Supporting Information

Synthesis of 2,3-Disubstituted Indoles via a Tandem Reaction

Shiqiang Ma, Dan Long, Peiqi Chen, Hongliang Shi, Huilin Li, Ran Fang, Xiaolei Wang, Xingang Xie, and Xuegong She*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China

*E-mail: shexg@lzu.edu.cn

Contents:

1. General Information	2
2. Preparation and characterization of starting materials	3-7
3. General procedure for the tandem reaction	8-9
4. Characterization data for the products	10-14
5. Crystallographic Data	15-17
6. Formal Synthesis of Goniomitine	17-18
7. Computational Detail	19
8. The Cartesian coordinates of the stationary points	19-42
9. References	
10. NMR Spectra of New Compounds	

1. General information

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere. Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction.

Optical rotations were measured on a precision automated polarimeter. Infrared spectra were recorded on a 670 FT-IR spectrometer. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker APEXII mass spectrometer by means of the electrospray ionization (ESI) technique. ¹H NMR and ¹³C NMR spectra were recorded on 300MHz and 400 MHz spectrometers. Chemical shifts are reported as δ values relative to internal chloroform (δ 7.26 for ¹H NMR and 77.0 for ¹³C NMR). Melting points were measured on a melting point apparatus and are uncorrected. Allyl bromide was purchased from Adamas-beta®. Substrates were purchased from TCI, Energy Chemical or Alfa Aesar and used as received. Oil bath was used as heat source for reactions above room temperature.

Figure. SI-2 Failed Prepared substrates

General procedure for the substrates:

A mixture of 1,3-cyclohexanedione (5 mmol, 1 equiv), anhydrous K_2CO_3 (15 mmol, 3 equiv), and *o*-iodonitrobenzene (10 mmol, 2 equiv) in dimethyl sulfoxide (50 ml) was heated to 88 °C for 15 h. After cooling, the mixture was poured into water. The resulting solution was acidified with concentrated hydrochloric acid and extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated, the residue was purified by silica gel column chromatography (CH₂Cl₂-MeOH, 20:1) to afford **SI-1**.

A mixture of 2-(o-nitrophenyl)-l,3-cyclohexanedione **SI-1** (5 mmol, 1equiv), K_2CO_3 (1.037 g, 7.5 mmol, 1.5 equiv) and allyl bromide (5 mmol, 1 equiv) in anhydrous acetone (50 ml) was stirred at reflux temperature for 15 h. Then, the mixture was concentrated *in vacuo*, the residue was solubilized with CH₂Cl₂ and washed with water. The aqueous layer was back-extracted with CH₂Cl₂, the combined organic layers were dried with Na₂SO₄, filtered and concentrated under vacuum, the residue was purified by silica gel column chromatography to afford **SI-2**.

A solution of 3-allyloxy-2-(o-nitrophenyl)-2-cyclohexenone (1 mmol) in anhydrous DMF (10 ml) was stirred at reflux temperature for 12 h. Then, the mixture was diluted with ether, the combined organic layers were washed with brine, dried over Na_2SO_4 , filtered and concentrated under vacuum, the residue was purified by silica gel column chromatography to give the compound **1a**.

Substrate 1b 2-allyl-5-methyl-2-(2-nitrophenyl)cyclohexane-1,3-dione was obtained as a white solid. Mp: 167-168 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.05 (t, J 9.0 Hz, 1H), 7.61 (m, 2H), 7.46 (t, J = 7.5 Hz, 1H), 5.68 – 5.46 (m, 1H), 5.30 – 5.07 (m, 2H), 3.02 (dd, J = 15.6, 9.0 Hz, 2H), 2.87 – 2.42 (m, 5H), 1.15 (d, J = 5.7 Hz, 3H).; ¹³C NMR (75 MHz, CDCl₃) δ 204.8, 204.6, 147.7, 147.0, 133.5, 133.4, 132.6, 131.9, 131.6, 131.2, 131.1, 130.4, 128.4, 128.4, 125.7, 125.6, 119.7, 119.6, 71.5, 70.0, 45.3, 45.3, 38.3, 35.6, 24.2, 24.0, 21.7, 21.7; HRMS ESI Calcd for C₁₆H₁₇NO₄ [M+H]⁺: 288.1230, Found: 288.1241.

Substrate 1c 2-allyl-2-(2-nitrophenyl)-5-phenylcyclohexane-1,3-dione was obtained as a orange solid. Mp: 159-160 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.20 – 8.04 (m, 1H), 7.76 – 7.45 (m, 3H), 7.43 – 7.26 (m, 5H), 5.74 – 5.51 (m, 1H), 5.38 –

5.11 (m, 2H), 3.91 - 3.74 (m, 1H), 3.24 - 2.85 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 204.3, 204.1, 147.7, 147.0, 142.0, 133.7, 133.6, 131.9, 131.7, 131.2, 131.1, 130.4, 129.0, 128.7, 128.6, 127.4, 127.3, 126.6, 126.0, 125.8, 120.1, 120.0, 71.9, 44.8, 44.5, 38.6, 36.1, 35.1, 34.5; **HRMS ESI** Calcd for C₂₁H₁₉NO₄ [M+H]⁺: 350.1387, Found: 350.1400.

Substrate 1d 2-allyl-2-(4-methyl-2-nitrophenyl)cyclohexane-1,3-dione was obtained as a light yellow solid. Mp: 134-135 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.94 (s, 1H), 7.47 (m, 2H), 5.67 – 5.49 (m, 1H), 5.31 – 5.09 (m, 2H), 3.04 (d, J = 6.6 Hz, 2H), 2.90 – 2.70 (m, 4H), 2.43 (s, 3H), 2.39 – 2.27 (m, 1H), 2.23 – 2.08 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 205.4, 147.3, 139.1, 134.3, 131.0, 130.8, 129.3, 126.4, 119.7, 72.4, 37.8, 36.8, 20.6, 16.9; HRMS ESI Calcd for C₁₆H₁₇NO₄ [M+H] ⁺: 288.1230, Found: 288.1239.

Substrate 1e 2-allyl-2-(4-methoxy-2-nitrophenyl)cyclohexane-1,3-dione was obtained as a light yellow solid. Mp: 121-122 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 2.7 Hz, 1H), 7.47 (d, J = 8.7 Hz, 1H), 7.20 (dd, J = 8.7, 3.0 Hz, 1H), 5.66 – 5.48 (m, 1H), 5.32 – 5.08 (m, 2H), 3.86 (s, 3H), 3.03 (d, J = 6.3 Hz, 2H), 2.91 – 2.70 (m, 4H), 2.43 – 2.26 (m, 1H), 2.24 – 2.09 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 205.5, 159.0, 148.1, 131.9, 130.8, 124.0, 119.7, 119.4, 111.1, 72.2, 55.8, 37.9, 36.8, 16.9; HRMS ESI Calcd for C₁₆H₁₇NO₅ [M+H]⁺: 304.1179, Found: 304.1191.

Substrate 1f 2-allyl-2-(4-bromo-2-nitrophenyl)cyclohexane-1,3-dione was obtained as a light yellow solid. Mp: 161-162 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.25 (d, J = 2.1 Hz, 1H), 7.80 (dd, J = 8.7, 2.1 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 5.61 – 5.46 (m, 1H), 5.31 – 5.14 (m, 3H), 3.05 (d, J = 6.3 Hz, 2H), 2.93 – 2.72 (m, 4H), 2.45

- 2.28 (m, 1H), 2.18 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 204.8, 148.1, 136.4, 132.7, 131.3, 130.3, 128.9, 122.0, 120.3, 72.5, 37.8, 36.7, 16.8; HRMS ESI Calcd for C₁₅H₁₄BrNO₄ [M+H]⁺: 352.0179, 354.0159, Found: 352.0188, 354.0173.

Substrate 1g 2-(2-methylallyl)-2-(2-nitrophenyl)cyclohexane-1,3-dione as a white solid. Mp: 125-127 °C. ¹H NMR (**300 MHz, CDCl**₃) δ 8.05 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 4.2 Hz, 2H), 7.53 – 7.42 (m, 1H), 4.88 (s, 1H), 4.61 (s, 1H), 3.04 (s, 2H), 2.97 – 2.82 (m, 2H), 2.80 – 2.65 (m, 2H), 2.36 – 2.08 (m, 2H), 1.66 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 205.0, 147.7, 138.3, 132.9, 131.9, 131.4, 128.4, 125.3, 116.8, 73.0, 40.2, 36.5, 24.3, 16.7; HRMS ESI Calcd for C₁₆H₁₇NO₄ [M+H]⁺: 288.1230, Found: 288.1240.

Substrate 1i 2-allyl-2-(2-nitrophenyl)cycloheptane-1,3-dione was obtained as a white solid. Mp: 124-125 °C. ¹H NMR (**300** MHz, CDCl₃) δ 7.93 – 7.83 (dd, J = 7.8, 2.1 Hz, 1H), 7.63 – 7.53 (t, J = 7.5 Hz ,1H), 7.52 – 7.43 (t, J = 7.5 Hz ,1H), 7.27 – 7.19 (d, J = 7.8 Hz, 1H), 5.61 – 5.42 (m, 1H), 5.04 – 4.85 (m, 2H), 3.03 (d, J = 6.9 Hz, 2H), 2.87 – 2.72 (m, 2H), 2.68 – 2.55 (m, 2H), 2.13 – 1.86 (m, 4H); ¹³C NMR (**75** MHz, CDCl₃) δ 206.6, 150.2, 132.5, 132.4, 131.0, 130.4, 128.6, 125.7, 118.9, 73.3, 42.6, 39.3, 26.2; HRMS ESI Calcd for C₁₆H₁₇NO₄ [M+H] ⁺: 288.1230, Found: 288.1241.

Substrate 11 2-allyl-2-(2-nitrophenyl)-1,3-diphenylpropane-1,3-dione was obtained as a yellow solid. Mp: 154-155 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.00 (dd, J = 7.8, 1.5 Hz, 1H), 7.71 – 7.64 (m, 4H), 7.55 – 7.31 (m, 5H), 7.29 (s, 1H), 7.25 – 7.22 (m, 1H), 6.95 (dd, J = 7.8, 1.5 Hz, 1H), 5.71 – 5.51 (m, 1H), 4.91 – 4.71 (m, 2H), 3.57 (d, J = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 197.2, 149.7, 136.6, 134.3,

133.1, 132.6, 132.5, 131.5, 129.7, 128.5, 128.1, 125.7, 118.3, 74.4, 41.5; **HRMS ESI** Calcd for $C_{24}H_{19}NO_4 [M+H]^+$: 386.1387, Found: 386.1400.

Substrate 1m 3-allyl-3-(2-nitrophenyl)pentane-2,4-dione was obtained as yellow oil. ¹H NMR (**300 MHz, CDCl₃**) δ 8.03 (d, J = 7.8 Hz, 1H), 7.66 (t, J = 7.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 5.63 – 5.47 (m, 1H), 5.16 – 4.97 (m, 2H), 3.22 (d, J = 6.3 Hz, 2H), 2.18 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 203.3, 149.4, 133.1, 133.0, 132.1, 131.3, 128.7, 125.7, 119.5, 74.7, 38.4, 28.4; HRMS ESI Calcd for C₁₄H₁₅NO₄ [M+H]⁺: 262.1074, Found: 262.1083.

Substrate 1n 2-allyl-2-(2,4-dinitrophenyl)cyclohexane-1,3-dione was obtained as a brown solid. Mp: 174-176 °C. ¹H NMR (**300 MHz, CDCl**₃) δ 8.91 (d, J = 2.4 Hz, 1H), 8.49 (dd, J = 8.7, 2.4 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 5.59 – 5.43 (m, 1H), 5.37 – 5.19 (m, 2H), 3.14 (d, J = 6.6 Hz, 2H), 2.97 – 2.74 (m, 4H), 2.45 – 2.30 (m, 1H), 2.29 – 2.15 (m, 1H); ¹³C NMR (**75 MHz, CDCl**₃) δ 204.3, 148.2, 147.1, 139.0, 133.0, 129.7, 127.1, 121.0, 120.8, 73.1, 37.9, 36.5, 16.7; HRMS ESI Calcd for C₁₅H₁₄N₂O₆ [M+H]⁺: 319.0925, Found: 319.0934.

Substrate 1o 2-allyl-2-(2-nitrophenyl)-1H-indene-1,3(2H)-dione was obtained as a yellow solid. Mp: 119-120 °C. ¹H NMR (**300 MHz, CDCl**₃) δ 8.04 – 7.94 (m, 2H), 7.91 – 7.79 (m, 4H), 7.72 (t, J = 7.5 Hz, 1H), 7.49 (t, J = 7.5 Hz, 1H), 5.61 – 5.42 (m, 1H), 5.14 – 4.93 (m, 2H), 3.01 (d, J = 6.9 Hz, 2H).; ¹³C NMR (75 MHz, CDCl₃) δ 198.2, 148.6, 140.4, 135.6, 133.4, 132.2, 130.8, 129.5, 128.8, 125.2, 123.5, 120.1, 61.4, 39.8.; HRMS ESI Calcd for C₁₈H₁₃NO₄ [M+H] ⁺: 308.0917, Found: 308.0930.

3. General procedure for the tandem reaction

In an oven-dried 10 mL tube equipped with a stir bar was added **1a** 2-allyl-2-(2-nitrophenyl)cyclohexane-1,3-dione (50 mg, 0.18 mmol) and zinc powder (120 mg, 1.83 mmol, 10 equiv). The tube was evacuated and refilled with dry argon (three times). HOAc (0.6 mL) was then added by syringe. The reaction mixture was required to heat to 80 °C in an oil bath and then stirred for 24 h under argon. After cooling to room temperature, the reaction mixture filtered through a plug of celite and washed with dichloromethane, the solution was evaporated *in vacuo*. The residue was diluted with dichloromethane, washed with saturated aq. NaHCO₃, the aqueous mixture was extracted with CH₂Cl₂. The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄, then concentrated under vacuum and purified by silica gel flash column chromatography (PE:EtOAc, 30:1) to afford **2a** 10-allyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one (39 mg, 94%) as a white solid.

<	NO2 solvent, sealed	, HOAc → T, t, Ar tube		+ HO) 	NH ROO
	1a		2a	3a		4a
Entry	Reductant (equiv)	Solvent	<i>T</i> (°C)	Time (h)	Yield (%)	2a : $(3a+4a)^b$
1	Fe (10)	EtOH	80	3	10 ^c	
2	Fe (10)	EtOH	80	12	58^d	
3	Fe (10)	EtOH	80	24	89	1:1.3
4	Fe (10)	EtOH	40	24	80	1:7.7
5	Fe (10)	EtOH	60	24	86	1:16.7
6 ^e	Fe (10)	EtOH	80	24	82	1:1.2
7	Zn (10)	EtOH	80	24	95	1:2.4
8	HCOOH (10)	EtOH	80	24	0	
9	Zn (10)	MeOH	80	24	88	1:2.5
10	Zn (10)	<i>i</i> -PrOH	80	24	90	6.5:1
11	Zn (10)	t-BuOH	80	24	92 ^f	
12 ^e	Zn (10)	EtOH	80	24	93	17.6:1
13	Zn (4)	EtOH	80	24	94	1:1.6
14	Zn (5)	EtOH	80	24	95	1.1:1
15	Zn (6)	EtOH	80	24	96	1:2.9
16	Zn (8)	EtOH	80	24	96	1:3.0
17 ^g	Zn (10)	—	80	24	99 ^f	
18 ^g	Zn (3.5)	—	80	24	51 ^{<i>f</i>}	
19 ^{<i>g</i>}	Zn (4)	—	80	24	84^{f}	
20 ^g	Zn (4) AcOH	—	80	24	36 ^{<i>f</i>}	
	(0.24mL)					
21 ^g	Zn (5) AcOH	—	80	24	22^{f}	
	(0.30mL)					

Table SI Optimization of the reaction conditions.^a

^{*a*}Reaction conditions: **1a** (0.18 mmol), reductant, HOAc (0.6 mL), solvent (0.6 mL), Ar. The yield was determined by ¹H NMR using CH₃NO₂ as the internal standard. ^{*b*}The ratio was **2a** to (**3a**+**4a**). ^{*c*}Isolated yield of **4a**. ^{*d*}The starting material was recovered. ^{*e*}This reaction was carried in the air. ^{*f*}No product **3a** and product **4a** was detected. ^{*g*}Without solvent.

4. Characterization data for the products

Compound 2a 10-allyl-8,9-dihydropyrido[**1,2-a**]**indol-6(7H)-one** was obtained as a white solid. Mp: 66-68 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.49 – 8.40 (m, 1H), 7.47 – 7.39 (m, 1H), 7.31 – 7.19 (m, 2H), 6.00 – 5.85 (m, 1H), 5.11 – 5.00 (m, 2H), 3.38 (d, J = 6.0 Hz, 2H), 2.91 – 2.82 (t, J = 6.3 Hz, 2H), 2.78 – 2.70 (t, J = 6.3 Hz, 2H), 2.10 – 1.98 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 135.4, 134.5, 133.9, 130.2, 124.0, 123.6, 118.1, 116.3, 115.4, 114.0, 34.4, 28.1, 21.7, 21.1; HRMS ESI Calcd for C₁₅H₁₅NO [M+H]⁺: 226.1226, Found: 226.1228.

Compound 2b 10-allyl-8-methyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one was obtained as a white solid. Mp: 78-80 °C. ¹H NMR (**300** MHz, CDCl₃) δ 8.48 – 8.40 (m, 1H), 7.47 – 7.39 (m, 1H), 7.31 – 7.20 (m, 2H), 6.00 – 5.85 (m, 1H), 5.12 – 5.00 (m, 2H), 3.38 (d, J = 6.0 Hz, 2H), 3.08 – 2.97 (m, 1H), 2.85 – 2.74 (m, 1H), 2.51 – 2.37 (m, 2H), 2.36 – 2.22 (m, 1H), 1.13 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 168.9, 135.4, 134.5, 133.4, 130.4, 124.1, 123.6, 118.1, 116.2, 115.5, 114.2, 42.1, 29.6, 28.4, 28.1, 20.6; HRMS ESI Calcd for C₁₆H₁₇NO [M+H] ⁺: 240.1383, Found: 240.1387.

Compound 2c 10-allyl-8-phenyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one was obtained as a white solid. Mp: 104-105 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.51 – 8.46 (m, 1H), 7.50 – 7.43 (m, 1H), 7.40 – 7.32 (m, 2H), 7.31 – 7.22 (m, 4H), 5.99 – 5.84 (m, 1H), 5.10 – 4.99 (m, 2H), 3.48 – 3.35 (m, 3H), 3.33 – 3.23 (m, 1H), 3.10 – 2.99 (m, 1H), 2.99 – 2.86 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 168.4, 142.1, 135.2, 134.5, 132.9, 130.5, 128.9, 127.3, 126.5, 124.3, 123.8, 118.3, 116.3, 115.6, 114.6,

41.3, 38.9, 29.3, 28.1; **HRMS ESI** Calcd for $C_{21}H_{19}NO [M+H]^+$: 302.1539, Found: 302.1541.

Compound 2d 10-allyl-3-methyl-8,9-dihydropyrido[1,2-a]indol-6(7H)-one was obtained as a white solid. Mp: 68-70 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.29 (s, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.07 (d, J = 7.8 Hz, 1H), 6.00 – 5.84 (m, 1H), 5.12 – 4.99 (m, 2H), 3.36 (d, J = 6.0 Hz, 2H), 2.86 (t, J = 6.3 Hz, 2H), 2.74 (t, J = 6.3 Hz, 2H), 2.46 (s, 3H), 2.10 – 1.99 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 169.3, 135.5, 135.0,134.2, 133.2, 127.9, 124.9, 117.7, 116.7, 115.4, 114.0, 34.5, 29.7, 28.2, 21.8, 21.2; HRMS ESI Calcd for C₁₆H₁₇NO [M+H]⁺: 240.1383, Found: 240.1385.

Compound 2e 10-allyl-3-methoxy-8,9-dihydropyrido[1,2-a]indol-6(7H)-one was obtained as a white solid. Mp: 72-73 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.11 – 8.06 (m, 1H), 7.34 – 7.27 (m, 1H), 6.92 – 6.84 (m, 1H), 6.02 – 5.83 (m, 1H), 5.14 – 4.99 (m, 2H), 3.87 (d, J = 1.8 Hz, 3H), 3.36 (d, J = 6.0 Hz, 2H), 2.86 (t, J = 6.0 Hz, 2H), 2.75 (t, J = 6.6 Hz, 2H), 2.12 – 2.00 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 169.4, 157.7, 135.5, 135.4, 132.4, 124.0, 118.5, 115.4, 113.9, 112.4, 100.9, 55.7, 34.5, 28.2, 21.8, 21.2; HRMS ESI Calcd for C₁₆H₁₇NO₂ [M+H]⁺: 256.1332, Found: 256.1333.

Compound 2f 10-allyl-3-bromo-8,9-dihydropyrido[1,2-a]indol-6(7H)-one was obtained as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 8.63 (d, J = 1.5 Hz, 1H), 7.37 – 7.31 (m, 1H), 7.27 (d, J = 8.1 Hz, 1H), 5.99 – 5.80 (m, 1H), 5.12 – 4.98 (m, 2H), 3.36 (d, J = 6.0 Hz, 2H), 2.94 – 2.83 (t, J = 6.3 Hz, 2H), 2.82 – 2.71 (t, J = 6.0 Hz, 2H), 2.16 – 2.01 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.1, 135.1, 134.6, 132.3,129.1, 126.8, 119.4, 119.3 117.7, 115.7, 113.9, 34.3, 28.0, 21.7, 21.0; HRMS

ESI Calcd for C₁₅H₁₄BrNO [M+H] ⁺: 304.0332, 306.0311, Found: 304.0335, 306.0313.

Compound 3f 4-(3-allyl-6-bromo-1H-indol-2-yl)butanoic acid was obtained as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.01 (s, 1H), 7.45 – 7.29 (m, 2H), 7.20 – 7.08 (m, 1H), 6.04 – 5.84 (m, 1H), 5.09 – 4.92 (m, 2H), 3.41 (d, *J* = 6.0 Hz, 2H), 2.77 (t, *J* = 7.5 Hz, 2H), 2.38 (t, *J* = 6.9 Hz, 2H), 2.08 – 1.88 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 178.9, 137.0, 136.1, 134.9, 127.5, 122.4, 119.8, 114.8, 114.7, 113.3, 109.9, 32.9, 28.4, 25.0, 24.6; HRMS ESI Calcd for C₁₅H₁₆BrNO₂ [M+H] ⁺: 322.0437, 324.0417, Found: 322.0439, 324.0419.

Compound 2g 10-(2-methylallyl)-8,9-dihydropyrido[1,2-a]indol-6(7H)-one was obtained as a white solid. Mp: 70-72 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.49 – 8.41 (m, 1H), 7.48 – 7.41 (m, 1H), 7.32 – 7.19 (m, 2H), 4.76 (d, J = 15.6 Hz, 2H), 3.33 (s, 2H), 2.92 – 2.84 (t, J = 6.3 Hz, 2H), 2.80 – 2.72 (t, J = 6.6 Hz, 2H), 2.12 – 2.00 (m, 2H), 1.73 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 143.1, 134.5, 134.2, 130.4, 124.0, 123.6, 118.2, 116.2, 114.1, 111.3, 34.4, 32.4, 22.3, 21.7, 21.1; HRMS ESI Calcd for C₁₆H₁₇NO [M+H]⁺: 240.1383, Found: 240.1387.

Compound 3h 3-(3-allyl-1H-indol-2-yl)propanoic acid was obtained as a white solid. Mp: 103-105 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.22 (s, 1H), 7.51 (d, J = 7.5 Hz, 1H), 7.25 (t, J = 7.8 Hz, 1H), 7.15 – 7.01 (m, 2H), 6.05 – 5.89 (m, 1H), 5.10 – 4.94 (m, 2H), 3.46 (d, J = 6.0 Hz, 2H), 3.02 (t, J = 6.6 Hz, 2H), 2.70 (t, J = 6.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 179.0, 137.4, 135.3, 133.7, 128.3, 121.4, 119.1, 118.5, 114.5, 110.5, 109.5, 34.1, 28.4, 20.6; HRMS ESI Calcd for C₁₄H₁₅NO₂ [M+H]⁺: 230.1176, Found: 230.1176.

Compound 3i 5-(3-allyl-1H-indol-2-yl)pentanoic acid was obtained as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.87 (s, 1H), 7.54 – 7.45 (d, J = 6.9 Hz, 2H), 7.32 – 7.23 (m, 1H), 7.15 – 7.02 (m, 2H), 6.04 – 5.88 (m, 1H), 5.10 – 4.94 (m, 2H), 3.45 (m,2H), 2.74 (t, J = 6.9 Hz, 2H), 2.38 (t, J = 6.6 Hz, 2H), 1.83 – 1.62 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 179.2, 137.5, 135.3, 135.0, 128.6, 121.1, 119.1, 118.4, 114.4, 110.3, 109.2, 33.6, 29.0, 28.6, 25.7, 24.2; HRMS ESI Calcd for C₁₆H₁₉NO₂ [M+H]⁺: 258.1489, Found: 258.1492.

Compound 2j 10-allyl-8,8-dimethyl-8,9-dihydropyrido[**1,2-a**]**indol-6(7H)-one** was obtained as a white solid. Mp: 75-77 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.49 – 8.42 (m, 1H), 7.49 – 7.41 (m, 1H), 7.33 – 7.21 (m, 2H), 6.01 – 5.86 (m, 1H), 5.11 – 4.99 (m, 2H), 3.39 (d, J = 6.0 Hz, 2H), 2.72 (s, 2H), 2.59 (s, 2H), 1.09 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 168.7, 135.5, 134.5, 133.0, 130.5, 124.1, 123.6, 118.1, 116.3, 115.4, 115.1, 47.8, 35.4, 32.6, 28.0, 27.8; HRMS ESI Calcd for C₁₇H₁₉NO [M+H]⁺: 254.1539, Found: 254.1541.

Compound

 $2\mathbf{k}$

3-(9-allyl-3-ethyl-4-oxo-2,3,4,4a-tetrahydro-1H-fluoren-3-yl)propanenitrile was obtained as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 7.2 Hz, 1H), 7.46 (d, J = 6.8 Hz, 1H), 7.33 – 7.26 (m, 2H), 6.02 – 5.86 (m, 1H), 5.08 (m, 2H), 3.39 (d, J = 5.6 Hz, 2H), 3.06 – 2.90 (m, 2H), 2.58 – 2.39 (m, 2H), 2.33 – 2.22 (m, 1H), 2.10 – 1.97 (m, 3H), 1.90 – 1.72 (m, 2H), 0.97 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 135.1, 134.9, 132.6, 130.5, 124.4, 123.9, 119.8, 118.3, 116.5, 115.7, 114.6, 45.9, 30.9, 28.6, 28.1, 27.8, 17.7, 12.7, 8.0; HRMS ESI Calcd for C₂₀H₂₂N₂O [M+H]⁺: 307.1805, Found: 307.1808.

Compound

2k'

3-(3-ethyl-4-oxo-2,3,4,9-tetrahydro-1H-carbazol-3-yl)propanenitrile was obtained as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.39 (d, J = 16.0 Hz, 1H), 8.19 (dd, J = 5.6, 3.2 Hz, 1H), 7.36 (dd, J = 6.0, 2.8 Hz, 1H), 7.25 – 7.20 (m, 2H), 3.13 – 2.93 (m, 2H), 2.43 (m, 2H), 2.27 – 2.17 (m, 1H), 2.14 (t, J = 6.4 Hz, 2H), 1.91 (m, 1H), 1.81 – 1.59 (m, 2H), 0.92 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 149.8, 136.1, 125.0, 123.4, 122.5, 121.2, 120.4, 111.9, 111.2, 47.5, 31.1, 30.2, 27.3, 19.9, 12.6, 8.4; HRMS ESI Calcd for C₁₇H₁₈N₂O [M+H]⁺: 267.1492, Found: 267.1497.

Compound 2I 3-allyl-2-phenyl-1H-indole was obtained as a yellow solid. Mp: 102-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.56 – 7.49 (m, 2H), 7.47 – 7.40 (m, 2H), 7.38 – 7.31 (m, 2H), 7.23 – 7.16 (m, 1H), 7.15 – 7.08 (m, 1H), 6.18 – 6.03 (m, 1H), 5.16 – 5.00 (m, 2H), 3.69 – 3.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 136.0, 134.8, 133.0, 129.4, 128.8, 127.8, 127.6, 122.3, 119.6, 119.4, 115.1, 110.8, 110.5, 28.9; **HRMS ESI** Calcd for C₁₇H₁₅N [M+H]⁺: 234.1277, Found: 234.1285.

Compound 2m 3-allyl-2-methyl-1H-indole was obtained as a yellow oil. ¹H NMR (**300 MHz, CDCl**₃) δ 7.63 – 7.38 (m, 2H), 7.21 – 6.98 (m, 3H), 6.02 – 5.85 (m, 1H), 5.09 – 4.88 (m, 2H), 3.47 – 3.34 (m, 2H), 2.25 (s, 3H); ¹³C NMR (**75 MHz, CDCl**₃) δ 137.3, 135.1, 131.3, 128.6, 120.8, 119.0, 118.1, 114.3, 110.1, 109.1, 28.5, 11.4; **HRMS ESI** Calcd for C₁₂H₁₃N [M+H]⁺: 172.1121, Found: 172.1127.

5. X-ray crystallography data for 2a and 3h

CCDC Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $\alpha/^{\circ}$ β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ μ/mm^{-1} F(000) Crystal size/mm³ Radiation 2Θ range for data collection/° Index ranges

2007714 C₁₅H₁₅NO 172.20 293(2) monoclinic $P2_1/c$ 9.1714(6) 14.8338(9) 9.4775(7) 90.00 108.911(7) 90.00 1219.78(14) 4 1.172 0.076 455.0 $0.17 \times 0.14 \times 0.12$ MoKα (λ = 0.71073) 3.57 to 28.54 -11 \leq h \leq 9, -18 \leq k \leq 9, -6 \leq l \leq Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F^2 Final R indexes [I>=2 σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ 12 4748 2772 [$R_{int} = 0.0263$, $R_{sigma} = 0.0563$] 2772/0/154 1.050 $R_1 = 0.0620$, $wR_2 = 0.1392$ $R_1 = 0.1113$, $wR_2 = 0.1753$ 0.18/-0.25

CCDC Empirical formula Formula weight Temperature/K Crystal system Space group a/Åb/Åc/Å $a/^{\circ}$ $\beta/^{\circ}$ $\gamma/^{\circ}$ Volume/Å³ Z 2007713 $C_{14}H_{15}NO_2$ 229.27 292.60(10) orthorhombic Pben 25.4782(8) 13.9470(4) 7.1727(2) 90 90 90 90 2548.79(13) 8

$\rho_{cale}g/cm^3$	1.195
µ/mm ⁻¹	0.643
F(000)	976.0
Crystal size/mm ³	$0.18\times0.15\times0.12$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	6.333 to 69.690
Index ranges	$-28 \le h \le 30, -16 \le k \le 16, -8 \le l \le 5$
Reflections collected	5439
Independent reflections	2188 [$R_{int} = 0.0264$, $R_{sigma} = 0.0281$]
Data/restraints/parameters	2188/0/158
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0589, wR_2 = 0.1593$
Final R indexes [all data]	$R_1 = 0.0653, wR_2 = 0.1683$
Largest diff. peak/hole / e Å ⁻³	0.18/-0.28

6. Formal Synthesis of Goniomitine

To the solution of compound **2a** (277mg, 1.23 mmol) and 4-Methylmorpholine N-oxide (720mg, 6.15mmol) in THF/H₂O=1:1 was added K₂OsO₄·2H₂O and stirred at the room temperature for 2 h, the reaction was quenched with saturated solution of Na₂S₂O₃ and stirred for another 1h, and then extracted with EtOAc (3 x 20 mL). The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄, then concentrated under vacuum and used without further purification.

To the solution of the crude product in ethyl acetate (350mL) was added Pb(OAc)₄. After completion, the reaction mixture filtered through a plug of silica gel and washed with ethyl acetate, the solution was evaporated in vacuo, then purified by silica gel flash afford column chromatography to Compound 5 2-(6-oxo-6,7,8,9-tetrahydropyrido[1,2-a]indol-10-yl)acetaldehyde as a white solid. Mp: 153-155 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.70 (t, J = 2.1 Hz, 1H), 8.50 – 8.44 (m, 1H), 7.41 – 7.24 (m, 3H), 3.70 (d, J = 2.1 Hz, 2H), 2.91 (t, J = 6.3 Hz, 2H), 2.83 – 2.75 (t, J = 6.6 Hz, 2H), 2.17 – 2.05 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 197.8, 169.1, 136.1, 134.5, 129.6, 124.7, 124.0, 117.5, 116.5, 107.0, 39.1, 34.3, 21.9, 21.0; **HRMS ESI** Calcd for C₁₄H₁₃NO₂ [M+H]⁺: 228.1019, Found: 228.1020.

0°C, to the solution of compound **5** (285 mg, 1.25 mmol) in MeOH was added NaBH₄ (57 mg, 1.51 mmol) and stirred at the room temperature for 2 h, the reaction was quenched with saturated solution of NH4Cl. The solution was concentrated under reduced pressure, and then extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layer was washed with brine (30 mL) and dried over anhydrous Na₂SO₄, then concentrated under vacuum and purified by silica gel flash column chromatography to afford Compound **6 10-(2-hydroxyethyl)-8,9-dihydropyrido[1,2-a]indol-6(7H)-one** as a little red solid. Mp: 95-97 °C. ¹H NMR (**300 MHz, CDCl**₃) δ 8.42 – 8.35 (m, 1H), 7.49 – 7.42 (m, 1H), 7.31 – 7.21 (m, 2H), 3.84 (t, J = 6.6 Hz, 2H), 2.87 (t, J = 6.0 Hz, 4H), 2.57 – 2.49 (t, J = 6.3 Hz, 2H), 2.48 – 2.40 (broad, 1H), 2.01 – 1.91 (m, 2H); ¹³C NMR (**75 MHz, CDCl**₃) δ 169.4, 135.0, 134.4, 130.2, 124.1, 123.7, 117.8, 116.3, 113.1, 61.8,

33.9, 27.5, 21.6, 20.9; **HRMS ESI** Calcd for C₁₄H₁₅NO₂ [M+H]⁺: 230.1176, Found: 230.1177.

To the solution of compound **6** (12 mg, 0.0524 mmol) in CH₂Cl₂ was added Silver oxide (18mg, 0.00786 mmol) and benzyl bromide (7 uL, 0.0576mmol) then stirred at the room temperature for 16 h. The reaction mixture filtered through a plug of celite and washed with dichloromethane, the solution was evaporated in vacuo, then purified by silica gel flash column chromatography to afford Compound **7 10-(2-(benzyloxy)ethyl)-8,9-dihydropyrido[1,2-a]indol-6(7H)-one** as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 7.2 Hz, 1H), 7.45 (d, J = 6.8 Hz, 1H), 7.28 (m, 7H), 4.50 (s, 2H), 3.68 (t, J = 6.8 Hz, 2H), 2.94 (m, 4H), 2.76 (t, J = 6.4 Hz, 2H), 2.05 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 138.3, 134.6, 134.6, 130.3, 128.3, 127.6, 127.5, 124.1, 123.7, 117.8, 116.4, 113.5, 73.1, 69.6, 34.5, 24.9, 21.9, 21.2; HRMS ESI Calcd for C₂₁H₂₁NO₂ [M+H]⁺: 320.1645, Found: 320.1646.

7. Computational Details

All calculations were carried out with the Gaussian 09 programs. 1 The geometries of all the species were fully optimized by using density functional theory (DFT) of the B3LYP method 2 with the 6-31G(d, p) basis set for all atoms. Vibrational frequency calculations done at the B3LYP/6-31G (d, p) level of theory were used to characterize all of the stationary points as either minima (the number of imaginary frequencies (NIMAG=0) or transition states (NIMAG=1)).

8. The Cartesian coordinates of the stationary points

6	-2.608294000	0.774186000	-0.316739000
6	-2.518950000	1.156163000	1.168351000
6	-1.167967000	1.834586000	1.545923000
6	-0.089783000	0.966475000	1.036809000
6	0.012582000	0.551516000	-0.398543000
6	-1.391866000	0.059439000	-0.894039000
7	0.810693000	0.337200000	1.746153000
6	1.571796000	-0.576255000	0.964472000
6	1.093621000	-0.501715000	-0.348673000
6	2.594001000	-1.421887000	1.369492000
6	3.150341000	-2.236662000	0.378334000
6	2.686815000	-2.186508000	-0.941930000
6	1.656565000	-1.316552000	-1.322885000
6	0.386174000	1.768599000	-1.342408000
6	1.638047000	2.494710000	-0.932967000
6	1.675577000	3.791209000	-0.623140000

1a-Int-1

8	-1.445646000	-0.740157000	-1.800532000
1	-3.470567000	0.128036000	-0.495197000
1	-2.749358000	1.673522000	-0.934408000
1	-2.635589000	0.259611000	1.779090000
1	-3.326348000	1.848833000	1.418656000
1	-1.093600000	1.988917000	2.625717000
1	-1.091684000	2.814848000	1.058982000
1	0.896449000	0.428261000	2.753786000
1	2.946656000	-1.456328000	2.395055000
1	3.952926000	-2.917753000	0.639949000
1	3.135224000	-2.836236000	-1.686162000
1	1.297920000	-1.293980000	-2.345326000
1	0.491473000	1.332765000	-2.342499000
1	-0.455432000	2.467183000	-1.381265000
1	2.555836000	1.909900000	-0.920701000
1	2.605528000	4.284064000	-0.358759000
1	0.786020000	4.416470000	-0.649214000
8	-1.494006000	-1.752437000	1.212859000
1	-2.259304000	-2.091019000	0.699359000
1	-0.872724000	-2.491211000	1.226303000
8	-3.490571000	-2.328948000	-0.604451000
1	-4.053701000	-3.089180000	-0.795652000
1	-3.024736000	-2.108586000	-1.426136000

6	2.715919000	0.270886000	-0.082546000
6	2.562507000	0.940171000	-1.452163000
6	1.307029000	1.863138000	-1.530759000
6	0.153125000	1.089172000	-1.033921000
6	0.141231000	0.407335000	0.296744000
6	1.466114000	-0.468566000	0.434999000
7	-0.925944000	0.777155000	-1.710690000
6	-1.767520000	-0.122930000	-0.995583000
6	-1.138581000	-0.393970000	0.226447000
6	-2.980813000	-0.674199000	-1.380948000
6	-3.575342000	-1.555046000	-0.471599000
6	-2.963218000	-1.854937000	0.751982000
6	-1.739768000	-1.277701000	1.117503000
6	0.149829000	1.432699000	1.490048000
6	-0.977663000	2.427757000	1.454436000
6	-0.802791000	3.749329000	1.413954000
8	1.541249000	-1.098597000	1.548950000
1	3.535538000	-0.452895000	-0.110814000
1	2.985896000	1.004741000	0.685188000
1	2.485408000	0.175780000	-2.228975000
1	3.440856000	1.551948000	-1.674244000
1	1.145252000	2.234760000	-2.546477000

1	1.448871000	2.730268000	-0.873924000	
1	-1.117161000	1.105070000	-2.652680000	
1	-3.448157000	-0.442435000	-2.332306000	
1	-4.525500000	-2.014046000	-0.722605000	
1	-3.448932000	-2.546943000	1.431975000	
1	-1.265399000	-1.515773000	2.062875000	
1	0.113123000	0.812070000	2.391680000	
1	1.108511000	1.958602000	1.507859000	
1	-1.987505000	2.022214000	1.490535000	
1	-1.644438000	4.434388000	1.418332000	
1	0.187766000	4.198756000	1.405134000	
8	1.298464000	-1.622005000	-0.822607000	
1	2.080138000	-2.483882000	-0.283999000	
1	0.404315000	-1.986502000	-0.713205000	
8	2.756818000	-2.925467000	0.551906000	
1	2.558701000	-3.839596000	0.800571000	
1	2.351743000	-2.216882000	1.262356000	

1a-Int-2

	6	-0.838814000	2.154232000	1.444035000
6 0.174721000 1.206022000 0.938972000	6	0.174721000	1.206022000	0.938972000

6	-0.058240000	0.308716000	-0.244273000	
6	-1.400325000	-0.490714000	0.088656000	
7	1.316903000	0.916858000	1.505376000	
6	1.990721000	-0.155955000	0.851732000	
6	1.178607000	-0.566565000	-0.210941000	
6	3.213846000	-0.730111000	1.163446000	
6	3.624839000	-1.787536000	0.345551000	
6	2.831376000	-2.225246000	-0.721480000	
6	1.601521000	-1.619861000	-1.013929000	
6	-0.186929000	1.116029000	-1.580827000	
6	0.977176000	2.028691000	-1.862256000	
6	0.870021000	3.348012000	-2.025590000	
8	-1.670216000	-1.252512000	-1.034414000	
1	-3.404426000	-0.129966000	0.720098000	
1	-2.797082000	1.087180000	-0.392794000	
1	-2.055103000	0.744702000	2.567328000	
1	-2.959512000	2.091860000	1.873308000	
1	-0.506328000	2.659207000	2.355547000	
1	-0.998165000	2.921351000	0.675510000	
1	1.664321000	1.377206000	2.341698000	
1	3.822576000	-0.386947000	1.993473000	
1	4.573461000	-2.274362000	0.544468000	
1	3.176806000	-3.050557000	-1.335265000	
1	0.989369000	-1.969844000 23	-1.837742000	

1	-0.297580000	0.361221000	-2.365766000	
1	-1.113968000	1.694768000	-1.568390000	
1	1.954262000	1.557030000	-1.955656000	
1	1.733940000	3.964886000	-2.251267000	
1	-0.088588000	3.859348000	-1.969596000	
8	-1.180867000	-1.292059000	1.237350000	
1	-4.311056000	-3.113846000	-0.286337000	
1	-0.640476000	-2.045961000	0.958007000	
8	-4.188649000	-2.258755000	-0.719125000	
1	-4.772777000	-2.272113000	-1.488818000	
1	-2.562981000	-1.663874000	-0.941069000	

1a-TS-2

6	2.143692000	-1.586583000	-0.090077000	
6	1.870096000	-1.894554000	-1.563526000	
6	1.194686000	-0.702500000	-2.301722000	
6	0.026764000	-0.264900000	-1.494826000	
6	0.085636000	0.399590000	-0.226756000	
6	0.906414000	-1.256117000	0.732467000	
7	-1.221844000	-0.702677000	-1.709301000	
6	-2.084012000	-0.299626000	-0.675817000	
6	-1.305918000	0.424603000	0.248008000	
6	-3.449218000	-0.519979000	-0.519924000	
6	-4.042573000	0.018158000	0.621462000	

6	-3.290824000	0.743900000	1.560597000	
6	-1.922775000	0.953366000	1.386596000	
6	1.047635000	1.540022000	0.081693000	
6	0.729236000	2.792607000	-0.700794000	
6	1.598318000	3.424218000	-1.489037000	
8	1.064449000	-0.799356000	1.973862000	
1	2.579155000	-2.471285000	0.391773000	
1	2.869990000	-0.777389000	0.018876000	
1	1.230998000	-2.779479000	-1.639381000	
1	2.812850000	-2.132154000	-2.063814000	
1	0.895599000	-1.003934000	-3.309758000	
1	1.900072000	0.127833000	-2.401872000	
1	-1.489257000	-1.307550000	-2.475251000	
1	-4.028329000	-1.080418000	-1.246628000	
1	-5.105395000	-0.125425000	0.784997000	
1	-3.786933000	1.150862000	2.435498000	
1	-1.355282000	1.516323000	2.120467000	
1	0.972187000	1.744671000	1.157892000	
1	2.085373000	1.252270000	-0.111435000	
1	-0.283310000	3.178083000	-0.592625000	
1	1.324948000	4.325580000	-2.027853000	
1	2.620174000	3.073712000	-1.617236000	
8	-0.042458000	-2.204361000	0.645119000	
1	4.017732000	-0.128515000 25	2.955757000	

1	-0.653228000	-2.108324000	1.394491000
8	3.417687000	0.363946000	2.378562000
1	3.451628000	1.279358000	2.688033000
1	1.933557000	-0.330546000	2.112766000
1a-Int-	3		
6	2.326170000	-1.765091000	-0.134387000
6	1.959708000	-1.835152000	-1.627814000
6	1.316402000	-0.530670000	-2.156669000
6	0.081673000	-0.169695000	-1.394016000
6	-0.093775000	0.726835000	-0.348027000
6	1.176886000	-1.685908000	0.822444000
7	-1.093187000	-0.871629000	-1.584022000
6	-2.046911000	-0.452976000	-0.674041000
6	-1.447878000	0.559559000	0.121788000
6	-3.368063000	-0.871765000	-0.485043000
6	-4.090818000	-0.256806000	0.530924000
6	-3.517474000	0.749175000	1.336475000
6	-2.207473000	1.164553000	1.141031000
6	0.873210000	1.779716000	0.133500000
6	0.649412000	3.128555000	-0.517187000
6	1.588108000	3.816766000	-1.164242000
8	1.216331000	-1.075708000	1.950476000
1	2.858590000	-2.686673000	0.146532000
1	3.005112000	-0.935102000 26	0.077876000

1	1.290994000	-2.685371000	-1.794635000
1	2.878459000	-2.044956000	-2.183697000
1	1.090460000	-0.658904000	-3.221581000
1	2.036224000	0.290664000	-2.094398000
1	-1.241049000	-1.564911000	-2.301075000
1	-3.815695000	-1.639719000	-1.108432000
1	-5.119695000	-0.554694000	0.705225000
1	-4.116639000	1.208279000	2.116008000
1	-1.782344000	1.949291000	1.760109000
1	0.751537000	1.882254000	1.224003000
1	1.910691000	1.472821000	-0.048406000
1	-0.360078000	3.528201000	-0.438943000
1	1.376812000	4.780628000	-1.615609000
1	2.605588000	3.445625000	-1.268987000
8	0.163573000	-2.471700000	0.613439000
1	3.801786000	0.296285000	3.051993000
1	-0.525726000	-2.343939000	1.293153000
8	3.214801000	0.456538000	2.298861000
1	3.027699000	1.406253000	2.287429000
1	2.026885000	-0.460256000	2.090963000

1a-TS-3

6	1.297631000	-2.296206000	-1.586085000
6	0.497436000	-3.165929000 27	-0.593264000

6	-0.822949000	-2.475024000	-0.183975000	
6	-0.711190000	-0.980012000	-0.228231000	
6	-1.632426000	-0.004456000	-0.390167000	
6	1.713472000	-1.021365000	-0.913876000	
7	0.634554000	-0.382677000	-0.102073000	
6	0.432103000	1.064975000	-0.263965000	
6	-0.943965000	1.286995000	-0.408468000	
6	1.372261000	2.081947000	-0.226915000	
6	0.887257000	3.387511000	-0.370999000	
6	-0.480936000	3.639746000	-0.525481000	
6	-1.409705000	2.597670000	-0.540296000	
6	-3.124381000	-0.188726000	-0.488779000	
6	-3.811940000	-0.024667000	0.851047000	
6	-4.566733000	-0.959267000	1.425617000	
8	2.818574000	-0.541978000	-0.879179000	
1	2.200471000	-2.790114000	-1.949339000	
1	0.672486000	-2.042042000	-2.453192000	
1	1.115635000	-3.362524000	0.289443000	
1	0.291394000	-4.136468000	-1.049856000	
1	-1.129373000	-2.815917000	0.813007000	
1	-1.628571000	-2.770421000	-0.864435000	
1	1.074693000	-0.518185000	1.059280000	
1	2.428319000	1.888561000	-0.093266000	
1	1.588353000	4.215153000 28	-0.358261000	

1	-0.824916000	4.663390000	-0.630563000
1	-2.468937000	2.804157000	-0.653012000
1	-3.519177000	0.547536000	-1.201447000
1	-3.355989000	-1.177132000	-0.898428000
1	-3.666228000	0.932846000	1.349458000
1	-5.052327000	-0.787601000	2.380883000
1	-4.743977000	-1.923718000	0.955859000
8	3.976917000	0.284676000	1.590134000
1	2.613945000	-0.311892000	2.071837000
1	4.073901000	0.070508000	0.648010000
8	1.662480000	-0.661029000	2.168863000
1	1.233196000	-0.194548000	2.901190000
1	4.815842000	0.074658000	2.021840000
2-			

2	•
4	a

6	-0.380945000	-3.194261000	-0.594160000
6	-1.710446000	-2.925955000	0.127575000
6	-2.351427000	-1.635132000	-0.399209000
6	-1.373898000	-0.501925000	-0.408568000
6	-1.558142000	0.844035000	-0.336237000
6	0.569437000	-2.028663000	-0.493234000
7	0.028035000	-0.780062000	-0.541992000
6	0.716491000	0.457869000	-0.608200000
6	-0.251885000	1.474353000 29	-0.459781000

6	2.054290000	0.740261000	-0.876757000
6	2.432778000	2.089302000	-0.926062000
6	1.492830000	3.112582000	-0.718400000
6	0.149549000	2.814805000	-0.497658000
6	-2.877739000	1.558915000	-0.164113000
6	-3.499409000	1.345664000	1.198285000
6	-4.735465000	0.889517000	1.400614000
8	1.802009000	-2.218795000	-0.384534000
1	0.139646000	-4.070215000	-0.202619000
1	-0.561539000	-3.376737000	-1.663129000
1	-1.532121000	-2.843709000	1.205743000
1	-2.384688000	-3.772906000	-0.020349000
1	-3.217719000	-1.350896000	0.204051000
1	-2.718478000	-1.803330000	-1.422330000
1	3.603167000	-0.513202000	1.484846000
1	2.768855000	-0.043612000	-1.091296000
1	3.457974000	2.344219000	-1.179615000
1	1.812526000	4.148463000	-0.766623000
1	-0.574840000	3.613853000	-0.378922000
1	-2.716422000	2.631788000	-0.326237000
1	-3.581643000	1.239405000	-0.941038000
1	-2.872497000	1.601362000	2.051859000
1	-5.142321000	0.774179000	2.400158000
1	-5.394447000	0.635966000 30	0.573500000

8	3.436479000	-1.530984000	1.282236000
1	3.332436000	1.450569000	1.121198000
1	2.703267000	-1.748504000	0.521957000
8	3.841999000	0.883610000	1.729974000
1	3.715857000	1.225060000	2.626375000
1	4.266735000	-2.000165000	1.110432000

1k-Int-1'

6	-1.670938000	0.809788000	-0.110738000	
6	-1.441991000	1.049233000	1.401558000	
6	-0.095723000	1.745669000	1.771848000	
6	0.972675000	0.919839000	1.183127000	
6	1.032696000	0.628170000	-0.280255000	
6	-0.397704000	0.252055000	-0.807895000	
7	1.852455000	0.193507000	1.819685000	
6	2.558755000	-0.683630000	0.951007000	
6	2.057230000	-0.486665000	-0.339521000	
6	3.555524000	-1.594229000	1.263850000	
6	4.058139000	-2.348780000	0.199571000	
6	3.570180000	-2.176490000	-1.100945000	
6	2.569158000	-1.238940000	-1.388341000	
6	1.512641000	1.887153000	-1.122006000	
6	2.842433000	2.436331000	-0.684100000	
6	3.017246000	3.680038000	-0.235686000	

8	-0.456146000	-0.404879000	-1.823401000
1	0.001991000	1.834198000	2.857229000
1	-0.054332000	2.754960000	1.347590000
1	1.951759000	0.185272000	2.830024000
1	3.926102000	-1.724120000	2.275206000
1	4.836844000	-3.079830000	0.388059000
1	3.974826000	-2.783081000	-1.904180000
1	2.196045000	-1.118142000	-2.398623000
1	1.551764000	1.531911000	-2.157962000
1	0.754834000	2.672353000	-1.077759000
1	3.697374000	1.769359000	-0.772333000
1	3.999095000	4.049065000	0.042566000
1	2.194022000	4.386381000	-0.154902000
8	-0.316623000	-1.977606000	1.335318000
1	-0.390511000	-2.523766000	0.521292000
1	-0.675277000	-2.539850000	2.033524000
8	-0.673778000	-3.248219000	-1.092977000
1	-1.445405000	-3.802241000	-1.269707000
1	-0.705882000	-2.535940000	-1.748304000
1	-2.247472000	1.667791000	1.805909000
1	-1.461917000	0.083758000	1.911415000
6	-2.004508000	2.141276000	-0.872907000
6	-3.380455000	2.768733000	-0.614837000
1	-1.907697000	1.945764000 32	-1.946499000

1	-1.242556000	2.890167000	-0.628455000	
1	-3.426431000	3.743969000	-1.107602000	
1	-4.190123000	2.164212000	-1.029637000	
1	-3.580411000	2.936267000	0.448210000	
6	-2.763297000	-0.285686000	-0.338251000	
6	-4.009411000	-0.250939000	0.579218000	
1	-2.291208000	-1.258872000	-0.194071000	
1	-3.086234000	-0.244847000	-1.381773000	
1	-3.728543000	-0.279688000	1.637049000	
1	-4.615246000	0.646672000	0.435171000	
6	-4.844362000	-1.425714000	0.311582000	
7	-5.465707000	-2.377703000	0.078797000	

1k-TS-1'

6	-1.898328000	0.805263000	0.174696000
6	-1.554223000	1.260995000	1.606890000
6	-0.203442000	2.036725000	1.725257000
6	0.847385000	1.166669000	1.160608000
6	0.814931000	0.610616000	-0.213346000
6	-0.718520000	-0.041785000	-0.469587000
7	1.790420000	0.578651000	1.872714000
6	2.497762000	-0.395775000	1.117384000
6	1.914532000	-0.426771000 33	-0.157004000

6	3.563563000	-1.198889000	1.504586000	
6	4.055199000	-2.079762000	0.538703000	
6	3.492977000	-2.133385000	-0.744443000	
6	2.424765000	-1.306689000	-1.108811000	
6	1.101034000	1.648306000	-1.353402000	
6	2.464075000	2.283845000	-1.273750000	
6	2.663312000	3.593958000	-1.124925000	
8	-0.878417000	-0.440444000	-1.658369000	
1	0.002192000	2.293442000	2.768589000	
1	-0.255005000	2.971202000	1.157663000	
1	1.960456000	0.771037000	2.854818000	
1	3.996913000	-1.148238000	2.498085000	
1	4.886163000	-2.730871000	0.787594000	
1	3.896830000	-2.830594000	-1.470939000	
1	2.000430000	-1.357344000	-2.105171000	
1	0.972155000	1.077476000	-2.280123000	
1	0.341835000	2.427013000	-1.361484000	
1	3.322257000	1.621468000	-1.369303000	
1	3.662145000	4.017647000	-1.100184000	
1	1.837213000	4.297448000	-1.047296000	
8	-0.645945000	-1.399623000	0.544932000	
1	-0.571981000	-2.383254000	-0.375029000	
1	0.193935000	-1.436707000	1.025247000	
8	-0.596331000	-2.900116000 34	-1.359989000	

1	-1.445693000	-3.403282000	-1.349764000	
1	-0.752254000	-2.016142000	-1.847664000	
1	-2.339068000	1.920917000	1.987613000	
1	-1.510223000	0.398277000	2.278369000	
6	-2.153963000	2.046715000	-0.753812000	
6	-3.430367000	2.869504000	-0.512568000	
1	-2.142079000	1.689592000	-1.787472000	
1	-1.316770000	2.741251000	-0.662722000	
1	-3.377331000	3.788186000	-1.103764000	
1	-4.338782000	2.347703000	-0.821255000	
1	-3.551431000	3.170570000	0.533947000	
6	-3.242310000	0.009381000	0.157556000	
6	-3.470618000	-1.268845000	1.017339000	
1	-3.470437000	-0.222457000	-0.886534000	
1	-4.006693000	0.714180000	0.486221000	
1	-2.835348000	-1.304865000	1.904959000	
1	-4.509496000	-1.278563000	1.365491000	
6	-3.265058000	-2.502005000	0.261807000	
7	-3.090509000	-3.447514000	-0.388646000	

1k-Int-2'

6	-1.967500000	0.712095000	0.155347000
6	-1.702019000	1.239380000 35	1.585181000

6	-0.370544000	2.043932000	1.728680000	
6	0.718524000	1.211055000	1.180172000	
6	0.723885000	0.670582000	-0.213347000	
6	-0.719345000	-0.135803000	-0.319513000	
7	1.672770000	0.658035000	1.889174000	
6	2.443409000	-0.263245000	1.129457000	
6	1.894020000	-0.294346000	-0.156132000	
6	3.549696000	-1.001574000	1.523441000	
6	4.128719000	-1.816137000	0.546350000	
6	3.610079000	-1.860596000	-0.753522000	
6	2.493213000	-1.098313000	-1.119787000	
6	0.953430000	1.734728000	-1.333866000	
6	2.258979000	2.478504000	-1.206531000	
6	2.347546000	3.799520000	-1.047571000	
8	-0.906267000	-0.542261000	-1.628476000	
1	-0.191489000	2.306221000	2.775470000	
1	-0.430292000	2.976793000	1.158131000	
1	1.810663000	0.829593000	2.880443000	
1	3.952380000	-0.951622000	2.529748000	
1	4.997570000	-2.414209000	0.799019000	
1	4.090432000	-2.491957000	-1.494009000	
1	2.110976000	-1.134834000	-2.134356000	
1	0.904392000	1.177116000	-2.275884000	
1	0.137886000	2.452410000 36	-1.359748000	
1	3.170684000	1.887526000	-1.269040000	
---	--------------	--------------------	--------------	--
1	3.307945000	4.300656000	-0.981462000	
1	1.466172000	4.435506000	-1.002827000	
8	-0.610797000	-1.197839000	0.596506000	
1	-0.913099000	-3.616898000	-1.114824000	
1	-0.149122000	-1.948293000	0.170485000	
8	-0.076692000	-3.135974000	-1.302472000	
1	0.551008000	-3.770762000	-1.668822000	
1	-0.561267000	-1.454126000	-1.751900000	
6	-2.267120000	1.899690000	-0.819871000	
6	-3.639734000	2.583856000	-0.702373000	
1	-2.136155000	1.540713000	-1.844701000	
1	-1.521959000	2.683103000	-0.668791000	
1	-3.639936000	3.487457000	-1.318546000	
1	-4.459626000	1.956419000	-1.058256000	
1	-3.871538000	2.896220000	0.321938000	
6	-3.253991000	-0.179229000	0.141161000	
6	-3.380247000	-1.476015000	0.987141000	
1	-3.478447000	-0.422186000	-0.901057000	
1	-4.064863000	0.464519000	0.486190000	
1	-2.859838000	-1.407485000	1.945633000	
1	-4.441369000	-1.634321000	1.213090000	
6	-2.915813000	-2.682065000	0.303672000	
7	-2.569787000	-3.635292000 37	-0.260670000	

1	-2.517003000	1.898024000	1.898083000
1	-1.666057000	0.407699000	2.293455000

1k-TS-2'

6	-2.007726000	0.635378000	0.184403000
6	-1.765805000	1.092241000	1.639286000
6	-0.469211000	1.939438000	1.829980000
6	0.671738000	1.170041000	1.273448000
6	0.904371000	0.885635000	-0.125193000
6	-0.770578000	-0.173161000	-0.325021000
7	1.423016000	0.363230000	2.025402000
6	2.264898000	-0.442291000	1.235074000
6	1.992531000	-0.121732000	-0.104445000
6	3.217295000	-1.377444000	1.624754000
6	3.925581000	-2.008837000	0.601612000
6	3.683104000	-1.701639000	-0.746703000
6	2.719920000	-0.758249000	-1.113018000
6	0.980170000	1.966711000	-1.207879000
6	2.268298000	2.755433000	-1.147156000
6	2.322494000	4.079058000	-1.004576000
8	-0.823009000	-0.417750000	-1.649792000
1	-0.321865000	2.149535000	2.893544000
1	-0.557459000	2.900734000 38	1.317761000

1	1.335164000	0.281458000	3.030940000
1	3.409389000	-1.605353000	2.668137000
1	4.684136000	-2.741875000	0.855041000
1	4.267237000	-2.196503000	-1.516098000
1	2.553340000	-0.520162000	-2.159069000
1	0.881236000	1.460160000	-2.176078000
1	0.145633000	2.661756000	-1.143990000
1	3.192452000	2.187612000	-1.236010000
1	3.269167000	4.609200000	-0.981720000
1	1.424583000	4.687236000	-0.921293000
8	-0.543253000	-1.242221000	0.483353000
1	-0.634854000	-3.511434000	-1.438217000
1	-0.066490000	-1.948990000	-0.011527000
8	0.158046000	-2.934650000	-1.497583000
1	0.911072000	-3.468785000	-1.779797000
1	-0.369538000	-1.267203000	-1.865035000
6	-2.322363000	1.856328000	-0.738833000
6	-3.696527000	2.523426000	-0.564828000
1	-2.207878000	1.540639000	-1.779403000
1	-1.573890000	2.630120000	-0.569123000
1	-3.720343000	3.443414000	-1.155340000
1	-4.521261000	1.899324000	-0.915990000
1	-3.902270000	2.805625000	0.473312000
6	-3.273052000	-0.294175000	0.106101000

6	-3.329588000	-1.676195000	0.811204000
1	-3.518852000	-0.436396000	-0.950160000
1	-4.091114000	0.286812000	0.535750000
1	-2.820154000	-1.675841000	1.778504000
1	-4.381051000	-1.916023000	1.007125000
6	-2.787509000	-2.774397000	0.010020000
7	-2.361535000	-3.630089000	-0.647986000
1	-2.614240000	1.693005000	1.977982000
1	-1.705022000	0.223494000	2.301637000

1k-Int-3'

6	-2.179282000	0.706276000	0.111287000	
6	-1.763089000	1.089068000	1.563938000	
6	-0.391581000	1.808929000	1.724370000	
6	0.767672000	0.975618000	1.266361000	
6	1.497195000	1.008067000	0.087726000	
6	-1.229441000	-0.331700000	-0.436879000	
7	1.124040000	-0.154695000	1.986252000	
6	2.018781000	-0.911917000	1.263790000	
6	2.279836000	-0.204943000	0.057395000	
6	2.576412000	-2.166617000	1.535228000	
6	3.385396000	-2.733664000	0.556648000	
6	3.647027000	-2.061269000	-0.660101000	
6	3.116999000	-0.795326000	-0.908610000	

6	1.586629000	2.114899000	-0.933835000
6	2.892211000	2.878332000	-0.844555000
6	2.980767000	4.196471000	-0.679974000
8	-0.941243000	-0.331307000	-1.697599000
1	-0.280784000	2.067911000	2.784462000
1	-0.395515000	2.757250000	1.182213000
1	0.719808000	-0.424454000	2.869452000
1	2.378773000	-2.685919000	2.467978000
1	3.831898000	-3.707066000	0.732464000
1	4.305555000	-2.521458000	-1.390409000
1	3.346654000	-0.277923000	-1.835636000
1	1.482466000	1.686600000	-1.942219000
1	0.763049000	2.825013000	-0.815489000
1	3.801020000	2.283474000	-0.921003000
1	3.940964000	4.699602000	-0.629374000
1	2.097785000	4.825812000	-0.595091000
8	-0.864977000	-1.295784000	0.335462000
1	0.173644000	-3.461853000	-1.775579000
1	-0.313416000	-1.978700000	-0.161367000
8	0.468250000	-2.593325000	-1.461502000
1	1.445475000	-2.588675000	-1.382842000
1	-0.385656000	-1.121790000	-1.939243000
6	-2.225100000	1.935137000	-0.843648000
6	-3.144235000	3.079415000 41	-0.399920000

1	-2.536292000	1.587441000	-1.833260000
1	-1.211708000	2.319949000	-0.972508000
1	-3.110737000	3.875554000	-1.148107000
1	-4.189029000	2.769596000	-0.309528000
1	-2.837220000	3.519292000	0.553268000
6	-3.621059000	0.047756000	0.108078000
6	-3.820919000	-1.406367000	0.605332000
1	-4.017958000	0.113279000	-0.908985000
1	-4.245804000	0.690131000	0.733248000
1	-3.363322000	-1.577298000	1.585364000
1	-4.895789000	-1.577466000	0.728488000
6	-3.303900000	-2.413292000	-0.329913000
7	-2.824784000	-3.153599000	-1.085302000
1	-2.543523000	1.743794000	1.961220000
1	-1.773263000	0.190047000	2.188634000

9. References

[1] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

[2] Becke, A. D. J. Chem. Phys. 1993, 98, 1372.

10. NMR Spectra of New Compounds

¹H NMR (300 MHz, CDCI₃)

\sim 204. \sim 204. \sim 204. \sim 204. \sim 204. \sim 204. \sim 204. \sim 204. \sim 2	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\sum_{21.6}^{21.7}$
---	--	----------------------

¹³C NMR (75 MHz, CDCl₃)

	- 1	'		· /	, 1	- 1	1	·]	'					1	'			. 1	'	· 1	1			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
	fl (ppm)																							

¹H NMR (300 MHz, CDCl₃)

ထံထံထံထံထံ

$ \begin{array}{c} \begin{array}{c} & 204.32 \\ \hline & 204.08 \\ \hline & 204.08 \\ \hline & 146.96 \\ \hline & 141.92 \\ \hline & 131.32 \\ \hline & 126.59 \\ \hline & 119.98 \\ \hline & 119.98 \\ \hline \end{array} $		A4. 77 44. 46 38. 60 36. 14 35. 05 34. 46
--	--	--

 13 C NMR (75 MHz, CDCl₃)

	1 1	1					·	·	' 1	1				1		1		1	· · · · ·		('	- T	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											t	f1 (ppm))											

Ш

ji.

 ~ 37.84 ~ 36.75

¹³C NMR (75 MHz, CDCկ)

		·			·	· 1	- 1		· 1	· 1			, , , ,		, 1 ,						'		1	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											t	fl (ppm))											

¹H NMR (300 MHz, CDCl₃)

			\sim 131.94 \sim 130.76 - 123.95 \sim 119.74 \sim 119.43					→ 37.85 → 36.76	— 16. 85
--	--	--	--	--	--	--	--	--------------------	----------

¹³C NMR (75 MHz, CDCl₃)

	· · · ·		·					·									·			· · · ·		· – I – ·		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												fl (ppm)											

¹H NMR (300 MHz, CDCl₃)

 $< \frac{8.25}{8.24}$ 7. 82 7. 79 7. 78 7. 43 $\begin{array}{c} & \overbrace{5.24}{5.52} \\ & \overbrace{5.29}{5.29} \\ & \overbrace{5.20}{5.20} \\ & \overbrace{5.20}{5.16} \end{array}$ -2.80---2.33 ---2.21 $\int \int \int$

	-148.12 136.43 132.71 132.71 131.27 130.255 ~ 122.01 ~ 120.28	72. 54	~37. 79 ~36. 65	—16.83
--	--	--------	--------------------	--------

¹³C NMR (75 MHz, CDCI₃)

	· · ·			1	1	'		, I	' '			'	· · · ·	I			1	1	·	, I	, , , ,	- I I		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											f	1 (ppm	1)											

¹H NMR (300 MHz, CDCI₃)

¹³C NMR (75 MHz, CDCI₃)

																								
0.00	000	910	200	100	100	170	160	150	140	. I . 190	190	110	100			70	60	FO	40	20	20	10	0	10
230	220	210	200	190	160	170	100	100	140	130	120	110	100	90	80	70	00	50	40	30	20	10	0	-10
											t	ťl (ppm))											

¹H NMR (300 MHz, CDCI₃)

		$\begin{array}{c} 132.51\\ \hline 132.44\\ 132.98\\ \hline 130.98\\ \hline 128.59\\ \hline 128.67\\ \hline 118.94\end{array}$			
--	--	---	--	--	--

230 220 210 200 190 180 1	70 160 150 140 130 120 110 f1 (ppn	100 90 80 70 60 n)	50 40 30	20 10 0 -10

¹H NMR (300 MHz, CDC_{β})

68 50 10 73

0 110 100 f1 (ppm) -10

¹H NMR (300 MHz, CDCI₃)

	\sim 148. 15 \sim 147. 09		→ 133. 00 → 129. 65 → 127. 12	$< 120.95 \\ 120.84$	$\overbrace{}^{77.43}_{77.06}$		16_73
--	----------------------------------	--	-------------------------------------	----------------------	--------------------------------	--	-------

 13 C NMR (75 MHz, CDCI₃)

		_		·	· 1	· 1	'	· 1		·	· 1	· · ·					·		- 1		· · ·		- 1	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												fl (ppm))											

Ш

¹H NMR (300 MHz, CDCl₃)

-61.39

¹³C NMR (75 MHz, CDC l_3)

	·	·	·		1	· 1		·	· 1	1	'	'	' '	· 1	·		' 1	· 1		· · · ·		, , , ,		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											1	fl (ppm)											

¹H NMR (300 MHz, CDCl₃)

— 169. 13

-34.35-28.11 ~ 21.66 ~ 21.08

 13 C NMR (75 MHz, CDCI₃)

				·	'	· 1							'			·	· 1	· 1	·					
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												fl (ppm)											

	$\begin{array}{c c} 134, 49\\ 133, 38\\ 133, 38\\ 133, 38\\ 133, 38\\ 133, 36\\ 1116, 23\\ 1114, 20\\ 111$		29.64 28.40 28.10	
--	--	--	-------------------------	--

¹³C NMR (75 MHz, CDCl₃)

								· [· 1		· ·								·			
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
	f1 (ppm)																							

¹H NMR (300 MHz, CDCl₃)

 13 C NMR (75 MHz, CDCI₃)

1	' 1	'			'	'		' '				'					'		'	'	· 1	· · · ·		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
f1 (ppm)																								

$ 50 \\ 96 \\ 15 $	$ \begin{array}{c} 15 \\ 93 \\ 90 \\ 90 \\ \end{array} $	$\begin{array}{c} 71\\ 68\\ 98\\ 98\end{array}$
135. 134.	[33.	117. 116. 115.
	ラフフ	

 $\begin{array}{c} -34.47\\ -29.67\\ -28.22\\ -28.22\\ -21.75\\ -21.17\end{array}$

 ^{13}C NMR (75 MHz, CDCI₃)

· · · · · · · · · · · · · · · · · · ·				
230 220 210 200 190 180	170 160 150 14	0 130 120 110 100 90 f1 (ppm)	0 80 70 60 50 4	0 30 20 10 0 -10

¹H NMR (300 MHz, CDCI₃)

169. 157. 111. 111. 111. 112. 111. 112. 111. 112. 111. 112. 112. 112. 112. 112. 112. 112. 112. 112. 112. 112. 112. 123. 125. 127. 127. 127. 127. 127. 127. 127. 127	.4	0 1-1
3 D D I I I I I I I I I I I I I I I I I	- ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	x iii
	· · · · · · · · · · · · · · · · · · ·	

¹³C NMR (75 MHz, CDCI₃)

1 1	1 1		'	'	'				'	'	·	, , , ,		1	1		'	· 1	·				- I	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												fl (ppm))											

¹H NMR (300 MHz, CDCl₃)

¹³C NMR (75 MHz, CDC**կ**)

		· 1	· 1		' 1							· 1			· 1	· 1	'					·		
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												f1 (ppm))											

13C NMR (75 MHz, CDCI3)

$\begin{array}{c} 03 \\ 12 \\ 90 \end{array}$	47	37 78 66 30 93	
37. 36. 34.	27.	$ \begin{array}{c} 22.\\ 14.\\ 13.\\ 09.\\ \end{array} $	
377	ī		
111	1	1 1 1 1 1	

 ^{13}C NMR (75 MHz, CDCI₃)

standa a substantia da Maria addustatik stara in substantika st				
230 220 210 200 190	180 170 160 150 14	40 130 120 110 100 90 f1 (ppm)	80 70 60 50 40	30 20 10 0 -10

22.1022.0722.0522.03-1.73

 $\overbrace{}^{4.79}$

¹H NMR (300 MHz, CDCl₃)

-169 -1116 -116 -1116 -1166 -16	21	60	45 43 43	98 56	$24 \\ 17 \\ 05 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33 \\ 33$
	39.	43.	34.	N N	18. 11.
	1	- - -	$\frac{1}{\sqrt{1}}$	$\frac{1}{\sqrt{2}}$	1177

¹³C NMR (75 MHz, CDCI₃)

¹H NMR (300 MHz, CDCl₃)

-28.42

-20.62

 ^{13}C NMR (75 MHz, CDCI₃)

	1 1										·				'									
230	220	210	200	190	180	170	160	150	140	130	120	110 f1 (ppm	100	90	80	70	60	50	40	30	20	10	0	-10
												rı (bbm)											

¹H NMR (300 MHz, CDCl₃)

47 26 96	61	$\begin{array}{c} 07 \\ 111 \\ 24 \\ 24 \\ 24 \end{array}$
37. 35. 34.	28.	$\begin{array}{c} 21. \\ 119. \\ 10. \\ 09. \end{array}$
$\overline{\langle \nabla \rangle}$	ī	<u> </u>
	·	

¹³C NMR (75 MHz, CDC_b)

-47.82-35.40-32.61-28.0227.81

¹³C NMR (75 MHz, CDCl₃)

				· 1	·		·	·		· 1			·			· 1	·			· 1	· 1	'		
230	220	210	200	190	180	170	160	150	140	130	120	110 f1 (ppm	100)	90	80	70	60	50	40	30	20	10	0	-10

--45.90 --45.91 --28.58 --28.58 --28.14 --27.76

→27.76 — 17.72 — 12.70 — 8.04

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCI₃)

59.41

 $\stackrel{}{\infty}\stackrel{}{\infty}\stackrel{}{\infty}\stackrel{}{\infty}\stackrel{}{\infty}\stackrel{}{\infty}\stackrel{}{\infty}\stackrel{}{\ldots}\stackrel{}{$

7

47

. 0 0

		$ \begin{array}{c} ^{125.02} \\ ^{123.42} \\ ^{121.16} \\ ^{121.16} \\ 120.40 \\ ^{111.88} \\ ^{111.19} \\ \end{array} $			\sim 31. 14 \sim 30. 23 \sim 27. 26 -19. 91 -12. 56 -8. 39
--	--	--	--	--	---

¹³C NMR (100 MHz, CDCI₃)

¹H NMR (400 MHz, CDCI₃)

¹³C NMR (100 MHz, CDCI₃)

¹H NMR (300 MHz, CDCI₃)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
--	--	--

 13 C NMR (75 MHz, CDCI₃)

230 2	220	210	200	190	180	170	160	150	140	130	120	110 f1 (ppm)	100	90	80	70	60	50	40	30	20	10	0	-10

¹H NMR (300 MHz, CDC₃)

— 197. 79		\sim 136.08 134.53 \sim 134.53 124.68 \sim 117.49 \sim 116.50 \sim 107.04	-39.10 -34.27 -21.85 -21.01
-----------	--	---	--------------------------------------

¹³C NMR (75 MHz, CDCl₃)

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												tl (ppm,)											

¹H NMR (300 MHz, CDCI₃)

— 169. 37	$ \begin{array}{c} 134.98 \\ 134.33.21 \\ 130.21 \\ 123.72 \\ 113.12 \\ 1$			 $\sim^{21.63}_{20.93}$
I		I	1	١٢

¹³C NMR (75 MHz, CDC_b)

					· · ·				1	-	1 1					1								- T
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	- 30	20	10	0	-10
											f1	(nnm)												
											11	(ppm)												

¹H NMR (400 MHz, CDCl₃)

