Supporting Information for

Regio- and Enantioselective Ring-Opening Reaction of
 Vinylcyclopropanes with Indoles under Cooperative Catalysis

Xiao Wan, ${ }^{a}$ Meng Sun, ${ }^{a}$ Jing-Yi Wang, ${ }^{a}$ Lei Yu, ${ }^{\text {a }}$ Qiong Wu, ${ }^{\text {b }}$ Yu-Chen Zhang*a ${ }^{\text {a }}$ and Feng Shi* ${ }^{\text {a }}$
${ }^{a}$ School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
E-mail: fshi@ jsnu.edu.cn; zhangyc@jsnu.edu.cn
${ }^{b}$ School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou

221018, China. E-mail: hgwuqiong@xzit.edu.cn

Contents:

1. NMR spectra of products 3 and 5-6 (S2-S29)
2. HPLC spectra of product 3 and 5-6 (S30-S55)
3. X-ray single-crystal data of product 3aa (S56-S57)

1. NMR spectra of products 3 and 5-6

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3aa

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3aa

$$
\begin{aligned}
& \text { ल. }
\end{aligned}
$$

[^0]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ba

\% \%	స్ల్ల్ల్		¢
-	i		

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ba

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 c a}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ca

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3da

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3da

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ea

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ea

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3fa

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f a}$

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 f a}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 g a}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ga

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ha

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ha

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ia

${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of compound 3ia

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 j a}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 j a}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3} \mathbf{k a}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ka

$\stackrel{\unrhd}{\vdots}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31a

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ma

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 m a}$

-	$\stackrel{\text { NOJ }}{\text { O }}$
尔	¢0¢

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3na

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3na

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3na

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3oa

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3oa

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3qa

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3qa

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ab

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ab

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 b b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 b b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3eb

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3eb

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ib

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3ib

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 j b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 j b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 31b

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 m b}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 m b}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{3 q \mathbf { b }}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 3qb

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 5

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of compound 5

My

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound $\mathbf{6}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of compound 6

180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

2. HPLC spectra of product 3 and 5-6

3aa Racemic

Enantioselective

3ba Racemic

Chromatogram

Enantioselective

3ca Racemic

Enantioselective

3da Racemic

Chromatogram							
$\sqrt{400}]_{\mathrm{mAU}}$							
$\begin{array}{r} 0 \\ -20 \\ \hline \end{array}$	015	10.0	15.0	20.0	25.0	30.0	
Integration Results							
No.	Peak Name	Retention Time min	Area $\mathrm{mAU*}$ min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		16.780	62.419	117.062	49.87	51.82	n.a.
2		19.107	62.752	108.839	50.13		
Total:			125.171	225.901	100.00	100.00	

Enantioselective
Chromatogram

3ea Racemic

Enantioselective

3fa Racemic

Enantioselective

3ga Racemic

Enantioselective

Chromatogram							
$\sqrt{700} \sqrt{\mathrm{mAU}}$							
200-							
0							
0.0	0	10.0				5.0	30.0
Integration Results							
No.	Peak Name	Retention Time min	$\begin{gathered} \text { Area } \\ \mathrm{mAU*} \text { min } \end{gathered}$	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		15.667	28.045	42.900	15.24	16.98	n.a.
2		17.870	156.036	209.679	84.76	83.02	n.a.
Total:			184.081	252.579	100.00	100.00	

3ha Racemic

Enantioselective

3ia Racemic

Enantioselective

3ja Racemic

Enantioselective

3ka Racemic
Chromatogram

Enantioselective

31a Racemic

Enantioselective

3ma Racemic

Chromatogram							
Integration Results							
No.	Peak Name	Retention Time min	$\begin{gathered} \text { Area } \\ \mathrm{mAU*} \text { min } \end{gathered}$	$\begin{gathered} \text { Height } \\ \mathrm{mAU} \\ \hline \end{gathered}$	$\begin{gathered} \text { Relative Area } \\ \% \end{gathered}$	Relative Height	Amount n.a.
2				290.693 243.682	49.92 50.08		n.a.
$\begin{array}{llllll} & 554.863 & 534.376 & 100.00 & 100.00\end{array}$							

Enantioselective

3na Racemic

Enantioselective

30a Racemic

Enantioselective

Chromatogram								
$450=$								
$350=$								
200								
100								
50								
-20]								
0.0	${ }^{1} 2.5$	5.0	7.5	$10.0{ }^{1} 12.5$	$15.0{ }^{\circ}$	17.5 20.0	22.5	25.0
Integration Results								
No.	Peak Name		Retention Time min	$\begin{gathered} \text { Area } \\ \text { mAU*min } \end{gathered}$	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1								
2			16.947	118.644	132.039	86.79	86.22	n.a.
Total:				136.709	153.134	100.00	100.00	

3qa Racemic

Chromatogram

Enantioselective

3ab Racemic

Enantioselective

3bb Racemic

Enantioselective

3eb Racemic

Chromatogram							
				12.5			
Integration Results							
No.	. \quad Peak Name	Retention Time min	Area mAU * \min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1 2		$\begin{aligned} & 13.037 \\ & 14.483 \\ & \hline \end{aligned}$	$\begin{aligned} & 268.877 \\ & 269.765 \\ & \hline \end{aligned}$	$\begin{aligned} & 511.025 \\ & 451.067 \\ & \hline \end{aligned}$	$\begin{array}{r} 49.92 \\ 50.08 \\ \hline \end{array}$	$\begin{aligned} & 53.12 \\ & 46.88 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { n.a. } \\ & \text { n.a. } \end{aligned}$
$\begin{array}{llllll}\text { Total: } & 538.642 & 962.092 & 100.00 & 100.00\end{array}$							

Enantioselective

3ib Racemic

Enantioselective

Chromatogram									
${ }^{2,000} \sqrt{\mathrm{mAU}}$									
$1,600-1$									
1,200-									
1,000									
$800 \sim$ - ${ }^{12-8.267}$									
600									
$400-7$									
	1 1.0	3.0	1.0 1.0	1.0	$8.0{ }^{1}{ }^{1} 9.0$	10.0	0^{\prime} 11.0 	$13.0{ }^{\prime} 14.0$	15.0
Integration Results									
No.	Peak Name		Retention Time min	$\begin{gathered} \text { Area } \\ \mathrm{mAU} U^{\star} \text { min } \end{gathered}$	Height mAU		$\begin{aligned} & \text { Relative Area } \\ & \% \end{aligned}$	Relative Height \%	Amount n.a.
1			6.083	11.407	78.675		5.19	8.75	n.a.
2			8.267	208.333	820.824		94.81	91.25	n.a.
Total:				219.740	899.499		100.00	100.00	

3jb Racemic

Enantioselective

31b Racemic

Chromatogram							
Integration Results							
No.	Peak Name	Retention Time min	Area mAU**in	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1 2		$\begin{aligned} & \hline 7.567 \\ & 8.953 \\ & \hline \end{aligned}$	$\begin{aligned} & 48.022 \\ & 48.706 \\ & \hline \end{aligned}$	$\begin{aligned} & 286.505 \\ & 238.177 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 49.65 \\ & 50.35 \\ & \hline \end{aligned}$	$\begin{aligned} & 54.61 \\ & 45.39 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { n.a. } \\ & \text { n.a. } \\ & \hline \end{aligned}$
Total: $\quad 96.728$				524.682	100.00	100.00	

Enantioselective

3mb Racemic

Enantioselective
Chromatogram
(200

Integration Results								
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.	
1		14.897	5.413	6.986	2.91	3.26	n.a.	
2	17.180	180.685	206.996	97.09	96.74	n.a.		
Total:		$\mathbf{1 8 6 . 0 9 8}$	$\mathbf{2 1 3 . 9 8 2}$	100.00	100.00			

3qb Racemic

Enantioselective

Compound 5: Racemic

Enantioselective

Compound 6: Racemic

Chromatogram							
Integration Results							
No.	Peak Name	Retention Time min	Area mAU *min	Height mAU	Relative Area $\%$	Relative Height $\%$	
2		12.763 21.080	20.417 19.985	30.946 19.483	50.53 49.47	61.36 38.64	
Total: 40.402				50.429	100.00	100.00	

Enantioselective

3. X-ray single-crystal data of product 3aa

(R)-3aa

The thermal ellipsoid was drawn at the 30% probability level.

Identification code	20181217sf_0m	
Empirical formula	C15 H13 N3	
Formula weight	235.28	
Temperature	169.97 K	
Wavelength	1.34139 A	
Crystal system	Orthorhombic	
Space group	$\mathrm{P} 2{ }_{1} 2_{1} 2_{1}$	
Unit cell dimensions	$\mathrm{a}=5.6046$ (4) \AA	$\alpha=90^{\circ}$.
	$\mathrm{b}=8.4709(6) \AA$	$\beta=90^{\circ}$.
	$\mathrm{c}=27.2897(18) \AA$	$\gamma=90^{\circ}$.
Volume	1295.61(16) \AA^{3}	
Z	4	
Density (calculated)	$1.206 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$0.372 \mathrm{~mm}^{-1}$	
F(000)	496	
Crystal size	$0.12 \times 0.1 \times 0.01 \mathrm{~mm}^{3}$	

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=53.594^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
4.755 to 54.877°.
$-6<=\mathrm{h}<=5,-10<=\mathrm{k}<=10,-32<=1<=33$
9001
$2303[\mathrm{R}(\mathrm{int})=0.0218]$
96.7 \%

Semi-empirical from equivalents
0.7508 and 0.5269

Full-matrix least-squares on F^{2}
2303 / 0 / 171
1.205
$\mathrm{R} 1=0.0362, \mathrm{wR} 2=0.0858$
$\mathrm{R} 1=0.0382, \mathrm{wR} 2=0.0869$
0.07(18)
n/a
0.147 and $-0.158 \mathrm{e} . \mathrm{A}^{-3}$

[^0]:

