Bench-Stable Low-Molecular-Weight Vinyl Azide Surrogate for Cascade Reaction: Facile Access to Novel N-Vinyl-1,2,3-Triazoles

Zhenhua Liu, Lianxiao Wang, Tian Yu, Yanan Sun, Huimin Chen, Wen Gao*, and Bo Tang*.

College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, P.

R. China

E-mail: gaowen@sdnu.edu.cn; tangb@sdnu.edu.cn

Contents

I. General information	S2
II. Synthesis and analytical data of compounds 3 and 4	
III. Crystallography of compound 3d	S26-S27
IV. HRMS data of intermediate 5	
V. NMR spectra copies	S28-S75

I. General information

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. The products were purified by column chromatography over silica gel. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a Varian 400 MHz and 100 MHz, respectively, and TMS was used as internal standard. Mass spectra were recorded on BRUKER AutoflexIII Smartbeam MS-spectrometer. High resolution mass spectra (HRMS) were recorded on Bruck microTof by using ESI method.

II. Synthesis and analytical data of compounds 3 and 4

Genernal procedure: Under argon atmosphere, alkyne (0.5 mmol, 1.0 eq.), 2-((2-azidoallyl)oxy)-1,3,5-tribromobenzene (**VA**) (0.6 mmol, 1.2 eq.), sodium sulfinate (0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.) were added in an oven-dried 15 mL Schlenk tube with 1 mL DMSO. The reaction mixture was then stirred for 2 h when TLC conformed that substrate **1** had been consumed. The reaction was cooled to room temperature followed by adding 30 mL H₂O and taken up with dichloromethane (3 × 15 mL). The combined organic layer was washed with brine (3 × 40 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (petroleum ether/ethyl acetate) and the target product was afforded.

(**3a**) **0.5 mmol scale:** Prepared following the general procedure showed above using phenylacetylene (54.9 μL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.),

sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.) The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (146.3 mg, 90%); ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.85–7.80 (m, 2H), 7.79–7.72 (m, 2H), 7.59–7.49 (m, 1H), 7.50–7.40 (m, 4H), 7.40–7.37 (m, 1H), 5.72 (d, J = 2.2 Hz, 1H), 5.40 (d, J = 2.2 Hz, 1H), 4.70 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 138.0, 134.1, 132.6, 129.7, 129.2, 128.9, 128.7, 128.4, 125.9, 117.6, 112.3, 59.0; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₅N₃O₂SNa [M+Na]⁺: 348.0777, found: 348.0791. **1.0 mmol scale:** Under argon atmosphere, phenylacetylene (109.8 µL, 1 mmol, 1.0 eq.), VA (494 mg, 1.2 mmol, 1.2 eq.), sodium sulfinate (197 mg, 1.2 mmol, 1.2 eq.), triethylamine (Et₃N) (280.0 µL, 2.0 mmol, 2.0 eq.), CuI (380.8 mg, 0.2 mmol, 0.2 eq.) and $Pd(PPh_3)_4$ (23.1 mg, 0.02 mmol, 0.02 eq.) were added in an oven-dried 15 mL Schlenk tube with 2 mL DMSO. The reaction mixture was then stirred for 2 h when TLC conformed that substrate **1a** had been consumed. The reaction was cooled to room temperature followed by adding 30 mL H₂O and taken up by dichloromethane $(3 \times 15 \text{ mL})$. The combined organic layer was washed with brine $(3 \times 40 \text{ mL})$, dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (petroleum ether/ethylacetate=5:1) and the target product **3a** was afforded (273.1 mg, 84%) as white solid.

5.0 mmol scale: Under argon atmosphere, phenylacetylene (549.0 μ L, 5 mmol, 1.0 eq.), **VA** (2.47 g, 6.0 mmol, 1.2 eq.), sodium sulfinate (985.0 mg, 6.0 mmol, 1.2 eq.), triethylamine (Et₃N) (1.40 mL, 10.0 mmol, 2.0 eq.), CuI (190.4 mg, 1.0 mmol, 0.2 eq.) and Pd(PPh₃)₄ (115.5 mg, 0.1 mmol, 0.02 eq.) were added in an oven-dried 25 mL Schlenk tube with 10 mL DMSO. The reaction mixture was then stirred for 4 h when TLC conformed that substrate **1a** had been consumed. The reaction was cooled to room temperature followed by adding 100 mL H₂O and taken up by dichloromethane (3 × 15 mL). The combined organic layer was washed with brine (3 × 40 mL), dried over MgSO₄ and concentrated under reduced pressure. The residue was purified by a

silica gel column chromatography (petroleum ether/ethylacetate=5:1) and the target product **3a** was afforded (1.17 g, 72%) as white solid.

(3b) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-ethynylanisole (64.8 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (150.9 mg, 85%); ¹H NMR (400 MHz, CDCl₃) 7.85–7.80 (m, 2H), δ 7.88 (s, 1H),7.72–7.63 (m, 2H), 7.60–7.49 (m, 1H), 7.50–7.39 (m, 2H), 7.08–6.89 (m, 2H), 5.70 (d, *J* = 2.2 Hz, 1H), 4.70 (s, 2H), 3.85 (s, 3H); ¹³C NMR (100MHz, CDCl₃) δ 159.9, 148.1, 138.0, 134.1, 132.6, 129.2, 128.4, 127.2, 122.3, 116.7, 114.3, 112.0, 56.0, 55.4; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₇N₃O₃SNa [M+Na]⁺: 378.0883, found: 378.0877.

(3c) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-ethoxyphenylacetylene (73.8 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (151.3 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.79 (m, 2H) 7.77 (s, 1H), 7.70–7.65 (m, 2H),

7.58–7.51(m, 1H), 7.49–7.39 (m, 2H), 6.98-6.92 (m, 2H), 5.69 (d, J = 2.2Hz, 1H), 5.39 (d, J = 2.2Hz, 1H), 4.70 (s, 2H), 4.08 (q, J = 7.0Hz, 2H), 1.44 (t, J = 7.0Hz, 3H); ¹³**C NMR** (100MHz, CDCl₃) δ 159.3, 148.1, 138.0, 134.1, 132.6, 129.2, 128.4, 127.2, 122.1, 116.6, 114.8, 111.9, 63.5, 59.0, 14.8; **HRMS** (ESI-TOF) m/z calculated for C₁₉H₁₉N₃O₃SNa [M+Na]⁺: 392.1039, found: 392.1025.

(3d) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-ethynyltoluene (63.4 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (149.2 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.82–7.79 (m, 2H), 7.68–7.60 (m, 2H), 7.58–7.48 (m, 1H), 7.48–7.38 (m, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 5.70 (d, *J* = 2.2 Hz, 1H), 5.38 (d, *J* = 2.2 Hz, 1H), 4.69 (s, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.2, 138.0, 134.1, 132.6, 129.7, 129.2, 128.9, 128.7, 128.4, 125.9, 117.6, 112.2, 59.0, 21.3; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₇N₃O₂SNa [M+Na]⁺: 362.0934, found: 362.0935.

(3e) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-ethylphenylacetylene (72.3 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (148.3 mg, 84%);

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.83–7.75 (m, 2H), 7.60–7.64 (m, 2H), 7.58–7.50 (m, 1H), 7.48–7.38 (m, 2H), 7.21–7.29 (m, 2H), 5.71 (d, J = 2.2 Hz, 1H), 5.39 (d, J = 2.2 Hz, 1H), 4.70 (s, 2H), 2.69 (q, J = 7.6 Hz, 2H), 1.29-1.25 (m, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 148.3, 144.9, 137.9, 134.1, 132.6, 129.2, 128.4, 128.3, 127.0, 125.8, 117.1, 112.0. 59.0, 28.7, 15.5; **HRMS** (ESI-TOF) m/z calculated for C₁₉H₁₉N₃O₂SNa [M+Na]⁺: 376.1090, found: 376.1078.

(3f) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-eth-1-ynyl-4-propylbenzene (79.2 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (154.2 mg, 84%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.83–7.79 (m, 2H), 7.71–7.60 (m, 2H), 7.59–7.49 (m, 1H), 7.49–7.34 (m, 2H), 7.26-7.22 (m, 2H), 5.71 (d, *J* = 2.2 Hz, 1H), 5.39 (d, *J* = 2.2 Hz, 1H), 4.70 (s, 2H), 2.62 (t, *J* = 7.6Hz, 2H), 1.69-1.62 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 143.4, 137.9, 134.1, 132.6, 129.2, 129.0, 128.3, 127.1, 125.8, 117.2, 112.0, 59.0, 37.8, 24.4, 13.8; HRMS (ESI-TOF) m/z calculated for C₂₀H₂₁N₃O₂SNa [M+Na]⁺: 390.1247, found: 390.1273.

(3g) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-fluorophenylacetylene (57.3 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (151.0 mg, 88%);

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.85–7.77 (m, 2H), 7.81–7.69 (m, 2H), 7.62–7.52 (m, 1H), 7.51–7.39 (m, 2H), 7.19–7.08 (m, 2H), 5.73 (d, J = 2.2 Hz, 1H), 5.39 (d, J = 2.2 Hz, 1H), 4.69 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 164.2 (d, J = 248.5 Hz), 147.3, 138.0, 134.2, 132.5, 129.2, 128.4, 127.7 (d, J = 8.3 Hz), 125.9 (d, J = 3.2 Hz), 117.4, 116.1, 115.9, 112.4, 59.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.65; **HRMS** (ESI-TOF) m calculated for C₁₇H₁₄FN₃O₂SNa [M+Na]⁺: 366.0683, found: 366.0685.

(3h) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-chlorophenylacetylene (68,3 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (154.4 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.85–7.79 (m, 2H), 7.73–7.66 (m, 2H), 7.60–7.52 (m, 1H), 7.50–7.37 (m, 4H), 5.73 (d, *J* = 2.2 Hz, 1H), 5.39 (d, *J* = 2.3 Hz, 1H), 4.68 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.2, 137.9, 134.4, 134.2, 132.4, 129.2, 129.2, 128.4, 128.2, 127.1, 117.8, 112.6, 59.0; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₄ClN₃O₂SNa [M+Na]⁺: 382.0387, found: 382.0412.

(3i) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-bromophenylacetylene (63.5 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (175.3 mg, 87%);

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.86–7.79 (m, 2H), 7.69–7.60 (m, 2H), 7.59–7.52 (m, 3H), 7.49-7.42 (m, 2H), 5.73 (d, J = 2.2 Hz, 1H), 5.39 (d, J = 2.2 Hz, 1H), 4.68 (s, 2H); ¹³**CNMR** (100 MHz, CDCl₃) δ 147.2, 137.9, 134.2, 132.4, 132.1, 129.2, 128.6, 128.3, 127.3, 122.6, 117.8, 112.2, 59.0; **HRMS** (ESI-TOF) m/z calculated for C₁₇H₁₄BrN₃O₂SNa [M+Na]⁺: 425.9882, found: 425.9874.

(3j) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-tert-butylphenylacetylene (90.2 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (158.2 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.84–7.77 (m, 2H), 7.71–7.63 (m, 2H), 7.57–7.50 (m, 1H), 7.48–7.35 (m, 4H), 5.71 (d, *J* = 2.2 Hz, 1H), 5.38 (d, *J* = 2.2 Hz, 1H), 4.70 (s, 2H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 148.2, 138.0, 134.1, 132.6, 129.2, 128.4, 126.8, 125.8, 125.6, 117.2, 112.0, 59.0, 34.7, 31.3; HRMS (ESI-TOF) m/z calculated for C₂₁H₂₃N₃O₂SNa [M+Na]⁺: 404.1403, found: 404.1423.

(3k) 0.5 mmol scale: Prepared following the genernal procedure showed above using 4-cyanophenylacetylene (63.6 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄(11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (147.0 mg, 84%); ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.94–7.88 (m, 2H), 7.87–7.78 (m, 2H),

7.79–7.69 (m, 2H), 7.60–7.55 (m, 1H), 7.49 (m, 2H), 5.79 (d, J = 2.3 Hz, 1H), 5.40 (d, J = 2.3 Hz, 1H), 4.67 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 137.9, 134.3, 134.1, 132.8, 132.3, 129.3, 128.4, 126.2, 119.0, 118.6, 113.4, 112.1, 59.1; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₄N₄O₂SNa [M+Na]⁺: 373.0730, found: 373.0734.

(31) 0.5 mmol scale: Prepared following the genernal procedure showed above using 3-ethynyltoluene (63.4 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (149.2 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.85–7.76 (m, 2H), 7.65–7.58 (m, 1H), 7.59–7.48 (m, 2H), 7.49–7.38 (m, 2H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 5.72 (d, *J* = 2.2 Hz, 1H), 5.40 (d, *J* = 2.2 Hz, 1H), 4.70 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 138.6, 137.9, 134.1, 132.6, 129.5, 129.4, 129.2, 128.8, 128.3, 126.5, 122.9, 117.5, 112.1, 59.0, 21.4; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₇N₃O₂SNa [M+Na]⁺: 362.0934, found: 362.0933.

(3m) 0.5 mmol scale: Prepared following the genernal procedure showed above using 3-ethynylaniline (56.8 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), Sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (132.3 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.81–7.78 (m, 2H), 7.59–7.50 (m, 1H), 7.49–7.40 (m, 2H), 7.31 (t, *J* = 4.6, 1H), 7.19–7.09 (m, 1H), 7.10-1.04 (m, 1H),

6.74–6.63 (m, 1H), 5.70 (d, J = 2.2 Hz, 1H), 5.39 (d, J = 2.2 Hz, 1H), 4.70 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 146.9, 137.9, 134.1, 132.6, 130.6, 129.8, 129.2, 128.3, 117.5, 116.1, 115.3, 112.3, 112.1, 59.0; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₆N₄O₂SNa [M+Na]⁺: 363.0886, found: 363.0899.

(3n) 0.5 mmol scale: Prepared following the genernal procedure showed above using 3-chlorophenylacetylene (68.3 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (154.4 mg, 86%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.89–7.79 (m, 2H), 7.79–7.73 (m, 1H), 7.69-7.60 (m, 1H), 7.61–7.52 (m, 1H), 7.53–7.41 (m, 2H), 7.41–7.30 (m, 2H), 5.74 (d, *J* = 2.3 Hz, 1H), 5.40 (d, *J* = 2.3 Hz, 1H), 4.68 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 137.8, 134.9, 134.2, 132.4, 131.4, 130.2, 129.2, 128.6, 128.3, 125.9, 123.9, 118.0, 112.7, 58.9; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₄ClN₃O₂SNa [M+Na]⁺: 382.0387, found: 382.0393.

(30) 0.5 mmol scale: Prepared following the genernal procedure showed above using 3-fluorophenylacetylene (60.1 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (149.2 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.90–7.75 (m, 2H), 7.64–7.32 (m, 6H), 7.09–7.01 (m, 1H), 5.74 (d, *J* = 2.2 Hz, 1H), 5.40 (d, *J* = 2.2 Hz, 1H), 4.69 (s, 2H);

¹³**C NMR** (100 MHz, CDCl₃) δ 164.3 (d, J = 245.6 Hz), 147.1 (d, J = 2.9 Hz), 137.9, 134.2, 132.4, 131.8 (d, J = 8.4 Hz), 130.6 (d, J = 8.6 Hz), 129.2, 128.3, 121.5 (d, J = 3.1 Hz), 118.1, 115.6 (d, J = 23.0 Hz), 112.9, 112.7, 59.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.32; **HRMS** (ESI-TOF) m/z calculated for C₁₇H₁₄FN₃O₂SNa [M+Na]⁺: 366.0683, found: 366.0694.

(**3p**) **0.5 mmol scale:** Prepared following the genernal procedure showed above using 2-methoxyphenylacetylene (64.7 µL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (147.3 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.28-8.21 (m, 1H), 8.15 (s, 1H), 7.85–7.72 (m, 2H), 7.56–7.47 (m, 1H), 7.46–7.38 (m, 2H), 7.38–7.29 (m, 1H), 7.07 (t, *J* = 7.6, 1.2 Hz, 1H), 6.99 (d, *J* = 8.2, 1H), 5.72 (d, *J* = 2.2 Hz, 1H), 5.39 (d, *J* = 2.2 Hz, 1H), 4.72 (s, 2H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 143.6, 137.9, 134.0, 132.6, 129.4, 129.1, 128.3, 127.7, 121.0, 120.7, 118.4, 111.6, 110.7, 58.9, 55.4; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₇N₃O₃SNa [M+Na]⁺: 378.0883, found: 378.0891.

(3q) 0.5 mmol scale: Prepared following the genernal procedure showed above using 2-ethynylaniline (56.8 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (132.6 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H),7.86–7.77 (m, 2H), 7.62–7.50 (m, 1H),

7.49–7.40 (m, 2H), 7.31–7.24 (m, 1H), 7.14 (m, 1H), 6.74 (m, 2H), 5.73 (d, J = 2.2 Hz, 1H), 5.41 (d, J = 2.2 Hz, 1H), 4.69 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 148.8, 145.2, 137.9, 134.2, 132.5, 129.6, 129.2, 128.3, 127.9, 117.8, 117.5, 116.8, 112.7, 112.6, 59.0; **HRMS** (ESI-TOF) m/z calculated for C₁₇H₁₆N₄O₂SNa [M+Na]⁺: 363.0886, found: 363.0896.

(**3r**) **0.5 mmol scale:** Prepared following the genernal procedure showed above using 2-fluorophenylacetylene (60.1 mg, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (137.2 mg, 80%); ¹H NMR (400 MHz, CDCl₃) δ 8.24-8.15 (m, 1H), 8.01 (d, *J* = 3.4 Hz, 1H), 7.90–7.77 (m, 2H), 7.56–7.46 (m, 1H), 7.48–7.38 (m, 2H), 7.38–7.29 (m, 1H), 7.24–7.20 (m, 1H), 7.19–7.11 (m, 1H), 5.74 (d, *J* = 2.2 Hz, 1H), 5.42 (d, *J* = 2.2Hz, 1H), 4.72 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5 (d, *J* = 248.3 Hz), 141.7, 137.9, 134.1, 132.5, 129.9 (d, *J* = 8.6 Hz), 129.2, 128.4, 127.9 (d, *J* = 3.4 Hz), 124.7 (d, *J* = 3.4 Hz), 120.7 (d, *J* = 13.1 Hz), 117.7 (d, *J* = 13.2 Hz), 115.9 (d, *J* = 21.5 Hz), 112.4, 58.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.36; **HRMS** (ESI-TOF) m/z calculated for C₁₇H₁₄FN₃O₂SNa [M+Na]⁺: 366.0683, found: 366.0667.

(3s) 0.5 mmol scale: Prepared following the genernal procedure showed above using 2-chlorophenylacetylene (68.3 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mm ol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (143.6 mg, 80%);

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 (s, 1H), 8.15-8.09 (m, 1H), 7.88–7.67 (m, 2H), 7.58–7.49 (m, 1H), 7.48–7.42 (m, 3H), 7.38–7.34 (m, 1H), 7.33–7.28 (m, 1H), 5.75 (d, J = 2.2 Hz, 1H), 5.44 (d, J = 2.2 Hz, 1H), 4.72 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.4, 137.9, 134.1, 132.6, 131.3, 130.3, 129.9, 129.5, 129.2, 128.3, 127.2, 121.1, 112.6, 59.0; **HRMS** (ESI-TOF) m/z calculated for C₁₇H₁₄ClN₃O₂SNa [M+Na]⁺: 382.0387, found: 382.0369.

(3t) 0.5 mmol scale: Prepared following the genernal procedure showed above using 5-ethynyl benzothiophene (79.1 mg,, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (146.7 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 8.23–8.17 (m, 1H), 7.99 (s, 1H), 7.94–7.88 (m, 1H), 7.86–7.80 (m, 2H), 7.77 (s, 1H), 7.57–7.37 (m, 5H), 5.77 (d, *J* = 2.2 Hz, 1H), 5.62 (d, *J* = 2.2 Hz, 1H), 4.73 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.6, 140.5, 138.0, 136.6, 134.2, 132.5, 129.2, 128.4, 125.6, 125.01, 124.8, 123.2, 122.9, 118.3, 112.5, 59.0; HRMS (ESI-TOF) m/z calculated for C₁₉H₁₅N₃O₂S₂Na [M+Na]⁺: 404.0498, found: 404.0512.

(3u) 0.5 mmol scale: Prepared following the genernal procedure showed above using 2-ethynylthiophene (50.1 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (124.1 mg, 75%);

¹**H NMR** (400 MHz, CDCl₃) δ 7.86–7.77 (m, 3H), 7.66 (t, J = 2.1 Hz, 1H), 7.60–7.51 (m, 1H), 7.49–7.42 (m, 2H), 7.39 (d, J = 2.1 Hz, 2H), 5.71 (d, J = 2.2 Hz, 1H), 5.37 (d, J = 2.2 Hz, 1H), 4.68 (s, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.4, 138.0, 134.2, 132.5, 130.9, 129.2, 128.4, 126.6, 125.7, 121.9, 117.4, 112.2, 59.0; **HRMS** (ESI-TOF) m/z calculated for C₁₅H₁₃N₃O₂S₂Na [M+Na]⁺: 354.0341, found: 354.0333.

(**3v**) **0.5 mmol scale:** Prepared following the genernal procedure showed above using 1-ethynylcyclohex-1-ene (58.8 μL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (134.9 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.75 (m, 2H), 7.64–7.53 (m, 1H), 7.50 (s, 1H), 7.49–7.42 (m, 2H), 6.50 (s, 1H), 5.62 (d, *J* = 2.2 Hz, 1H), 5.30 (d, *J* = 2.2 Hz, 1H), 4.66 (s, 2H), 2.42–2.00 (m, 4H), 1.84–1.58 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 138.0, 134.1, 132.5, 129.2, 128.3, 126.5, 126.3, 116.2, 111.5, 58.9, 26.3, 25.3, 22.4, 22.1; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₉N₃O₂SNa [M+Na]⁺: 352.1090, found : 352.1080.

(3w) 0.5 mmol scale: Prepared following the genernal procedure showed above using 2-methyl-1-buten-3-yne (33.1 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=4:1) as white solid (107.1 mg, 81%);

¹**H NMR** (400 MHz, CDCl₃) δ 7.89–7.73 (m, 2H), 7.65–7.53 (m, 2H), 7.47 (t, J = 7.8 Hz, 2H), 5.71 (d, J = 2.2 Hz, 1H), 5.57 (d, J = 2.2 Hz, 1H), 5.36 (s, 1H), 5.13 (s, 1H), 4.67 (s, 2H), 2.08 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 149.1, 137.9, 134.0, 132.7, 132.4, 129.2, 128.3, 117.5, 113.7, 112.0, 58.9, 20.5; **HRMS** (ESI-TOF) m/z calculated for C₁₄H₁₅N₃O₂SNa [M+Na]⁺: 312.0777, found: 312.0778.

(3x) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-hexyne (57.4 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (112.9 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.76 (m, 2H), 7.63–7.54 (m, 1H), 7.50–7.43 (m, 2H), 7.41 (s, 1H), 5.61 (d, *J* = 2.2 Hz, 1H), 5.32 (d, *J* = 2.2 Hz, 1H), 4.66 (s, 2H), 2.62 (t, *J* = 7.2Hz, 2H), 1.70–1.48 (m, 2H), 1.29-1.41 (m, 2H), 0.94 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 138.0, 134.0, 132.6, 129.1, 128.4, 118.6, 111.3, 58.8, 31.3, 25.1, 22.3, 13.8; HRMS (ESI-TOF) m/z calculated for C₁₅H₁₉N₃O₂SNa [M+Na]⁺: 328.1090, found: 328.1093.

(3y) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-heptyne (65.6 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (111.7 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.76 (m, 2H), 7.61–7.52 (m, 1H), 7.50–7.40 (m, 3H), 5.62 (d, *J*

= 2.2 Hz, 1H), 5.29 (d, J = 2.2 Hz, 1H), 4.68 (s, 2H), 2.61 (t, J = 7.6 Hz, 2H), 1.66-1.55 (m, 2H), 1.40-1.23 (m, 4H), 0.90 (t, J = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 149.0, 137.9, 134.0, 132.4, 129.1, 128.3, 118.7, 111.4, 58.8, 31.3, 28.9, 25.4, 22.4, 14.0; **HRMS** (ESI-TOF) m/z calculated for C₁₆H₂₁N₃O₂SNa [M+Na]⁺: 342.1247, found: 342.1229.

(3z) 0.5 mmol scale: Prepared following the genernal procedure showed above using 1-octyne (73.8 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (121.6 mg, 73%); ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.70 (m, 2H), 7.65–7.51 (m, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.41 (s, 1H), 5.61 (d, *J* = 2.2 Hz, 1H), 5.31 (d, *J* = 2.2 Hz, 1H), 4.66 (s, 2H), 2.81–2.39 (m, 2H), 1.66–1.53 (m, 2H), 1.40–1.23 (m, 6H), 1.07–0.70 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 138.0, 134.0, 132.6, 129.1, 128.4, 118.6, 111.3, 58.8, 31.6, 29.2, 28.9, 25.5, 22.6, 14.1; HRMS (ESI-TOF) m/z calculated for C₁₇H₂₃N₃O₂SNa [M+Na]⁺: 356.1403, found: 356.1420.

(3za) 0.5 mmol scale: Prepared following the genernal procedure showed above using 5-chloropent-1-yne (51.0 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=4:1) as white solid (121.9 mg, 75%);

¹**H NMR** (400 MHz, CDCl₃) δ 7.84–7.79 (m, 2H), 7.64–7.57 (m, 1H), 7.52–7.42 (m, 3H), 5.63 (d, J = 2.2 Hz, 1H), 5.34 (d, J = 2.2 Hz, 1H), 4.66 (s, 2H), 3.54 (t, J = 6.4 Hz, 2H), 2.82 (t, J = 7.3 Hz, 2H), 2.20–2.01 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 147.0, 138.0, 134.1, 132.5, 129.2, 128.4, 119.20, 111.7, 58.8, 44.0, 31.6, 22.5; **HRMS** (ESI-TOF) m/z calculated for C₁₄H₁₆ClN₃O₂SNa [M+Na]⁺: 348.0544, found: 348.0550.

(3zb) 0.5 mmol scale: Prepared following the genernal procedure showed above using 6-chlorohex-1-yne (58.1 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), Sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=4:1) as white solid (125.5 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.77 (m, 2H), 7.63–7.55 (m, 1H), 7.53–7.42 (m, 3H), 5.63 (d, *J* = 2.2 Hz, 1H), 5.32 (d, *J* = 2.2 Hz, 1H), 4.66 (s, 2H), 3.57 (t, *J* = 5.6 Hz, 2H), 1.88-1.72 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 138.0,134.1, 132.5, 129.2, 128.4, 118.8, 111.6, 58.8, 44.7, 31.9, 26.4, 24.6; HRMS (ESI-TOF) m/z calculated for C₁₅H₁₈ClN₃O₂SNa [M+Na]⁺: 362.0700, found: 362.0688.

(3zc) 0.5 mmol scale: Prepared following the genernal procedure showed above using N-methyl-N-(prop-2-yn-1-yl)aniline (72.5 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column

chromatography (petroleumether/ethyl acetate=3:1) as white solid (139.9 mg, 76%); ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.66 (m, 2H), 7.55–7.46 (m, 1H), 7.43 (s, 1H), 7.42-7.35 (m, 2H), 7.28–7.22 (m, 2H), 6.83–6.70 (m, 3H), 5.55 (d, *J* = 2.2 Hz, 1H), 5.29 (d, *J* = 2.2 Hz, 1H), 4.62 (s, 2H), 4.54 (s, 2H), 2.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 146.1, 137.8, 134.1, 132.3, 129.3, 129.1, 128.3, 119.4, 117.3, 112.8, 111.9, 58.6, 48.3, 38.6; HRMS (ESI-TOF) m/z calculated for C₁₉H₂₀N₄O₂SNa [M+Na]⁺: 391.1199, found: 391.1215.

(3zd) 0.5 mmol scale: Prepared following the genernal procedure showed above using (prop-2-yn-1-yloxy)benzene (66.0 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (136.7 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 7.83–7.74 (m, 3H), 7.59–7.49 (m, 1H), 7.48–7.49 (m, 7.1 Hz, 2H), 7.38–7.28 (m, 2H), 7.04–6.91 (m, 3H), 5.68 (d, *J* = 2.2 Hz, 1H), 5.13 (s, 2H), 4.65 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 144.9, 137.9, 134.2, 132.5, 129.6, 129.2, 128.3, 121.5, 120.9, 114.7, 112.7, 61.6, 58.9; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₇N₃O₃SNa [M+Na]⁺: 378.0883, found: 378.0858.

(3ze) 0.5 mmol scale: Prepared following the general procedure showed above using prop-2-yn-1-yl benzoate (63.5 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01

mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (151.3 mg, 79%); ¹H NMR (400 MHz, CDCl₃) δ 8.12–8.01 (m, 2H), 7.81 (s, 1H), 7.80–7.72 (m, 2H), 7.63–7.55 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.43–7.34 (m, 3H), 5.68 (d, *J* = 2.2 Hz, 1H), 5.40 (d, *J* = 2.2 Hz, 1H), 5.39 (s, 2H), 4.66 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 143.4, 137.7, 134.1, 133.4, 132.4, 129.7, 19.5, 129.1, 128.5, 128.3, 122.2, 112.8, 58.7, 57.6; HRMS (ESI-TOF) m/z calculated for C₁₉H₁₇N₃O₄SNa [M+Na]⁺: 406.0832, found: 406.0804.

(3zf) 0.5 mmol scale: Prepared following the general procedure showed above using but-3-yn-1-yl benzoate (87.1 mg, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium sulfinate (98.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄(11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (152.9 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 8.23–7.98 (m, 2H), 7.89–7.74 (m, 2H), 7.63–7.52 (m, 3H), 7.49–7.36 (m, 4H), 5.62 (d, *J* = 2.2 Hz, 1H), 5.31 (d, *J* = 2.2 Hz, 1H), 4.65 (s, 2H), 4.54 (t, *J* = 6.6 Hz, 2H), 3.15 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.4, 144.8, 137.9, 134.1, 133.2, 132.4, 129.9, 129.6, 129.2, 128.5, 128.4, 119.6, 112.1, 63.4, 58.9, 25.4; HRMS (ESI-TOF) m/z calculated for C₂₀H₂₀N₃O₄S [M+H]⁺: 398.1169, found: 398.1182.

(4a) 0.5 mmol scale: Prepared following the general procedure showed above using phenylacetylene (54.9 μ L, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium p-toluenesulfinate (106.9 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg,

0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (150.9 mg, 89%); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.80–7.72 (m, 2H), 7.70–7.63 (m, 2H), 7.49–7.41 (m, 2H), 7.40–7.31 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.72 (d, *J* = 2.1 Hz, 1H), 5.40 (d, *J* = 2.1 Hz, 1H), 4.66 (s, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 145.4, 134.9, 132.7, 129.8, 128.9, 128.6, 128.4, 125.8, 117.8, 112.5, 100.0, 59.2, 21.5; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₇N₃O₂SNa [M+Na]⁺: 362.0934, found: 362.0916.

(**4b**) **0.5 mmol scale:** Prepared following the genernal procedure showed above using phenylacetylene (54.9 μL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.), 4-fluorobenzenesulfinic acid sodium (109.2 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (149.2 mg, 87%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.89–7.80 (m, 2H), 7.80–7.74 (m, 2H), 7.52–7.42 (m, 2H), 7.41–7.33 (m, 1H), 7.16–7.07 (m, 2H), 5.74 (d, J = 2.3 Hz, 1H), 5.42 (d, J = 2.3 Hz, 1H), 4.71 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.3 (d, J = 258.7 Hz), 148.4, 134.1 (d, J = 3.3 Hz), 132.5, 131.3 (d, J = 9.7 Hz), 129.5, 129.0, 128.8, 125.9, 117.4, 116.7, 116.4, 112.0, 59.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -102.13; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₄FN₃O₂SNa [M+Na]⁺: 366.0683, found: 366.0676.

(**4c**) **0.5 mmol scale:** Prepared following the genernal procedure showed above using phenylacetylene (54.9 μL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.),

4-chlorobenzene sulfinate sodium (99.3 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (158.0 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.85–7.65 (m, 4H), 7.52–7.30 (m, 5H), 5.73 (d, J = 2.4 Hz, 1H), 5.42 (d, J = 2.4 Hz, 1H), 4.71 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 141.1, 136.4, 132.4, 129.8, 129.5, 129.5, 129.0, 128.8, 125.9, 117.4, 112.1, 59.0; **HRMS** (ESI-TOF) m/z calculated for C₁₇H₁₄ClN₃O₂SNa [M+Na]⁺: 382.0387, found: 382.0391.

(4d) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 μL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), 4-bromobenzenesulfinate sodium (121.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (177.3 mg, 88%); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.82–7.74 (m, 2H), 7.70–7.63 (m, 2H), 7.62–7.54 (m, 2H), 7.50–7.42 (m, 2H), 7.42–7.32 (m, 1H), 5.73 (d, *J* = 2.3 Hz, 1H), 4.71 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 136.9, 132.5, 132.4, 129.8, 129.7, 129.5, 129.0 , 128.8, 126.0, 117.4, 112.1, 59.0; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₄BrN₃O₂SNa [M+Na]⁺: 425.9882, found: 425.9869.

(**4e**) **0.5 mmol scale:** Prepared following the general procedure showed above using phenylacetylene (54.9 μL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.),

4-(trifluoromethyl)benzenesulfinate sodium (116.0 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (153.3 mg, 78%); ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.2 Hz, 2H), 7.90 (s, 1H), 7.80–7.66 (m, 4H), 7.50–7 .32 (m, 3H), 5.74 (d, *J* = 2.4 Hz, 1H), 5.46 (d, *J* = 2.4 Hz, 1H), 4.78 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 141.5, 135.9 (q, *J* = 33.4 Hz), 132.2, 129.2, 129.0, 128.9, 128.8, 126.3 (q, *J* = 3.7 Hz), 125.8, 124.2, 121.5, 117.2, 112.0, 58.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.30; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₄F₃N₃O₂SNa [M+Na]⁺: 416.0651, found: 416.0635.

(4f) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), 3-bromobenzenesulfinate sodium (121.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (165.2 mg, 82%); ¹H NMR (400 MHz, CDCl₃) δ 7.91 (t, *J* = 1.9 Hz, 1H), 7.90 (s, 1H), 7.83–7.73 (m, 3H), 7.66–7.65 (m, 1H), 7.50–7.41 (m, 2H), 7.40–7.35 (m, 1H), 7.32 (t, *J* = 7.9 Hz, 1H), 5.74 (d, *J* = 2.3 Hz, 1H), 5.46 (d, *J* = 2.3 Hz, 1H), 4.73 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) 148.4, 139.7, 137.1, 132.3, 131.1, 130.8, 129.5, 128.9, 128.7, 126.9, 125.9, 123.1, 117.4, 112.3, 59.0; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₄BrN₃O₂SNa [M+Na]⁺: 425.9882, found: 425.9871.

(4g) 0.5 mmol scale: Prepared following the genernal procedure showed above using

2-chlorobenzene sulfinate sodium (99.3 mg, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 μ L, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (149.0 mg, 83%); ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.91 (s, 1H), 7.83–7.74 (m, 2H), 7.55–7.48 (m, 2H), 7.48–7.40 (m, 2H), 7.40–7.30 (m, 2H), 5.75 (d, *J* = 2.0 Hz, 1H), 5.44 (d, *J* = 1.9 Hz, 1H), 4.96 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 135.5, 135.2, 133.1, 132.3, 132.0, 131.8, 129.6, 128.9, 128.6, 127.2, 125.8, 117.8, 113.4, 57.2; HRMS (ESI-TOF) m/z calculated for C₁₇H₁₄ClN₃O₂SNa [M+Na]⁺: 382.0387, found: 382.0396.

(**4h**) **0.5 mmol scale:** Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), **VA** (246.5 mg, 0.6 mmol, 1.2 eq.), 2-naphthalenebenzenesulfonate (128.5 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=5:1) as white solid (159.4 mg, 85%); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.91–7.86 (m, 2H), 7.82–7.75 (m, 2H), 7.73 (s, 1H), 7.63–7.48 (m, 4H), 7.41–7.30 (m, 3H), 5.71 (d, *J* = 2.2 Hz, 1H), 5.43 (d, *J* = 2.2 Hz, 1H), 4.76 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.1, 135.3, 134.6, 132.6, 131.8, 130.4, 129.6, 129.4, 129.3, 128.7, 128.5, 127.9, 127.8, 125.7, 122.5, 117.7, 112.6, 59.2 ; HRMS (ESI-TOF) m/z calculated for C₂₁H₁₇N₃O₂SNa [M+Na]⁺: 398.0934, found: 398.0925.

(4i) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium methylsulfinate (61.2 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (97.3 mg, 74%); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.94–7.79 (m, 2H), 7.49–7.42 (m, 2H), 7.42–7.35 (m, 1H), 5.81 (d, *J* = 2.5 Hz, 1H), 5.53 (d, *J* = 2.5 Hz, 1H), 4.62 (s, 2H), 2.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 132.5, 129.4, 129.0, 128.9, 125.9, 117.4, 111.7, 57.6, 41.4; HRMS (ESI-TOF) m/z calculated for C₁₂H₁₄N₃O₂S [M+H]⁺: 264.0801, found: 264.0800.

(4j) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium ethylsulfinate (58.1 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (139.0 µL, 1.0 mmol, 2.0 eq.), CuI (190.4 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (106.7 mg, 77%); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.93–7.79 (m, 2H), 7.52–7.42 (m, 2H), 7.41–7.32 (m, 1H), 5.79 (d, *J* = 2.4 Hz, 1H), 5.53 (d, *J* = 2.4 Hz, 1H), 4.57 (s, 2H), 3.01 (q, *J* = 7.4 Hz, 2H), 1.39 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 132.4, 129.5, 129.0, 128.9, 125.9, 117.5, 111.8, 55.2, 48.2, 6.4; HRMS (ESI-TOF) m/z calculated for C₁₃H₁₅N₃O₂SNa [M+Na]⁺: 300.0777, found: 300.0787.

(4k) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), 5-bromosalicylaldehyde (120.6 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (138.6 µL, 1.0 mmol, 2.0 eq.), CuI (19.0 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=3:1) as white solid (138.24 mg; 72%); ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.14 (s, 1H), 7.96 (d, *J* = 2.6 Hz, 1H), 7.89 – 7.85 (m, 2H), 7.70 – 7.65 (m, 1H), 7.49 – 7.43 (m, 2H), 7.41 – 7.35 (m, 1H), 7.05 (d, *J* = 8.8 Hz, 1H), 5.74 (d, *J* = 2.1 Hz, 1H), 5.50 (d, *J* = 2.0 Hz, 1H), 5.33 (s, 2H).; ¹³C NMR (100 MHz, CDCl₃) δ 187.7, 158.8, 148.2, 138.4, 138.0, 131.8, 129.7, 129.0, 128.7, 126.5, 125.9, 117.3, 115.1, 114.8, 106.2, 66.9.; HRMS (ESI-TOF) m/z calculated for C₁₈H₁₅BrN₃O₂ [M+H]⁺ : 384.0342, found: 384.0345.

(41) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), N-hydroxysuccinimide (69.1 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (138.6 µL, 1.0 mmol, 2.0 eq.), CuI (19.0 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=2:1) as white solid (102.9 mg; 69%); ¹H NMR (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.86 – 7.82 (m, 2H), 7.40 – 7.35 (m, 2H), 7.32 – 7.23 (m, 1H), 6.02 (d, *J* = 1.6 Hz, 1H), 5.42 (d, *J* = 1.2 Hz, 1H), 5.03 (s, 2H), 2.66 (s, 4H).; ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 147.1, 135.1, 129.1, 127.9, 127.4, 124.8, 117.8, 111.2, 74.1, 24.4 ; HRMS (ESI-TOF) m/z calculated for C₁₅H₁₅N₄O₃ [M+H]⁺ : 299.1139, found: 299.1148.

(4m) 0.5 mmol scale: Prepared following the genernal procedure showed above using phenylacetylene (54.9 µL, 0.5 mmol, 1.0 eq.), VA (246.5 mg, 0.6 mmol, 1.2 eq.), sodium acetate (49.2 mg, 0.6 mmol, 1.2 eq.), triethylamine (Et₃N) (138.6 µL, 1.0 mmol, 2.0 eq.), CuI (19.0 mg, 0.1 mmol, 0.2 eq.) and Pd(PPh₃)₄ (11.5 mg, 0.01 mmol, 0.02 eq.). The desired product was purified by a silica gel column chromatography (petroleumether/ethyl acetate=4:1) as white solid (101.3mg; 83%); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.89 – 7.84 (m, 2H), 7.51 – 7.41 (m, 2H), 7.40 – 7.33 (m, 1H), 5.77 (d, *J* = 1.8 Hz, 1H), 5.37 (d, *J* = 1.6 Hz, 1H), 5.22 (s, 2H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 147.9, 138.1, 130.0, 128.9, 128.6, 125.9, 117.3, 107.7, 62.3, 20.8; HRMS (ESI-TOF) m/z calculated for C₁₃H₁₄N₃O₂ [M+H]⁺ : 244.1081, found: 244.1108.

IV. Crystallography of compound 3d

Single-crystal X-ray diffraction data for the reported complex was recorded at a temperature of 293(2) K on a Oxford Diffraction Gemini R Ultra diffractometer, using a ω scan technique with Mo-K α radiation ($\lambda = 0.71073$ Å). The structure was solved by Direct Method of SHELXS-97 and refined by full-matrix least-squares techniques using the SHELXL-97 program.1 Non-hydrogen atoms were refined with anisotropic temperature parameters, and hydrogen atoms of the ligands were refined as rigid groups. Basic information pertaining to crystal parameters and structure refinement is summarized in Table 1. 1 (a) G M. Sheldrick, SHELXS-97, Program for Solution of Crystal Structures, University of Gottingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Refinement of Crystal Structures, University of Gottingen, Germany, 1997.

Table 1. Crystal data and structure refinement.

Empirical formula	$C_{18}H_{17}N_3O_2S$
Temperature	293(2) K
Wavelength	1.54178 Å
Unit cell dimensions	$a = 16.2468(10) \text{ Å} alpha = 90.00 ^{\circ}$
	b = 5.4421(2) Å $beta = 112.695(7) °$
	$c = 20.7446(12) \text{ Å} ext{gamma} = 90.00 ^{\circ}$
Volume	1692.15(16) Å ³
Z	22
Calculated density	1.332 mg/mm ³
Absorption coefficient	1.826 mm ⁻¹
F(000)	712
Crystal size	$0.27 \times 0.06 \times 0.02 \text{ mm}^3$
Theta range for data	8.84 to 141.56°.
collection	
Reflections collected /	3187[R(int) = 0.0233]
unique	
Data / restraints / parameters	3187 / 0 / 256
Goodness-of-fit on F ²	1.021
Final R indices	$R_1 = 0.0456$, $wR_2 = 0.1173$
[I>2sigma(I)]	
R indices (all data)	$R_1 = 0.0612$, $wR_2 = 0.1321$

IV. HRMS data of intermediate 5

HRMS (ESI-TOF) m/z calculated for $C_9H_9N_3O_2SNa$ [M+Na]⁺: 246.0308, found: 246.0287.

V. NMR spectra copies

S29

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

-0.00

-2.39

3e

S34

S35

Зр

-0.00

-0.00

-0.00

CDCl₃ 376MHz

-0.00

--114.36

3t

9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

4c

00.0-

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

4d

00.0-

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

4e

-0.00

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

4e

CDCl₃ 376MHz

				110000000							
10	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190	-210
1.4		00		1 4			100	100		100	210

S74

