hz, 1 H), 5.10 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.2$ , 139.0, 137.0, 134.7, 132.4, 131.1, 130.1, 128.1, 128.0, 127.9, 127.1, 126.3, 126.1, 126.0, 106.7, 51.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>ClON<sup>+</sup>: 270.0680, found: 270.0687.

## 2-(2-bromobenzyl)isoquinolin-1(2H)-one (3l)



Light yellow solid; 33 mg in 0.2 mmol scale, 53% yield; m. p. 87-88 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.47 (d, *J* = 8.0 Hz, 1 H), 7.67-7.63 (m, 1 H), 7.59 (d, *J* = 8.0 Hz, 1 H), 7.53-7.48 (m, 2 H), 7.23 (dd, *J* = 11.9, 5.3 Hz, 1 H), 7.18-7.07 (m, 3 H), 6.51 (d, *J* = 7.4 Hz, 1 H), 5.33 (s, 2 H) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.4, 137.1, 136.0, 133.0, 132.4, 131.5, 129.5, 129.3, 128.1, 127.9, 127.0, 126.3, 126.0, 123.4, 106.5, 51.7 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>BrON<sup>+</sup>: 314.0175, found: 314.0175.

#### 2,2'-(butane-1,4-diyl)bis(isoquinolin-1(2H)-one) (3m)



White solid; 18 mg in 0.1 mmol scale, 51% yield; m. p. 185-186 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.34 (d, *J* = 8.0 Hz, 2 H), 7.53 (t, *J* = 7.5 Hz, 2 H), 7.41-7.37 (m, 4 H), 6.98 (d, *J* = 7.3 Hz, 2 H), 6.39

(d, J = 7.2 Hz, 2H), 3.98 (s, 4 H), 1.78 (s, 4 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ = 162.2, 137.1, 132.1, 131.7, 127.8, 126.8, 126.2, 125.9, 106.2, 48.6, 26.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>21</sub>O<sub>2</sub>N<sub>2</sub><sup>+</sup>: 345.1598, found: 345.1597.

## 2-(4-(tert-butyl)benzyl)isoquinolin-1(2H)-one (3n)



Light yellow oil; 33 mg in 0.2 mmol scale, 57% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.39 (d, *J* = 7.7 Hz, 1 H), 7.56-7.52 (m, 1 H), 7.40 (dd, *J* = 11.3, 4.3 Hz, 2 H), 7.28-7.26 (m, 2 H), 7.20-7.17 (m, 2 H), 7.02 (d, *J* = 7.4 Hz, 1 H), 6.40 (d, *J* = 7.4 Hz, 1 H), 5.11 (s, 2 H), 1.21 (s,

9 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.3, 150.8, 137.0, 133.9, 132.2, 131.4, 128.1, 127.8, 126.9, 126.4, 125.9, 125.7, 106.3, 51.5, 34.5, 31.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>22</sub>ON<sup>+</sup>: 292.1696, found: 292.1694.

## 2-(3-phenylpropyl)isoquinolin-1(2*H*)-one (30)



Light yellow oil; 18 mg in 0.2 mmol scale, 34% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.44 (d, *J* = 8.0 Hz, 1 H), 7.61 (dd, *J* = 10.5, 4.5 Hz, 1 H), 7.50-7.45 (m, 2 H), 7.27 (dd, *J* = 12.7, 5.5 Hz, 2 H), 7.19 (dd, *J* = 10.3, 7.5

Hz, 3 H), 6.99 (d, J = 7.3 Hz, 1 H), 6.47 (d, J = 7.3 Hz, 1 H), 4.04-4.00 (m, 2 H), 2.73-2.69 (m, 2 H), 2.13 (dt, J = 14.9, 7.6 Hz, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.2$ , 141.0, 137.0 132.1, 131.6, 128.5, 128.4, 127.9, 126.8, 126.4, 126.1, 125.9, 106.0, 49.0, 32.9, 30.6 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>18</sub>ON<sup>+</sup>: 264.1383, found: 264.1382.

## 4-bromo-2-methylisoquinolin-1(2*H*)-one (3p)



White solid; 41 mg in 0.2 mmol scale, 88% yield; m. p. 127-128 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.34 (d, *J* = 8.0 Hz, 1 H), 7.70 (d, *J* = 8.0 Hz, 1 H), 7.63 (t, *J* = 7.6 Hz, 1 H), 7.45 (t, *J* = 7.5 Hz, 1 H), 7.26 (s, 1 H), 3.50 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.7, 135.5, 133.0, 132.8, 128.1, 127.8, 126.3, 125.8, 99.5, 36.9 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9BrON^+$ : 237.9862, found: 237.9861.

## 2-methyl-4-phenylisoquinolin-1(2H)-one (3q)



White solid; 25 mg in 0.2 mmol scale, 53% yield; m. p. 174-175 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.53 (d, *J* = 7.9 Hz, 1H), 7.59-7.50 (m, 3 H), 7.43 (dd, *J* = 20.5, 6.9 Hz, 5 H), 7.04 (s, 1 H), 3.65 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.2, 136.4, 136.3, 132.0, 131.5, 130.0, 128.7, 128.1, 127.7, 126.9, 125.9, 124.6, 119.6, 37.0 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>ON<sup>+</sup>: 236.1070, found: 236.1072.

## 2-propylisoquinolin-1(2*H*)-one (3r)



Colorless oil; 24 mg in 0.2 mmol scale, 65% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.44 (d, *J* = 8.0 Hz, 1 H), 7.61 (dd, *J* = 11.0, 3.9 Hz, 1 H), 7.48 (dd, *J* = 14.7, 7.5 Hz, 2 H), 7.06 (d, *J* = 7.3 Hz, 1 H), 6.48 (d, *J* = 7.3 Hz, 1 H), 3,99-3.95 (m, 2 H), 1.82 (dd, *J* = 14.7, 7.4 Hz, 2 H), 0.98 (t, *J* = 7.4 Hz, 3 H) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.1, 137.0, 132.0, 131.8, 127.9, 126.7, 126.4, 125.8, 105.8, 51.0, 22.6, 11.2 ppm; HRMS [M+H]<sup>+</sup> calculated for  $C_{12}H_{14}ON^+$ : 188.1070, found: 188.1074.

## 2-pentylisoquinolin-1(2*H*)-one (3s)



Light yellow oil; 22 mg in 0.2 mmol scale, 50% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.44 (d, *J* = 8.0 Hz, 1 H), 7.66-7.57 (m, 1 H), 7.48 (dd, *J* = 14.6, 7.4 Hz, 2 H), 7.06 (d, *J* = 7.3 Hz, 1 H), 6.48 (d, *J* = 7.3 Hz, 1 H), 4.00-3.97 (m, 2 H), 1.81-1.74 (m, 2 H), 1.39-1.33 (m, 4 H), 0.90 (t,

J = 6.8 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 162.1$ , 137.0, 132.0, 131.7, 127.8, 126.7, 126.3, 125.8, 105.9, 49.4, 29.0, 28.9, 22.4, 14.0 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>18</sub>ON<sup>+</sup>: 216.1383, found: 216.1381.

## 1-methylquinolin-2(1*H*)-one (4a)



Light yellow oil; 25 mg in 0.2 mmol scale, 78% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.67 (d, *J* = 9.5 Hz, 1 H), 7.58 (dd, *J* = 12.7, 4.4 Hz, 2 H), 7.37 (d, *J* = 8.4 Hz, 1 H), 7.27-7.22 (m, 1 H), 6.72 (d, *J* = 9.5 Hz, 1 H), 3.72 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 

= 162.4, 140.1, 139.0, 130.6, 128.8, 122.1, 121.7, 120.7, 114.1, 29.4 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_{10}ON^+$ : 160.0757, found: 160.0758.

## 6-bromo-1-methylquinolin-2(1*H*)-one (4b)



White solid; 36 mg in 0.2 mmol scale, 77% yield; m. p. 141-142 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.67-7.61 (m, 2 H), 7.57 (d, J = 9.5 Hz, 1 H), 7.23 (d, J = 8.9 Hz, 1 H), 6.72 (d, J = 9.5 Hz, 1 H), 3.68 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 161.8$ , 139.0, 137.7, 133.3, 130.8, 123.0, 122.1, 115.8, 114.9, 29.5 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>9</sub>OBrN<sup>+</sup>: 237.9862, found: 237.9861.

## 6-methoxy-1-methylquinolin-2(1*H*)-one (4c)



Light yellow solid; 33 mg in 0.2 mmol scale, 89% yield; m. p. 70-71 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.61 (d, *J* = 9.4 Hz, 1 H), 7.29 (t, *J* = 7.4 Hz, 1 H), 7.19 (dd, *J* = 9.2, 2.5 Hz, 1 H), 7.00 (d, *J* = 2.4 Hz, 1 H), 6.72 (d, *J* = 9.4 Hz, 1 H), 3.87 (s, 3

H), 3.71 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.0, 154.7, 138.4, 134.6, 122.3, 121.4, 119.2, 115.4, 110.5, 55.7, 29.5 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>11</sub>H<sub>12</sub>O<sub>2</sub>N<sup>+</sup>: 190.0863, found: 190.0864.

## 6-chloro-1-methylquinolin-2(1*H*)-one (4d)



Off-white solid; 31 mg in 0.2 mmol scale, 80% yield; m. p. 145-146 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.58 (d, *J* = 9.5 Hz, 1 H), 7.51 (d, *J* = 10.4 Hz, 2 H), 7.29 (d, *J* = 8.6 Hz, 1 H), 6.73 (d, *J* = 9.5 Hz, 1 H), 3.69 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.9, 138.6, 137.8, 130.6, 127.8, 127.6,

123.1, 121.7, 115.6, 29.6 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_9OCIN^+$ : 194.0367, found: 194.0367.

## 1-(3-phenylpropyl)quinolin-2(1*H*)-one (4e)



Yellow oil; 19 mg in 0.2 mmol scale, 36% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.64 (d, *J* = 9.4 Hz, 1 H), 7.54 (d, *J* = 7.7 Hz, 1 H), 7.47 (dd, *J* = 8.5, 7.3 Hz, 1 H), 7.30-7.29 (m, 2 H), 7.25-7.17 (m, 4 H), 7.12 (d, *J* = 8.6 Hz, 1 H), 6.69 (d, *J* = 9.4 Hz, 1 H), 4.33-4.29 (m, 2 H), 2.80 (t, *J* = 7.6 Hz, 2 H), 2.12-2.04 (m, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.1, 141.2, 139.2, 139.0, 130.5, 129.0, 128.5, 128.4, 126.1, 121.9, 121.8, 121.0, 114.0, 41.8, 33.2, 28.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>18</sub>ON<sup>+</sup>: 264.1383,

found: 264.1375.

## 1-methyl-3-(naphthalen-1-yl)quinolin-2(1H)-one (4f)



Yellow solid; 50 mg in 0.2 mmol scale, 88% yield from iodide salt; 46 mg in 0.2 mmol scale, 81% yield from tetrafluoroborate salt; m. p. 161-162 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.85 (d, J = 7.7 Hz, 2 H), 7.75-7.72 (m, 2 H), 7.58-7.50 (m, 3 H), 7.45 (ddd, J = 6.1, 4.8, 2.5 Hz, 2 H), 7.42-7.37 (m, 2 H), 7.24-7.19 (m, 1 H), 3.78 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.9, 140.1, 139.1, 135.2, 133.7, 132.8, 132.1, 130.6, 128.9, 128.7,

128.4, 127.5, 126.2, 125.8, 125.4, 122.3, 120.6, 114.2, 30.1 ppm; HRMS  $[M+H]^+$  calculated for  $C_{20}H_{16}ON^+$ : 286.1226, found: 286.1227.

## 1-methyl-6-phenylquinolin-2(1*H*)-one (4g)



Grey solid; 20 mg in 0.2 mmol scale, 43% yield; m. p. 136-137 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.73 (dd, *J* = 8.7, 2.0 Hz, 1 H), 7.66 (dd, *J* = 13.3, 5.7 Hz, 2 H), 7.54 (d, *J* = 7.5 Hz, 2 H), 7.35 (ddd, *J* = 25.7, 14.9, 7.4 Hz, 4 H), 6.67 (d, *J* = 9.5 Hz, 1 H), 3.67 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  =

162.3, 139.7, 139.4, 139.0, 135.2, 129.6, 129.0, 127.5, 126.9, 126.8, 122.2, 121.0, 114.6, 29.5 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{14}ON^+$ : 236.1070, found: 236.1064.

## 1-(3-methylbenzyl)quinolin-2(1H)-one (4h)



Light yellow oil; 32 mg in 0.2 mmol scale, 64% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.73 (d, *J* = 9.5 Hz, 1 H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.41 (t, *J* = 7.9 Hz, 1 H), 7.27 (d, *J* = 8.6 Hz, 1 H), 7.17 (t, *J* = 7.6 Hz, 2 H), 7.02 (t, *J* = 8.0 Hz, 3 H), 6.80 (d, *J* = 9.5 Hz, 1 H), 5.52 (s, 2 H), 2.28 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.5, 139.6, 139.5, 138.5, 136.3, 130.6, 128.8, 128.7, 128.1, 127.2, 123.7, 122.2, 121.7, 121.0, 115.1, 46.0, 21.4 ppm;

HRMS [M+H]<sup>+</sup> calculated for C<sub>17</sub>H<sub>16</sub>ON<sup>+</sup>: 250.1226, found: 250.1224.

## 1-methyl-3-phenylquinolin-2(1*H*)-one (4i)



Yellow solid; 29 mg in 0.2 mmol scale, 62% yield; m. p. 127-128 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.79 (s, 1 H), 7.72-7.70 (m, 2 H), 7.61-7.57 (m, 1 H), 7.56-7.54 (m, 1 H), 7.45-7.41 (m, 2 H), 7.38-7.34 (m, 2 H), 7.26-7.22 (m, 1 H), 3.79 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.6, 139.7, 136.8, 136.7, 132.5, 130.3, 129.0, 128.9, 128.2, 128.1, 122.2,

120.8, 114.0, 30.0 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{14}ON^+$ : 236.1070, found: 236.1074.

## 3-bromo-1-methylquinolin-2(1*H*)-one (4j)



White solid; 27 mg in 0.2 mmol scale, 58% yield; m. p. 144-145 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.12 (s, 1 H), 7.60 (ddd, *J* = 8.6, 7.3, 1.5 Hz, 1 H), 7.52 (dd, *J* = 7.8, 1.2 Hz, 1 H), 7.36 (d, *J* = 8.5 Hz, 1 H), 7.26 (dd, *J* = 8.8, 6.2 Hz, 1 H), 3.80 (s, 3 H) ppm; <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 158.5, 140.6, 139.4, 130.9, 128.1, 122.7, 120.5, 117.6, 114.4, 31.1 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>9</sub>BrON<sup>+</sup>: 237.9862, found: 237.9864.

## 1-(naphthalen-1-ylmethyl)quinolin-2(1*H*)-one (4k)



Grey solid; 43 mg in 0.2 mmol scale, 75% yield; m. p. 186-187 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.14 (d, *J* = 8.3 Hz, 1 H), 7.90 (d, *J* = 8.1 Hz, 1 H), 7.80-7.78 (m, 1 H), 7.72 (d, *J* = 8.1 Hz, 1 H), 7.64-7.53 (m, 3 H), 7.31-7.21 (m, 2 H), 7.16 (t, *J* = 7.5 Hz, 1 H), 7.02 (d, *J* = 8.4 Hz, 1 H), 6.84 (dd, *J* = 9.5, 2.1 Hz, 1 H), 6.78 (d, *J* = 7.1 Hz, 1 H), 5.99 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 162.5, 139.7, 139.6, 133.9, 130.8, 130.7, 130.6, 129.1, 128.8, 127.7, 126.5, 125.9, 125.6, 122.4, 122.3, 121.7, 121.0,

115.3, 43.9 ppm; HRMS  $[M+H]^+$  calculated for  $C_{20}H_{16}ON^+$ : 286.1226, found: 286.1219.

## 4-iodo-2-methylisoquinolin-1(2H)-one (5a)



White solid; 42 mg in 0.2 mmol scale, 74% yield; 45 mg in 0.2 mmol scale, 79% yield from tetrafluoroborate salt; m. p. 123-124 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.37 (d, *J* = 8.0 Hz, 1 H), 7.69 (t, *J* = 7.5 Hz, 1 H), 7.62 (d, *J* = 8.0 Hz, 1 H), 7.52-7.49 (m, 2 H), 3.58 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.9, 138.7, 137.2, 133.1, 130.3, 128.0, 127.8, 126.4, 71.4, 36.8 ppm; HRMS

[M+H]<sup>+</sup> calculated for C<sub>10</sub>H<sub>9</sub>OIN<sup>+</sup>: 285.9723, found: 285.9725.

## 4-iodo-6-methoxy-2-methylisoquinolin-1(2*H*)-one (5b)



White solid; 44 mg in 0.2 mmol scale, 70% yield; m. p. 177-178 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.31 (d, *J* = 8.8 Hz, 1 H), 7.51 (s, 1 H), 7.07-7.03 (m, 2 H), 3.95 (s, 3 H), 3.57 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 163.5, 161.6, 139.4, 139.3, 130.4, 120.2, 116.8, 112.1, 71.0, 55.6, 36.6 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>11</sub>H<sub>11</sub>O<sub>2</sub>IN<sup>+</sup>: 315.9829, found: 315.9829.

#### 6-chloro-4-iodo-2-methylisoquinolin-1(2H)-one (5c)



White solid; 50 mg in 0.2 mmol scale, 78% yield; m. p. 213-214 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.31 (d, *J* = 8.6 Hz, 1 H), 7.64 (d, *J* = 1.9 Hz, 1 H), 7.54 (s, 1H), 7.44 (dd, *J* = 8.6, 2.0 Hz, 1 H), 3.58 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.3, 140.0, 139.9, 138.7, 130.0, 129.8, 128.3, 124.7, 69.3, 36.9 ppm;

HRMS  $[M+H]^+$  calculated for  $C_{10}H_8CIOIN^+$ : 319.9334, found: 319.9336.

## 6-bromo-4-iodo-2-methylisoquinolin-1(2*H*)-one (5d)



White solid; 53 mg in 0.2 mmol scale, 73% yield; m. p. 208-209 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.24 (d, *J* = 8.5 Hz, 1 H), 7.83 (d, *J* = 1.6 Hz, 1 H), 7.61 (dd, *J* = 8.5, 1.6 Hz, 1 H), 7.55 (s, 1 H), 3.59 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ = 161.5, 139.9, 138.8, 133.0, 131.2, 130.0, 128.7, 125.1, 69.2,

36.9 ppm; HRMS  $[M+H]^+$  calculated for  $C_{10}H_8BrOIN^+$ : 363.8828, found: 363.8831.

## 2-benzyl-4-iodoisoquinolin-1(2H)-one (5e)



Light yellow solid; 50 mg in 0.2 mmol scale, 69% yield; m. p. 91-92 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.42 (dd, *J* = 8.0, 0.5 Hz, 1 H), 7.71-7.62 (m, 2 H), 7.53-7.49 (m, 2 H), 7.34-7.28 (m, 5 H), 5.18 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.6, 137.6, 137.1, 136.4, 133.3, 130.5, 129.0, 128.5, 128.1, 128.0, 127.9, 126.7, 72.1, 51.7 ppm; HRMS [M+H]<sup>+</sup>

calculated for C<sub>16</sub>H<sub>13</sub>OIN<sup>+</sup>: 362.0036, found: 362.0037.

#### 2-butyl-4-iodoisoquinolin-1(2H)-one (5f)



Light yellow oil; 52 mg in 0.2 mmol scale, 80% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.32 (d, *J* = 8.0 Hz, 1 H), 7.65-7.57 (m, 2 H), 7.46-7.42 (m, 2 H), 3.90 (t, *J* = 7.4 Hz, 2 H), 1.68 (dt, *J* = 15.1, 7.5 Hz, 2 H), 1.33 (dq, *J* = 14.8, 7.4 Hz, 2 H), 0.89 (t, *J* = 7.4 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  =

161.5, 138.0, 137.1, 133.1, 130.3, 128.2, 127.7, 126.7, 71.4, 49.1, 31.5, 20.0, 13.7 ppm; HRMS  $[M+H]^+$  calculated for  $C_{13}H_{15}OIN^+$ : 328.0193, found: 328.0189.

## 4-iodo-2-(naphthalen-1-ylmethyl)isoquinolin-1(2H)-one (5g)



Off-white solid; 48 mg in 0.2 mmol scale, 58% yield; m. p. 137-138 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.41 (dd, J = 8.0, 0.7 Hz, 1 H), 7.99-7.94 (m, 1 H), 7.79-7.71 (m, 2 H), 7.63-7.57 (m, 1 H), 7.52 (d, J = 7.6 Hz, 1 H), 7.46-7.39 (m, 3 H), 7.36-7.32 (m, 2 H), 7.24 (d, J = 6.9 Hz, 1 H), 5.56 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  =

161.5, 137.1, 136.8, 134.0, 133.4, 131.6, 131.3, 130.5, 129.3, 128.9, 128.6, 127.9, 127.2, 127.1, 126.6, 126.3, 125.4, 123.3, 72.4, 48.7 ppm; HRMS  $[M+H]^+$  calculated for  $C_{20}H_{15}OIN^+$ : 412.0193, found: 412.0194.

#### 4-iodo-2-(4-nitrobenzyl)isoquinolin-1(2H)-one (5h)



Yellow solid; 39 mg in 0.2 mmol scale, 48% yield; m. p. 166-167 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.40 (d, J = 8.0 Hz, 1 H), 8.18 (d, J = 8.6 Hz, 2 H), 7.75 (t, J = 7.6 Hz, 1 H), 7.68 (d, J = 7.9 Hz, 1 H), 7.58-7.55 (m, 2 H), 7.48 (d, J = 8.6 Hz, 2 H), 5.26 (s, 2 H) ppm; <sup>13</sup>C

NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.5, 155.6, 147.7, 143.6, 137.1, 133.7, 130.7, 128.6, 128.4, 128.3, 126.4, 124.1, 72.9, 51.4 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>12</sub>O<sub>3</sub>IN<sub>2</sub><sup>+</sup>: 406.9887, found: 406.9893.

#### 4-iodo-2-methyl-6-phenylisoquinolin-1(2H)-one (5i)

Orange solid; 55 mg in 0.2 mmol scale, 76% yield; m. p. 170-171 °C; <sup>1</sup>H NMR (400



MHz, CDCl<sub>3</sub>)  $\delta$  = 8.42 (d, *J* = 8.3 Hz, 1 H), 7.80 (d, *J* = 1.5 Hz, 1 H), 7.70 (ddd, *J* = 8.6, 7.8, 3.5 Hz, 3 H), 7.52-7.47 (m, 3H), 7.42 (ddd, *J* = 7.3, 3.7, 1.1 Hz, 1 H), 3.58 (s, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.8, 145.9, 139.8, 139.1, 137.5, 129.0, 128.8, 128.6, 128.4, 127.6, 126.9, 125.3, 71.6, 36.8 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>16</sub>H<sub>13</sub>OIN<sup>+</sup>:

362.0036, found: 362.0034.

## 2-(4-bromobenzyl)-4-iodoisoquinolin-1(2H)-one (5j)



White solid; 67 mg in 0.2 mmol scale, 76% yield; m. p. 114-115 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.41 (dd, *J* = 8.0, 0.8 Hz, 1H), 7.74-7.69 (m, 1 H), 7.65 (d, *J* = 7.4 Hz, 1 H), 7.55-7.50 (m, 2 H), 7.47-7.44 (m, 2 H), 7.21 (d, *J* = 8.4 Hz, 2 H), 5.12 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.6, 137.3, 137.1, 135.4, 133.4,

132.1, 130.6, 129.7, 128.4, 128.1, 126.6, 122.2, 72.4, 51.3 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{12}BrOIN^+$ : 439.9141, found: 439.9149.

#### 2-(3-chlorobenzyl)-4-iodoisoquinolin-1(2H)-one (5k)



Off-white solid; 43 mg in 0.2 mmol scale, 54% yield; m. p. 97-98 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.42 (d, J = 8.0 Hz, 1 H), 7.74-7.70 (m, 1 H), 7.65 (d, J = 8.0 Hz, 1H), 7.55-7.51 (m, 2 H), 7.32 (s, 1 H), 7.26 (d, J = 5.2 Hz, 2 H), 7.21 (dd, J = 8.8, 3.5 Hz, 1 H), 5.14 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.6, 138.4,

137.3, 137.1, 134.8, 133.5, 130.6, 130.2, 128.5, 128.4, 128.1, 128.0, 126.6 126.1, 72.5, 51.3 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{12}CIOIN^+$ : 395.9647, found: 395.9654.

## 2-(2-bromobenzyl)-4-iodoisoquinolin-1(2H)-one (5l)



Grey solid; 43 mg in 0.2 mmol scale, 49% yield; m. p. 169-170 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.43 (dd, *J* = 8.0, 0.8 Hz, 1 H), 7.72 (ddd, *J* = 19.2, 13.1, 4.3 Hz, 2 H), 7.61-7.52 (m, 3 H), 7.28-7.24 (m, 1 H), 7.19-7.14 (m, 2 H), 5.30 (s, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.7, 137.7, 137.2, 135.4, 133.4, 133.1, 130.6, 129.6, 129.5, 128.5, 128.0, 126.6,

123.3, 72.2, 51.6 ppm; HRMS  $[M+H]^+$  calculated for  $C_{16}H_{12}BrOIN^+$ : 439.9141, found: 439.9142.

#### 2,2'-(butane-1,4-diyl)bis(4-iodoisoquinolin-1(2*H*)-one) (5m)

Light yellow solid; 14 mg in 0.1 mmol scale, 23% yield; m. p. 237-238 °C; <sup>1</sup>H NMR



(400 MHz, CDCl<sub>3</sub>)  $\delta = 8.41$  (d, J = 8.0 Hz, 1 H), 7.72 (t, J = 7.5 Hz, 1 H), 7.66 (d, J = 8.0 Hz, 1 H), 7.58-7.51 (m, 2 H), 4.08 (t, J = 6.0 Hz, 2 H), 1.86 (t, J = 6.4 Hz, 2 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 161.6$ , 137.8, 137.1, 133.2, 130.4, 128.2, 127.9, 126.6, 71.9, 48.3, 26.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>22</sub>H<sub>19</sub>O<sub>2</sub>I<sub>2</sub>N<sub>2</sub><sup>+</sup>:

596.9530, found: 596.9526.

## 2-(4-(tert-butyl)benzyl)-4-iodoisoquinolin-1(2H)-one (5n)



White solid; 56 mg in 0.2 mmol scale, 67% yield; m. p. 176-177 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.43 (d, *J* = 8.0 Hz, 1 H), 7.71-7.67 (m, 1 H), 7.63 (d, *J* = 7.6 Hz, 1 H), 7.52 (dd, *J* = 14.2, 6.3 Hz, 2 H), 7.36 (d, *J* = 8.4 Hz, 2 H), 7.28-7.24 (m, 2 H), 5.15 (s, 2 H), 1.29 (s, 9 H) ppm;

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.6, 151.1, 137.7, 137.1, 133.4, 133.2, 130.4, 128.5, 127.9, 127.8, 126.8, 125.9, 72.0, 51.5, 34.6, 31.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>21</sub>OIN<sup>+</sup>: 418.0662, found: 418.0665.

#### 4-iodo-2-(3-phenylpropyl)isoquinolin-1(2H)-one (50)



yellow oil; 51 mg in 0.2 mmol scale, 66% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.39 (d, *J* = 8.0 Hz, 1 H), 7.70-7.62 (m, 2 H), 7.50 (t, *J* = 7.4 Hz, 1 H), 7.41 (s, 1 H), 7.27 (t, *J* = 7.4 Hz, 2 H), 7.19 (d, *J* = 7.3 Hz, 3 H), 3.98 (t, *J* = 7.3 Hz, 2 H), 2.70 (t, *J* = 7.6 Hz, 2 H), 2.15-2.08 (m, 2 H)

ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 161.5, 140.7, 138.0, 137.1, 133.1, 130.3, 128.6, 128.4, 128.2, 127.8, 126.7, 126.2, 71.5, 49.0, 32.9, 30.5 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>18</sub>H<sub>17</sub>OIN<sup>+</sup>: 390.0349, found: 390.0349.

## 4-bromo-2-propylisoquinolin-1(2H)-one (5q)



Colorless liquid; 14 mg in 0.2 mmol scale, 26% yield; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 8.46-8.44 (m, 1 H), 7.81 (d, *J* = 7.8 Hz, 1 H), 7.76-7.72 (m, 1 H), 7.57-7.53 (m, 1 H), 7.35 (s, 1 H), 3.98-3.94 (m, 2 H), 1.82 (dd, *J* = 14.8, 7.4 Hz, 2 H), 0.99 (t, *J* = 7.4 Hz, 3 H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161.2, 135.4, 132.8, 132.3, 128.3, 127.7, 126.6, 125.8, 99.6, 51.0,

22.6, 11.2 ppm; HRMS  $[M+Na]^+$  calculated for  $C_{12}H_{13}^{79}BrNNaO^+$ : 287.9994 and  $C_{12}H_{13}^{81}BrNNaO^+$ : 289.9979 found: 287.9994 and 289.9974.

## 1,2-phenylenebis(phenylmethanone)



yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 7.70 (d, *J* = 7.7 Hz, 4 H), 7.61 (s, 4 H), 7.50 (t, *J* = 7.4 Hz, 2 H), 7.36 (t, *J* = 7.7 Hz, 4H) ppm; <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 196.6, 140.1, 137.2, 133.0, 130.4, 129.8, 129.7, 128.3 ppm; HRMS [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>15</sub>O<sub>2</sub><sup>+</sup>: 287.1067, found: 287.1070.

NMR spectra of all compounds The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1aa



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1ab



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1b



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1c



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1d



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1e



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1f



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1g



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1h



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1i


The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1j



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1k



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 11



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1m



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1n





The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 10



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1p



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1q



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1r



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1s



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2a





The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2b



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2c



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2d



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2e



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2fa



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2fb



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2g



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2h



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2i



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2j



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2k



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 2l



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3a



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3b



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3c



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3d



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3e



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3f



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3g



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3h



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3i



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3j



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3k



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 31



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3m


The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3n



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 30



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3p



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3q



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3r



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 3s



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 4a



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 4b



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 4c



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 4d



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 4e









SI-85



90 80 f1 (ppm) -100











The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 4k

SI-89



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5a



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5b



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5c



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5d



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5e



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5f



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5g



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5h



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5i



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5j



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5k



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5l



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5m



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5n



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 50



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 5q



The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1, 2-dibenzoylbenzene

