Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

for

Palladium-Catalyzed Cyanation of Aryl Halides with in situ

Generated CN⁻ from ClCF₂H and NaNH₂

Changjiang Yu^a, Xingxing Ma^a and Qiuling Song*a

[†] Institute of Next Generation Matter Transformation, College of Materials Science & Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, China. Fax: 86-592-6162990; email: qsong@hqu.edu.cn

Table of Contents

1. General information	3
2. Experimental procedures.	4
3. Optimization of the reaction conditions for the synthesis of 2a	4
Table S2. Optimization of the reaction with different ligands.	5
Table S3. Optimization of the reaction with different bases.	5
Table S4. Optimization of the reaction solvents.	6
Table S5. Optimization of the reaction temperature.	6
4. Characterization data for products	6
5. References	.14
6. NMR spectra	.15

1. General information

All chemicals were purchased from Adamas Reagent, Sigma -Aldrich, J&K Scientific Ltd, Alfa Aesar and Tansoole. Unless otherwise stated, all solvents and reagents were used as purchased without further purification. All reactions were generally accomplished in dried Schlenk tubes under an atmosphere of N₂. Reactions were monitored by thin layer chromatography (TLC). Flash column chromatography was performed on silica gel (200-300 mesh). ¹H-NMR, ¹³C-NMR spectra were recorded on Bruker 500 (500 MHz ¹H, 125 MHz ¹³C). NMR spectra were calibrated by CDCl₃ (δ = 7.26 for ¹H-NMR, δ = 77.00 for ¹³C-NMR) as an internal reference. Chemical shifts were quoted in parts per million (ppm). The following abbreviations are used to describe multiplets: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, br = broad. Coupling constants (*J*) were reported in Hertz (Hz). The products were purified from the reaction mixture by column chromatography on silica gel using petroleum ether and ethyl acetate as the eluent.

2. Experimental procedures

A Schlenk tube was charged with aryl halides **1** or **3** (0.2 mmol, 1 equiv), $Pd(OAc)_2$ (7.5 mol%), Dpephos (10 mol%), K₂CO₃ (5 equiv), NaNH₂ (5 equiv) under ClCF₂H atmosphere with a balloon. Subsequently, DMA (2.0 mL) were added with injector. The mixture was stirred at 100 °C in oil bath for 20 h. After that, the reaction mixture was concentrated in vacuo and the desired product was obtained by flash column chromatography on silica gel.

3. Optimization of the reaction conditions for the synthesis of 2a

Table S1. Optimization of th	e reaction with different catalysts.
------------------------------	--------------------------------------

		+ NaNHa	+ CICE	PdX (7.5 r Dpephos (10	mol%) 0 mol%)		CN
	0	i indini iz		K ₂ CO ₃ (5 ε DMA, 100	equiv)) °C		
	1a					2a	a
entry ^a	cataiyst	Ligand	base	solvent (2 mL)	T (°C)	time (h) y	/ield (%) ^b
1	PdCl ₂	Dpephos	K ₂ CO ₃	DMA	100	20	71
2	Pd ₂ (dba) ₃	Dpephos	K ₂ CO ₃	DMA	100	20	60
3	Pd(PhCN)2Cl ₂	Dpephos	K ₂ CO ₃	DMA	100	20	43
4	$Pd(PPh_3)_2Cl_2$	Dpephos	K ₂ CO ₃	DMA	100	20	50
5	Pd(PPh ₃) ₄	Dpephos	K ₂ CO ₃	DMA	100	20	64
6	Pd(TFA) ₂	Dpephos	K ₂ CO ₃	DMA	100	20	42

Table S2. Optimization of the reaction with different ligands.

		+ NaNH-	+ CICE	Pd(OAc) ₂ (7 Ligand (10	'.5 mol%)) mol%)		CN
~	-0	1a		²¹¹ K ₂ CO ₃ (5 DMA, 10	equiv) 00 °C	2a	
entry	cataiyst	Ligand	base	solvent (2 mL)	T (°C)	time (h)	yield (%)
1	Pd(OAc) ₂	Xantphos	K ₂ CO ₃	DMA	100	20	60
2	Pd(OAc) ₂	S-phos	K ₂ CO ₃	DMA	100	20	31
3	Pd(OAc) ₂	dppf	K ₂ CO ₃	DMA	100	20	33
4	Pd(OAc) ₂	PPh_3	K ₂ CO ₃	DMA	100	20	58
5	Pd(OAc) ₂	dppb	K ₂ CO ₃	DMA	100	20	20

Table S3. Optimization of the reaction with different bases.

		+ NaNH-		Pd(OAc) ₂ (Dpephos (7.5 mol%) 10 mol%)		CN
		base (5 equiv)		equiv) 00 °C			
_	1a			,		2	а
entry	cataiyst	Ligand	base	solvent (2 mL)	T (°C)	time (h)	yield (%)
1	Pd(OAc) ₂	Dpephos	Na ₂ CO ₃	DMA	100	20	27
2	Pd(OAc) ₂	Dpephos	CS_2CO_3	DMA	100	20	13
3	Pd(OAc) ₂	Dpephos	NaHCO ₃	DMA	100	20	44
4	Pd(OAc) ₂	Dpephos	K ₃ PO ₄	DMA	100	20	41
5	Pd(OAc) ₂	Dpephos	DBU	DMA	100	20	NR

Table S4. Optimization of the reaction solvents.

1a				Pd(OAc) ₂ (7. Dpephos (10	5 mol%)) mol%)		CN
		+ NaNH ₂ + CICF ₂ H		K₂CO₃ (5 equiv) solvent, 100 ºC		2a	
entry	cataiyst	Ligand	base	solvent (2 mL)	T (°C)	time (h)	yield (%)
1	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	dioxane	100	20	NR
2	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	toluene	100	20	20
3	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	DMF	100	20	78
4	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	CH ₃ CN	100	20	55
5	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	CH ₃ OH	100	20	80
6	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	THF	100	20	NR

Table S5. Optimization of the reaction temperature.

		+ NaNH-		Pd(OAc) ₂ (7 Dpephos (1	Pd(OAc) ₂ (7.5 mol%) Dpephos (10 mol%)		CN
~	0 1a	, nann ₂	+ NaNH ₂ + CICF ₂ H — K ₂ CO ₃ (5 equiv DMA, T		equiv)	2	a
entry	cataiyst	Ligand	base	solvent (2 mL)	T (°C)	time (h)	yield (%)
1	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	DMA	120	20	trace
2	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	DMA	110	20	59
3	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	DMA	90	20	66
4	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	DMA	80	20	47
5	Pd(OAc) ₂	Dpephos	K ₂ CO ₃	DMA	70	20	31

4. Characterization data for products

4-methoxybenzonitrile (2a)¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 30:1, v/v) to give the product as a white solid (22.1 mg, 82%). m.p. 57-58. ¹H NMR (500 MHz, Chloroform-d) δ 7.58 (d, J = 8.9 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 3.86 (s, 3H). ¹³C

NMR (125 MHz, Chloroform-*d*) δ 162.9, 134.0, 119.3, 114.8, 104.0, 55.6.

4-(tert-Butyl)benzonitrile (2b)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 30:1, v/v) to give the product as a

colorless oil (25.4 mg, 80%). m.p. 110-112. ¹H NMR (500 MHz, Chloroform-d) δ 7.58 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 1.32 (s, 9H). ¹³C NMR (125 MHz, Chloroform-d) & 156.6, 132.0, 126.2, 119.2, 109.3, 35.3, 31.0.

4-methylbenzonitrile (2c)¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 30:1, v/v) to give the product as a white solid (16.8 mg, 72%). m.p. 27-29. ¹H NMR (500 MHz,

Chloroform-d) δ 7.56 – 7.52 (m, 2H), 7.27 (d, J = 8.6 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 143.7, 132.1, 129.8, 119.2, 109.3, 21.9.

4-ethoxybenzonitrile (2d)¹⁰

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether: AcOEt = 30:1, v/v) to give the product as a white solid (23.8 mg, 81%). m.p. 58-60. ¹H

NMR (500 MHz, Chloroform-d) δ 7.60 – 7.54 (m, 2H), 6.95 – 6.90 (m, 2H), 4.07 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.0 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 162.3, 134.0, 119.3, 115.2, 103.7, 63.9, 14.7. HRMS (ESI, m/z) calcd for C₉H₉NO [M+H]+: 147.0684; found: 147.0683.

4-phenoxybenzonitrile (2e)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as white powder as colorless oil (28.8 mg, 74%). ¹**H NMR** (500 MHz, Chloroform-*d*) δ 7.62 – 7.58 (m, 2H),

7.46 - 7.38 (m, 2H), 7.26 - 7.21 (m, 1H), 7.08 - 7.05 (m, 2H), 7.02 - 6.99 (m, 2H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 161.7, 154.9, 134.1, 130.3, 125.3, 120.4, 118.9, 118.8, 118.0, 105.9.

4-chlorobenzonitrile (2f)¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (17.5 mg, 64%). m.p. 85-86. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz,

2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 139.6, 133.4, 129.7, 118.0, 110.8.

4-bromobenzonitrile (2g)⁵

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (22.4 mg, 62%). m.p. 110-112. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.66 – 7.60 (m, 2H), 7.55 – 7.43 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 133.4, 132.7, 132.3, 118.1, 111.3.

HRMS (ESI, m/z) calcd for C₇H₄BrN [M+H]⁺: 180.9527; found: 180.9529.

Ethyl 4-cyanobenzoate (2h)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (22.4 mg, 64%). m.p. 72-73. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.17 – 8.08 (m, 2H), 7.77

-7.66 (m, 2H), 4.41 (s, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 164.9, 132.2, 130.1, 127.2, 118.0, 116.3, 61.8, 14.2.

4-acetylbenzonitrile (2i)¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (19.4 mg, 67%). m.p. 57-58. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.06 – 8.01 (m, 2H), 7.80 – 7.75 (m, 2H), 2.64

(s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 196.5, 140.0, 132.5, 128.7, 117.9, 116.5, 26.7.

4-nitrobenzonitrile (2j)¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (19.5 mg, 66%). m.p. 140-141. ¹H NMR (500 MHz,

Chloroform-*d*) δ 8.36 (d, J = 8.9 Hz, 2H), 7.89 (d, J = 8.8 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 133.5, 133.5, 124.3, 124.3, 118.4, 116.8.

Terephthalonitrile (2k)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (13.3mg, 52%). m.p. 213-214. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.80 (s, 4H). ¹³C NMR (126 MHz, Chloroform-*d*) δ 132.9, 132.9, 118.4, 112.5. HRMS (ESI, m/z) calcd for C₈H₄N₂ [M+H]⁺: 128.0374; found: 128.0377.

4-(trifluoromethyl)benzonitrile (2l)¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (14.4 mg, 42%). m.p. 35-36. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.81 (d, *J* = 8.2 Hz, 2H), 7.76 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 134.7, 134.4, 132.7, 126.2, 126.2, 126.2, 126.15, 124.1, 122.0, 117.5, 116.1. ¹⁹F NMR (470 MHz, Chloroform-*d*) δ -63.6.

[1,1'-biphenyl]-4-carbonitrile (2m)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (27.9 mg, 78%). m.p. 83-84. ¹H

NMR (500 MHz, Chloroform-*d*) δ 7.75 – 7.71 (m, 2H), 7.71 – 7.67 (m, 2H), 7.61 – 7.58 (m, 2H), 7.51 – 7.46 (m, 2H), 7.45 – 7.41 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 145.7, 139.2, 132.6, 129.1, 128.7, 127.8, 127.3, 119.0, 110.9.

2-Chlorobenzonitrile (2n)³

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (15.3 mg, 56%). m.p. 44-45. ¹H NMR (500 MHz, Chloroform-

d) δ 7.68 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.58 – 7.49 (m, 2H), 7.38 (dt, *J* = 7.4, 1.6 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 136.9, 134.0, 133.9, 130.1, 127.2, 113.4.

Bromobenzonitrile (20)⁶

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (14.4 mg, 40%). m.p.52-54. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.68 (dd, *J* = 14.2, 7.7, 1.7 Hz, 2H), 7.45 (dt, *J* = 19.2, 7.6, 1.6 Hz,

2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 134.3, 133.9, 133.2, 127.6, 125.4, 117.1, 116.0.HRMS (ESI, m/z) calcd for C₇H₄BrN [M+H]⁺: 180.9527; found: 180.9525.

[1,1'-biphenyl]-2-carbonitrile (2p)⁴

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (23.6 mg, 66%). m.p. 38- 39. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.67 (td, J = 7.7,

1.4 Hz, 1H), 7.61 – 7.57 (m, 2H), 7.56 – 7.50 (m, 3H), 7.49 (dt, J = 3.3, 1.2 Hz, 1H), 7.48 – 7.46 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 145.5, 138.2, 133.8, 132.8, 130.1, 128.8, 128.7, 128.7, 127.6, 118.7, 111.3.

2,3-dihydrobenzo[b][1,4]dioxine-6-carbonitrile (2q)⁷

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (23.8 mg, 74%). m.p. 91-92. ¹H NMR

(500 MHz, Chloroform-*d*) δ 7.16 – 7.11 (m, 2H), 6.91 (d, *J* = 8.1 Hz, 1H), 4.33 – 4.30 (m, 2H), 4.29 – 4.26 (m, 2H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 147.7, 143.8, 125.9, 121.3, 118.9, 118.3, 104.5, 64.6, 64.1. HRMS (ESI, m/z) calcd for C₉H₇NO₂ [M+H]⁺: 161.0477; found: 164.0475.

3,4-dimethylbenzonitrile (2r)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (19.1 mg, 73%). m.p 63-64. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.43 – 7.35 (m, 2H), 7.21 (d, J = 7.8 Hz, 1H),

2.32 (s, 3H), 2.29 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 142.5, 137.9, 132.9, 130.3, 129.7,119.3, 109.6, 20.2, 19.6.

3,4-dimethoxybenzonitrile (2s)⁸

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (24.8 mg, 76%). m.p. 64-65. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.29 (ddd, J = 8.4, 2.0, 0.8 Hz, 1H), 7.08 (d, J

= 2.0 Hz, 1H), 6.90 (dd, J = 8.5, 1.8 Hz, 1H), 3.94 – 3.92 (m, 3H), 3.91 – 3.89 (m, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 152.9, 149.3, 126.5, 119.2, 114.1, 111.3, 104.0, 56.2, 56.1. HRMS (ESI, m/z) calcd for C₉H₉NO₂ [M+H]⁺: 163.0633; found: 163.0636.

2-fluoro-4-methylbenzonitrile (2t)¹¹

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white powder (12.7 mg, 47%). m.p. 47-49. ¹H NMR (500 MHz,

Chloroform-*d*) δ 7.49 (dd, J = 7.9, 6.7 Hz, 1H), 7.06 (dd, J = 8.0, 1.4 Hz, 1H), 7.02 (d, J = 9.9 Hz, 1H), 2.43 (s, 3H). ¹³C **NMR** (125 MHz, Chloroform-*d*) δ 164.2, 162.1, 146.9, 133.1, 117.0, 116.9, 114.2, 98.51, 98.4, 21.9. ¹⁹F **NMR** (471 MHz, Chloroform-*d*) δ -107.43. HRMS (ESI, m/z) calcd for C₈H₆FN [M+H]⁺: 135.0484; found: 135.0481.

2,4,6-trimethylbenzonitrile (2u)⁵

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a yellow solid (20.3 mg, 70%). m.p. 42–43. ¹H NMR (500 MHz, Chloroform-*d*) δ 6.96 – 6.90 (m, 2H), 2.48 (s, 6H), 2.32 (s, 3H).

¹³C NMR (125 MHz, Chloroform-*d*) δ 142.8, 142.0, 128.2, 117.7, 110.3, 21.6, 20.6. HRMS (ESI, m/z) calcd for C₁₀H₁₁N [M+H]⁺: 145.0891; found: 145.0894.

3,4,5-trimethoxybenzonitrile (2v)9

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as white powder (10.5 mg, 41%). m.p. 92-94. ¹H **NMR** (500 MHz, Chloroform-*d*) δ 6.86 (s, 2H), 3.89 (d, *J* = 11.0 Hz, 9H).¹³C **NMR** (125 MHz, Chloroform-*d*) δ 153.6,

119.0, 109.6, 106.7, 61.1, 56.4. HRMS (ESI, m/z) calcd for $C_{10}H_{11}NO_3$ [M+H]⁺: 193.0739; found: 193.073.

Terephthalonitrile (2w)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (10.5 mg, 41%). m.p. 213-214. ¹H NMR (500 MHz,

Chloroform-d) δ 7.78 (d, J = 8.5 Hz, 2H), 7.69 (d, J = 8.6 Hz,

2H). ¹³C NMR (125 MHz, Chloroform-d) δ 132.8, 117.0, 116.7. HRMS (ESI, m/z) calcd for C8H4N2 [M+H]+: 128.0374; found: 128.0377.

[1,1'-biphenyl]-4,4'-dicarbonitrile (2x)²

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (15.9 mg, 39%). m.p. 232-234. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.82 –

7.79 (m, 4H), 7.74 – 7.70 (m, 4H). $^{13}\mathrm{C}$ NMR (125 MHz, Chloroform-d) δ 143.5, 132.9, 127.9, 118.4, 112.5.

Phenanthrene-9-carbonitrile (2y)³

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (30.0 mg, 47%). m.p. 108-109. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.71 – 8.66 (m, 2H), 8.34 – 8.19 (m, 2H), 7.92

(dd, J = 7.9, 1.3 Hz, 1H), 7.80 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.78 – 7.76 (m, 1H), 7.76 – 7.73 (m, 1H), 7.68 (ddd, J = 8.0, 7.0, 1.1 Hz, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 135.6, 131.8, 130.1, 129.8, 129.5, 128.9, 128.2, 128.1, 127.6, 126.1, 123.1, 122.9, 117.9, 109.5.

Anthracene-9-carbonitrile (2z)³

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (25.6 mg, 63%). m.p. 177-178. ¹H NMR (500 MHz, Chloroform-*d*) δ 7.80 (dd, J = 7.7, 1.4 Hz, 1H), 7.67 (td, J = 7.7,

1.4 Hz, 1H), 7.61 – 7.57 (m, 2H), 7.56 – 7.50 (m, 3H), 7.49 (dt, J = 3.3, 1.2 Hz, 1H), 7.48 – 7.46 (m, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 145.5, 138.2, 133.8, 132.8, 130.1, 128.8, 128.8, 128.7, 127.6, 118.7, 111.3.

3,5-dihydropyrene-1-carbonitrile (2aa)³

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 30:1, v/v) to give the product as a white solid (20.2 mg, 44%). m.p. 152-154. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.41 (d, *J* = 9.0 Hz, 1H), 8.30 (ddd, *J* = 7.9, 4.8,

1.2 Hz, 2H), 8.27 – 8.23 (m, 2H), 8.22 (d, J = 1.7 Hz, 2H), 8.14 (s, 1H), 8.06 (d, J = 8.9 Hz, 1H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 134.2, 133.0, 130.8, 130.5, 130.5, 129.5, 127.0, 127.0, 126.9, 126.8, 124.4, 124.0, 123.9, 123.5, 118.8, 105.6.

4 4-(tert-butyl)benzaldehyde

To a solution of 4-tert-Butylbenzonitrile (32.0 mg, 0.2 mmol) in toluene (2 mL) was added DIBAL–H (159 μ L, 1.2 equiv) at –78 °C. The reaction mixture was stirred at – 78 °C for 2.5 h and then quenched with aqueous HCl solution (1 M) at 0 °C. The aqueous phase was extracted with Et₂O. The combined organic layers were dried over

Na₂SO₄ and evaporated under reduced pressure. The residue was subjected to flash column chromatography to give the desired product (21 mg, 65%). ¹H NMR (500 MHz, Chloroform-*d*) δ 9.99 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.57 (d, *J* = 8.3 Hz, 2H), 1.37 (d, *J* = 1.2 Hz, 9H). ¹³C NMR (125 MHz,

Chloroform-*d*) & 192.0, 158.4, 134.1, 129.7, 126.0, 35.4, 31.1.

5 4-methylbenzoic acid

A 25 mL round bottom flask equipped with a magnetic stirring bar was charged with p-Tolunitrile (58.5 mg, 0.5 mmol) and 1M HCl. The reaction mixture was stirred at 100 °C under nitrogen atmosphere for 8 h. After being cooled to room temperature, the reaction mixture was quenched with aqueous NaHCO₃ (3 mL)

and extracted with CH₂Cl₂. The organic solution was washed with brine, dried over Na₂SO₄, and filtered. After the solvent was removed under reduced pressure, the residue was subjected to flash column chromatography (to afford the desired product (42 mg, 62%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.04 – 7.99 (m, 2H), 7.28 (d, *J* = 8.0 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 172.4, 144.7, 130.3, 129.2, 126.7, 21.8.

6 4-bromobenzamide

A flame-dried flask fitted with magnetic stir bar was charged with 4-bromobenzonitrile (36.4 mg, 0.2 mmol, 1.0 equiv) and KO'Bu (67.2 mg, 0.6 mmol, 3.0 equiv), and dry tert-butyl alcohol (4 mL/mmol) was added. The reaction mixture was stirred at room temperature for 12 h under nitrogen

atmosphere, and progress of the reaction was monitored by TLC. Upon completion, the reaction mixture was treated with water (10 mL). The solid amide product was filtered, washed with water, and dried under vacuum to provide the corresponding amide (36 mg, 90%). ¹H NMR (500 MHz, DMSO- d_6) δ 7.00 – 6.92 (m, 2H), 6.85 – 6.78 (m, 2H). ¹³C NMR (125 MHz, DMSO- d_6) δ 167.4, 133.9, 131.7, 131.7, 130.1, 125.5.

9 2-(4-bromophenyl)-[1,2,4]triazolo[1,5-a]pyridine

To a dried screw-cap vial was added 4-bromobenzonitrile (0.30 mmol), 2-aminopyridine (0.36 mmol), CuBr (2.2 mg, 0.015 mmol), 1,10-phenanthroline (2.7 mg, 0.015 mmol, 5 mol%) and ZnI₂ (9.6 mg, 0.03 mmol, 10 mol%). 1,2-Dichlorobenzene (0.6 ml) was then added and the vial was sealed under atmospheric air. The reaction mixture was

stirred at 130 °C for 24 h in pre-heated oil bath. After cooling to room temperature, the reaction was diluted with EtOAc and filtered over glass filter. The filtrate was concentrated and purified by column chromatography on silica gel (64 mg, 78%). ¹H NMR (500 MHz, Chloroform-*d*) δ 8.56 (d, *J* = 6.8 Hz, 1H), 8.14 (d, *J* = 8.1 Hz, 2H),

7.73 (d, *J* = 8.9 Hz, 1H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.50 (t, *J* = 7.9 Hz, 1H), 7.00 (t, *J* = 6.8 Hz, 1H). ¹³**C NMR** (125 MHz, Chloroform-*d*) δ 163.3, 151.7, 137.9, 131.9, 129.8, 129.7, 128.9, 128.8, 128.4, 124.5, 116.5, 113.8.

10 phenyl(*p*-tolyl)methanone

A 25 mL round-bottom Schlenk bottle was charged with p-Tolunitrile (58.5 mg, 0.5 mmol) and 0.5 mL of THF. The bottle was evacuated and backfilled with N_2 for three times and placed in an ice bath. Grignard reagent (1.5 mmol, freshly prepared) was added dropwise to the solution at 0 °C. The

resulting mixture was allowed to warm to room temperature and was stirred for 6 h. Upon the completion of the reaction, 1 M HCl was added dropwise to the mixture with stirring, followed by addition of solid NaOH to make the solution basic. The organic layer was separated and the aqueous layer was extracted with Et₂O (3×30 mL). The combined organic solutions were washed with brine, dried over Na₂SO₄ and concentrated. The crude residue was purified by flash column chromatography to yield the corresponding ketone (80 mg, 82%). ¹H NMR (500 MHz, Chloroform-*d*) δ 7.81 – 7.76 (m, 2H), 7.74 – 7.70 (m, 2H), 7.57 (s, 1H), 7.47 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 7.9 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 196.5, 143.3, 138.0, 134.9, 132.2, 130.3, 129.9, 129.0, 128.2, 21.7.

11 methyl 4-nitrobenzoate

To a stirring solution of 4-nitrobenzonitrile (29.6 mg, 0.2 mmol) in MeOH (0.45 mL) was added H_2SO_4 (0.18 mL) at room temperature. The resulting mixture was stirred at 110 °C for 24 h. After being cooled to room temperature, the reaction mixture was quenched with aqueous NaHCO₃ (3

mL) and extracted with CH₂Cl₂. The organic solution was washed with brine, dried over Na₂SO₄, and filtered. After the solvent was removed under reduced pressure, the residue was subjected to flash column chromatography to afford the desired product (30.2 mg, 83% yield).¹H NMR (500 MHz, Chloroform-*d*) δ 8.31 – 8.25 (m, 2H), 8.23 – 8.18 (m, 2H), 3.97 (d, *J* = 0.9 Hz, 3H). ¹³C NMR (125 MHz, Chloroform-*d*) δ 165.2, 150.6, 135.5, 130.7, 123.6, 52.8.

5. References

- 1. A. V. Ushkov, V.V. Grushin, J. Am. Chem. Soc. 2011, 133, 10999.
- 2. L. R. Mills, J. M. Graham, P. Patel and S. A. L. Rousseaux, J. Am. Chem. Soc., 2019, 141, 49, 19257.
- 3. L. Zhang, P. Lu, Y. Wang, Chem. Commun., 2015, 51, 2840.
- 4. A. B. Pawar, S. Chang, Chem. Commun., 2014, 50, 448.

5. K. Uchida; H. Togo. Tetrahedron., 2019,75, 130550

6. S. A. Shipilovskikh, V. Y. Vaganov, E. I. Denisova, A. E. Rubtsov and A.V. Malkov. Org. Lett., 2018, 20, 728.

7. K. Natte, R. V. Jagadeesh, M. Sharif, H. Neumann and M. Beller. Org. Biomol. Chem., 2016, 14, 3356

8. Y.Zhu, L. Li, and Z. Shen. Chem. Eur. J., 2015, 21, 1 3246.

9. W. Zhan, M. Tong, L. Ji, H. Zhang, Z. Ge, X. Wang and R. Li. *Chinese Chemical Letters.*, **2019**, *30*, 973.

10. S. Xu, T. Cai, Z. Yun., Synlett., 2016, 27,221.

- 11. J. Olsen, P. Seiler, B. Wagner, H. Fischer, T. Tschopp, U. Sander, D. W. Banner,
- M. Kansy, K. Müller and F. Diederich. Org. Biomol. Chem., 2004, 2, 1339.

6.NMR Spectra

4-methoxybenzonitrile (2a)

4-(tert-Butyl)benzonitrile (2b)

-1.32

4-methylbenzonitrile (2c)

4-ethoxybenzonitrile (2d)

4-phenoxybenzonitrile (2e)

4-chlorobenzonitrile (2f)

4-bromobenzonitrile (2g)

Z1.61 Z1.59 Z1.47 Z1.45

Ethyl 4-cyanobenzoate (2h)

4-acetylbenzonitrile (2i)

4-nitrobenzonitrile (2j)

Terephthalonitrile (2k)

4-(trifluoromethyl)benzonitrile (2l)

L1.82 L1.80 L1.77

[1,1'-biphenyl]-4-carbonitrile (2m)

2-Chlorobenzonitrile (2n)

Bromobenzonitrile (20)

[1,1'-biphenyl]-2-carbonitrile (2p)

2,3-dihydrobenzo[b][1,4]dioxine-6-carbonitrile(2q)

3,4-dimethylbenzonitrile (2r)

3,4-dimethoxybenzonitrile (2s)

2-fluoro-4-methylbenzonitrile (2t)

2,4,6-trimethylbenzonitrile (2u)

3,4,5-trimethoxybenzonitrile (2v)

Terephthalonitrile (2w)

[1,1'-biphenyl]-4,4'-dicarbonitrile (2x)

4-methoxybenzonitrile (2a)

2,3-dihydrobenzo[b][1,4]dioxine-6-carbonitrile (2q)

3,4-dimethoxybenzonitrile (2s)

Phenanthrene-9-carbonitrile (2y)

Anthracene-9-carbonitrile (2z)

3,5-dihydropyrene-1-carbonitrile (2aa)

4 4-(tert-butyl)benzonitrile

5 4-methylbenzoic acid

6 4-bromobenzamide

9 2-(4-bromophenyl)-[1,2,4]triazolo[1,5-*a*]pyridine

10 phenyl(*p*-tolyl)methanone

11 methyl 4-nitrobenzoate

