General Considerations

Unless specified, all reagents and starting materials were purchased from commercial sources and used as received. Solvents were purified following standard literature procedures. Analytical thin layer chromatography (TLC) was performed using pre-coated silica gel plate. Visualization was achieved by UV light (254 nm). Flash chromatography was performed using silica gel and a gradient solvent system (Ethyl acetate: Petrol ether as eluant). ¹H and ¹³C NMR spectra were measured on 400 MHz spectrometers. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Multiplicities are given as: s (singlet), bs (broad singlet), d (doublet), t (triplet), dd (doublet of doublets) or m (multiplet). The number of protons (n) for a given resonance is indicated by nH and coupling constants are reported as a J value in Hz. High resolution mass spectra (HRMS) were obtained on a LTQ Orbitrap LC/HRMS mass spectrometer. All the starting materials **1** (2-alkynyl arylazides) were prepared by our reported methods.¹

General experimental procedure for the synthesis of 4.

To a 5 ml of test tube was added 2-alkynyl arylazides 1 (0.1 mmol, 1 equiv), TsOH 2 (0.3 mmol, 3 equiv), Pd(OAc)₂ (5 mol%), and 1,4-dioxane (1 mL). The reaction mixture was stirred at room temperature. After the 2-alkynyl arylazides 1 disappeared monitored by TLC, Cs_2CO_3 (0.35 mmol, 3.5 equiv) and 3 (1 mmol, 10 equiv) were added to the reaction solution, which was then stirred at 90 °C and monitored by TLC analysis. On completion, the reaction mixture was directly subjected to purification by flash column chromatography on silica gel to give the desired 4. (eluent: petrol ether: ethyl acetate = 10:1 to 2:1).

cis-8b-Hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)thione (4aa)

Isolated yield = 93%; yellow solid; m.p. 102.1-103.6 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.25$ (s, 1 H), 6.64-6.67 (m, 2 H), 6.93 (s, 1 H), 7.09-7.13 (m, 1 H), 7.16 (d, J = 7.6 Hz, 1 H), 7.32-7.38 (m, 5 H), 9.24 (s, 1 H), 9.34 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 90.6$, 98.8, 108.9, 117.8, 124.6, 128.0, 128.1, 128.2, 128.5, 130.2, 137.9, 150.1, 181.8; HRMS (ESI) calcd for C₁₅H₁₄N₃OS [M+H]⁺ 284.0858, found 284.0862.

cis-8b-Hydroxy-7-methyl-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ab)

Isolated yield = 87%; yellow solid; m.p. 121.5-122.8 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 2.21 (s, 3 H), 6.19 (s, 1 H), 6.56 (d, J = 8.0 Hz, 1 H), 6.69 (s, 1 H), 6.93 (d, J = 8.0 Hz, 1 H), 6.99 (s, 1 H), 7.30-7.37 (m, 5 H), 9.19 (s, 1 H), 9.28 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): δ = 20.9, 90.9, 98.8, 108.9, 125.0, 126.4, 128.0, 128.1, 128.4, 130.5, 138.1, 147.9, 181.8; HRMS (ESI) calcd for C₁₆H₁₆N₃OS [M+H]⁺ 298.1014, found 298.1022.

cis-7-Chloro-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ac)

Isolated yield = 93%; yellow solid; m.p. 85.8-86.9 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.44$ (s, 1 H), 6.65 (d, J = 8.0 Hz, 1 H), 7.13-7.16 (m, 3 H), 7.37 (s, 5 H), 9.36 (s, 2 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 91.1$, 98.2, 110.2, 120.8, 124.5, 128.0, 128.1, 128.7, 129.9, 130.1, 137.4, 148.9, 182.0; HRMS (ESI) calcd for C₁₅H₁₃ClN₃OS [M+H]⁺ 318.0468, found 318.0474.

cis-7-Fluoro-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ad)

Isolated yield = 80%; yellow solid; m.p. 150.8-152.2 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.40$ (s, 1 H), 6.62-6.65 (m, 1 H), 6.85 (s, 1 H), 6.92-6.99 (m, 2 H), 7.32-7.38 (m, 5 H), 9.31 (s, 1 H), 9.35 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 91.4$, 98.4, 109.5 (d, J = 7.4 Hz), 111.5 (d, J = 24.2 Hz), 116.5 (d, J = 22.8 Hz), 128.0, 128.1, 128.6, 129.5 (d, J = 7.6 Hz), 137.7, 146.4, 155.8 (d, J = 230.7 Hz), 182.1; HRMS (ESI) calcd for C₁₅H₁₃FN₃OS [M+H]⁺ 302.0763, found 302.07701.

cis-Methyl 8b-hydroxy-3a-phenyl-2-thioxo-1,2,3,3a,4,8b-hexahydroimidazo[4,5-*b*] indole-7-carboxylate (4ae)

Isolated yield = 97%; white solid; m.p. 155.3-156.4 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 3.78 (s, 3 H), 6.49 (s, 1 H), 6.69 (d, J = 8.0 Hz, 1 H), 7.34-7.41 (m, 5 H), 7.78-7.81 (m, 2 H), 7.87 (s, 1 H), 9.42 (s, 1 H), 9.47 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): δ = 51.9, 90.9, 97.9, 107.8, 118.4, 126.5, 127.9, 128.2, 128.3, 128.8, 132.9, 137.0, 154.3, 166.6, 181.9; HRMS (ESI) calcd for C₁₇H₁₆N₃O₃S [M+H]⁺ 342.0912, found 342.0924.

cis-8b-Hydroxy-3a-phenyl-7-(trifluoromethyl)-3,3a,4,8b-tetrahydroimidazo[4,5*b*]indole-2(1*H*)-thione (4af)

Isolated yield = 90%; yellow solid; m.p. 123.8-125.5 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.54$ (s, 1 H), 6.76 (d, J = 8.4 Hz, 1 H), 7.35-7.46 (m, 7 H), 7.72 (s, 1 H), 9.44 (s, 1 H), 9.45 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 90.9$, 97.8, 108.3, 117.6 (d, J = 31.8 Hz), 121.9 (d, J = 3.3 Hz), 125.6 (d, J = 269.0 Hz), 125.7, 128.0, 128.2, 128.5, 128.8, 137.0, 153.1, 182.1; HRMS (ESI) calcd for C₁₆H₁₃F₃N₃OS [M+H]⁺ 352.0731, found 352.0740.

cis-6-Chloro-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ag)

Isolated yield = 95%; yellow solid; m.p. 150.4-151.9 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.38$ (s, 1 H), 6.63 (s, 1 H), 6.66-6.68 (dd, $J_1 = 1.6$ Hz, $J_2 = 8.0$ Hz, 1 H), 7.11 (d, J = 8.0 Hz, 1 H), 7.26 (s, 1 H), 7.32-7.40 (m, 5 H), 9.34 (s, 1 H), 9.42 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 90.9$, 97.9, 108.3, 117.2, 125.9, 127.2, 128.0, 128.2, 128.7, 134.6, 137.4, 151.5, 181.9; HRMS (ESI) calcd for C₁₅H₁₃ClN₃OS [M+H]⁺ 318.0468, found 318.0453.

cis-8b-Hydroxy-3a-phenyl-6-(trifluoromethyl)-3,3a,4,8b-tetrahydroimidazo[4,5*b*]indole-2(1*H*)-thione (4ah)

Isolated yield = 88%; yellow solid; m.p. 85.5-86.9 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.54$ (s, 1 H), 6.76 (d, J = 8.4 Hz, 1 H), 7.35-7.46 (m, 7 H), 7.72 (s, 1 H), 9.44 (s, 1 H), 9.45 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 90.9$, 97.9, 104.5 (d, J = 3.7 Hz), 114.4 (d, J = 4.0 Hz), 123.5 (d, J = 270.6 Hz), 125.3, 128.0, 128.2, 128.7, 130.7 (d, J = 30.9 Hz), 132.2, 137.2, 150.5, 182.2; HRMS (ESI) calcd for C₁₆H₁₃F₃N₃OS [M+H]⁺ 352.0731, found 352.0743.

b]indole-2(1*H*)-thione (4ai)

Isolated yield = 97%; yellow solid; m.p. 185.5-187.3 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.64$ (s, 1 H), 7.11 (s, 1 H), 7.34-7.41 (m, 6 H), 7.46 (s, 1 H), 9.38 (s, 1 H), 9.45 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 90.8$, 98.4, 113.2, 121.2, 123.4, 128.1, 128.2, 128.8, 129.1, 131.6, 136.7, 145.6, 182.3; HRMS (ESI) calcd for C₁₅H₁₂Cl₂N₃OS [M+H]⁺ 352.0078, found 352.0063.

cis-8b-Hydroxy-3a-(*p*-tolyl)-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)thione (4aj)

Isolated yield = 85%; brown solid; m.p. 130.8-132.5 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 2.31$ (s, 3 H), 6.18 (s, 1 H), 6.63-6.65 (m, 2 H), 6.86 (s, 1 H), 7.08-7.18 (m, 4 H), 7.25 (d, J = 8.0 Hz, 2 H), 9.19 (s, 1 H), 9.30 (s, 1 H); ¹³C NMR (DMSO- d_6 ,100 MHz): $\delta = 21.2$, 90.6, 98.6, 108.8, 117.7, 124.6, 128.0, 128.2, 128.6, 130.1, 134.9, 137.7, 150.1, 181.8; HRMS (ESI) calcd for C₁₆H₁₆N₃OS [M+H]⁺ 298.1014, found

298.1022.

cis-3a-(4-Ethylphenyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ak)

Isolated yield = 84%; brown solid; m.p. 116.7-118.0 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 1.19$ (t, J = 7.6 Hz, 3 H), 2.58-2.64 (q, 2 H), 6.21 (s, 1 H), 6.63-6.66 (m, 2 H), 6.87 (s, 1 H), 7.08-7.12 (m, 1 H), 7.15 (d, J = 7.6 Hz, 1 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.28 (d, J = 8.4 Hz, 2 H), 9.19 (s, 1 H), 9.31 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 16.1$, 28.3, 90.6, 98.6, 108.8, 117.7, 124.6, 127.5, 128.1, 128.2, 130.1, 135.2, 144.0, 150.1, 181.8; HRMS (ESI) calcd for C₁₇H₁₈N₃OS [M+H]⁺ 312.1171, found 312.1182.

cis-3a-(4-Chlorophenyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4al)

Isolated yield = 85%; yellow solid; m.p. 93.8-95.2 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.32$ (s, 1 H), 6.64-6.68 (m, 2 H), 6.99 (s, 1 H), 7.09-7.13 (m, 1 H), 7.16 (d, J = 7.2 Hz, 1 H), 7.36 (d, J = 8.4 Hz, 2 H), 7.44 (d, J = 8.8 Hz, 2 H), 9.29 (s, 1 H), 9.41 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 90.1$, 98.8, 108.9, 117.9, 124.6, 128.0, 130.0, 130.3, 133.3, 137.1, 149.9, 181.9; HRMS (ESI) calcd for C₁₅H₁₃ClN₃OS [M+H]⁺ 318.0468, found 318.0472.

cis-3a-(3-Fluorophenyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-b]indole-

2(1*H*)-thione (4am)

Isolated yield = 86%; yellow solid; m.p. 104.7-106.0 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.36$ (s, 1 H), 6.65-6.69 (m, 2 H), 7.02 (s, 1 H), 7.10-7.21 (m, 5 H), 7.39-7.45 (m, 1 H), 9.30 (s, 1 H), 9.43 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 90.1$, 98.9, 109.0, 114.9, 115.3 (d, J = 21.8 Hz), 118.0, 124.2 (d, J = 2.2 Hz), 124.6, 127.9, 130.0 (d, J = 8.1 Hz), 130.3, 141.1 (d, J = 6.9 Hz), 149.9, 162.2 (d, J = 240.7 Hz), 181.9; HRMS (ESI) calcd for C₁₅H₁₃FN₃OS [M+H]⁺ 302.0763, found 302.0772.

cis-7-Chloro-3a-(4-ethylphenyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5*b*]indole-2(1*H*)-thione (4an)

Isolated yield = 81%; yellow solid; m.p. 93.8-95.5 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 1.18$ (t, J = 7.6 Hz, 3 H), 2.58-2.64 (q, 2 H), 6.40 (s, 1 H), 6.64 (d, J = 8.0 Hz, 1 H), 7.09-7.14 (m, 3 H), 7.19-7.27 (m, 4 H), 9.30 (s, 1 H), 9.32 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 16.1$, 28.3, 91.1, 98.0, 110.1, 120.7, 124.5, 127.5, 128.0, 129.8, 130.2, 134.7, 144.2, 148.9, 181.9; HRMS (ESI) calcd for C₁₇H₁₇ClN₃OS [M+H]⁺ 346.0781, found 346.0773.

cis-7-Chloro-3a-(4-chlorophenyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5*b*]indole-2(1*H*)-thione (4ao)

Isolated yield = 92%; brown solid; m.p. 141.1-143.6 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.51$ (s, 1 H), 6.65 (d, J = 8.0 Hz, 1 H), 7.13-7.16 (m, 2 H), 7.22 (s, 1 H), 7.34 (d, J = 8.4 Hz, 2 H), 7.46 (d, J = 8.4 Hz, 2 H), 9.41 (s, 1 H), 9.42 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 90.5$, 98.3, 110.3, 120.9, 124.5, 128.1, 129.9, 133.5, 136.5, 148.7, 182.1; HRMS (ESI) calcd for C₁₅H₁₂Cl₂N₃OS [M+H]⁺ 352.0078, found 352.0085.

cis-3a-(4-Chlorophenyl)-7-fluoro-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-

Isolated yield = 77%; yellow solid; m.p. 125.3-127.1 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.47$ (s, 1 H), 6.62 (d, J = 4.0 Hz, 1 H), 6.91-6.98 (m, 3 H), 7.35 (d, J = 8.4 Hz, 2 H), 7.45 (d, J = 8.4 Hz, 2 H), 9.36 (s, 1 H), 9.41 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 90.8$, 98.4, 109.7 (d, J = 7.8 Hz), 111.5 (d, J = 24.2 Hz), 116.6 (d, J = 23.4 Hz), 128.1, 129.4, 130.0, 133.4, 136.8, 146.2, 155.8 (d, J = 231.3 Hz), 182.1; HRMS (ESI) calcd for C₁₅H₁₂CIFN₃OS [M+H]⁺ 336.0374, found 336.0381.

cis-6-Chloro-8b-hydroxy-3a-(*p*-tolyl)-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4aq)

Isolated yield = 87%; yellow solid; m.p. 133.2-135.6 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 2.31 (s, 3 H), 6.31 (s, 1 H), 6.62 (d, J = 1.2 Hz, 1 H), 6.64-6.67 (dd, J_1 = 2.0 Hz, J_2 = 8.0 Hz, 1 H), 7.10 (d, J = 8.0 Hz, 1 H), 7.17-7.24 (m, 5 H), 9.29 (s, 1 H), 9.37 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 21.1, 90.9, 97.8, 108.3, 117.2, 125.9, 127.3, 127.9, 128.7, 134.4, 134.5, 137.9, 151.5, 181.9; HRMS (ESI) calcd for C₁₆H₁₅ClN₃OS [M+H]⁺ 332.0624, found 332.0633.

cis-6-Chloro-3a-(4-chlorophenyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5*b*]indole-2(1*H*)-thione (4ar)

Isolated yield = 93%; yellow solid; m.p. 139.3-140.6 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.46$ (s, 1 H), 6.64 (s, 1 H), 6.68 (d, J = 8.0 Hz, 1 H), 7.13 (d, J = 8.0 Hz, 1 H), 7.33-7.36 (m, 3 H), 7.46 (d, J = 8.4 Hz, 2 H), 9.39 (s, 1 H), 9.49 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 90.4$, 98.1, 108.4, 117.5, 125.9, 127.0, 128.2, 129.9, 133.5, 134.7, 136.5, 151.3, 182.0; HRMS (ESI) calcd for C₁₅H₁₂Cl₂N₃OS [M+H]⁺ 352.0078, found 352.0085.

cis-8b-Hydroxy-3a-(thiophen-2-yl)-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4as)

Isolated yield = 56%; brown solid; m.p. 117.6-118.9 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 6.38$ (s, 1 H), 6.58-6.67 (m, 2 H), 6.91 (s, 1 H), 6.95 (d, J = 5.2 Hz, 1 H), 7.07-7.11 (m, 1 H), 7.17 (d, J = 7.2 Hz, 1 H), 7.39-7.40 (m, 1 H), 7.46-7.48 (m, 1 H), 9.27 (s, 1 H), 9.36 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 88.7$, 98.2, 109.1, 117.8, 124.2, 124.5, 125.9, 128.1, 128.2, 130.1, 140.1, 149.7, 181.5; HRMS (ESI) calcd for C₁₃H₁₂N₃OS₂ [M+H]⁺290.0422, found 290.0431.

cis-3a-(*tert*-Butyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)thione (4at)

Isolated yield = 85%; brown solid; m.p. 174.9-176.5 °C; ¹H NMR (DMSO- d_6 , 400 MHz): δ = 1.09 (s, 9 H), 6.43 (s, 1 H), 6.45 (s, 1 H), 6.53-6.59 (m, 2 H), 7.00-7.04 (m, 1 H), 7.16 (d, J = 7.2 Hz, 1 H), 8.66 (s, 1 H), 9.08 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): δ = 25.6, 37.9, 91.5, 98.8, 108.8, 117.0, 123.8, 129.9, 130.2, 149.6, 180.9; HRMS (ESI) calcd for C₁₃H₁₈N₃OS [M+H]⁺264.1171, found 264.1183.

cis-8b-hydroxy-3a-pentyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4au)

Isolated yield = 66%; brown solid; m.p. 74.4-75.6 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 0.86$ (t, J = 6.8 Hz, 3 H), 1.21-1.48 (m, 6 H), 1.65-1.74 (m, 2 H), 6.41 (s, 1 H), 6.48 (d, J = 7.6 Hz, 1 H), 6.54 (s, 1 H), 6.57-6.61 (m, 1 H), 7.00-7.04 (m, 1 H), 7.15 (d, J = 7.2 Hz, 1 H), 8.82 (s, 1 H), 9.16 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta =$ 14.4, 22.5, 22.7, 32.3, 34.3, 88.2, 97.4, 109.1, 117.4, 124.1, 129.2, 129.9, 149.6, 180.5; HRMS (ESI) calcd for C₁₄H₂₀N₃OS [M+H]⁺ 278.1327, found 278.1332.

cis-8b-Hydroxy-1,3-dimethyl-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5*b*]indole-2(1*H*)-thione (4ba)

Isolated yield = 95%; brown solid; m.p. 202.8-204.0 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 2.93$ (s, 3 H), 3.09 (s, 3 H), 6.56 (s, 1 H), 6.69-6.75 (m, 2 H), 7.18-7.21 (m, 1 H), 7.26-7.29 (m, 3 H), 7.36-7.45 (m, 3 H), 7.54 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 29.5$, 31.6, 92.3, 98.8, 108.9, 118.1, 125.0, 125.7, 128.4, 128.7,128.9, 130.9, 135.4, 149.7, 182.2; HRMS (ESI) calcd for C₁₇H₁₈N₃OS [M+H]⁺ 312.1171, found 312.1184.

cis-7-Fluoro-8b-hydroxy-1,3-dimethyl-3a-phenyl-3,3a,4,8b-

tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4bb)

Isolated yield = 91%; yellow solid; m.p. 241.9-243.3 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 2.91$ (s, 3 H), 3.08 (s, 3 H), 6.69-6.72 (m, 2 H), 7.01-7.07 (m, 1 H), 7.11-7.14 (m, 1 H), 7.26 (d, J = 7.6 Hz, 2 H), 7.36-7.45 (m, 4 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 29.5$, 31.6, 93.0, 98.5, 109.6 (d, J = 7.8 Hz), 112.1 (d, J = 24.1 Hz), 117.2 (d, J = 23.1 Hz), 126.9 (d, J = 7.4 Hz), 128.3, 128.7, 129.0, 135.2, 146.0, 155.8 (d, J = 231.4 Hz), 182.4; HRMS (ESI) calcd for C₁₇H₁₇FN₃OS [M+H]⁺ 330.1076, found 330.1083.

cis-1,3-Diethyl-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4bc)

Isolated yield = 96%; yellow solid; m.p. 189.8-190.2 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 1.07$ (t, J = 6.4 Hz, 3 H), 1.12 (t, J = 6.0 Hz, 3 H), 3.14-3.19 (m, 1 H), 3.61-3.74 (m, 3 H), 6.49 (s, 1 H), 6.66-6.74 (m, 2 H), 7.15-7.19 (m, 1 H), 7.26 (d, J = 7.2 Hz, 1 H), 7.32 (d, J = 7.2 Hz, 2 H), 7.37 (d, J = 6.8 Hz, 1 H), 7.40-7.44 (m, 2 H), 7.48 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 14.4$, 14.7, 37.9, 39.9, 93.1, 98.9, 108.8, 117.9, 124.8, 126.0, 128.4, 128.8, 128.9, 130.8, 135.7, 149.8, 181.3; HRMS (ESI) calcd for C₁₉H₂₂N₃OS [M+H]⁺ 340.1484, found 340.1493.

cis-Methyl 1,3-diethyl-8b-hydroxy-3a-phenyl-2-thioxo-1,2,3,3a,4,8b-hexahydro imidazo[4,5-*b*]indole-7-carboxylate (4bd)

Isolated yield = 97%; yellow solid; m.p. 87.9-89.2 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 1.07$ (t, J = 7.2 Hz, 3 H), 1.12 (t, J = 6.8 Hz, 3 H), 3.12-3.20 (m, 1 H), 3.58-3.74 (m, 3 H), 6.76-6.78 (m, 2 H), 7.29 (d, J = 7.6 Hz, 2 H), 7.37-7.46 (m, 3 H), 7.83-7.85 (m, 2 H), 8.33 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 14.3$, 14.6, 37.9, 52.0, 93.4, 98.2, 108.1, 118.7, 126.2, 126.3, 128.6, 128.7, 129.2, 133.4, 134.8, 153.9, 166.4, 181.4; HRMS (ESI) calcd for C₂₁H₂₄N₃O₃S [M+H]⁺ 398.1538, found 398.1546.

cis-6-chloro-3a-(4-chlorophenyl)-1,3-diethyl-8b-hydroxy-3,3a,4,8btetrahydroimidazo[4,5-b]indole-2(1H)-thione (4be)

Isolated yield = 97%; white solid; m.p. 180.7-182.3 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 1.05$ (t, J = 6.8 Hz, 3 H), 1.11 (t, J = 6.8 Hz, 3 H), 3.11-3.19 (m, 1 H), 3.58-3.73 (m, 3 H), 6.68 (s, 1 H), 6.69-6.71 (m, 2 H), 7.25-7.30 (m, 3 H), 7.51 (d, J = 8.4 Hz, 2 H), 7.83 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 14.3$, 14.6, 37.9, 92.9, 98.3, 108.5, 117.7, 124.9, 126.2, 128.6, 130.7, 133.9, 134.3, 135.3, 150.9, 181.5; HRMS (ESI) calcd for C₁₉H₂₀Cl₂N₃OS [M+H]⁺ 408.0704, found 408.0712.

cis-1,3-Dibutyl-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4bf)

Isolated yield = 86%; yellow solid; m.p. 118.7-120.4 °C; ¹H NMR (DMSO- d_6 , 400 MHz): $\delta = 0.80$ (t, J = 7.6 Hz, 3 H), 0.84 (t, J = 7.2 Hz, 3 H), 1.12-1.27 (m, 4 H), 1.32-1.41 (m, 1 H), 1.50-1.68 (m, 3 H), 2.98-3.05 (m, 1 H), 3.49-3.68 (m, 3 H), 6.50 (s, 1 H), 6.65-6.69 (m, 1 H), 6.72 (d, J = 8.0 Hz, 1 H), 7.14-7.18 (m, 1 H), 7.24 (d, J = 7.6 Hz, 1 H), 7.31 (d, J = 7.2 Hz, 2 H), 7.34-7.43 (m, 3 H), 7.45 (s, 1 H); ¹³C NMR (DMSO- d_6 , 100 MHz): $\delta = 14.1$, 14.2, 20.2, 20.3, 30.5, 30.9, 43.1, 45.2, 93.0, 98.9, 108.9, 117.8, 124.8, 126.1, 128.4, 128.8, 128.9, 130.8, 135.6, 149.7, 181.8; HRMS (ESI) calcd for C₂₃H₃₀N₃OS [M+H]⁺ 396.2110, found 396.2122.

Figure 1. ¹H and ¹³C NMR Spectra of *cis*-8b-Hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4aa)

Figure 2. ¹H and ¹³C NMR Spectra of *cis*-8b-Hydroxy-7-methyl-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ab)

Figure 3. ¹H and ¹³C NMR Spectra of *cis*-7-Chloro-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ac)

Figure 4. ¹H and ¹³C NMR Spectra of *cis*-7-Fluoro-8b-hydroxy-3a-phenyl-3,3a, 4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ad)

Figure 5. ¹H and ¹³C NMR Spectra of *cis*-**Methyl 8b-hydroxy-3a-phenyl-2-thioxo-1,2,3,3a,4,8b-hexahydroimidazo**[**4,5-***b*]**indole-7-carboxylate** (**4ae**)

Figure 6. ¹H and ¹³C NMR Spectra of *cis***-8b-Hydroxy-3a-phenyl-7-(trifluoro - methyl)-3,3a,4,8b-tetrahydroimidazo[4,5-***b***]indole-2(1***H***)-thione (4af)**

Figure 7. ¹H and ¹³C NMR Spectra of *cis*-6-Chloro-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ag)

Figure 8. ¹H and ¹³C NMR Spectra of *cis*-**8b-Hydroxy-3a-phenyl-6-(trifluoro - methyl)-3,3a,4,8b-tetrahydroimidazo[4,5-***b***]indole-2(1***H***)-thione (4ah)**

Figure 9. ¹H and ¹³C NMR Spectra of *cis*-**5**,**7**-**Dichloro-8b-hydroxy-3a-phenyl-3**,**3a**,**4**,**8b-tetrahydroimidazo**[**4**,**5**-*b*]**indole-2**(1*H*)-**thione** (**4ai**)

Figure 11. ¹H and ¹³C NMR Spectra of *cis*-**3a**-(**4**-**Ethylphenyl**)-**8b**-hydroxy-**3**,**3a**,**4**,**8b**-tetrahydroimidazo[**4**,**5**-*b*]indole-**2**(1*H*)-thione (**4**ak)

Figure 13. ¹H and ¹³C NMR Spectra of *cis*-**3a**-(**3**-**Fluorophenyl**)-**8b**-hydroxy-**3**,**3a**,**4**,**8b**-tetrahydroimidazo[**4**,**5**-*b*]indole-2(1*H*)-thione (4am)

Figure 14. ¹H and ¹³C NMR Spectra of *cis*-7-Chloro-3a-(4-ethylphenyl)-8bhydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4an)

Figure 16. ¹H and ¹³C NMR Spectra of *cis*-**3a**-(**4**-**Chlorophenyl**)-**7**-**fluoro-8b**hydroxy-**3**,**3a**,**4**,**8b**-tetrahydroimidazo[**4**,**5**-*b*]indole-**2**(1*H*)-thione (**4a**p)

Figure 17. ¹H and ¹³C NMR Spectra of *cis*-6-Chloro-8b-hydroxy-3a-(*p*-tolyl)-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4aq)

Figure 20. ¹H and ¹³C NMR Spectra of *cis*-3a-(*tert*-Butyl)-8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4at)

Figure 21. ¹H and ¹³C NMR Spectra of *cis*-8b-hydroxy-3a-pentyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4au)

Figure 22. ¹H and ¹³C NMR Spectra of *cis*-8b-Hydroxy-1,3-dimethyl-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4ba)

Figure 23. ¹H and ¹³C NMR Spectra of *cis*-7-Fluoro-8b-hydroxy-1,3-dimethyl-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4bb)

Figure 24. ¹H and ¹³C NMR Spectra of *cis*-1,3-Diethyl-8b-hydroxy-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4bc)

Figure 25. ¹H and ¹³C NMR Spectra of *cis*-Methyl 1,3-diethyl-8b-hydroxy-3a - phenyl-2-thioxo-1,2,3,3a,4,8b-hexahydro-imidazo[4,5-*b*]indole-7-carboxylate (4bd)

Figure 26. ¹H and ¹³C NMR Spectra of *cis*-6-chloro-3a-(4-chlorophenyl)-1,3diethyl -8b-hydroxy-3,3a,4,8b-tetrahydroimidazo[4,5-b]indole-2(1H)-thione (4be)

Figure 27. ¹H and ¹³C NMR Spectra of *cis*-1,3-Dibutyl-8b-hydroxy-3a-phenyl - 3,3a,4,8b-tetrahydroimidazo[4,5-*b*]indole-2(1*H*)-thione (4bf)

Figure 28. ORTEP Drawing of *cis*-**8b-hydroxy-1,3-dimethyl-3a-phenyl-3,3a,4,8b-tetrahydroimidazo[4,5-***b***]indole-2(1***H***)-thione (4ba)**

Bond precision:	C-C = 0.0068 A	Wavelength=0.710)73
Cell:	a=10.0607(13)	b=21.437(3) c=14.	9649(18)
Temperature:	293 К	Joeu 101.030(11) guille	
	Calculated	Reported	
Volume	3162.2(7)	3162.1(7)	
Space group	P 21/n	P 1 21/n 1	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C17 H16 N3 O S	C17 H16 N3 O S	
Sum formula	C17 H16 N3 O S	C17 H16 N3 O S	
Mr	310.39	310.39	
Dx,g cm-3	1.304	1.304	
Z	8	8	
Mu (mm-1)	0.210	0.210	
F000	1304.0	1304.0	
F000'	1305.43		
h,k,lmax	11,25,17	11,25,17	
Nref	5556	5554	
Tmin, Tmax	0.971,0.977	0.715,1.000	
Tmin'	0.971		
Correction meth AbsCorr = MULTI	od= # Reported T -SCAN	Limits: Tmin=0.715 Tmax=1	.000
Data completeness= 1.000		Theta(max) = 24.999	
R(reflections) = 0.0722(2915) wR2(reflections) = 0.1823(5554)			
S = 1.059 Npar= 403			