Supporting information

Palladium-Catalyzed Three-Component Carbonylative Synthesis of 2-(Trifluoromethyl)quinazolin-4(3H)-ones from

 Trifluoroacetimidoyl Chlorides and AminesZhengkai Chen, ${ }^{\mathrm{a}}$ Le-Cheng Wang, ${ }^{\text {a }}$ Jiajun Zhang, ${ }^{a}$ Xiao-Feng Wu*a, ${ }^{\text {b }}$

a. Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
b. Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059

Rostock, Germany

E-mail: xiao-feng.wu @ catalysis.de

Contents

1. General Information S1
1.1 Preparation of Fluorinated Imidoyl Chlorides. S1
1.2 Preparation of TFBen S2
2. Experimental Procedures S2
2.1 Optimization of the Reaction Conditions S2
2.2 General Procedure for the Synthesis of $\mathbf{3 / 4}$ S5
2.3 General Procedure for the Synthesis of 5 S6
2.4 Late-stage Modification of Natural Complex Molecules S6
2.5 Synthetic Application for the Synthesis of Bioactive Molecule Rutaecarpine S7
3 The Mechanistic Investigations. S8
4 Characterization Data of the Corresponding Products S9
5 References S39
6 Copy of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products. S40

1. General Information

Unless otherwise noted, all reactions were carried out under air atmosphere. All reagents were from commercial sources and used as received without further purification. All solvents were dried by standard techniques and distilled prior to use. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (bp. $60 \sim 90{ }^{\circ} \mathrm{C}$) and ethyl acetate as eluent. ${ }^{1} \mathrm{NMR}$ spectra were recorded on a Bruker Avance operating at for ${ }^{1} \mathrm{H}$ NMR at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 100 MHz and ${ }^{19} \mathrm{~F}$ NMR at 377 MHz and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}\right.$ NMR $\delta 7.26,{ }^{13} \mathrm{C}$ NMR $\left.\delta 77.16\right)$, DMSO - $\mathrm{D}_{6}\left({ }^{1} \mathrm{H}\right.$ NMR δ $2.50,{ }^{13} \mathrm{C}$ NMR $\delta 39.52$) as solvent. All coupling constants (J) are reported in Hz . The following abbreviations were used to describe peak splitting patterns when appropriate: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ double doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{dt}=$ double triplet, $\mathrm{q}=$ quatriplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Gas chromatography (GC) analyses were performed on a Shimadzu GC-2014C chromatograph equipped with a FID detector. Mass spectra (MS) were measured on spectrometer by direct inlet at 70 eV . Mass spectroscopy data of the products were collected on an HRMS-TOF instrument or Waters TOFMS GCT Premier using EI or ESI ionization. Melting points were measured with WRR digital point apparatus and not corrected.

1.1 Preparation of Fluorinated Imidoyl Chlorides ${ }^{1}$

$$
\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CF}_{3} \mathrm{COOH} \xrightarrow[\mathrm{CCl}_{4}, \text { reflux }]{\mathrm{PPh}_{3}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{TFA}} \mathrm{~F}_{3} \mathrm{C} \xrightarrow[\mathrm{~N}^{-} \mathrm{R}]{\stackrel{\mathrm{Cl}}{\mathrm{Cl}}}
$$

A 200 mL two-necked flask equipped with a septum cap, a condenser, and a Teflon coated magnetic stir bar was charged with $\mathrm{PPh}_{3}(34.5 \mathrm{~g}, 132 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(7.3 \mathrm{~mL}, 53 \mathrm{mmol}), \mathrm{CCl}_{4}$ (21.1 $\mathrm{mL}, 220 \mathrm{mmol}$), and TFA ($3.4 \mathrm{~mL}, 44 \mathrm{mmol}$). After the solution was stirred for about 10 min (ice bath), amine (53 mmol) dissolved in $\mathrm{CCl}_{4}(21.1 \mathrm{~mL}, 220 \mathrm{mmol})$ was added. The mixture was then refluxed under stirring (3 h). After the reaction was completed, residual solid $\mathrm{Ph}_{3} \mathrm{PO}, \mathrm{PPh}_{3}$ and $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{HC} 1$ were washed with hexane several times. Then the hexane was filtered and concentrated under vacuum. The crude product was purified by column chromatography on silica gel or neutral alumina to afford the corresponding trifluoroacetimidoyl chloride product.

1.2 Preparation of TFBen ${ }^{2}$

Formic acid ($8.4 \mathrm{~mL}, 222.8 \mathrm{mmol}, 5.0$ equiv.) was added to acetic anhydride ($16.8 \mathrm{~mL}, 178.2$ mmol, 4.0 equiv.) at rt . The mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 1 h and cooled to rt . The resulting solution was poured into a flask containing 1,3,5-trihydroxybenzene ($5.62 \mathrm{~g}, 44.6 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{NaOAc}(1.83 \mathrm{~g}, 22.3 \mathrm{mmol}, 0.5$ equiv.). The mixture was stirred for 4 h in a water bath and then diluted with toluene (100 mL), washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ twice. The organic phase was kept in fridge $\left(2-8{ }^{\circ} \mathrm{C}\right)$ overnight, then filtered and dried in vacuo to afford the desired product benzene-1,3,5-triyl triformate (TFBen) $(5.1 \mathrm{~g}, 55 \%)$ as a white solid.

2. Experimental Procedures

2.1 Optimization of the Reaction Conditions

2.1.1 Screening of Catalysts ${ }^{a}$

Entry	Cat.	Yield (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2}$	29
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$	69
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	71
4	$\operatorname{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}_{2} \mathrm{Cl}_{2}\right.$	91
5	PdCl_{2}	73
$\mathbf{6}$	$\mathbf{P d}(\mathbf{T F A})_{2}$	$\mathbf{9 5}$

${ }^{a}$ Reaction conditions: 1a $(0.20 \mathrm{mmol})$, $\mathbf{2 a}\left(0.50 \mathrm{mmol}, 2.5\right.$ equiv), $[\mathrm{M}](5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(10$
$\mathrm{mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.40 \mathrm{mmol}, 2.0$ equiv), TFBen ($1.0 \mathrm{mmol}, 5.0$ equiv), THF (2.0 mL), 110 ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{b}$ Yields determined by GC analysis using dodecane as an internal standard.

2.1.2 Screening of Ligands ${ }^{a}$

Entry	Ligand	Yield (\%) ${ }^{\text {b }}$
1	Tris(p-methoxyphenyl)phosphine	13
2	Tris(4-fluorophenyl)phosphine	82
3	Xphos	41
4	DPPP	94
5	DPPF	87
6	Xantphos	90
${ }^{a}$ Reaction conditions: 1a (0.20 mmol), 2a ($0.50 \mathrm{mmol}, 2.5$ equiv), $\mathrm{Pd}(\mathrm{TFA}) 2(5 \mathrm{~mol} \%)$,		
nd (10 $\mathrm{mL})$, dard.	$\%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.40 \mathrm{mmol}, 2.0$ equiv) ${ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{b}$ Yields determined by GC	mmol, 5.0 dodecane

2.1.3 Screening of Solvents ${ }^{a}$

Entry	Solvent	Yield (\%) ${ }^{b}$
1	THF	95
$\mathbf{2}$	$\mathbf{1 , 4 - d i o x a n e}$	$\mathbf{9 7 (9 5)}{ }^{\boldsymbol{c}}$
3	$\mathrm{CH}_{3} \mathrm{CN}$	88
4	toluene	82
5	DMF	85

${ }^{a}$ Reaction conditions: 1a (0.20 mmol), 2a ($0.50 \mathrm{mmol}, 2.5$ equiv), $\operatorname{Pd}(\mathrm{TFA}) 2_{2}(5 \mathrm{~mol} \%)$, PPh_{3} ($10 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.40 \mathrm{mmol}, 2.0$ equiv), TFBen ($1.0 \mathrm{mmol}, 5.0$ equiv), solvent $(2.0 \mathrm{~mL}), 110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{\mathrm{h}}$ Yields determined by GC analysis using dodecane as an internal standard. ${ }^{c}$ Isolated yield.

2.1.4 Screening of Bases ${ }^{a}$

Entry	Base	Yield (\%)
1	NaHCO_{3}	94
2	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	93
3	NaOAc	95

${ }^{a}$ Reaction conditions: 1a $(0.20 \mathrm{mmol})$, 2a $\left(0.50 \mathrm{mmol}, 2.5\right.$ equiv), $\operatorname{Pd}(\mathrm{TFA})_{2}(5 \mathrm{~mol} \%)$, PPh_{3} ($10 \mathrm{~mol} \%$), base ($0.40 \mathrm{mmol}, 2.0$ equiv), TFBen ($1.0 \mathrm{mmol}, 5.0$ equiv), 1,4 -dioxane $(2.0 \mathrm{~mL}), 110{ }^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{\mathrm{h}}$ Yields determined by GC analysis using dodecane as an internal standard.

2.1.5 Screening the amount of $\operatorname{Pd}(\mathbf{T F A})_{2}$ and $\mathrm{PPh}_{3}{ }^{a}$

Entry	Pd(TFA) $)_{2}$	PPh $_{3}$	Yield (\%) b
$\mathbf{1}$	$\mathbf{2 . 5} \mathbf{~ m o l \%}$	$\mathbf{5} \mathbf{~ m o l \%}$	$\mathbf{9 9 (9 8)}{ }^{\boldsymbol{c}}$

${ }^{a}$ Reaction conditions: 1a (0.20 mmol), 2a ($0.50 \mathrm{mmol}, 2.5$ equiv), $\operatorname{Pd}(\mathrm{TFA})_{2}(2.5 \mathrm{~mol} \%)$, PPh_{3} ($5 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($0.40 \mathrm{mmol}, 2.0$ equiv), TFBen ($1.0 \mathrm{mmol}, 5.0$ equiv), 1,4-dioxane (2.0 mL), $110^{\circ} \mathrm{C}, 24 \mathrm{~h} .{ }^{b}$ Yields determined by GC analysis using dodecane as an internal standard. cIsolated yield.

2.2 General Procedure for the Synthesis of 3/4

Under N_{2} atmosphere, $\mathrm{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5$ $\mathrm{mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0 \mathrm{eq})$, and a 2.5 mL vial containing TFBen ($210.0 \mathrm{mg}, 1.0$ mmol, 5.0 equiv), $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2}$ ($0.5 \mathrm{mmol}, 2.5$ equiv), 1,4 -dioxane (2.0 mL) (extra dry) were added to an oven-dried 15 mL In-Ex tube. Then the tube was sealed and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (oil bath) for 24 h . After the reaction was completed, the mixture was slowly cooled to room temperature, the reaction mixture was filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to yield the product 3 or 4.

Scale-up reaction: Under N_{2} atmosphere, $\mathrm{Pd}(\mathrm{TFA})_{2}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}$ ($13.0 \mathrm{mg}, 005 \mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(211 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$), and a 2.5 mL vial containing TFBen ($420.0 \mathrm{mg}, 2.0 \mathrm{mmol}$, 2.0 equiv), 1a ($1.0 \mathrm{mmol}, 335.0 \mathrm{mg} 1.0$ equiv), 2a ($2.5 \mathrm{mmol}, 190.0$ $\mathrm{mg}, 2.5$ equiv), 1,4-dioxane (4.0 mL) (extra dry) were added to an oven-dried 15 mL In-Ex tube. Then the tube was sealed and the mixture was stirred at $110^{\circ} \mathrm{C}$ (oil bath) for 24 h . After the reaction was completed, the mixture was slowly cooled to room temperature, the reaction mixture was filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to yield the product $\mathbf{3}$ or $\mathbf{4}$.

2.3 General Procedure for the Synthesis of 5a

Under air atmosphere, $\mathrm{Na}_{2} \mathrm{CO}_{3}(211 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.$) , 1a (333.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 2a ($182.5 \mathrm{mg}, 2.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), 1,4-dioxane (10.0 mL) (extra dry) were added to a 50 mL round-bottomed flask. Then the tube was sealed and the mixture was stirred at rt. for 2 h . After the reaction was completed, the mixture was slowly cooled to room temperature. After the reaction was completed, the reaction mixture was filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to yield the product 5a as a yellow solid in 99\% yield.

2.4 Late-stage Modification of Natural Complex Molecules

(b)

(c)

Under N_{2} atmosphere, $\mathrm{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5$ $\mathrm{mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0 \mathrm{eq})$, and a 2.5 mL vial containing TFBen ($210.0 \mathrm{mg}, 1.0$ mmol, 5.0 equiv), 1a ($0.2 \mathrm{mmol}, 1.0$ equiv), amine ($0.24 \mathrm{mmol}, 1.2$ equiv), 1,4 -dioxane (2.0 mL) (extra dry) were added to an oven-dried 15 mL In-Ex tube. Then the tube was sealed and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (oil bath) for 24 h . After the reaction was completed, the mixture was slowly cooled to room temperature, the reaction mixture was filtered and concentrated under vacuum. The
residue was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to yield the product 6, 7 and $\mathbf{8}$ in 57\%, 72% and 57% yields, respectively.

2.5 Synthetic Application for the Synthesis of Bioactive Molecule Rutaecarpine

Under N_{2} atmosphere, $\operatorname{Pd}(\mathrm{TFA})_{2}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(13.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 5$ $\mathrm{mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(211.0 \mathrm{mg}, 2.0 \mathrm{mmol}, 2.0 \mathrm{eq})$, and a 2.5 mL vial containing TFBen ($420.0 \mathrm{mg}, 1.0$ mmol, 2.0 equiv), 1a ($333.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv), tryptamine ($192.0 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ equiv), 1,4-dioxane (4.0 mL) (extra dry) were added to an oven-dried 15 mL In-Ex tube. Then the tube was sealed and the mixture was stirred at $110^{\circ} \mathrm{C}$ (oil bath) for 24 h . After the reaction was completed, the mixture was slowly cooled to room temperature, the reaction mixture was filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to yield the product $4 \mathbf{w}$ in 83% yield.

Compound $\mathbf{4 w}$ ($357.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was refluxed in a mixture of acetic acid (3.0 mL) and hydrochloric acid (0.5 mL) for 30 min . The resulting mixture was diluted with water (20 mL) and the solid collected, washed with water, and dried to directly give the product 9 in 97% yield (346.3 mg).

Compound 9 ($357.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added to a hot well-stirred solution of KOH ($297.0 \mathrm{mg}, 3.5 \mathrm{mmol}, 3.5$ equiv) in ethanol (5.0 mL) and water (1.5 mL). The starting material gradually went into solution, and after 10 min a clear solution was obtained from which suddenly rutaecarpine appeared as needles. The reflux was continued for 15 minutes, then the mixture was cooled and the crystals were collected, washed, and dried to directly give the product $\mathbf{1 0}$ in 96% yield (275.5 mg).

3 The Mechanistic Investigations

Eq a: Under N_{2} atmosphere, $\operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2.6 \mathrm{mg}, 001$ $\mathrm{mmol}, 5 \mathrm{~mol} \%$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(42.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0 \mathrm{eq}$), and a 2.5 mL vial containing TFBen (210.0 $\mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv), $\mathbf{1 a}(0.2 \mathrm{mmol}, 66.6 \mathrm{mg}, 1.0$ equiv), $\mathbf{2 a}(36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5$ equiv), TEMPO ($62.5 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ eq.) or BHT ($88.1 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ eq.), 1,4 -dioxane (2 mL) (extra dry) were added to an oven-dried $15 \mathrm{~mL} \operatorname{In}$-Ex tube. Then the tube was sealed and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (oil bath) for 24 h . After the reaction was completed, the mixture was slowly cooled to room temperature. After the reaction was completed, the reaction mixture was filtered and concentrated under vacuum. The residue was purified by column chromatography on silica gel (Petroleum Ether/EtOAc) to yield the product 3a as yellow oil in 88% (TEMPO) and 52% (BHT) yield.

Eq b: Under air atmosphere, $5 \mathbf{5}(74.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}$, $2.5 \mathrm{~mol} \%), \mathrm{PPh}_{3}(2.6 \mathrm{mg}, 001 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0 \mathrm{eq}$), and a 2.5 mL vial containing TFBen ($210.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 5.0$ equiv), 1,4 -dioxane (2 mL) (extra dry) were added to an oven-dried 15 mL In-Ex tube. Then the tube was sealed and the mixture was stirred at $110{ }^{\circ} \mathrm{C}$ (oil bath) for 24 h . After the reaction was completed, the product 3a was observed in 97% yield. (Yields determined by GC analysis using dodecane as an internal standard).

4 Characterization Data of the Corresponding Products

3-Butyl-2-(trifluoromethyl)quinazolin-4(3H)-one (3a)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), $\mathrm{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 3 a as a yellow oil ($52.9 \mathrm{mg}, 98 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H})$, $4.12(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 161.4,145.1,142.2\left(\mathrm{q}, J_{(C-F)}=35.6 \mathrm{~Hz}\right), 134.8,129.2,128.4,127.0$, $121.9,118.3\left(\mathrm{q}, J_{(C-F)}=276.9 \mathrm{~Hz}\right), 45.2,30.7,20.2,13.5$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-65.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 271.1053$, found 271.1060.

3-Butyl-6-methyl-2-(trifluoromethyl)quinazolin-4(3H)-one (3b)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1b ($69.4 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \mathrm{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ eq.), TFBen ($210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 3b as a yellow oil. ($49.4 \mathrm{mg}, 87 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11$ $(\mathrm{t}, J=8.1,2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 161.4,143.0,141.5\left(\mathrm{q}, J_{(C-F)}=35.3 \mathrm{~Hz}\right), 139.8,136.2,128.2,126.4$, $121.6,118.4\left(\mathrm{q}, J_{(C-F)}=276.8 \mathrm{~Hz}\right), 45.2,30.7,21.5,20.2,13.6$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-65.7.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 285.1209$, found 285.1222.

3-Butyl-6-fluoro-2-(trifluoromethyl)quinazolin-4(3H)-one (3c)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1c (70.2 mg, 0.2 mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \operatorname{Rf}=0.3$) to give the titled product $\mathbf{3 c}$ as a yellow oil. ($55.3 \mathrm{mg}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.00-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.8 .-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4\left(\mathrm{~d}, J_{(C-F)}=252.1 \mathrm{~Hz}\right), 161.2,160.9,141.8,131.2\left(\mathrm{~d}, J_{(C-F)}=\right.$ $8.5 \mathrm{~Hz}), 123.6,123.6\left(\mathrm{~d}, J_{(C-F)}=24.2 \mathrm{~Hz}\right), 118.4\left(\mathrm{q}, J_{(C-F)}=276.8 \mathrm{~Hz}\right), 112.2\left(\mathrm{~d}, J_{(C-F)}=24.0 \mathrm{~Hz}\right)$, 45.6, 30.7, 20.3, 13.7.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~ C D C l} 3$) δ-65.8, -108.5.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+}, 289.0959$, found 289.0970.

3-Butyl-6-chloro-2-(trifluoromethyl)quinazolin-4(3H)-one (3d)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1d ($73.4 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \mathrm{Rf}=0.3$) to give the titled product 3d as a yellow oil. ($56.6 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-$ $1.63(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 160.5,143.7,142.6\left(\mathrm{q}, J_{(C-F)}=35.8 \mathrm{~Hz}\right), 135.4,130.2,126.6,123.1$, $118.3\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 45.6,30.7,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-65.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 305.0663$, found 305.0671.

6-Bromo-3-butyl-2-(trifluoromethyl)quinazolin-4(3H)-one (3e)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 e}(82.2 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 3 e as a yellow oil. ($61.2 \mathrm{mg}, 88 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ $(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 160.4,144.0,142.7\left(\mathrm{q}, J_{(C-F)}=35.8 \mathrm{~Hz}\right), 138.2,130.3,129.8,123.3$, $118.4\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 45.7,45.6,30.8,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-65.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 349.0158$, found 349.0162.

3-Butyl-2,6-bis(trifluoromethyl)quinazolin-4(3H)-one (3f)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 f}$ ($80.2 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \mathrm{Rf}=0.3$) to give the titled product $\mathbf{3 f}$ as a yellow oil. ($62.9 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 160.8,147.3,144.3\left(\mathrm{q}, J_{(C-F)}=35.9 \mathrm{~Hz}\right), 133.9,131.2\left(\mathrm{q}, J_{(C-F)}=\right.$ $33.6 \mathrm{~Hz}), 129.6,125.1,123.5\left(\mathrm{q}, J_{(C-F)}=272.8 \mathrm{~Hz}\right), 122.1,118.3\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right), 45.7,30.8$, 20.3, 13.6.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-62.7, 66.0.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}^{+}, 339.0927$, found 339.0933.

3-Butyl-7-methyl-2-(trifluoromethyl)quinazolin-4(3H)-one (3g)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 g}(69.4 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine 2a $(36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 3 g as a yellow oil. ($50.6 \mathrm{mg}, 89 \%$).
${ }^{1} \mathbf{H}^{2}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 161.4,146.1,145.3,142.4\left(\mathrm{q}, J_{(C-F)}=35.5 \mathrm{~Hz}\right), 130.8,128.3,126.9$, $119.6,118.5\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 45.2,30.9,21.9,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-65.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 285.1209$, found 285.1218.

3-Butyl-7-fluoro-2-(trifluoromethyl)quinazolin-4(3H)-one (3h)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 h}$ ($70.2 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 \mathbf{a}(36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via
flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \mathrm{Rf}=0.3$) to give the titled product 3 h as a yellow oil. ($52.4 \mathrm{mg}, 91 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.15-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 166.7\left(\mathrm{~d}, J_{(C-F)}=256.0 \mathrm{~Hz}\right), 160.8,147.3\left(\mathrm{~d}, J_{(C-F)}=13.2 \mathrm{~Hz}\right), 143.6$ $\left(\mathrm{q}, J_{(C-F)}=35.7 \mathrm{~Hz}\right), 129.9\left(\mathrm{~d}, J_{(C-F)}=10.1 \mathrm{~Hz}\right), 118.8,118.3\left(\mathrm{q}, J_{(C-F)}=277.3 \mathrm{~Hz}\right), 118.2\left(\mathrm{~d}, J_{(C-F)}=\right.$ $23.4 \mathrm{~Hz}), 114.0\left(\mathrm{~d}, J_{(C-F)}=22 \mathrm{~Hz}\right), 45.5,30.8,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-65.9,-101.8$.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}^{+}, 289.0959$, found 289.0967.

3-Butyl-7-chloro-2-(trifluoromethyl)quinazolin-4(3H)-one (3i)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 i}$ ($73.4 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.$) , amine 2a (36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), $\operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \mathrm{Rf}=0.3$) to give the titled product 3 i as a yellow oil. ($51.1 \mathrm{mg}, 84 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 160.9,146.1,143.5\left(\mathrm{q}, J_{(C-F)}=35.8 \mathrm{~Hz}\right), 141.3,129.9,128.5,128.1$, $120.4,118.3\left(\mathrm{q}, J_{(C-F)}=277.3 \mathrm{~Hz}\right), 46.0,30.8,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-66.0.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 305.0663$, found 305.0670.

7-Bromo-3-butyl-2-(trifluoromethyl)quinazolin-4(3H)-one ($\mathbf{3} \mathbf{j}$)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 j}(82.2 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product $\mathbf{3 j}$ as a yellow oil. ($62.6 \mathrm{mg}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.5,1 \mathrm{H}), 4.11(\mathrm{t}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 161.1,146.1,143.5\left(\mathrm{q}, J_{(C-F)}=36.1 \mathrm{~Hz}\right), 132.8,131.3,129.7,128.5$, $120.8,118.3\left(\mathrm{q}, J_{(C-F)}=277.3 \mathrm{~Hz}\right), 45.5,30.8,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{M H z}$, CDCl $_{3}$) δ-65.9.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 349.0158$, found 349.0166.

3-Butyl-6,8-dichloro-2-(trifluoromethyl)quinazolin-4(3H)-one (3k)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 k}$ ($80.2 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), $\operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product $\mathbf{3 k}$ as a white solid ($55.4 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.63(\mathrm{~m}$, $2 \mathrm{H}), 1.59-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 160.1,143.0\left(\mathrm{q}, J_{(C-F)}=36.3 \mathrm{~Hz}\right), 140.9,135.3,135.1,134.6,125.4$, $124.2,118.2\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right), 45.9,30.7,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-65.8.
M.p. $121-122{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 339.0273$, found 339.0284.

3-Butyl-2-(difluoromethyl)quinazolin-4(3H)-one (31)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 11 ($63.0 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1.0$ eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), $\operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 31 as a yellow oil. ($48.4 \mathrm{mg}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.30(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=53.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.57(\mathrm{~m}, 2 \mathrm{H})$, 1.56-1.33 (m, 2H), $0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.8,146.8\left(\mathrm{t}, J_{(C-F)}=26.1 \mathrm{~Hz}\right), 146.1,134.6,128.8,128.0,127.0$, $121.9,114.8\left(\mathrm{q}, J_{(C-F)}=245.8 \mathrm{~Hz}\right), 44.4,30.9,20.3,13.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~ C D C l} 3$) $\delta-115.3,-115.4$.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}^{+}, 253.1147$, found 253.1156.

3-Butyl-2-(chlorodifluoromethyl)quinazolin-4(3H)-one (3m)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 m}(70.0 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 \mathbf{a}(36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 3 m as a yellow oil. ($46.9 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H})$, $4.21(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta 161.8,145.6\left(\mathrm{q}, J_{(C-F)}=28.3 \mathrm{~Hz}\right), 145.1,134.9,129.2,128.5,127.1$, $123.4,120.5\left(\mathrm{q}, J_{(C-F)}=293.7 \mathrm{~Hz}\right), 45.7,30.7,20.3,13.7$.
${ }^{19}$ F NMR (377 MHz, $\mathbf{C D C l}_{3}$) δ-54.3.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{3} \mathrm{H}_{14} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O}^{+}, 287.0757$, found 287.0767.

3-Butyl-2-(perfluoroethyl)quinazolin-4(3H)-one (3n)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathrm{n}(76.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $\mathbf{2 a}(36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(T F A)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{~m} \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product $\mathbf{3 n}$ as a yellow oil. ($55.7 \mathrm{mg}, 87 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.99$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.5,144.8,142.0\left(\mathrm{t}, J_{(C-F)}=27.5 \mathrm{~Hz}\right) 134.6,129.4,128.5,126.9$, $122.0,118.3\left(\mathrm{qt}, J_{(C-F)}=285.9 \mathrm{~Hz}, J_{(C-F)}=33.9 \mathrm{~Hz}\right), 111.0\left(\mathrm{~d}, J_{(C-F)}=36.3 \mathrm{~Hz}\right), 44.9,30.8,20.2$, 13.6.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-79.6, -109.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}^{+}, 321.1021$, found 321.1030.

3-Butyl-2-(perfluoropropyl)quinazolin-4(3H)-one (30)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 0}(86.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2a ($36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{~m} \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 3 lo as a yellow oil. ($62.2 \mathrm{mg}, 84 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.31(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.98$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.6,144.9,142.4\left(\mathrm{t}, J_{(C-F)}=27.2 \mathrm{~Hz}\right), 142.1,134.8,129.5,128.5$, 127.1, 122.1, $118.2\left(\mathrm{qt}, J_{(C-F)}=19.6 \mathrm{~Hz}, J_{(C-F)}=33.8 \mathrm{~Hz}\right), 112.7\left(\mathrm{q}, J_{(C-F)}=276.3 \mathrm{~Hz}\right), 45.2,31.1$, 20.3, 13.7.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-77.7, -107.0, -121.9.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}^{+}, 371.0989$, found 371.1000.

3-Propyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4a)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \mathbf{b}(29.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(T F A)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{~m} \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product $4 \mathbf{a}$ as a yellow oil. ($50.7 \mathrm{mg}, 99 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 8.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H})$, $4.08(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.5,145.2,142.4\left(\mathrm{q}, J_{(C-F)}=35.6 \mathrm{~Hz}\right), 134.9,129.3,128.6,127.1$, $122.0,118.4\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 47.0,22.2,11.3$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-65.8$.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 257.0896$, found 257.0905.

3-Pentyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4b)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 \mathrm{c}(44.0 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{~m} \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product $\mathbf{4 b}$ as a yellow oil. ($56.3 \mathrm{mg}, 99 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.42(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 161.5,145.2,142.4\left(\mathrm{q}, J_{(C-F)}=35.6 \mathrm{~Hz}\right), 134.9,129.3,128.6,127.1$, $122.0,118.4\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 45.6,29.1,28.5,22.3,14.0$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-65.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 285.1209$, found 285.1219.

3-Octyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4c)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 d(64.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{~m} \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.4$) to give the titled product 4 c as a yellow oil. ($61.3 \mathrm{mg}, 94 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.57(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.97-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 161.5,145.2,142 .\left(\mathrm{q}, J_{(C-F)}=35.6 \mathrm{~Hz}\right), 134.9,129.3,128.6,127.1$, $122.0,118.5\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 45.7,31.9,29.3,29.2,28.8,27.0,22.7,14.2$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-65.8.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 327.1697$, found 327.1687.

3-Decyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4d)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 \mathrm{e}(78.7 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.4$) to give the titled product $4 d$ as a white solid ($65.9 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H})$, $4.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, J=$ 6.8 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\delta 161.5,145.2,142.4\left(\mathrm{q}, J_{(C-F)}=35.6 \mathrm{~Hz}\right), 134.9,129.3,128.6,127.1$, $122.1,118.5\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 45.6,32.0,29.6,29.4,29.2,28.8,27.1,22.8,14.2$.
${ }^{19}$ F NMR (377 MHz, $\mathbf{C D C l}_{3}$) $\delta-65.8$.
M.p. $71-72^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 355.1992$, found 355.2000.

3-Isobutyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4e)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 f(36.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(T F A)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via
flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 4 e as a yellow oil. ($48.1 \mathrm{mg}, 89 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.31(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H})$, $4.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.09(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 162.0,145.1,142.8\left(\mathrm{q}, J_{(C-F)}=35.2 \mathrm{~Hz}\right), 135.0,129.4,128.5,127.3$, $122.0,118.4\left(\mathrm{q}, J_{(C-F)}=277.3 \mathrm{~Hz}\right), 51.5,27.8,20.0$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, CDCl $_{3}$) δ-64.4.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 271.1053$, found 271.1062.

3-Isopropyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4f)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2 g ($29.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), $\operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 4 e as a yellow oil. ($43 \mathrm{mg}, 84 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H})$, 4.66-4.56(m, 1H), 1.70 (d, J=6.7 Hz, 6H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 162.0,144.8,142.5\left(\mathrm{q}, J_{(C-F)}=34.4 \mathrm{~Hz}\right), 134.7,129.3,128.3,126.8$, 123.3, $118.7\left(\mathrm{q}, J_{(C-F)}=277.1 \mathrm{~Hz}\right), 53.4,19.7$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-64.7.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 257.0896$, found 257.0903.

3-(tert-Butyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4g)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 \mathrm{~h}(29.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 4 g as a yellow oil. ($40 \mathrm{mg}, 74 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 2 \mathrm{H})$, 1.52 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 150.0,140.9\left(\mathrm{q}, J_{(C-F)}=28.9 \mathrm{~Hz}\right), 140.7,138.6,128.4,123.9,120.4$, $116.8\left(\mathrm{q}, J_{(C-F)}=291.4 \mathrm{~Hz}\right), 52.7,28.6$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-65.3.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 271.1053$, found 271.1069.

3-Cyclopropyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4h)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \mathbf{i}(28.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 4h as a white solid (46.2 mg, 91\%).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.26(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.59(\mathrm{~m}, 1 \mathrm{H})$, $3.14(\mathrm{~s}, 1 \mathrm{H}), 1.30-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.97(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.5,144.7,144.3,134.9,129.3,128.4,127.0,122.4,118.5$ (q, $\left.J_{(C-F)}=277.4 \mathrm{~Hz}\right), 27.8,9.5$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-64.1.
M.p. $121-122{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 255.0740$, found 255.0748.

3-Cyclohexyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4i)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $\mathbf{2 j}$ ($49.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 4 i as a yellow oil. ($55.1 \mathrm{mg}, 93 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl3 $_{3}$) $\delta 8.27(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H})$, 4.16-7.09(m, 1H), 3.01-2.49(m, 2H), 1.94-1.88(m, 2H), 1.78-1.69(m, 4H), 1.37-1.32(m, $2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 162.1,144.7,142.7\left(\mathrm{q}, J_{(C-F)}=34.3 \mathrm{~Hz}\right), 134.7,129.3,128.3,126.9$, 123.3, $118.7\left(\mathrm{q}, J_{(C-F)}=277.1 \mathrm{~Hz}\right), 62.0,28.8,26.6,25.1$.
${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-64.6.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 297.1209$, found 297.1215.

3-((3s,5s,7s)-Adamantan-1-yl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4j)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}(66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq. $)$, amine $2 \mathrm{k}(75.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product $\mathbf{4 j}$ as a white solid ($41.1 \mathrm{mg}, 59 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl $\left.)_{3}\right) \delta 8.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H}), 2.31-2.27(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.68(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 167.5,151.7\left(\mathrm{q}, J_{(C-F)}=36.1 \mathrm{~Hz}\right), 150.6,134.2,128.6,128.5,124.3$, $120.0\left(\mathrm{q}, J_{(C-F)}=275.6 \mathrm{~Hz}\right), 118.0,85.1,41.4,36.4,31.3$.
${ }^{19}$ F NMR (377 MHz, CDCl 3) $\delta-70.9$.
M.p. $162-163{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 349.1522$, found 349.1531.

3-Benzyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4k)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $21(53.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(T F A)_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via
flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 4 k as a white solid ($57.2 \mathrm{mg}, 94 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.28 (m, 3H), 7.19-7.19 (d, J=7.2 Hz, 2H), 5.45 ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.6,145.2,142.5\left(\mathrm{q}, J_{(C-F)}=35.9 \mathrm{~Hz}\right), 135.6,135.2,129.6,128.8$, 128.7, 127.7, 127.5, 126.4, 122.0, $118.3\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right), 48.0$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-65.2.
M.p. $97-98{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 305.0896$, found 305.0903.

3-(4-Methylbenzyl)-2-(trifluoromethyl)quinazolin-4(3 H)-one (4I)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $\mathbf{2 m}(60.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product $\mathbf{4 1}$ as a white solid ($55.3 \mathrm{mg}, 87 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H})$, 7.19-6.99 (m, 4H), $5.41(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.6,145.2,142.5\left(\mathrm{q}, J_{(C-F)}=35.7 \mathrm{~Hz}\right), 137.5,135.1,132.6,129.5$, 129.4, 128.7, 127.4, 126.5, 122.1, $118.3\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right), 47.9,21.2$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, CDCl $_{3}$) δ-65.1.
M.p. $101-102{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 319.1053$, found 319.1060.

3-(4-Chlorobenzyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4m)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \mathrm{n}(70.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ eq.), TFBen ($210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product $\mathbf{4 m}$ as a white solid ($58.8 \mathrm{mg}, 81 \%$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 161.6,145.1,142.2\left(\mathrm{q}, J_{(C-F)}=35.8 \mathrm{~Hz}\right), 135.4,134.1,133.7,129.7$, $129.0,128.8,128.0,127.5,122.0,118.3\left(\mathrm{q}, J_{(C-F)}=277.3 \mathrm{~Hz}\right), 47.5$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-65.2.
M.p. $110-11{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 339.0507$, found 339.0511.

3-(3-Bromobenzyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4n)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2 o ($92.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ eq.), TFBen ($210 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via
flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product $4 \mathbf{n}$ as a white solid ($70.3 \mathrm{mg}, 92 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.63(\mathrm{~m}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}$, 2 H).
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 161.5,145.1,142.1\left(\mathrm{q}, J_{(C-F)}=39.8 \mathrm{~Hz}\right), 137.9,135.4,131.0,130.3$, 129.7, 129.5, 128.8, 127.5, 125.1, 122.9, 121.9, $118.3\left(\mathrm{q}, J_{(C-F)}=275.5 \mathrm{~Hz}\right), 47.3$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) δ-65.2.
M.p. $109-110^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 383.0001$, found 383.0004.

3-(Thiophen-2-ylmethyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (40)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $\mathbf{2 p}$ ($59.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 4 o as a white solid ($55.2 \mathrm{mg}, 89 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}$, CDCl $_{3}$) $\delta 161.6,145.0141 .6\left(\mathrm{q}, J_{(C-F)}=35.9 \mathrm{~Hz}\right), 137.0,135.2,129.6,128.7$, $128.4,127.3,126.7,126.5,122.0,118.4\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right), 43.4$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta-64.6$.
M.p. $98-9{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}^{+}, 311.0460$, found 311.0465 .

3-Phenyl-2-(trifluoromethyl)quinazolin-4(3H)-one (4p)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine 2q ($46.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}.), \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 4 p as a white solid ($48.7 \mathrm{mg}, 84 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 8.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.60-7.50 (m, 3H), 7.30-4.32 (m, 2H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 161.8,145.4,142.4\left(\mathrm{q}, J_{(C-F)}=35.5 \mathrm{~Hz}\right), 135.3,134.9,130.1,129.7$, $129.4,129.2,128.8,127.5,122.3,118.0\left(\mathrm{q}, J_{(C-F)}=277.5 \mathrm{~Hz}\right)$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, CDCl $_{3}$) δ-64.0.
M.p. $121-122^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 291.0740$, found 291.0752.

3-(4-Methoxyphenyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4q)

General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}$ ($66.6 \mathrm{mg}, 0.2$ $\mathrm{mmol}, 1.0 \mathrm{eq}$.$) , amine 2 \mathbf{r}(61.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ eq.), TFBen ($210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 4 q as a white solid ($51.2 \mathrm{mg}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.2,160.6,145.4,142.7\left(\mathrm{q}, J_{(C-F)}=35.0 \mathrm{~Hz}\right), 135.3,130.3,129.6$, $128.8,127.6,127.2,122.3,118.0\left(\mathrm{q}, J_{(C-F)}=277.5 \mathrm{~Hz}\right), 114.7,55.7$.

${ }^{19} \mathbf{F}$ NMR ($\mathbf{3 7 7} \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-64.1.

М.p. $177-178{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}, 321.0845$, found 321.0852 .

3-(4-Bromophenyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4r)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \mathrm{~s}(85.8 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product $4 \mathbf{r}$ as a white solid ($64.0 \mathrm{mg}, 87 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$) $\delta 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.58(\mathrm{~m}, 3 \mathrm{H})$, $7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 161.6,145.2,141.9\left(\mathrm{q}, J_{(C-F)}=35.6 \mathrm{~Hz}\right), 135.5,133.9,132.8,130.9$, $129.9,128.9,127.6,124.5,122.1,117.9\left(\mathrm{q}, J_{(C-F)}=277.6 \mathrm{~Hz}\right)$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-63.9.
M.p. $154-155^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 368.9845$, found 368.9851.

3-(o-Tolyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4s)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \mathrm{t}(53.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 4 s as a white solid ($49.9 \mathrm{mg}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl3) $\delta 161.1,145.5,142.5\left(\mathrm{q}, J_{(C-F)}=35.4 \mathrm{~Hz}\right), 137.0,135.4,134.0,131.1$, $130.4,129.7,129.2,128.9,127.6,127.0,122.2,117.9\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right), 17.6$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-65.5.
M.p. $122-123{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 305.0896$, found 305.0904.

3-(Naphthalen-1-yl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4t)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $\mathbf{2 u}(71.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product 4 t as a white solid ($61.2 \mathrm{mg}, 90 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl 3) $\delta 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.51-7.48 (m, 2H), $7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 161.6,145.6,143.1\left(\mathrm{q}, J_{(C-F)}=35.4 \mathrm{~Hz}\right), 135.5,134.3,131.7,130.9$, $130.7,129.8,129.0,128.8,127.9,127.8,127.5,126.9,125.2,122.2,121.8,117.9\left(\mathrm{q}, J_{(C-F)}=277.9\right.$ Hz).
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-64.8.
M.p. $164-165{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 341.0896$, found 341.0905.

3-(Naphthalen-2-yl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4u)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 v(71.5 \mathrm{mg}, 0.5 \mathrm{mmol}, 2.5 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$,
$\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2$ eq.), TFBen ($210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 4 u as a white solid ($62.6 \mathrm{mg}, 82 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.36(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.87(\mathrm{~m}$, $4 \mathrm{H}), 7.82(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.101 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 162.1,145.4,142.5\left(\mathrm{q}, J_{(C-F)}=35.7 \mathrm{~Hz}\right), 135.4,133.7,133.3,132.4$, 129.7, 129.5, 128.9, 128.5, 128.4, 128.1, 127.7, 127.6, 127.1, 126.3, 122.3, $118.1\left(\mathrm{q}, J_{(C-F)}=277.4\right.$ Hz).
${ }^{19}$ F NMR ($\left.\mathbf{3 7 7} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right) \delta-63.8$.
M.p. $168-169{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 341.0896$, found 341.0908.

3,3'-(Ethane-1,2-diyl)bis(2-(trifluoromethyl)quinazolin-4(3H)-one) (4v)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($133.2 \mathrm{mg}, 0.4$ mmol, 2.0 eq.), amine $2 \mathbf{w}(12.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(3.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}\left(5.2 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$), $\mathrm{Na}_{2} \mathrm{CO}_{3}(84.8 \mathrm{mg}, 0.8 \mathrm{mmol}, 4.0 \mathrm{eq}$.), TFBen ($210.0 \mathrm{mg}, 1$ mmol, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \mathrm{Rf}=0.2$) to give the titled product $4 v$ as a white solid ($62.7 \mathrm{mg}, 69 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.12(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 2 \mathrm{H})$, 4.68 (s, 4H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 162.1,144.9,141.7\left(\mathrm{q}, J_{(C-F)}=35.8 \mathrm{~Hz}\right), 135.2,129.6,128.7,127.1$, $121.6,118.2\left(\mathrm{q}, J_{(C-F)}=276.9 \mathrm{~Hz}\right), 45.6$.
${ }^{19}$ F NMR (377 MHz, CDCl $_{3}$) δ-65.4, -65.5.
M.p. 216-217 ${ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{+}, 455.0937$, found 455.0941 .

(Z)- N-Butyl-2,2,2-trifluoro- N^{\prime}-(2-iodophenyl)acetimidamide (5a)

General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($333 \mathrm{mg}, 1.0$ mmol, 1.0 eq.), amine 2a ($183 \mathrm{mg}, 2.5 \mathrm{mmol}, 2.5 \mathrm{eq}$.), $\mathrm{Na}_{2} \mathrm{CO}_{3}(106 \mathrm{mg}, 1.0 \mathrm{mmol}, 5.0 \mathrm{eq}$.) and 1,4-dioxane (5 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether $/$ ethyl acetate $=20: 1, \mathrm{Rf}=0.3$) to give the titled product $\mathbf{5 a}$ as yellow oil. ($366.3 \mathrm{mg}, 99 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{\mathbf{2}} \mathbf{S O}\right) \delta 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-2.73(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.39-$ $1.11(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.71(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, (CD \mathbf{H}_{2} 2SO) $\delta 149.7,141.8\left(\mathrm{q}, J_{(C-F)}=27.0 \mathrm{~Hz}\right), 137.9,128.4,123.7$, 120.4, $117.3\left(\mathrm{q}, J_{(C-F)}=35.4 \mathrm{~Hz}\right), 92.6,41.0,30.4,19.5,13.5$.
${ }^{19} \mathbf{F}$ NMR ($\left.\mathbf{3 7 7} \mathbf{~ M H z},\left(\mathbf{C D}_{3}\right)_{2} \mathbf{S O}\right) \delta$-64.2. -74.1.
HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{IN}_{2}+, 371.0227$, found 371.0235 .

2-(4-Oxo-2-(trifluoromethyl)quinazolin-3(4H)-yl)isoindoline-1,3-dione (6)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \times(38.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via
flash column chromatography (petroleum ether / ethyl acetate $=10: 1, \mathrm{Rf}=0.2$) to give the titled product 6 as a white solid ($40.9 \mathrm{mg}, 57 \%$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, 2H), 7.92-7.90(m, 2H), 7.75-7.62(m, 1H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 163.8,157.6,144.8,142.0\left(\mathrm{q}, J_{(C-F)}=37.0 \mathrm{~Hz}\right), 136.2,135.7,130.2$, $130.1,129.6,128.0,125.0,122.1,117.3\left(\mathrm{q}, J_{(C-F)}=277.4 \mathrm{~Hz}\right)$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-68.4.
M.p. $147-149{ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}, 360.0591$, found 360.0598.

3-(3,4-Dihydroxyphenethyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (7)
General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride 1a ($66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 y(36.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4-dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=5: 1, \mathrm{Rf}=0.2$) to give the titled product 7 as a white solid ($50.4 \mathrm{mg}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 160.6,145.4,144.5,144.1,141.5\left(\mathrm{q}, J_{(C-F)}=35.0 \mathrm{~Hz}\right), 135.2,129.6$, $128.4,128.1,126.5,121.6,119.2,118.2\left(\mathrm{q}, J_{(C-F)}=277.5 \mathrm{~Hz}\right), 115.8,46.7,33.4$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}$, DMSO) δ-64.9.
M.p. $179-180^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}, 351.0951$, found 351.0954.

3-(((1R,4aS,10aR)-7-Isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl)methy 1)-2-(trifluoromethyl)quinazolin-4(3H)-one (8)

General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $1 \mathbf{1 a}(66.6 \mathrm{mg}, 0.2$ mmol, 1.0 eq.), amine $2 \mathrm{z}(68.5 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2 \mathrm{eq}),. \operatorname{Pd}(\mathrm{TFA})_{2}(1.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 2.5 \mathrm{~mol} \%)$, $\mathrm{PPh}_{3}(2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.4 \mathrm{mmol}, 2 \mathrm{eq}),$. TFBen $(210.0 \mathrm{mg}, 1 \mathrm{mmol}$, 5.0 eq.) and 1,4 -dioxane (2 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=20: 1, \mathrm{Rf}=0.2$) to give the titled product 8 as a white solid ($55.0 \mathrm{mg}, 57 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\left.\mathbf{C D}_{3}\right) \delta 8.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.03-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.75(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.65-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.90-$ $0.86(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 163.1,147.3,145.8,144.8,143.4\left(\mathrm{q}, J_{(C-F)}=34.7 \mathrm{~Hz}\right), 134.9,134.7$, $129.4,128.3,127.5,127.0,124.1,124.0,122.0,118.4\left(\mathrm{q}, J_{(C-F)}=277.9 \mathrm{~Hz}\right), 77.2,55.1,48.1,40.1$, $38.1,36.0,33.6,30.4,29.8,25.9,24.1,22.8,19.9,18.6$.
${ }^{19}$ F NMR ($\mathbf{3 7 7} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ-62.3.
M.p. 221-222 ${ }^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}, 483.2618$, found 483.2622.

3-(2-(1 H -Indol-3-yl)ethyl)-2-(trifluoromethyl)quinazolin-4(3H)-one (4w)

General Procedure was followed with (2-iodophenyl)trifluoroacetimide chloride $\mathbf{1 a}$ ($333.0 \mathrm{mg}, 1.0$ mmol, 1.0 eq.), amine 2aa ($192.5 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2$ eq.), $\operatorname{Pd}(\text { TFA })_{2}(8.5 \mathrm{mg}, 0.025 \mathrm{mmol}, 2.5$ $\mathrm{mol} \%), \mathrm{PPh}_{3}(13 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%), \mathrm{Na}_{2} \mathrm{CO}_{3}(212 \mathrm{mg}, 2.0 \mathrm{mmol}, 2 \mathrm{eq}$.$) , TFBen (420.0 \mathrm{mg}$, $2.0 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and 1,4-dioxane (5 mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether $/$ ethyl acetate $=10: 1, \mathrm{Rf}=0.2$) to give the titled product $\mathbf{4 w}$ as a white solid ($296.3 \mathrm{mg}, 83 \%$).
${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO) $\delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 8.35-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03$ (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 160.8,144.5,141.6\left(\mathrm{q}, J_{(C-F)}=35.0 \mathrm{~Hz}\right), 136.3,135.1,129.5,128.1$, $127.0,126.5,123.1,121.7,121.1,118.6,118.2\left(\mathrm{q}, J_{(C-F)}=277.0 \mathrm{~Hz}\right), 118.0,111.6,110.1,45.8,24.1$. ${ }^{19}$ F NMR ($\left.\mathbf{3 7 7} \mathbf{~ M H z}, ~ D M S O\right) ~ \delta-64.8$.
M.p. $179-180^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}^{+}, 358.1162$, found 358.1167.

13b-(Trifluoromethyl)-8,13,13b,14-tetrahydroindolo[2',3':3,4]pyrido[2,1-b]quinazolin-5(7H)-one (9) General Procedure was followed with $\mathbf{4 w}$ ($357.0 \mathrm{mg}, 1 \mathrm{mmol}, 1.0 \mathrm{eq}$), HOAc (3 mL) and $\mathrm{HCl}(0.5$ mL). Upon completion the mixture was concentrated and purified via flash column chromatography (petroleum ether / ethyl acetate $=5: 1, \mathrm{Rf}=0.2$) to give the titled product 9 as a white solid (346.3 mg , $97 \%)$.
${ }^{1}$ H NMR (400 MHz, DMSO) $\delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}$, $2 \mathrm{H}), 7.39(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H})$, 5.16-5.11(m, 1H), 3.26(t, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 161.4,143.8,136.9,133.9,127.7$, $125.5\left(\mathrm{q}, J_{(C-F)}=300.1 \mathrm{~Hz}\right)$, $124.9,124.7,123.1,119.5,119.1,119.0,114.8,114.7,112.2,112.1,37.1,19.8$.
${ }^{19}$ F NMR (377 MHz, DMSO) δ-75.9.
M.p. $265-266^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}^{+}, 358.1162$, found 358.1169.

8,13-Dihydroindolo[2',3':3,4]pyrido[2,1-b]quinazolin-5(7H)-one (10)
General Procedure was followed with 9 (357.0 mg , $1.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , KOH (200.0 \mathrm{mg}$), EtOH (5.0 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$. Upon completion the mixture was cooled and the crystals were collected, washed, and dried to give the titled product 10 as a white solid ($275.5 \mathrm{mg}, 96 \%$).
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.65-$ $7.59(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.23(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($\mathbf{1 0 1} \mathrm{MHz}$, DMSO) $\delta 161.1,147.8,145.7,139.1,134.8,127.6,127.0,126.9,126.4,125.4$, $125.2,121.2,120.4,120.2,118.3,113.0,41.3,19.4$.
M.p. $255-256^{\circ} \mathrm{C}$

HRMS (ESI): $[\mathrm{M}+\mathrm{H}]+$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}^{+} 288.1131$, found 288.1144 .

Benzene-1,3,5-triyl triformate (TFBen)
General Procedure was followed with Formic acid ($8.4 \mathrm{~mL}, 222.8 \mathrm{mmol}, 5.0$ equiv.), acetic anhydride ($16.8 \mathrm{~mL}, 178.2 \mathrm{mmol}, 4.0$ equiv.), 1,3,5-trihydroxybenzene ($5.62 \mathrm{~g}, 44.6 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{NaOAc}(1.83 \mathrm{~g}, 22.3 \mathrm{mmol}, 0.5$ equiv.). The mixture was stirred for 4 h in a water bath and then diluted with toluene $(100 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ twice. Keep the organic phase in fridge $\left(2-8{ }^{\circ} \mathrm{C}\right)$ overnight. Then filtered and dried in vacuo to afford the desired product benzene-1,3,5-triyl triformate (TFBen) $(5.1 \mathrm{~g}, 55 \%)$ as a white solid.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 8.24(\mathrm{~s}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 158.1,150.3,112.6$.

5 References

(1) K. Tamura, H. Mizukami, K. Maeda, H. Watanabe and K. Uneyama, One-pot synthesis of trifluoroacetimidoyl halides. J. Org. Chem., 1993, 58, 32.
(2) (a) L. Jiang, X. Qi and X.-F. Wu, Benzene-1,3,5-triyl triformate (TFBen): a convenient, efficient, and non-reacting CO source in carbonylation reactions. Tetrahedron Lett. 2016, 57, 3368; (b) L. Jiang, R. Li, C. Zhou, X. Qi, J.-B. Peng and X.-F. Wu, A general and practical Lewis acids-catalyzed aryl formates synthesis. Mol. Catal., 2017, 433, 8.

6 Copy of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra of Products

3c
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3d
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3e
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3g
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\begin{array}{ll}\infty & \infty \\ \infty & 1\end{array}$

3k
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4a
${ }^{19}$ F NMR $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4d
${ }^{13}$ C NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{9}{4}$

4d
${ }^{19}$ F NMR $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$

${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4k

4k
${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

40

${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

40

${ }^{13} \mathrm{C}$ NMR $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$--63.91$

4r
${ }^{19}$ F NMR $377 \mathrm{MHz}, \mathrm{CDCl}_{3}$

| 60 | 40 | 20 | 0 | -10 | -40 | -70 | -100 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

4u
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

○品

6
${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

