Thermal Decarboxylative Cloke-Wilson Rearrangement of Dispirocyclopropanes Derived from *para*-Quinone Methides and Bromo-Meldrum's Acids: An Approach to Spirobutyrolactone *para*-Dienones

Tong Li,[†] Dandan Yan,[‡] Chaoxing Cui,[†] Xixi Song,^{*,†} Junbiao Chang^{*,†}

[†]College of Chemistry, Zhengzhou University No.100 Science Avenue, Zhengzhou 450001, China
[‡]Shanghai Gengcai New Material Technology Co. Ltd
No. 1288 Zhongchun Road, Minhang District, Shanghai 201108, China
*Email: xixisong@zzu.edu.cn; changjunbiao@zzu.edu.cn

Table of Contents

General Information	<i>SI-</i> 3
General Procedure for the Synthesis of Dispirocyclopropanes 3	<i>SI</i> -4
Spectroscopic Data of Dispirocyclopropanes 3	<i>SI-5</i>
General Procedure for the Synthesis of Spirobutyrolactones 4	<i>SI</i> -13
Spectroscopic Data of Spirobutyrolactones 4	<i>SI</i> -14
References	<i>SI</i> -21
NMR Spectra of Dispirocyclopropanes 3	<i>SI</i> -22
NMR Spectra of Spirobutyrolactones 4	<i>SI</i> -42

General Information

Reagents and solvents were purchased from commercially sources and used without further purification. The *para*-quinone methides and bromo-Meldrum's acids were prepared according to the known literatures.^{1,2} TLC was performed on dry silica gel plates (10-40 μ m, from Yantai Dexin Biotechnology Co. Ltd.) eluting with petroleum ether (bp 60-90 °C) and ethyl acetate. Flash column chromatography was performed over silica gel (200-300 mesh, from Henan Sanlian Science and Trade Co. Ltd.). Melting points were determined using a XT4A hot-stage apparatus. IR spectra were obtained using an IFS25 FT-IR spectrometer. NMR spectra (¹H and ¹³C) were recorded on a Bruker AV400 spectrometer (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR) using CDCl₃ as the solvent (referenced internally to Me₄Si); *J* values were given in Hertz. High-resolution mass spectra were recorded on a Micromass Q-TOF mass spectrometer. X-ray crystal structure analysis was performed using a MM007HF Saturn 724+ spectrometer.

General Procedure for the Synthesis of Dispirocyclopropanes 3

The solution of 0.1 mmol of *para*-quinone methide **1** (1 equiv.), 0.3 mmol of bromo-Meldrum's acid **2** (3 equiv.), and 0.2 mmol of DBU (2 equiv.) in 0.5 mL of DCM (0.2 *M*) was stirred at 15 °C. The reaction process was monitored by TLC analysis. After the reaction was finished, the reaction mixture was quenched with saturated ammonium chloride (2 mL). The mixture was then extracted with diethyl ether (3 × 5 mL). The combined organic phase was washed with brine (10 mL), dried using anhydrous Na₂SO₄, and then filtered. The solvent was removed under vacuum, and the crude was purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 20/1) to give the desired product **3**.

Spectroscopic Data of Dispirocyclopropanes 3

9,11-Di-tert-butyl-3,3-dimethyl-13-phenyl-2,4-dioxadispiro[5.0.5⁷.1⁶]trideca-8,11-die ne-1,5,10-trione (**3aa**). Yellow solid; yield: 41.9 mg (96%); mp 85-87 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.36-7.35 (m, 3H), δ = 7.17-7.16 (m, 2H), δ = 6.69 (d, J = 2.3 Hz, 1H), δ = 6.60 (d, J = 2.3 Hz, 1H), δ = 4.63 (s, 1H), δ = 1.74 (s, 3H), δ = 1.33 (s, 3H), δ = 1.26 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.6, 164.5, 161.8, 153.8, 153.3, 134.5, 131.8, 130.6, 129.3, 128.0, 104.9, 46.2, 43.9, 42.3, 36.0, 35.7, 29.2, 29.2, 27.5, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₂O₅Na 459.2142; Found 459.2143.

9,11-Di-tert-butyl-3,3-dimethyl-13-(o-tolyl)-2,4-dioxadispiro[$5.0.5^{7}.1^{6}$]trideca-8,11-di ene-1,5,10-trione (**3ba**). Yellow solid; yield: 40.5 mg (90%); mp 93-95 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.30-7.26 (m, 1H), δ = 7.23-7.17 (m, 2H), δ = 7.05 (d, *J* = 7.6 Hz, 1H), δ = 6.79 (d, *J* = 2.8 Hz, 1H), δ = 6.60 (s, *J* = 2.8Hz, 1H), δ = 4.40 (s, 1H), δ = 2.19 (s, 3H), δ = 1.74 (s, 3H), δ = 1.33 (s, 3H), δ = 1.27 (s, 9H), δ = 1.21 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.6, 164.4, 162.0, 154.0, 153.0, 137.8, 134.7, 132.2, 130.3, 129.6, 128.7, 128.3, 125.7, 104.9, 46.2, 43.3, 36.0, 35.8, 29.3, 29.3, 27.6, 26.9, 26.8, 19.7 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₅Na 473.2298; Found 473.2296.

9,11-Di-tert-butyl-3,3-dimethyl-13-phenyl-2,4-dioxadispiro[5.0.5⁷.1⁶]trideca-8,11-die ne-1,5,10-trione (**3ca**). Yellow solid; yield: 43.2 mg (96%); mp 89-91 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.23 (d, J = 8.0 Hz, 1H), δ = 7.14 (d, J = 7.6 Hz,

1H), $\delta = 6.96$ (d, J = 7.4 Hz, 2H), $\delta = 6.71$ (d, J = 2.8 Hz, 1H), $\delta = 6.59$ (s, J = 2.8 Hz, 1H), $\delta = 4.60$ (s, 1H), $\delta = 2.34$ (s, 3H), $\delta = 1.74$ (s, 3H), $\delta = 1.33$ (s, 1H), $\delta = 1.26$ (s, 9H), $\delta = 1.19$ (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): $\delta = 184.7$, 164.6, 161.9, 153.8, 153.2, 138.0, 134.6, 132.0, 130.6, 130.1, 128.8, 128.2, 126.4, 104.9, 46.3, 43.9, 42.3, 36.0, 35.8, 29.3, 29.3, 27.6, 26.9, 21.4 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₅Na 473.2298; Found 473.2299.

9,11-Di-tert-butyl-3,3-dimethyl-13-(p-tolyl)-2,4-dioxadispiro[$5.0.5^7.1^6$]trideca-8,11-di ene-1,5,10-trione (**3da**). Yellow solid; yield: 39.6 mg (88%); mp 87-89 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.16 (d, *J* = 7.9 Hz, 2H), δ = 7.04 (d, *J* = 7.8 Hz, 2H), δ = 6.69 (d, *J* = 2.8 Hz, 1H), δ = 6.59 (d, *J* = 2.8 Hz, 1H), δ = 4.59 (s, 1H), δ = 2.37 (s, 3H), δ = 1.74 (s, 3H), δ = 1.32 (s, 3H), δ = 1.26 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.7, 164.6, 161.9, 153.8, 153.3, 137.7, 134.7, 132.0, 129.3, 129.2, 129.1, 127.6, 127.3, 104.9, 46.4, 43.8, 42.4, 36.0, 35.8, 29.3, 29.3, 28.7, 27.6, 26.9, 21.3 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₅Na 473.2298; Found 473.2297.

9,11-Di-tert-butyl-13-(2-methoxyphenyl)-3,3-dimethyl-2,4-dioxadispiro[5.0.5⁷.1⁶]tride ca-8,11-diene-1,5,10-trione (**3ea**). Yellow solid; yield: 44.7 mg (96%); mp 106-108 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.35 (m, 1H), δ = 7.04 (d, *J* = 8.5 Hz, 1H), δ = 6.96-6.89 (m, 2H), δ = 6.76 (d, *J* = 2.8 Hz, 1H), δ = 6.66 (d, *J* = 2.8 Hz, 1H), δ = 4.31 (s, 1H), δ = 3.78 (s, 3H), δ = 1.74 (s, 3H), δ = 1.33 (s, 3H), δ = 1.26 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.9, 164.7, 162.2, 158.2, 153.4, 152.8, 135.0, 132.4, 129.5, 129.3, 120.1, 119.7, 110.3, 104.5, 55.6, 45.9, 42.6, 40.6, 35.9, 35.7, 29.3, 27.6, 26.9, 26.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₆Na 489.2248; Found 489.2249.

9,11-Di-tert-butyl-13-(4-methoxyphenyl)-3,3-dimethyl-2,4-dioxadispiro[$5.0.5^{7}.1^{6}$]tride ca-8,11-diene-1,5,10-trione (**3fa**). Yellow solid; yield: 41.5 mg (89%); mp 86-88 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.07 (d, *J* = 8.3 Hz, 2H), δ = 6.88(d, *J* = 8.7 Hz, 2H), δ = 6.70 (d, *J* = 2.8 Hz, 1H), δ = 6.59 (d, *J* = 2.8 Hz, 1H), δ = 4.58 (s, 1H), δ = 3.82 (s, 3H), δ = 1.74 (s, 3H), δ = 1.32 (s, 3H), δ = 1.26 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.7, 164.6, 161.9, 159.2, 153.8, 153.3, 134.7, 131.9, 130.5, 128.7, 122.5, 114.1, 113.7, 104.8, 55.2, 46.5, 43.5, 42.4, 36.0, 35.7, 29.3, 29.2, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₃₄O₆Na 489.2248; Found 489.2247.

9,11-Di-tert-butyl-13-(2-chlorophenyl)-3,3-dimethyl-2,4-dioxadispiro[$5.0.5^{7}.1^{6}$]tridec a-8,11-diene-1,5,10-trione (**3ga**). Yellow solid; yield: 41.4 mg (88%); mp 102-104 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.44 (d, *J* = 7.8 Hz, 2H), δ = 7.29 (m, 2H), δ = 7.16 (d, *J* = 7.4 Hz, 1H), δ = 6.74 (s, 1H), δ = 6.65 (s, 1H), δ = 4.40 (s, 1H), δ = 1.75 (s, 3H), δ = 1.34 (d, *J* = 0.8 Hz 3H), δ = 1.26 (d, *J* = 1.8 Hz 9H), δ = 1.20 (d, *J* = 1.8 Hz 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.6, 164.2, 162.1, 153.9, 153.3, 135.6, 134.4, 131.4, 130.0, 129.6, 126.5, 104.9, 45.9, 42.8, 42.6, 36.1, 35.8, 29.3, 28.8, 27.5, 27.0 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₁ClO₅Na 493.1752; Found 493.1753.

9,11-Di-tert-butyl-13-(3-chlorophenyl)-3,3-dimethyl-2,4-dioxadispiro[5.0.5⁷.1⁶]tridec a-8,11-diene-1,5,10-trione (**3ha**). Yellow solid; yield: 42.3 mg (90%); mp 94-96 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.44 (d, *J* = 7.8 Hz, 2H), δ = 7.29 (m, 2H), δ = 7.32-7.27 (m, 2H), δ = 7.16 (s, 1H), δ = 7.08-7.06 (m, 1H), δ = 6.63 (d, *J* = 2.8 Hz, 1H), δ = 6.56 (d, *J* = 2.8 Hz, 1H), δ = 4.56 (s, 1H), δ = 1.75 (s, 3H), δ = 1.33 (s, 3H), δ = 1.26 (s, 9H), δ = 1.20 (s, 9H) ; ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.5, 164.3, 161.8, 154.1, 153.8, 134.2, 134.1, 132.7, 131.2, 129.6, 129.5, 128.3, 127.7, 105.1, 45.9, 42.9, 42.2, 36.1, 35.8, 29.3, 29.3, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₁ClO₅Na 493.1752; Found 493.1754.

9,11-Di-tert-butyl-13-(4-chlorophenyl)-3,3-dimethyl-2,4-dioxadispiro[5.0.5⁷.1⁶]tridec a-8,11-diene-1,5,10-trione (**3ia**). Yellow solid; yield: 44.2 mg (94%); mp 86-89 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.44 (d, *J* = 7.8 Hz, 2H), δ = 7.29 (m, 2H), δ = 7.32-7.27 (m, 2H), δ = 7.16 (s, 1H), δ = 7.08-7.06 (m, 1H), δ = 6.63 (d, *J* = 2.8 Hz, 1H), δ = 6.56 (d, *J* = 2.8 Hz, 1H), δ = 4.56 (s, 1H), δ = 1.75 (s, 3H), δ = 1.33 (s, 3H), δ = 1.26 (s, 9H), δ = 1.20 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.5, 164.3, 161.8, 154.1, 153.8, 134.2, 134.1, 132.7, 131.2, 129.6, 129.5, 128.3, 127.7, 105.1, 45.9, 42.9, 42.2, 36.1, 35.8, 29.3, 29.3, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₁ClO₅Na 493.1752; Found 493.1753.

13-(4-Bromophenyl)-9,11-di-tert-butyl-3,3-dimethyl-2,4-dioxadispiro[5.0.5⁷.1⁶]tridec a-8,11-diene-1,5,10-trione (**3ja**). Yellow solid; yield: 49.9 mg (97%); mp 98-101 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.48 (d, *J* = 8.4 Hz, 2H), δ = 7.04 (d, *J* = 7.8 Hz, 2H), δ = 6.60 (d, *J* = 2.9 Hz, 1H), δ = 6.56 (d, *J* = 2.9 Hz, 1H), δ = 4.52 (s, 1H), δ = 1.74 (s, 3H), δ = 1.32 (s, 3H), δ = 1.25 (s, 9H), δ = 1.18 (s, 9H) ; ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.5, 164.3, 161.8, 154.1, 153.8, 134.2, 134.1, 132.7, 131.2, 129.6, 129.5, 128.3, 127.7, 105.1, 45.9, 42.9, 42.2, 36.1, 35.8, 29.3, 29.3, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₁BrO₅Na 537.1247; Found 537.1248.

9,11-Di-tert-butyl-13-(4-fluorophenyl)-3,3-dimethyl-2,4-dioxadispiro[$5.0.5^{7}.1^{6}$]tridec a-8,11-diene-1,5,10-trione (**3ka**). Yellow solid; yield: 41.8 mg (92%); mp 89-93 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.15-7.12 (m, 2H), δ = 7.07-7.03 (m, 2H), δ = 6.62 (d, *J* = 2.9 Hz, 1H), δ = 6.58 (d, *J* = 2.8 Hz, 1H), δ = 4.57 (s, 1H), δ = 1.75 (s, 3H), δ = 1.33 (s, 3H), δ = 1.26 (s, 9H), δ = 1.18 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.6, 164.4, 161.9, 154.0, 153.7, 134.3, 131.4, 131.1, 131.0, 126.4, 126.4, 115.5, 115.3, 105.0, 46.3, 43.0, 42.2, 36.1, 35.8, 29.3, 29.3, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₁FO₅Na 477.2048; Found 477.2047.

9,11-Di-tert-butyl-13-(4-fluorophenyl)-3,3-dimethyl-2,4-dioxadispiro[5.0.5⁷.1⁶]tridec a-8,11-diene-1,5,10-trione (**3**la). Yellow solid; yield: 32.8 mg (65%); mp 105-107 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.62 (d, *J* = 8.0 Hz, 2H), δ = 7.30-7.27 (m, 2H), δ = 6.59 (s, 2H), δ = 4.60 (s, 1H), δ = 1.76 (s, 3H), δ = 1.33 (s, 3H), δ = 1.27 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.5, 164.2, 161.9, 154.3, 154.1, 134.8, 134.0, 130.9, 129.8, 125.3, 105.2, 46.0, 43.0, 42.2, 36.1, 35.8, 29.3, 28.6, 27.6, 27.0, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₃₁F₃O₅Na 527.2016; Found 527.2015.

9,11-Di-tert-butyl-3,3-dimethyl-13-(4-nitrophenyl)-2,4-dioxadispiro[5.0.5⁷.1⁶]trideca-8,11-diene-1,5,10-trione (**3ma**). Yellow solid; yield: 39.9 mg (83%); mp 106-109 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 8.24 (d, *J* = 8.7 Hz, 2H), δ = 7.36 (d, *J* = 8.1 Hz, 2H), δ = 6.58 (d, *J* = 2.9 Hz, 1H), δ = 6.53 (d, *J* = 2.8 Hz, 1H), δ = 4.61 (s, 1H), δ = 1.77 (s, 3H), δ = 1.34 (s, 3H), δ = 1.27 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR

(100MHz, CDCl₃, 25 °C): δ = 184.3, 164.0, 162.0, 154.5, 154.5, 147.6, 138.2, 133.6, 130.5, 130.3, 128.7, 123.8, 123.6, 105.4, 45.8, 42.5, 42.2, 36.2, 35.9, 29.3, 28.8, 27.5, 27.0, ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₁NO₇Na 504.1993; Found 504.1992..

9,11-Di-tert-butyl-3,3-dimethyl-13-(naphthalen-1-yl)-2,4-dioxadispiro[$5.0.5^7.1^6$]tridec a-8,11-diene-1,5,10-trione (**3na**). Yellow solid; yield: 44.7 mg (92%); mp 108-110 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.91-7.86 (m, 2H), δ = 7.68-7.64 (m, 1H), δ = 7.53-7.49 (m, 2H), δ = 7.44 (m, 1H), δ = 7.30 (d, J = 7.2 Hz, 1H), δ = 6.83 (d, J = 2.8 Hz, 1H), δ = 6.72 (d, J = 2.9 Hz, 1H), δ = 4.81 (s, 1H), δ = 1.75(s, 3H), δ = 1.36 (s, 3H), δ = 1.30 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 186.1, 166.1, 163.0, 155.6, 154.6, 136.1, 134.9, 133.9, 133.8, 130.5, 130.4, 128.8, 128.3, 128.3, 127.5, 126.2, 124.3, 106.4, 47.4, 44.4, 43.7, 37.4, 37.3, 30.7, 30.6, 29.0, 28.3 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₃₄O₅Na 509.2298; Found 509.2297.

9,11-Di-tert-butyl-3,3-dimethyl-13-(naphthalen-2-yl)-2,4-dioxadispiro[5.0.5⁷.1⁶]tridec a-8,11-diene-1,5,10-trione (**3oa**). Yellow solid; yield: 45.7 mg (94%); mp 86-88 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.87-7.83 (m, 2H), δ = 7.77-7.75 (m, 1H), δ = 7.61(s, 1H), δ = 7.51-7.48 (m, 2H), δ = 7.28 (dd, *J* = 8.6, 1.4 Hz, 1H), δ = 6.78 (d, *J* = 2.8 Hz, 1H), δ = 6.65 (d, *J* = 2.8 Hz, 1H), δ = 4.76 (s, 1H), δ = 1.76(s, 3H), δ = 1.35 (s, 3H), δ = 1.29 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.8, 164.6, 161.9, 154.0, 153.5, 134.5, 133.1, 132.9, 131.9, 128.3, 128.3, 128.1, 127.9, 127.7, 127.2, 126.5, 126.4, 105.0, 46.4, 44.0, 42.3, 36.1, 35.8, 29.3, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₃₄O₅Na 509.2298; Found 509.2299.

9,11-Di-tert-butyl-13-(furan-2-yl)-3,3-dimethyl-2,4-dioxadispiro[5.0.5⁷.1⁶]trideca-8,1 1-diene-1,5,10-trione (**3pa**). Yellow solid; yield: 39.6 mg (93%); mp 86-89 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.44 (t, *J* = 1.6 Hz, 1H), δ = 6.97(d, *J* = 2.9 Hz, 1H), δ = 6.54 (d, *J* = 2.8 Hz, 1H), δ = 6.42-6.41 (m, 1H), δ = 6.30 (d, *J* = 3.1 Hz, 1H), δ = 4.38 (s, 1H), δ = 1.73 (s, 3H), δ = 1.33 (s, 3H), δ = 1.24 (s, 9H), δ = 1.23 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.6, 163.9, 161.6, 154.1, 153.7, 144.7, 142.8, 133.7, 131.2, 110.7, 110.2, 105.0, 45.1, 41.9, 36.6, 36.0, 35.8, 29.3, 29.2, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₃₀O₆Na 449.1935; Found 449.1936.

9,11-Di-tert-butyl-3,3-dimethyl-13-(thiophen-2-yl)-2,4-dioxadispiro[5.0.5⁷.1⁶]trideca-8,11-diene-1,5,10-trione (**3qa**). Yellow solid; yield: 41.5 mg (94%); mp 77-79 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.33 (d, *J* = 5.0 Hz, 1H), δ = 7.02-7.00 (m, 1H), δ = 6.96-6.95 (m, 2H), δ = 6.56 (d, *J* = 2.8 Hz, 1H), δ = 4.60 (s, 1H), δ = 1.74 (s, 3H), δ = 1.33 (s, 3H), δ = 1.25 (s, 9H), δ = 1.23 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.6, 164.0, 161.6, 154.0, 153.7, 133.9, 132.6, 131.1, 128.5, 126.7, 126.2, 105.0, 46.3, 42.9, 39.0, 36.1, 35.8, 29.3, 29.2, 27.6, 26.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₃₀O₅SNa 465.1706; Found 465.1705.

9,11-Di-tert-butyl-3,3-dimethyl-13-(thiophen-2-yl)-2,4-dioxadispiro[5.0.5⁷.1⁶]trideca-8,11-diene-1,5,10-trione (**3ra**). Yellow solid; yield: 22.0 mg (61%); mp 106-109 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 6.50 (s, 2H), δ = 2.84 (s, 2H), δ = 1.75 (s, 3H), δ = 1.32 (s, 3H), δ = 1.22 (s, 18H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.5, 164.1, 154.0, 133.7, 105.3, 43.9, 39.5, 35.7, 29.2, 27.6, 26.9, 26.7 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₂₈O₄Na 361.2010; Found 361.2011.

11,13-Di-tert-butyl-15-phenyl-6,17-dioxatrispiro[4.2.0.5⁹.1⁸.2⁵]heptadeca-10,13-dien e-7,12,16-trione (**3ab**). Yellow solid; yield: 43.0 mg (93%); mp 81-84 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.36-7.34 (m, 3H), δ = 7.17-7.15 (m, 2H), δ = 6.63 (d, *J* = 2.9 Hz, 1H), δ = 6.54 (d, *J* = 2.9 Hz, 1H), δ = 4.60 (s, 1H), δ = 2.22-2.19 (m, 2H), δ = 1.81-1.70 (m, 4H), δ = 1.57-1.56 (m, 2H), δ = 1.27 (s, 9H), δ = 1.19 (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): δ = 184.7, 165.1, 162.4, 153.8, 153.3, 134.7, 131.9, 130.6, 129.5, 128.3, 128.0, 114.1, 46.2, 43.6, 42.6, 38.8, 37.9, 36.0, 35.7, 29.3, 29.3, 23.9, 22.3 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₃₆O₅Na 485.2298; Found 485.2297.

2,4-Di-tert-butyl-18-phenyl-9,16-dioxatrispiro[$5.0.2.5^{10}.2^7.1^6$]octadeca-1,4-diene-3,8, 17-trione (**3ac**). Yellow solid; yield: 45.2 mg (95%); mp 110-113 °C; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): $\delta = 7.34$ (d, J = 7.3 Hz, 3H), $\delta = 7.17-7.15$ (m, 2H), $\delta = 6.66$ (d, J = 2.9 Hz, 1H), $\delta = 6.57$ (d, J = 2.8 Hz, 1H), $\delta = 4.62$ (s, 1H), $\delta = 1.98-1.92$ (m, 2H), $\delta = 1.75-1.74$ (d, J = 5.5 Hz, 2H), $\delta = 1.43$ (s, 6H), $\delta = 1.26$ (s, 9H), $\delta = 1.18$ (s, 9H); ¹³C{¹H} NMR (100MHz, CDCl₃, 25 °C): $\delta = 184.8$, 164.6, 161.9, 153.9, 153.4, 134.7, 131.9, 130.8, 129.4, 128.3, 127.9, 105.8, 46.2, 43.8, 42.7, 36.5, 36.0, 35.9, 35.7, 29.3, 29.3, 23.9, 22.6, 21.6 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₃₄O₅Na 499.2455; Found 499.2454.

General Procedure for the Synthesis of Spirobutyrolactones 4

The solution of 0.1 mmol dispirocyclopropane **3** in 1 mL of DMSO (0.1 *M*) was stirred at 90 °C (silicon oil bath) for 4 h. The reaction process was monitored by TLC analysis. The reaction mixture was quenched with distilled water (5 mL). The mixture was then extracted with ethyl acetate (3 × 10 mL). The combined organic phase was washed with brine (3 × 10 mL), dried using anhydrous Na₂SO₄, and then filtered. The solvent was removed under vacuum, and the crude was purified by flash column chromatography (silica gel, petroleum ether/EtOAc = 20/1) to give the desired product **4**.

Spectroscopic Data of Spirobutyrolactones 4

7,9-Di-tert-butyl-4-phenyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dion (**4a**). White solid; yield: 28.5 mg (81%); mp 152.5-153.2 °C; IR (neat): 2958, 1790, 1667, 1646, 1482, 1458, 1193, 881, 693cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.27-7.24 (m, 3H), δ = 7.03-7.00 (m, 2H), δ = 6.66 (d, *J* = 3.1 Hz, 1H), δ = 6.30 (d, *J* = 3.2 Hz, 1H), δ = 3.83 (dd, *J* = 12.4, 8.4 Hz, 1H), δ = 3.27 (dd, *J* = 17.4, 12.4 Hz, 1H), δ = 2.99 (dd, *J* = 17.4, 8.3 Hz, 1H), δ = 1.25 (s, 9H), δ = 0.91 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ =184.9, 174.7, 149.2, 149.0, 137.1, 134.4, 133.6, 128.6, 128.4, 127.5, 83.5, 50.9, 35.0, 34.7, 32.7, 29.3, 28.7 ppm; HRMS (ESI/Q-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₈O₃Na 375.1931; Found 375.1935.

7,9-*Di-tert-butyl-4-(o-tolyl)-1-oxaspiro*[4.5]*deca-6*,9-*diene-2*,8-*dione* (**4b**). Red solid; yield: 33.7 mg (92%); mp 118.9-119.5 °C; IR (neat): 2955, 1765, 1670, 1650, 1483, 1459, 1366, 954cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.23-7.10 (m, 4H), δ = 6.66 (d, *J* = 3.2 Hz, 1H), δ = 6.16 (d, *J* = 3.2 Hz, 1H), δ = 4.07 (dd, *J* = 8.8,7.6 Hz, 1H), δ = 3.17 (dd, *J* = 18.0, 9.0 Hz, 1H), δ = 3.07 (dd, *J* = 18.0, 7.5 Hz, 1H), δ = 2.15 (s, 3H), δ = 1.23 (s, 9H), δ = 0.95 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 185.1, 175.4, 147.7, 147.5, 137.5, 136.4, 136.2, 134.6, 131.1, 128.0, 126.5, 126.4, 83.0, 45.6, 35.1, 34.9, 34.8, 29.1, 28.8, 20.3 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₁O₃ 367.2268; Found 367.2266.

7,9-Di-tert-butyl-4-(m-tolyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4c). Yellow solid; yield: 26.7 mg (73%); mp 110.0-110.7 °C; IR (neat): 2917, 1778, 1670, 1647, 1659, 1484, 1365, 1205, 981cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.27-7.22 (m, 1H), δ = 7.00 (d, J = 6.6 Hz, 1H), δ = 6.89 (t, J = 7.4 Hz, 1H), δ = 6.82 (d, J = 8.2 Hz, 1H), δ = 6.63 (d, J = 3.0 Hz, 1H), δ = 6.28 (d, J = 3.0 Hz, 1H), δ = 4.13 (t, J = 9.0 Hz, 1H), δ = 1.22 (s, 9H), δ = 0.94 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 185.0, 174.8, 149.1, 148.8, 138.2, 137.2, 134.5, 133.5, 129.0, 128.5, 128.4, 124.2, 83.6, 50.7, 35.0, 34.7, 32.5, 29.3, 28.7, 21.3ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₁O₃ 367.2268; Found 367.2269.

7,9-Di-tert-butyl-4-(p-tolyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4d). Yellow solid; yield: 25.6 mg (70%); mp 160.3-160.8 °C; IR (neat): 2920, 1780, 1668, 1644, 1518, 1460, 1364, 1188, 980, 816cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): $\delta = 7.06$ (d, J = 7.9 Hz, 2H), $\delta = 6.91$ (d, J = 8.0 Hz, 2H), $\delta = 6.63$ (d, J = 3.1 Hz, 1H), $\delta = 6.26$ (d, J = 3.1 Hz, 1H), $\delta = 3.77$ (dd, J = 12.3, 8.4 Hz, 1H), $\delta = 3.22$ (dd, J = 17.4, 12.4 Hz, 1H), $\delta = 2.97$ (dd, J = 17.4, 8.3 Hz, 1H), $\delta = 2.27$ (s, 3H), $\delta = 1.25$ (s, 9H), $\delta = 0.92$ (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta = 184.9$, 174.8, 149.1, 148.8, 138.3, 137.2, 134.5, 130.5, 129.2, 127.3, 83.7, 50.5, 35.0, 34.7, 32.7, 29.3, 28.7, 21.0ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₁O₃ 367.2268; Found 367.2270.

7,9-Di-tert-butyl-4-(2-methoxyphenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4e). Yellow solid; yield: 35.1 mg (92%); mp 120.7-121.3 °C; IR (neat): 2955, 1777, 1699, 1643, 1604, 1497, 1461, 1365, 978, 749cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.19-7.13 (m, 1H), δ = 7.05 (d, *J* = 7.4 Hz, 1H), δ = 6.82 (d, *J* = 9.7 Hz, 2H), δ = 6.62 (d, *J* = 3.0 Hz, 1H), δ = 6.24 (d, *J* = 3.0 Hz, 1H), δ = 3.76(dd, *J* = 12.2, 8.4 Hz, 1H), δ = 3.23 (dd, *J* = 17.4, 12.4 Hz, 1H), δ = 2.97 (dd, *J* = 17.4, 8.3 Hz, 1H), δ = 1.26 (s, 9H), δ = 0.91 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 185.5, 175.8, 157.1, 147.6, 147.1, 138.2, 136.0, 129.4, 129.0, 123.9, 120.5, 110.8, 83.2, 55.1, 45.4, 34.8, 34.6, 33.6, 29.3, 28.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₁O₄ 383.2217; Found 383.2215.

7,9-Di-tert-butyl-4-(4-methoxyphenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (**4f**). Yellow solid; yield: 28.3 mg (74%); mp 150.1-150.7 °C; IR (neat): 2959, 1779, 1667, 1640, 1515, 1453, 1250, 981, 829cm⁻¹;¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 6.93 (d, J = 8.7 Hz, 2H), δ = 6.78 (d, J = 8.7 Hz, 2H), δ = 6.61 (d, J = 3.1 Hz, 1H), δ = 6.25 (d, J = 3.2 Hz, 1H), δ = 3.77-3.72 (m, 4H), δ = 3.17 (dd, J = 17.4, 12.3 Hz, 1H), δ = 2.98 (dd, J=17.4, 8.4 Hz, 1H), δ = 1.25 (s, 9H), δ = 0.94(s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ =184.8, 174.2, 149.4, 149.3, 136.9, 134.3, 134.0, 132.2, 128.8, 128.7, 83.3, 50.3, 35.1, 34.8, 32.7, 29.3, 28.8ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₃₁O₄ 383.2217; Found 383.2214.

7,9-Di-tert-butyl-4-(2-chlorophenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4g). Yellow solid; yield: 32.4 mg (84%); mp 118.3-119.0 °C; IR (neat): 2965, 1773, 1671, 1652, 1596, 1481, 1363, 948, 755cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): $\delta = 7.34$ -7.20 (m, 4H), $\delta = 6.66$ (d, J = 3.2 Hz, 1H), $\delta = 6.18$ (d, J = 3.2 Hz, 1H), $\delta = 4.45$ (t, J = 8.8 Hz, 1H), $\delta = 3.19$ -3.06 (m, 2H), $\delta = 1.22$ (s, 9H), $\delta = 0.98$ (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta = 184.9$, 174.7, 148.6, 147.7, 137.2, 134.8, 134.7, 133.4, 130.2, 129.4, 128.3, 127.0, 83.0, 46.2, 34.9, 34.8, 34.3, 29.0, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₈ClO₃ 387.1721; Found 387.1723.

7,9-Di-tert-butyl-4-(3-chlorophenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4h). Yellow solid; yield: 37.1 mg (96%); mp 147.3-147.9 °C; IR (neat): 2959, 1778, 1669, 1646, 1599, 1481, 1394, 981, 788cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.26-7.18 (m, 2H), δ = 7.02 (d, J = 1.8 Hz, 1H), δ = 6.91 (d, J = 7.4 Hz, 1H), δ = 6.62 (d, J = 3.2 Hz, 1H), δ = 6.27 (d, J = 3.2 Hz, 1H), δ = 3.78 (dd, J =12.5, 8.3 Hz, 1H), δ = 3.20 (dd, J = 17.4, 12.5 Hz, 1H), δ = 2.99 (dd, J = 17.4, 8.3 Hz, 1H), δ = 1.26 (s, 9H), δ = 0.95 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 184.8, 174.1, 149.6, 149.4, 136.8,135.6, 134.6, 133.9, 129.8, 128.5, 127.9, 125.7, 83.3, 50.5, 35.1, 34.8, 32.4, 29.3, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₈ClO₃ 387.1721; Found 387.1723.

7,9-Di-tert-butyl-4-(4-chlorophenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4i). Yellow solid; yield: 34.0 mg (88%); mp 219.3-220.1 °C; IR (neat): 2917, 1793, 1668, 1645, 1526, 1494, 1466, 1366, 1192, 980, 750cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.27-7.24 (m, 2H), δ = 6.97(d, *J* = 8.4 Hz, 2H), δ = 6.62 (d, *J* = 3.2 Hz, 1H), δ = 6.24 (d, *J* = 3.2 Hz, 1H), δ = 3.78 (dd, *J* = 12.2, 8.4 Hz, 1H), δ = 3.18 (dd, *J* = 17.4, 12.3 Hz, 1H), δ = 3.00 (dd, *J* = 17.4, 8.4 Hz, 1H), δ = 1.25 (s, 9H), δ = 0.94 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 184.8, 174.2, 149.4, 149.3, 136.9, 134.3, 134.0, 132.2, 128.8, 128.7, 83.3,50.3, 35.1, 34.8, 32.7, 29.3, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₈ClO₃ 387.1721; Found 387.1720.

4-(4-Bromophenyl)-7,9-di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4j). Yellow solid; yield: 31.0 mg (72%); mp 209.6-210.1 °C; IR (neat): 2966, 1793, 1668, 1645, 1490, 1451, 1391, 1127, 979, 604cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): $\delta = 7.40$ (d, J = 8.5 Hz, 2H), $\delta = 6.90$ (d, J = 8.4 Hz, 2H), $\delta = 6.61$ (d, J = 3.2 Hz, 1H), $\delta = 6.22$ (d, J = 3.2 Hz, 1H), $\delta = 3.76$ (dd, J=12.2,8.4 Hz, 1H), $\delta = 3.17$ (dd, J = 17.4, 12.2 Hz, 1H), $\delta = 3.00$ (dd, J = 17.4, 8.4 Hz, 1H), $\delta = 1.25$ (s, 9H), $\delta = 0.94$ (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta = 184.8, 174.2, 149.5, 149.4, 136.9, 133.9, 132.7, 131.7, 129.0, 122.4, 83.2, 50.3, 35.1, 34.8, 32.6, 29.3, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₈BrO₃ 431.1216; Found 431.1212.$

7,9-Di-tert-butyl-4-(4-fluorophenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4k).

Yellow solid; yield: 32.9 mg (89%); mp 204.4-205.2 °C; IR (neat): 2918, 1794, 1667, 1645, 1513, 1451, 1366, 1189, 1161, 981cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.03-6.94 (m, 4H), δ = 6.62 (d, *J* = 3.2 Hz, 1H), δ = 6.26(d, *J* = 3.1 Hz, 1H), δ = 3.79 (dd, *J* = 12.3, 8.4 Hz, 1H), δ = 3.18 (dd, *J* = 17.4, 12.4 Hz, 1H), δ = 3.00 (dd, *J* = 17.4, 8.3 Hz, 1H), δ = 1.25 (s, 9H), δ = 0.95 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 184.8, 174.3, 163.7, 161.3, 149.4, 149.3, 136.9, 134.1, 129.4, 129.3, 129.2, 129.1, 115.6, 115.4, 83.5, 83.4, 50.2, 35.0, 34.8, 32.9, 29.3, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₈FO₃ 371.2017; Found 371.2019.

7,9-Di-tert-butyl-4-(4-(trifluoromethyl)phenyl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dio ne (4l). White solid; yield: 35.3 mg (84%); mp 161.3-161.9 °C; IR (neat): 2959, 1779, 1670, 1645, 1622, 1486, 1461, 1326, 1119, 1072, 980cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.54 (d, *J* = 8.2 Hz, 2H), δ = 7.17 (d, *J* = 8.2 Hz, 2H), δ = 6.65(d, *J* = 3.2 Hz, 1H), δ = 6.23 (d, *J* = 3.2 Hz, 1H), δ = 3.88 (dd, *J* = 12.2, 8.4 Hz, 1H), δ = 3.26 (dd, *J* = 17.4, 12.3Hz, 1H), δ = 3.04 (dd, *J* = 17.4, 8.4 Hz, 1H), δ = 1.26 (s, 9H), δ = 0.90 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 184.7, 174.0, 149.6, 149.5, 137.8, 136.8, 133.8, 130.8 (q, J_{F-C} = 33.1), 127.9, 125.5 (q, J_{F-C} = 3.6), 123.7 (q, J_{F-C} = 270.3), 83.1, 50.4, 35.1, 34.8, 32.4, 29.2, 28.7 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₈F₃O₃ 421.1985; Found 421.1987.

7,9-Di-tert-butyl-4-(naphthalen-1-yl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4n). Yellow solid; yield: 36.2 mg (90%); mp 169.3-169.9 °C; IR (neat): 2955, 1776, 1668, 1644, 1512, 1456, 1346, 1049, 814cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.83-7.77 (m, 2H), δ = 7.71-6.68 (m, 1H), δ = 7.48-7.36 (m, 4H), δ = 6.78 (d, J = 2.7 Hz, 1H), δ = 6.02 (t, J = 3.0 Hz, 1H), δ = 4.72 (t, J = 8.2 Hz, 1H), δ = 3.30 (d, J = 8.1 Hz, 1H), δ = 1.18 (s, 9H), δ = 0.65 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 184.9, 173.7, 149.8, 149.4, 136.9, 136.5, 133.7, 127.1, 125.4, 125.1, 83.2, 46.2, 35.1, 34.8, 34.3, 29.3, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₁O₃ 403.2268; Found 403.2269.

7,9-Di-tert-butyl-4-(naphthalen-2-yl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4o). Yellow solid; yield: 31.0 mg (77%); mp 162.5-163.3 °C; IR (neat): 2958, 1777, 1670, 1648, 1510, 1483, 1459, 1182, 814cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.78-7.70 (m, 3H), δ = 7.49-7.43 (m, 3H), δ = 7.11 (dd, *J* = 8.5, 1.5 Hz, 1H), δ = 6.29 (d, *J* = 3.1 Hz, 1H), δ = 3.96 (dd, *J* = 12.0, 8.4 Hz, 1H), δ = 3.37 (dd, *J* = 17.4, 12.1 Hz, 1H), δ = 3.09 (dd, *J* = 17.4, 8.3 Hz, 1H), δ = 1.27 (s, 9H), δ = 0.76 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 184.8, 174.7, 149.2, 148.9, 137.3, 134.5, 132.9, 131.1, 128.4, 127.6, 126.7, 126.6, 126.5, 125.0, 83.7, 50.9, 35.0, 34.6, 32.8, 29.3, 28.6 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₃₁O₃ 403.2268; Found 403.2267.

7,9-Di-tert-butyl-4-(furan-2-yl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (**4p**). Red solid; yield: 20.5 mg (60%); mp 117.3-118.3 °C; IR (neat): 2954, 1775, 1667, 1643, 1511, 1455, 1199, 1083, 973cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.28 (d, *J* = 1.1 Hz, 1H), δ = 6.55 (d, *J* = 3.1 Hz, 1H), δ = 6.32 (d, *J* = 3.2 Hz, 1H), δ = 6.26 (dd, *J* = 3.1, 1.9 Hz, 1H), δ = 6.02 (d, *J* = 3.2 Hz, 1H), δ = 3.25 (dd, *J* = 17.6, 11.8 Hz, 1H), δ = 3.00 (dd, *J* = 17.6, 8.7 Hz, 1H), δ = 1.26 (s, 9H), δ = 1.03 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): δ = 185.1, 174.1, 149.0, 148.8, 148.0, 142.6, 136.7, 134.1, 110.7, 108.4, 82.9, 44.9, 35.0, 34.7, 32.0, 29.3, 28.9 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₇O₄ 343.1904; Found 343.1906.

7,9-Di-tert-butyl-4-(thiophen-2-yl)-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione (4q). Yellow solid; yield: 22.9 mg (64%); mp 156.6-157.3 °C; IR (neat): 2957, 1779, 1670, 1648, 1485, 1459, 980, 833cm⁻¹; ¹H NMR (400 MHz, CDCl₃, TMS, 25 °C): δ = 7.17 (d, J = 5.1 Hz, 1H), δ = 6.91 (t, J = 3.7 Hz, 1H), δ = 6.74 (d, J = 3.5 Hz, 1H), δ = 6.58 (d, J = 3.2 Hz, 1H), δ = 6.27 (d, J = 3.2 Hz, 1H), δ = 4.03 (dd, J = 12.2, 8.9 Hz, 1H), δ = 3.21-3.07 (m, 2H), $\delta = 1.28$ (s, 9H), $\delta = 0.96$ (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃, 25 °C): $\delta = 184.9$, 173.7, 149.8, 149.4, 136.9, 136.5, 133.7, 127.04, 125.4, 125.1, 83.2, 46.2, 35.1, 34.8, 34.3, 29.3, 28.8 ppm; HRMS (ESI/Q-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₇O₃S 359.1675; Found 359.1674.

References

(1) (a) Ge, L.; Lu, X.; Cheng, C.; Chen, J.; Cao, W.; Wu, X.; Zhao, G. *J. Org. Chem.* **2016**, *81*, 9315-9325; (b) Baik, W.; Lee, H. J.; Jang, J. M.; Koo, S.; Kim, B. H. *J. Org. Chem.* **2000**, *65*, 108-115.

(2) Kayukova, O. V.; Kayukov, Y. S.; Nikolaev, A. N.; Nasakin, O. E. Russ. J. Org. Chem. 2004, 40, 1382-1383.

NMR Spectra of Dispirocyclopropanes 3

¹³C NMR Spectra of Product **3ba**

¹³C NMR Spectra of Product **3ca**

¹³C NMR Spectra of Product **3da**

¹³C NMR Spectra of Product **3ea**

¹³C NMR Spectra of Product **3fa**

¹³C NMR Spectra of Product **3ga**

¹³C NMR Spectra of Product **3ha**

¹³C NMR Spectra of Product **3ia**

¹³C NMR Spectra of Product **3ja**

¹³C NMR Spectra of Product **3ka**

¹³C NMR Spectra of Product **3la**

¹³C NMR Spectra of Product **3ma**

¹³C NMR Spectra of Product **3na**

¹³C NMR Spectra of Product **30a**

¹³C NMR Spectra of Product **3pa**

¹³C NMR Spectra of Product **3qa**

¹³C NMR Spectra of Product **3ra**

¹³C NMR Spectra of Product **3ab**

¹³C NMR Spectra of Product **3ac**

NMR Spectra of Spirobutyrolactones 4

¹³C NMR Spectra of Product **4b**

¹³C NMR Spectra of Product **4c**

¹³C NMR Spectra of Product 4d

¹³C NMR Spectra of Product **4e**

¹³C NMR Spectra of Product **4f**

¹³C NMR Spectra of Product **4g**

¹³C NMR Spectra of Product **4h**

¹³C NMR Spectra of Product **4i**

¹³C NMR Spectra of Product **4**j

¹³C NMR Spectra of Product 4k

¹³C NMR Spectra of Product **4**

¹³C NMR Spectra of Product **4n**

¹³C NMR Spectra of Product **40**

¹³C NMR Spectra of Product **4p**

¹³C NMR Spectra of Product **4**q