Metal-Free Reductive Coupling of Aliphatic

Aldehydes/Ketones with 4-Cyanopyridines: Mechanistic

Studies and Scope Extension

Liuzhou Gao,^{†a} Guoqiang Wang,^{†a} Hui Chen,^a Jia Cao,^a Xiaoshi Su,^a Xueting Liu,^a Mo

Yang,^a Xu Cheng,^b and Shuhua Li,^{*a}

^aKey Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. ^bInstitute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China. [†]These authors contributed equally to this work.

*Email: shuhua@nju.edu.cn

Table of Contents

1. Computational Investigations	S2
2. Experimental Studies on Substrate Scope	
3. Experimental Studies on the Reaction Mechanism	S8
4. Synthetic applications	S15
5. Spectroscopic Characterization of Products	S18
6. NMR Spectra	S49
7. Cartesian Coordinates and Energies of the Optimized Structures	S120
8. References	S136

1. Computational Investigations

1.1 Computational Details

All DFT calculations were carried out with Gaussian 16 package^[1]. Geometry optimizations and vibrational frequencies of all the stationary points were performed by using the B3PW91-D3BJ^[2]/6-31G(d,p) method. A "broken-symmetry" guess was used for calculations on open-shell systems. To confirm that each transition state connects the desired reactants and products along the reaction path, we performed intrinsic reaction coordinate (IRC)^[3] calculations at the same level. To get more reliable energies, single point energies were computed at the (U)B3PW91-D3BJ/cc-pVTZ level for all the species. The solvent effect was treated with the polarizable continuum model (PCM)^[4] with benzene as the solvent. The 3D structures were generated with CYL view package.^[5]

Activation free energy barriers here are defined as the free energy difference between the transition state and the lowest-energy stationary point before it in the reaction pathways.

1.2 DFT Calculations on the Bis(pinacolato)diboron Mediated Reductive Coupling Reaction Using Acetone and 4-Cyanopyridine as the Model Substrates.

Figure S1. Gibbs free energy profile and 3D structures of the species involved in the bis(pinacolato)diboron (B₂pin₂) mediated reductive coupling of acetone and 4-cyanopyridine. Selected distances were shown in Å.

As shown in Figure S1, our calculations suggested that the in situ generated 4cyanopyridine-boryl radical (A) can coordinate with the carbonyl of acetone (*via* TS1, see Figure S2 for IRC analysis) to form the intermediary radical species Int1. Subsequent dissociation of 4-cyanopyridine (2) affords a ketyl radical Int2, which is the rate-determining step in the reaction, and the corresponding barrier is 24.1 kcal/mol (*via* TS2, relative to the starting reactants 1a and A). Then, the coupling of Int2 with C4 position of 4-cyanopyridine-boryl radical (A) afford the key radical-radical coupling intermediate **Int3**. As shown in Figure S3, the scanning results of C-C bond length indicated that the radical-radical coupling of the active intermediate **Int2** and **A** is a barrierless process and the whole reaction is exothermic by 10.4 kcal/mol. For the formation of C-C₂ cross-coupling intermediate **Int4**, it requires an activation barrier of 22.9 kcal/mol (red line, *via* **TS3**), which is much higher than the C-C₄ pathway. Thus, The C-C₄ coupling reaction is the kinetically more favorable pathway.

Figure S2. IRC analysis starting from the boryl radical addition transition state (TS1) using B3PW91-D3BJ/6-31g(d, p) method.

Figure S3. The scan coordinate analysis of C₄-C bond starting from the cross-coupling intermediate **Int3** using B3PW91-D3BJ/6-31g(d, p) method.

2. Experimental Studies on Substrate Scope

2.1 General Information

Unless otherwise noted, all air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under argon or argon-filled glove-box. Anhydrous methyl tert-butyl ether (MTBE), ethyl acetate (EA), acetonitrile (MeCN), tetrahydrofuran (THF), dichloromethane (CH₂Cl₂) and 1, 2-dichloroethane (DCE) were purchased from *J&K* used as received. 4-Cyanopyridine and B₂(pin)₂ was purchased from TCI. Other commercially available reagents were purchased from Acros, *J&K* and Alfa Aesar Chemical Company. All other commercially available reagents were used without further purification. NMR spectra were recorded on a Bruker AVANCE III– 400 spectrometer. Chemical shifts were reported in ppm relative to deuterated solvent for ¹H NMR (CDCl₃: 7.26 ppm), ¹³C NMR (CDCl₃: 77.16 ppm). Infrared spectra were recorded on a ThermoFisher Nicolet iS5 FTIR using neat thin film technique. Highresolution mass spectra (HRMS) were recorded on Thermo Quest Finnigan LCQDECA system equipped with an ESI ionization source.

2.2 Development of Bis(pinacolato)diboron Mediated Reductive Coupling of Aliphatic Aldehydes/Ketones and 4-Cyano pyridine *Table S1*: Optimization of Reaction Conditions.^[a]

	O Me ^{⊥⊥} Me + 1a	$\frac{(1) B_2(pin)}{(2) H_2 O c}$	$(1)_2$, Solvent, <i>T</i> , t or 2M Na ₂ CO ₃ aq.	Me OH 3a
Entry	Time (h)	Т	Solvent	Yield (%) ^[b]
1	12	r.t.	MeCN	29%
2	12	r.t.	CH ₂ Cl ₂	trace
3	12	r.t.	DCE	16%
4	12	r.t.	EA	58%
5	12	r.t.	PhCF ₃	61%
6	12	r.t.	THF	68%
7	12	r.t.	MTBE	81%
8	12	40 °C	MTBE	85%
9	12	70°C	MTBE	75%
10	12	90°C	MTBE	62%
11	24	r.t.	MTBE	92%
12	24	40 °C	MTBE	96%(92%) ^[c]

[a] Reaction conditions: acetone (0.2 mmol), 4-cyanopyridine (0.3 mmol), $B_2(pin)_2$ (0.24 mmol), solvent (1.0 mL). [b] Yields of **3a** were determined by ¹H NMR analysis of the crude reaction mixture with benzyl ether as an internal standard. [c] Isolated yield.

2.3 General procedure for the synthesis of pyridine-functionalized alcohols

General procedure A: In an oven-dried 10 ml Schlenk flask equipped with a magnetic stir bar, 4-cyanopyridines (0.3 mmol, 1.5 equiv), $B_2(pin)_2$ (0.24 mmol, 1.2 equiv), MTBE (1 mL) and the corresponding coupling partner (aldehyde or ketone) were added in turn. Then, the reaction mixture was stirred at 40 °C or room temperature for 24 hours. After cooling to room temperature, the reaction mixture was quenched with 2M Na₂CO₃ aqueous solution (2 mL), and stirred under air for 10 minutes. Then, the reaction mixture extracted with EtOAc (3×5 mL). The combined organic layer was dried over Na₂SO₄, concentrated under vacuum and the residue was purified by preparative TLC or flash chromatography on silca gel to afford the desired product.

Note: The effect of substituents on the pyridine ring was also investigated, 4cyanopyridines bearing substituents such as F, Cl, and methyl, at C-3 position could afford the corresponding radical-coupling products (**6a**, **6e-6h**) in moderate to high yield. However, 2-position substituted pyridines, including 2-fluoro-4-cyanopyridine, 2-chloro-4-cyanopyridine and 2,4-dicyanopyridine were not tolerated in this reaction (**6b-6d**), presumably due to the fact that these pyridines are not able to activate the B-B bond of $B_2(pin)_2$ to generate the corresponding pyridine-boryl radical for initiating the radical-radical coupling reaction.^[6]

3. Experimental Studies on the Reaction Mechanism

Detecting the key Radical Cross-Coupling Intermediate by Spectroscopic Analysis

In order to verify the involvement of the key radical cross-coupling intermediates under the proposed radical addition/coupling addition conditions, NMR, HRMS and XRD analysis was performed to detect the possible intermediates.

(a) Monitoring the radical addition/cross-coupling reaction of acetone- d_6 (1b) by ¹H NMR spectroscopy: detection of key radical cross-coupling intermediate.

Figure S4. Top: ¹H NMR spectrum of 4-cyanopyridine in acetone- d_6 . **Middle:** ¹H NMR spectrum of the reaction mixture of acetone- d_6 , 4-cyanopyridine and B₂(pin)₂ in acetone- d_6 for 3h. **Bottom:** ¹H NMR spectrum of the reaction mixture after add two drops of D₂O for 10 min.

Experimental procedure: B₂pin₂ (30.5 mg, 0.12 mmol) and 4-cyanopyridine (10.4 mg, 0.10 mmol) were mixed in 0.5 mL acetone- d_6 in a NMR tube. The mixture was

stirred at room temperature for 3 h. Then the NMR analysis of the crude reaction mixture was carried out immediately. After which, adding two drops of D_2O into the NMR tube and shaking for 10 min, the ¹H NMR spectrum of the reaction mixture was acquired again.

(b) Detecting the key intermediates by HRMS analysis

Experimental procedure: acetone- d_6 (0.20 mmol), B₂pin₂ (61.0 mg, 0.24 mmol) and 4-cyanopyridine (20.8 mg, 0.20 mmol) were mixed in 1.0 mL MTBE in a Schlenk tube. The mixture was stirred at room temperature for 24h, after which, the ESI-MS analysis of the crude reaction mixture was carried out immediately. The mass for key intermediate (Int3) is C₂₁H₂₉D₆B₂N₂O_{5⁺} [M+H]⁺ calc. 423.3103, found 423.3102 (Figure S3). This result was consistent with the observation from ¹H NMR analysis (See Figure S2). Moreover, the key positive ion (Int3'), dissociating from neutral intermediate Int3, was also detected by HRMS. Moreover, we were also able to monitor the aromatized intermediate Int3'' in the mixture.

Figure S5. HRMS analysis of the crude reaction mixture of acetone- d_6 , B₂(pin)₂, 4-cycanopyridine in MTBE.

(c) Structural confirmation of the key intermediate Int3 by single-crystal X-ray diffraction (XRD).

(1) Synthesis of Int3

Experimental procedure: In an oven-dried 10 ml Schlenk tube equipped with a magnetic stir bar, acetone- d_6 (0.2 mmol, 12.8 mg), B₂pin₂ (0.21 mmol, 1.05 equiv, 53.5 mg), 4-cyanopyridine (0.20 mmol, 1.0 equiv, 20.8 mg) and 2.0 mL MTBE was added in turn. Then the reaction mixture was stirred at room temperature for 24h. After which, put this Schlenk tube into a low temperature refrigerator (-30 °C) and the crystals started to precipitate.

(2) X-ray analysis of Int3

Figure S6. Left: the X-ray structure of Int3. Right: the DFT calculation optimized structure of Int3.

Molecular Formula	$C_{21}H_{34}B_2N_2O_5$		
Formula mass	416.12		
Crystal system	Monoclinic		
Space group	<i>P</i> 2(1)/c		
Ζ	4		
Temp. (K)	120(2)		
Unit cell dimensions	<i>a</i> = 12.4551(6) Å	$\alpha = 90^{\circ}.$	
	<i>b</i> = 20.4059(10) Å	$\beta = 105.643(2)^{\circ}.$	
	c = 12.3794(7) Å	$\gamma = 90^{\circ}.$	
Volume	3029.8(3) Å ³		
Density (calculated)	0.912 g.cm ⁻³		
Absorption coefficient	0.063 mm ⁻¹		
F(000)	896		
Theta range for data collection	1.978° to 25.006°		
Index ranges	-13<=h<=14, -24<=k<=24, -14<=k<=14		
Reflections collected	21721		
Independent reflections	5314 [R(int) = 0.0336]		
Completeness to theta $=25.006^{\circ}$	99.4%		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5314 / 0 / 281		
Goodness-of-fit on F^2	1.004		
Final R indices [I>2sigma(I)]	R1 = 0.0493, wR2 = 0.21	38	
R indices (all data)	R1 = 0.0582, wR2 = 0.2286		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.985 and -0.590 e.Å ⁻³		

 Table S2. Crystal data and structure refinement for Int3

(d) Structural confirmation of the key intermediate Int3 by the NMR analysis

Figure S7. ¹H NMR spectra for **Int3** (in benzene- d_6).

Figure S8. ¹³C NMR spectra for Int3 (in benzene- d_6).

Figure S9. ¹¹B NMR spectra for **Int3** (in benzene- d_6).

4. Synthetic applications

4.1 Gram-scale experiment

In the glove-box, an oven-dried 250 ml reaction flask equipped with a magnetic stir bar, $B_2(pin)_2$ (13.3 g, 52.5 mmol, 1.05 equiv), MTBE (70.0 mL, super dry), acetone (2.96 g, 50.0 mmol, 1.0 equiv) and 4-cyanopyridine (5.2 g, 50.0 mmol, 1.0 equiv), was added in turn. The reaction mixture was stirred at room temperature for 36 hours. Then the crystallization of the intermediate from the reaction mixture at -35 °C furnished white solid identified as the intermediate compound **Int3** (20.1 g, 96% yield).

In a 100 ml reaction flask, 30.0 mmol **Int3** (12.5 g) was quenched with 2M Na₂CO₃ aqueous solution (40 mL). The reaction mixture was stirred under air for 10 minutes, and extracted by EtOAc (3×50 mL). The combined organic layer was washed with saturated brine (2×30 mL) and dried over Na₂SO₄. and then concentrated in vacuo to afford the crude product. This crude material was purified by flash chromatography to afford desired product **3a** in 90% yield (3.76 g scale).

4.2 Applications of the metal-free reductive coupling reaction in pharmaceutical chemistry

A sealed reaction flask equipped with a magnetic stir bar, 1-Boc-4-piperidone (10.0 mmol, 1.0 equiv), 4-cyanopyridine (15.0 mmol, 1.5 equiv), B₂(pin)₂ (12.0 mmol, 1.2 equiv), MTBE (50.0 mL, **Super dry**) was placed in a heated oil bath (40 °C). After 36 hours the reaction was quenched with 2M Na₂CO₃ aqueous solution (20 mL). The reaction mixture was stirred under air for another 10 minutes, and extracted by EtOAc (3×50 mL). The combined organic layer was washed with saturated brine (2×30 mL) and dried over Na₂SO₄, and then concentrated in vacuo to afford the crude product. This crude material was purified by flash chromatography to afford desired product **3zc** in 92% yield (2.61 g scale).

To a solution of 3zc (1.4 g, 5.0 mmol, 1.0 eq.) in 30.0 mL 1,4-dioxane, was added HCl dioxane aq. (10.0 eq.), the reaction mixture was stirred at room temperature for about 12 hours. Then, the reaction mixture was made alkaline with 2M Na₂CO₃ aq. and concentrated. After which, the crude product was redissolved in 20 mL MeOH/CHCl₃ (1:1). The organic layer was anhydrified with Na₂SO₄, and the solvent was removed, to yield the desired product 7 (0.8 g, 90% yield).

The desire products $8a^{[7]}$ and $8b^{[8]}$ were prepared according to the reported procedure, All synthesized products matched known ¹H and ¹³C NMR spectra.

To a round-bottomed flask was added compound 7 (90.0 mg, 0.5 mmol, 1.0 eq.), DMF (2 mL), DIPEA (3.0 eq.), and 7a (164.2 mg, 0.5 mmol, 1.0 eq.) sequentially, the reaction mixture was stirred at room temperature for 24 hours. Then, the reaction mixture was diluted with brine, extracted with ethyl acetate, the organic layer was dried with anhydrous Na₂SO₄, filtered, and filtrate was concentrated. The desired product was purified by preparative TLC (100/10, EA/MeOH) to afford **8a** (99.4 mg, 41% yield).

To a round-bottomed flask was added compound 7 (90.0 mg, 0.5 mmol, 1.0 eq.), DMF (2 mL), DIPEA (3.0 eq.), and 7b (164.5 mg, 0.5 mmol, 1.0 eq.) sequentially, the reaction mixture was stirred at room temperature for 24 hours. Then, the reaction mixture was diluted with brine, extracted with ethyl acetate, the organic layer was dried with anhydrous Na₂SO₄, filtered, and filtrate was concentrated. The desired product was purified by preparative TLC (100/10/0.5, DCM/MeOH/NH₃•H₂O) to afford **8b** (88.1 mg, 36% yield).

5. Spectroscopic Characterization of Products

5.1 Using ketones as the coupling partner

3a: Prepared following *general procedure A* using **1a** (11.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3a** (25.2 mg, 92% yield).

3a: White solid, mp 107-109 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 4.4 Hz, 2H), 7.38 (d, J = 6.2 Hz, 2H), 3.62 (s, 1H), 1.55 (s, 6H). ¹³**C** NMR (100 MHz, CDCl₃) δ 158.8, 149.5, 120.0, 71.6, 31.4. **IR** (film): 3196, 2988, 2880, 1605, 1408, 1173, 962, 837 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₈H₁₂NO [M+H]⁺ 138.0913, found 138.0912.

3b: Prepared following *general procedure A* using **1b** (12.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3b** (26.8 mg, 93% yield).

3b: White solid, mp 92-94 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 6.2 Hz, 2H), 7.44 (d, J = 6.4 Hz, 2H), 3.58 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 149.1, 120.5, 71.4, 30.3 (m). **IR** (film): 3201, 2924, 2850, 1605, 1424, 1047, 841 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₈H₆D₆NO [M+H]⁺ 144.1290, found 144.1291.

3c: Prepared following *general procedure A* using **1c** (19.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3c** (25.4 mg, 72% yield).

3c: White solid, mp 55-57 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 6.4 Hz, 2H), 7.36 (d, J = 6.3 Hz, 2H), 5.75 (m, 1H), 4.98-4.86 (m, 2H), 3.33 (s, 1H), 2.13-2.03 (m, 1H), 1.92-1.85 (m, 3H), 1.54 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 157.6, 149.4, 138.3, 120.5, 115.0, 73.9, 42.7, 30.1, 28.3. **IR** (film): 3218, 2928, 2853, 1601, 1415, 1163, 910, 826 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₁H₁₆NO [M+H]⁺ 178.1226, found 178.1225.

3d: Prepared following *general procedure A* using **1d** (25.2 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **3d** (37.5 mg, 91% yield).

3d: gum. ¹**H NMR** (400 MHz, CDCb) δ 8.49 (d, J = 6.3 Hz, 2H), 7.36 (d, J = 6.3 Hz, 2H), 5.06-5.00 (m, 1H), 3.41 (s, 1H), 2.01-1.95 (m, 1H), 1.84-1.77 (m, 3H), 1.61 (s, 3H), 1.51 (s, 3H), 1.45 (s, 3H). ¹³**C NMR** (100 MHz, CDCb) δ 158.0, 149.3, 132.6, 123.8, 120.6, 74.1, 43.4, 30.2, 25.8, 22.8, 17.7. IR (film): 3217, 2970, 2855, 1714, 1601, 1411, 1201, 826 cm⁻¹. **HRMS** (ESI-TOF) exact mass calculated for C₁₃H₂₀NO [M+H]⁺ 206.1539, found 206.1540.

3e: Prepared following *general procedure A* using **1e** (23.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3e** (34.8 mg, 88% yield).

3e: White solid, mp 82-84 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 6.0 Hz, 2H), 7.36 (d, J = 6.3 Hz, 2H), 4.18 (s, 1H), 2.48-2.41 (m, 1H), 2.35-2.27 (m, 1H), 2.07 (t, J = 7.7 Hz, 2H), 2.03 (s, 3H), 1.53 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 149.5, 120.5, 74.1, 41.9, 30.4, 28.9, 15.5. **IR** (film): 3212, 2916, 2855, 1601, 1412, 1066, 826 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₆NOS [M+H]⁺ 198.0947, found 198.0947.

3f: Prepared following *general procedure A* using **1f** (26.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3f** (18.1 mg, 43% yield).

3f: White solid, mp 76-78 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (d, J = 6.4 Hz, 2H), 7.37 (d, J = 6.3 Hz, 2H), 4.58 (s, 1H), 4.11-4.00 (m, 2H), 2.93 (d, J = 16.2 Hz, 1H), 2.79 (d, J = 16.3 Hz, 1H), 1.51 (s, 3H), 1.14 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 172.3, 156.4, 149.8, 120.1, 72.2, 61.2, 45.7, 30.2, 14.1. **IR** (film): 3188, 2981, 2856, 1736, 1601, 1411, 1201, 826 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₁H₁₆NO₃ [M+H]⁺ 210.1125, found 210.1125.

3g: Prepared following *general procedure A* using **1g** (17.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (101.6 mg, 0.40 mmol, 2.0 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/2 PE/EtOAc) to afford **3g** (30.1 mg, 90% yield).

3g: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.48-8.40 (m, 2H), 7.37 (d, J = 6.3 Hz, 2H), 5.16 (s, 1H), 4.28 (s, 1H), 3.87-3.69 (m, 1H), 3.59-3.41 (m, 1H), 2.17-1.92 (m, 2H), 151 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.7, 149.1, 120.5, 75.0, 59.6, 42.9, 30.4. **HRMS** (ESI-TOF) calculated for C₉H₁₄NO₂ [M+H]⁺ 168.1019, found 168.1017.

3h: Prepared following *general procedure A* using **1h** (32.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3h** (19.6 mg, 40% yield).

3h: gum. ¹**H NMR** (400 MHz, CD₃OD) δ 8.54 (d, J = 6.4 Hz, 2H), 7.62 (d, J = 6.4 Hz, 2H), 6.93 (d, J = 8.5 Hz, 2H), 6.67 (d, J = 8.5 Hz, 2H), 4.93 (s, 2H), 2.65-2.55 (m, 1H), 2.28-2.19 (m, 1H), 2.08-2.03 (m, 2H), 1.58 (s, 3H). ¹³**C NMR** (100 MHz, CD₃OD) δ 162.1, 157.2, 150.5, 135.0, 131.0, 123.3, 116.9, 75.3, 47.9, 31.2, 30.8. **IR** (film): 3193, 2921, 2851, 1604, 1514, 1407, 1244, 825 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₅H₁₈NO₂ [M+H]⁺ 244.1332, found 244.1329.

3i: Prepared following *general procedure A* using **1i** (30.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3i** (41.6 mg, 90% yield).

3i: White solid, mp 125-127 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 6.2 Hz, 2H), 7.31 (d, J = 6.3 Hz, 2H), 7.19-7.12 (m, 1H), 6.97-6.82 (m, 1H), 6.78-6.73 (m, 2H), 3.06 (s, 1H), 3.04-2.96 (m, 2H), 1.55 (s, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 162. 6 (d, $J_{C-F} = 245.8$ Hz), 157.0, 149.4, 138.7, 129.6 (d, $J_{C-F} = 8.2$ Hz), 126.3, 120.5, 117.5 (d, $J_{C-F} = 21.0$ Hz), 113.9 (d, $J_{C-F} = 21.0$ Hz), 73.8, 49.6, 29.0. ¹⁹FNMR (376 MHz, CDCl₃) δ -113.3. IR (film): 3210, 2926, 2853, 1615, 1423, 1251, 824 cm⁻¹. HRMS (ESI-TOF) calculated for C₁₄H₁₅FNO [M+H]⁺ 232.1132, found 232.1133.

3j: Prepared following *general procedure A* using **1j** (40.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3j** (49.5 mg, 88% yield).

3j: White solid, mp 113-115 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 6.4 Hz, 2H), 7.33 (d, J = 6.3 Hz, 2H), 7.23 (d, J = 8.2 Hz, 1H), 7.15 (d, J = 2.0 Hz, 1H), 6.81 (dd, J = 8.2, 2.1 Hz, 1H), 3.46 (s, 1H), 2.95 (s, 2H), 1.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 149.2, 136.6, 132.5, 132.0, 131.0, 130.0, 129.9, 120.7, 73.7, 48.9, 28.9. **IR** (film): 3182, 2977, 2926, 2853, 1601, 1471, 1132, 827 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₄H₁₄Cl₂NO [M+H]⁺ 282.0447, found 282.0446.

3k: Prepared following *general procedure A* using **1k** (42.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3k** (48.4 mg, 83% yield).

3k: White solid, mp 78-80 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 6.2 Hz, 2H), 7.33-7.31 (m, 2H), 7.30 (s, 1H), 7.20 (t, J = 1.9 Hz, 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.92-6.86 (m, 1H), 3.61 (s, 1H), 2.99-2.92 (m, 2H), 1.54 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 149.1, 138.6, 133.6, 129.9, 129.6, 129.3, 122.2, 120.7, 73.7, 49.5, 28.8. **IR** (film): 3195, 2976, 2852, 1600, 1412, 1136, 998, 823 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₄H₁₅BrNO [M+H]⁺ 292.0332, found 292.0330.

31: Prepared following *general procedure A* using **11** (40.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **31** (49.2 mg, 87% yield).

31: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.41 (d, J = 6.3 Hz, 2H), 7.44 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 6.3 Hz, 2H), 7.13 (d, J = 7.9 Hz, 2H), 3.55 (s, 1H), 3.07 (d, J = 3.4 Hz, 2H), 1.56 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156. 8, 149.4, 140.5, 131.0, 129.1 (q, $J_{C-F} = 32.4$ Hz), 125.0 (q, $J_{C-F} = 3.8$ Hz), 124.3 (q, $J_{C-F} = 271.9$ Hz), 120.5, 73.8, 49.8, 29.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -62.4. **IR** (film): 3212, 2932, 2854, 1613, 1421, 1254, 826 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₅H₁₅F₃NO [M+H]⁺ 282.1100, found 282.1102.

3m: Prepared following *general procedure A* using **1m** (32.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **3m** (38.4 mg, 79% yield).

3m: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (d, J = 6.2 Hz, 2H), 7.29 (d, J = 6.2 Hz, 2H), 6.90 (d, J = 8.6 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 3.76 (s, 3H), 3.04 (d, J = 13.6 Hz, 1H), 2.95 (d, J = 13.6 Hz, 1H), 2.16 (s, 1H), 1.55 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158. 7, 156.7, 149.5, 131.5, 127.6, 120.4, 113.8, 73.9, 55.2, 48.9, 29.0. **HRMS** (ESI-TOF) calculated for C₁₅H₁₈NO₂ [M+H]⁺ 244.1332, found 244.1330.

3n: Prepared following *general procedure A* using **1n** (52.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **3n** (52.4 mg, 77% yield).

3n: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.60-8.49 (m, 2H), 7.70-7.66 (m, 1H), 7.52 (t, J = 1.4 Hz, 1H), 7.38-7.35 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.07-7.03 (m, 1H), 3.04 (q, J = 13.4 Hz, 2H), 2.65 (s, 1H), 1.53 (s, 3H), 1.33 (s, 12H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.9, 149.1, 137.0, 135.0, 133.6, 133.4, 127.9, 121.4, 120.8, 84.0, 73.9, 49.7, 28.9, 25.0, 24.9. ¹¹**B NMR** (128 MHz, CDCl₃) δ 31.1. **IR** (film): 3215, 2978, 1613, 1517, 1410, 1368, 1140, 860 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₂₀H₂₇BNO₃ [M+H]⁺ 340.2079, found 340.2079.

30: Prepared following *general procedure A* using **10** (23.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **30** (29.2 mg, 74% yield).

30: White solid, mp 102-104 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 6.2 Hz, 2H), 7.44 (d, J = 6.3 Hz, 2H), 4.18 (s, 1H), 3.47 (s, 3H), 3.38 (s, 3H), 1.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 149.3, 121.4, 110.3, 75.5, 58.4, 58.3, 23.6. **IR** (film): 3195, 2935, 2833, 1601, 1454, 1190, 992, 828 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₆NO₃ [M+H]⁺ 198.1225, found 198.1223.

3p: Prepared following *general procedure A* using **1p** (31.2 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3p** (35.8 mg, 76% yield).

3p: White solid, mp 165-167 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 6.3 Hz, 2H), 7.45 (d, J = 6.3 Hz, 2H), 3.96 (t, J = 3.0 Hz, 4H), 2.14-2.04 (m, 4H), 1.76-1.66 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 158.9, 149.3, 120.4, 108.2, 71.8, 64.5, 64.3, 36.2, 30.6. **IR** (film): 3181, 2926, 2883, 1602, 1427, 1103, 998, 825 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₃H₁₈NO₃ [M+H]⁺ 236.1281, found 236.1280.

3q: Prepared following general procedure A using 1q (16.8 mg, 0.2 mmol, 1.0 equiv.),

4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3q** (30.1 mg, 92% yield).

3q: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.49 (d, J = 6.4 Hz, 2H), 7.47 (d, J = 6.4 Hz, 2H), 3.25 (s, 1H), 1.45 (s, 3H), 1.21-1.14 (m, 1H), 0.57-0.47 (m, 2H), 0.45-0.34 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 158.1, 148.0, 119.9, 71.3, 27.0, 21.6, 1.2, 0.1. **IR** (film): 3212, 2977, 1600, 1413, 1049, 901, 825 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₄NO [M+H]⁺ 164.1070, found 164.1070.

3r: Prepared following *general procedure A* using **1r** (22.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 60 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3r** (12.8 mg, 34% yield).

3r: White solid, mp 143-145 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 5.6 Hz, 2H), 7.51 (d, J = 6.3 Hz, 2H), 2.46 (s, 1H), 1.16-1.09 (m, 2H), 0.65-0.60 (m, 2H), 0.59-0.53 (m, 2H), 0.46-0.39 (m, 2H), 0.37-0.30 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 149.0, 121.3, 73.1, 20.2, 2.4, 0.0. **IR** (film): 3205, 3008, 2926, 2853, 1600, 1222, 913, 814 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₂H₁₆NO [M+H]⁺ 190.1226, found 190.1225.

3s: Prepared following *general procedure A* using **1s** (35.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3s** (25.6 mg, 50% yield).

3s: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (d, J = 5.0 Hz, 2H), 7.36 (d, J = 6.2 Hz, 2H), 7.23-7.09 (m, 1H), 7.04-6.90 (m, 3H), 3.30 (dd, J = 13.7 Hz, 1.3 Hz, 1H), 3.09 (dd, J = 13.7 Hz, 1.4 Hz, 1H), 2.29 (s, 1H), 1.42-1.34 (m, 1H), 0.52-0.27 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 161.7 (d, $J_{C-F} = 244.5$ Hz), 155.7, 149.4, 132.7 (d, $J_{C-F} = 4.5$ Hz), 128.8 (d, $J_{C-F} = 8.3$ Hz), 123.8 (d, $J_{C-F} = 3.5$ Hz), 123.1 (d, $J_{C-F} = 15.4$ Hz), 120.9, 115.3 (d, $J_{C-F} = 23.0$ Hz), 74.4, 41.5, 20.8, 1.9, 0.4. ¹⁹**FNMR** (376 MHz, CDCl₃) δ -116.1. **HRMS** (ESI-TOF) calculated for C₁₆H₁₇FNO [M+H]⁺ 258.1289, found 259.1289.

3t: Prepared following *general procedure A* using **1t** (38.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3t** (46.7 mg, 86% yield).

3t: gum. ¹**H** NMR (400 MHz, CDCl₃) δ 8.54 (d, J = 4.6 Hz, 2H), 7.39 (d, J = 6.2 Hz, 2H), 6.68 (d, J = 7.9 Hz, 1H), 6.57 (s, 1H), 6.53 (d, J = 7.9 Hz, 1H), 5.89 (s, 2H), 3.01 (s, 1H), 2.65-2.53 (m, 1H), 2.40-2.24 (m, 1H), 2.12-1.98 (m, 2H), 1.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 149.7, 147.7, 145.8, 135.7, 121.0, 120.4, 108.8, 108.3, 100.9, 73.9, 45.9, 30.3, 30.1. **HRMS** (ESI-TOF) calculated for C₁₆H₁₈NO₃ [M+H]⁺ 272.1281, found 272.1281.

3u: Prepared following *general procedure A* using **1u** (22.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3u** (20.1 mg, 52% yield).

3u: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (d, *J* = 6.3 Hz, 2H), 7.29 (d, *J* = 6.3 Hz, 2H), 1.97 (s, 1H), 1.91-1.55 (m, 4H), 1.40-1.28 (m, 2H), 1.07-0.94 (m, 2H), 0.85 (t, *J*

= 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 149.5, 120.7, 76.6, 45.0, 16.6, 14.4. HRMS (ESI-TOF) calculated for C₁₂H₂₀NO [M+H]⁺ 194.1539, found 194.1537.

3v: Prepared following *general procedure A* using **1v** (14.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 70 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3v** (20.1 mg, 67% yield).

3v: White solid, mp 86-88 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 6.2 Hz, 2H), 7.42 (d, J = 6.2 Hz, 2H), 4.14 (s, 1H), 2.52-2.38 (m, 4H), 2.11-2.03 (m, 1H), 1.82-1.73 (m, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 156.1, 149.5, 120.1, 75.6, 37.3, 13.1. **IR** (film): 3189, 2932, 2877, 1605, 1411, 813, 738 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₉H₁₂NO [M+H]⁺ 150.0913, found 150.0912.

3w: Prepared following *general procedure A* using **1w** (16.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3w** (25.1 mg, 76% yield).

3w: White solid, mp 84-86 °C. ¹H NMR (400 MHz, CDCb) δ 8.42 (d, J = 6.1 Hz, 2H), 7.38 (d, J = 6.2 Hz, 2H), 3.43 (s, 1H), 2.01-1.93 (m, 6H), 1.87-1.81 (m, 2H). ¹³C NMR (100 MHz, CDCb) δ 157.2, 149.3, 120.5, 82.4, 42.6, 24.3. **IR** (film): 3175, 2964, 2869, 1601, 1405, 829, 751 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₄NO [M+H]⁺ 164.1070, found 164.1068.

3x: Prepared following *general procedure A* using **1x** (22.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3x** (34.8 mg, 91% yield).

3x: White solid, mp 82-84 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, J = 6.2 Hz, 2H), 7.40 (d, J = 6.2 Hz, 2H), 3.39 (s, 1H), 1.98-1.90 (m, 2H), 1.87-1.81 (m, 4H), 1.76-1.68 (m, 2H), 1.62-1.54 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 160.7, 149.3, 120.1, 76.0, 42.8, 28.9, 22.5. **IR** (film): 3212, 2923, 2857, 1614, 1422, 811, 736 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₂H₁₈NO [M+H]⁺ 192.1383, found 192.1382.

3y: Prepared following *general procedure A* using **1y** (25.2 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3y** (36.8 mg, 89% yield).

3y: White solid, mp 73-75 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 6.3 Hz, 2H), 7.41 (d, J = 6.3 Hz, 2H), 3.28 (s, 1H), 1.93-1.91 (m, 4H), 1.80-1.64 (m, 5H), 1.56-1.47 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 149.2, 120.6, 75.8, 37.5, 28.3, 24.3, 21.7. **IR** (film): 3224, 2921, 2851, 1599, 1410, 1001, 845 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₃H₂₀NO [M+H]⁺ 206.1539, found 206.1539.

3z: Prepared following *general procedure A* using **1z** (14.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2

equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford 3z (20.9 mg, 65% yield).

3z: White solid, mp 141-143 °C. ¹**H** NMR (400 MHz, CD₃OD) δ 8.57 (d, J = 6.3 Hz, 2H), 7.75 (d, J = 6.3 Hz, 2H), 4.92 (s, 1H), 4.90 (d, J = 4.7 Hz, 2H), 4.75 (d, J = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CD₃OD) δ 155.5, 150.2, 121.3, 86.7, 74.8. **IR** (film): 3359, 2920, 2851, 1602, 1410, 1062, 977, 876 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₈H₁₀NO₂ [M+H]⁺ 152.0706, found 152.0701.

3za: Prepared following *general procedure A* using **1za** (48.9 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3za** (56.1 mg, 87% yield).

3za: White solid, mp 166-168 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 6.2 Hz, 2H), 7.81 (d, J = 6.2 Hz, 2H), 7.46 (d, J = 7.1 Hz, 2H), 7.29 (t, J = 7.5 Hz, 4H), 7.21 (t, J = 7.4 Hz, 2H), 5.37 (s, 1H), 4.52 (s, 1H), 3.57 (d, J = 8.7 Hz, 2H), 3.41 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 149.1, 141.9, 128.7, 127.4, 120.4, 78.1, 69.4, 68.3. Two resonances of C-Ar were overlapped. **IR** (film): 2181, 2939, 2838, 1602, 1451, 1070, 823 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₂₁H₂₁N₂O [M+H]⁺ 317.1648, found 317.1648.

3zb: Prepared following *general procedure A* using **1zb** (20.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3zb** (28.0 mg, 77% yield).

3zb: White solid, mp 123-125 °C. ¹H NMR (400 MHz, CDCb) δ 8.49 (d, J = 6.2 Hz,

2H), 7.47 (d, J = 6.2 Hz, 2H), 4.45 (s, 1H), 3.23-3.13 (m, 2H), 3.09-2.96 (m, 2H), 2.33-2.18 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 149.6, 120.6, 82.8, 45.4, 44.0, 29.5. **IR** (film): 3160, 2936, 2850, 1601, 1412, 1211, 1043, 820 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₉H₁₂NOS [M+H]⁺ 182.0634, found 182.0632.

3zc: Prepared following *general procedure A* using **1zc** (39.9 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3zc** (49.2 mg, 88% yield).

3zc: White solid, mp 137-139 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 5.7 Hz, 2H), 7.38 (d, J = 5.7 Hz, 2H), 4.38 (s, 1H), 4.06-3.84 (m, 2H), 3.21 (s, 2H), 1.91-1.84 (m, 2H), 1.67-1.63 (m, 2H), 1.43 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 154.9, 149.4, 120.2, 79.9, 70.8, 39.9, 37.6, 28.5. **IR** (film): 3212, 2975, 1698, 1600, 1033, 961, 821 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₅H₂₃N₂O₃ [M+H]⁺ 279.1703, found 279.1699.

3zd: Prepared following *general procedure A* using **1zd** (23.2 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3zd** (35.5 mg, 90% yield).

3zd: White solid, mp 152-154 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 6.3 Hz, 2H), 7.39 (d, J = 6.3 Hz, 2H), 3.27-3.19 (m, 2H), 3.10 (s, 1H), 2.46 (d, J = 14.4 Hz, 2H), 2.16-2.08 (m, 2H), 1.97 (d, J = 13.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 149.7, 119.9, 71.5, 39.0, 23.9. **IR** (film): 3135, 2946, 2833, 1602, 1422, 1090, 821 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₄NOS [M+H]⁺ 196.0791, found

3ze: Prepared following *general procedure A* using **1ze** (20.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/2 PE/EtOAc) to afford **3ze** (26.6 mg, 74% yield).

3ze: White solid, mp 204-206 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 6.2 Hz, 2H), 7.41 (d, J = 6.3 Hz, 2H), 3.98-3.84 (m, 4H), 3.60 (s, 1H), 2.15-2.06 (m, 2H), 1.65-1.60 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 157.8, 149.6, 120.1, 70.2, 63.6, 38.3. **IR** (film): 3147, 2960, 2863, 1603, 1422, 1128, 920, 825 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₄NO₂ [M+H]⁺ 180.1019, found 180.1017.

3zf: Prepared following *general procedure A* using **1zf** (38.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **3zf** (43.4 mg, 81% yield).

3zf: gum. ¹**H** NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 5.1 Hz, 2H), 7.42 (d, J = 6.3 Hz, 2H), 7.37-7.23 (m, 5H), 3.59 (s, 2H), 3.42 (s, 1H), 2.81 (d, J = 11.3 Hz, 2H), 2.50 (td, J = 12.1 Hz, 2.4 Hz, 2H), 2.11 (td, J = 13.2 Hz, 4.4 Hz, 2H), 1.68 (dd, J = 11.8 Hz, 2.5 Hz, 2H). ¹³CNMR (100 MHz, CDCl₃) δ 158.0, 149.5, 138.1, 129.3, 128.4, 127.3, 120.2, 70.8, 63.2, 49.1, 38.1. **IR** (film): 3218, 2941, 2814, 1703, 1600, 1410, 1046, 938 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₇H₂₁N₂O [M+H]⁺ 269.1648, found 269.1651.

3zg: Prepared following *general procedure A* using **1zg** (26.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **3zg** (37.2 mg, 87% yield).

3zg: White solid, mp 126-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 6.3 Hz, 2H), 7.43 (d, J = 6.3 Hz, 2H), 2.92 (s, 1H), 2.42-2.24 (m, 2H), 2.14-2.04 (m, 4H), 1.87-1.81 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 149.7, 123.0 (dd, $J_{C-F} = 243.1$, 238.7 Hz), 120.1, 71.5, 35.1 (d, $J_{C-F} = 10.0$ Hz), 29.7 (t, $J_{C-F} = 24.8$ Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -93.4 (d, J = 237.6 Hz, 1F), -105.6 (d, J = 237.5 Hz, 1F). IR (film): 3129, 2973, 2851, 1617, 1412, 1105, 821 cm⁻¹. HRMS (ESI-TOF) calculated for C₁₁H₁₄F₂NO [M+H]⁺ 214.1038, found 214.1037.

4a: Prepared following *general procedure A* using **1aa** (39.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **4a** (37.5 mg, 68% yield).

4a: White solid, mp 148-150 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 6.3 Hz, 2H), 7.30 (d, J = 6.3 Hz, 2H), 4.35 (s, 2H), 4.18-4.12 (m, 2H), 3.79 (s, 1H), 2.30 (s, 3H), 2.14 (d, J = 11.0 Hz, 1H), 1.98-1.90 (m, 2H), 1.83 (d, J = 14.5 Hz, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (100 MHz, CDCl₃) δ 159.4, 154.1, 149.3, 120.2, 72.9, 61.2, 53.3, 44.4, 43.4, 29.8, 28.3, 27.7, 14.9. **IR** (film): 3419, 2978, 2873, 1682, 1599, 1416, 1040, 813 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₅H₂₀N₂O₃ [M+H]⁺ 277.1547, found 277.1547.

4b: Prepared following *general procedure A* using **1ab** (22.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **4b** (31.6 mg, 83% yield).

4b: White solid, mp 179-181 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.38 (d, *J* = 4.6 Hz, 2H), 7.40 (d, *J* = 6.3 Hz, 2H), 3.34 (s, 1H), 2.45 (d, *J* = 3.8 Hz, 1H), 2.32 (t, *J* = 3.8 Hz, 1H), 2.20-2.09 (m, 2H), 1.69-1.58 (m, 1H), 1.52-1.40 (m, 4H), 1.38-1.32 (m, 1H). ¹³**C** NMR (100 MHz, CDCl₃) δ 159.2, 149.2, 121.6, 79.7, 47.5, 46.7, 38.9, 37.6, 28.9, 22.4. **IR** (film): 3027, 2952, 2869, 1601, 1413, 1026, 817 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₂H₁₅NO [M+H]⁺ 190.1226, found 190.1226.

4c: Prepared following *general procedure A* using **1ac** (77.3 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **4c** (83.8 mg, 90% yield).

4c: White solid, mp 233-235 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 5.1 Hz, 2H), 7.40 (d, J = 6.2 Hz, 2H), 2.22-0.98 (m, 32H), 0.94-0.81 (m, 12H), 0.67 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 149.8, 119.9, 73.4, 56.6, 56.4, 54.3, 42.7, 41.6, 41.2, 40.1, 39.7, 36.3, 35.9, 35.7, 34.6, 34.0, 32.1, 28.5, 28.4, 28.2, 24.3, 24.0, 23.0, 22.7, 21.1, 18.8, 12.3, 11.5, 1.2. **IR** (film): 3207, 2932, 2310, 1747, 1507, 1456, 877 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₃₂H₅₂NO [M+H]⁺ 466.4043, found 466.4052.

4d: Prepared following *general procedure A* using **1ad** (71.7 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) under the room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **4d** (26.1 mg, 30% yield).

4d: White solid, mp 233-235 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 6.0 Hz, 2H), 7.38 (d, *J* = 6.3 Hz, 2H), 5.34-5.30 (m, 1H), 4.59-4.48 (m, 1H), 2.30-2.22 (m, 2H), 2.09 (s, 1H), 2.04-1.64 (m, 10H), 1.52-0.88 (m, 15H), 0.75 (s, 3H), 0.62-0.52 (m, 1H), 0.45-0.33 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 157.6, 149.4, 139.8, 122.4, 120.7, 75.5, 73.9, 59.7, 56.8, 49.9, 42.9, 39.1, 38.2, 36.9, 36.6, 32.0, 31.8, 31.3, 27.8, 23.5, 23.0, 21.5, 20.6, 19.3, 13.6. HRMS (ESI-TOF) calculated for C₂₈H₄₀NO₃ [M+H]⁺ 438.3003, found 438.3002.

5.2 Using aldehydes as the coupling partner

5a: Prepared following *general procedure A* using **2a** (14.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **5a** (26.3 mg, 87% yield).

5a: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.40 (d, J = 6.2 Hz, 2H), 7.23 (d, J = 6.2 Hz, 2H), 4.42 (d, J = 5.7 Hz, 1H), 3.86 (s, 1H), 1.97-1.88 (m, 1H), 0.89 (d, J = 6.8 Hz, 3H), 0.86 (d, J = 6.8 Hz, 3H). ¹³**CNMR** (100 MHz, CDCl₃) δ 153.7, 149.1, 122.0, 77.8, 35.1, 19.0, 17.4. **IR** (film): 2959, 1935, 1602, 1416, 1002, 836 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₉H₁₄NO [M+H]⁺ 152.1069, found 152.1069.

5b: Prepared following *general procedure A* using **2b** (17.2 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5b** (27.6 mg, 83% yield).

5b: White solid, mp 178-180 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 6.3 Hz, 2H), 7.24 (d, J = 6.1 Hz, 2H), 4.35 (s, 1H), 3.61 (s, 1H), 0.90 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 148.6, 123.3, 80.8, 35.7, 25.9. **IR** (film): 3212, 2953, 1602, 1479, 1416, 1063, 823 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₆NO [M+H]⁺ 166.1226, found 166.1227.

5c: Prepared following *general procedure A* using **2c** (17.2 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5c** (31.5 mg, 95% yield).

5c: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, J = 6.1 Hz, 2H), 7.30 (d, J = 6.1 Hz, 2H), 4.68 (dd, J = 7.4, 5.4 Hz, 1H), 3.69 (s, 1H), 1.72-1.62 (m, 2H), 1.38-1.23 (m, 4H), 0.85 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.2, 148.0, 120.6, 71.6, 37.7, 26.7, 21.6, 13.1. **IR** (film): 3200, 2956, 1942, 1602, 1416, 1001, 836 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₆NO [M+H]⁺ 166.1226, found 166.1226.

5d: Prepared following *general procedure A* using **2d** (16.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), B₂(pin)₂ (61.9 mg, 0.24 mmol, 1.2
equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5d** (29.8 mg, 93% yield).

5d: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (m, 2H), 7.31 (d, J = 6.1 Hz, 2H), 5.92-5.68 (m, 1H), 5.09-4.89 (m, 2H), 4.72 (dd, J = 7.7, 5.2 Hz, 1H), 3.87 (s, 1H), 2.16 (q, J = 7.1 Hz, 2H), 1.82-1.72 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 155.9, 149.1, 137.8, 121.6, 115.6, 71.9, 38.0, 29.8. IR (film): 3212, 2921, 2852, 1619, 1416, 1065, 913, 819 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₄NO [M+H]⁺ 164.1070, found 164.1068.

5e: Prepared following *general procedure A* using **2e** (20.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5e** (32.3 mg, 88% yield).

5e: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (d, J = 6.2 Hz, 2H), 7.28 (d, J = 6.1 Hz, 2H), 4.86 (dd, J = 7.9, 4.7 Hz, 1H), 4.46 (s, 1H), 2.69-2.52 (m, 2H), 2.09 (s, 3H), 2.01-1.93 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.2, 149.5, 121.0, 71.4, 37.7, 30.5, 15.5. IR (film): 3207, 2915, 1602, 1416, 1065, 1003, 959, 820 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₉H₁₄NOS [M+H]⁺ 184.0791, found 184.0789.

5f: Prepared following *general procedure A* using **2f** (27.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **5f** (40.1 mg, 92% yield).

5f: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.43 (d, J = 4.8 Hz, 2H), 7.33 (d, J = 6.4 Hz, 2H), 5.84 (d, J = 3.0 Hz, 1H), 5.81 (d, J = 3.0 Hz, 1H), 4.74 (dd, J = 7.4 Hz, 5.4 Hz, 2H), 3.91 (s, 1H), 2.69 (t, J = 7.6 Hz, 2H), 2.21 (s, 3H), 2.03-1.96 (m, 2H). ¹³C **NMR**

(100 MHz, CDCl₃) δ 156.0, 153.1, 150.7, 148.9, 121.7, 106.1, 106.0, 71.6, 37.3, 24.2, 13.6. **IR** (film): 3175, 2921, 1619, 1567, 1416, 1065, 1020, 823 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₃H₁₆NO₂ [M+H]⁺ 218.1176, found 218.1176.

5g: Prepared following *general procedure A* using **2g** (24.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **5g** (28.6 mg, 72% yield).

5g: White solid, mp 150-152 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.49 (d, J = 6.1 Hz, 2H), 7.36-7.30 (m, 2H), 7.30-7.25 (m, 3H), 7.19 (d, J = 6.8 Hz, 2H), 4.92 (dd, J = 8.3 Hz, 4.93 Hz, 1H), 3.14 (s, 1H), 3.08-2.94 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 149.7, 137.2, 129.7, 128.8, 127.0, 121.1, 73.8, 45.8. IR (film): 3175, 2922, 2852, 1681, 1414, 1054, 820 cm⁻¹. HRMS (ESI-TOF) calculated for C₁₃H₁₄NO [M+H]⁺ 200.1070, found 200.1068.

5h: Prepared following *general procedure A* using **2h** (39.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5h** (32.1 mg, 58% yield).

5h: White solid, mp 135-137 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 6.1 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 6.0 Hz, 2H), 7.01 (d, J = 8.3 Hz, 2H), 4.86 (dd, J = 7.8 Hz, 5.2 Hz, 1H), 3.46 (s, 1H), 2.96-2.88 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 149.5, 136.2, 131.7, 131.4, 121.2, 120.9, 73.5, 45.0. IR (film): 3195, 2976, 2852, 1600, 1412, 1136, 998, 823 cm⁻¹. HRMS (ESI-TOF) calculated for C₁₃H₁₃BrNO [M+H]⁺ 278.0175, found 278.0174.

5i Prepared following *general procedure A* using **2i** (34.6 mg, 0.2 mmol, 1.0 equiv.), 4cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **5i** (30.4 mg, 60% yield).

5i: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.52-8.40 (m, 2H), 7.41-7.28 (m, 2H), 4.92-4.71 (m, 2H), 3.48-3.26 (m, 2H), 2.96-2.62 (m, 3H), 1.47-1.27 (m, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.9, 153.0, 149.2, 121.5, 80.7 and 80.1, 72.4 and 71.7, 57.0 and 56.7, 36.9 and 36.2, 28.4. **IR** (film): 3400, 2976, 2930, 1697, 1481, 1456, 1393, 1151 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₃H₂₁N₂O₃ [M+H]⁺ 253.1547, found 253.1547.

5j: Prepared following *general procedure A* using **2j** (14.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5j** (26.9 mg, 90% yield).

5j: White solid, mp 80-82 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 6.1 Hz, 2H), 7.36 (d, J = 6.1 Hz, 2H), 4.01 (d, J = 8.4 Hz, 1H), 3.76 (s, 1H), 1.18-1.04 (m, 1H), 0.63-0.56 (m, 2H), 0.50-0.40 (m, 2H). ¹³**C** NMR (100 MHz, CDCl₃) δ 153.7, 149.4, 121.3, 76.7, 19.2, 3.6, 3.2. **IR** (film): 3207, 2854, 1604, 1415, 1044, 950, 813 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₉H₁₂NO [M+H]⁺ 150.0913, found 150.0912.

5k: Prepared following *general procedure A* using **2k** (37.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford 5k (25.4 mg, 48% yield).

5k: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.48 (d, J = 5.1 Hz, 2H), 7.28 (d, J = 6.2 Hz, 2H), 4.78 (d, J = 7.0 Hz, 1H), 4.18 (s, 1H), 3.96-3.73 (m, 4H), 2.83-2.74 (m, 1H), 1.40 (s, 9H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.6, 152.2, 149.6, 121.4, 79.8, 73.4, 50.8, 35.3, 28.5. **IR** (film): 3366, 2975, 2886, 1693, 1602, 1416, 1142, 1064 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₄H₂₁N₂O₃ [M+H]⁺ 265.1547, found 265.1546.

51: Prepared following *general procedure A* using **21** (16.8mg, 0.2 mmol, 1.0 equiv.), 4cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **51** (29.5 mg, 90% yield).

51: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.42 (d, J = 5.9 Hz, 2H), 7.25 (d, J = 6.1 Hz, 2H), 4.56 (d, J = 7.4 Hz, 1H), 3.43 (s, 1H), 2.60-2.46 (m, 1H), 2.01-1.93 (m, 2H), 1.88-1.75 (m, 4H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.7, 149.1, 121.6, 76.1, 42.3, 24.3, 17.8. **IR** (film): 3219, 2930, 2849, 1601, 1447, 1419, 1031, 832 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₄NO [M+H]⁺ 164.1070, found 164.1070.

5m: Prepared following *general procedure A* using **2m** (19.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5m** (24.9 mg, 70% yield).

5m: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.44 (d, *J* = 6.1 Hz, 2H), 7.26 (d, *J* = 6.0 Hz, 2H), 4.46 (d, *J* = 7.5 Hz, 1H), 3.48 (s, 1H), 2.19-2.09 (m, 1H), 1.80-1.71 (m, 1H), 1.65-1.41 (m, 6H), 1.26-1.20 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.1, 149.4, 121.7, 76.9, 47.5, 29.4, 28.8, 25.6, 25.5. **IR** (film): 3227, 2953, 2867, 1602, 1414, 1035, 819

 cm^{-1} . **HRMS** (ESI-TOF) calculated for $C_{11}H_{16}NO [M+H]^+ 178.1226$, found 178.1224.

5n: Prepared following *general procedure A* using **2f** (22.4 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **5n** (32.8 mg, 86% yield).

5n: White solid, mp 101-103 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 5.9 Hz, 2H), 7.22 (d, J = 6.1 Hz, 2H), 4.41 (d, J = 6.0 Hz, 1H), 3.69 (s, 1H), 1.80-1.66 (m, 3H), 1.65-1.54 (m, 2H), 1.45 (d, J = 13.7 Hz, 1H), 1.22-1.10 (m, 3H), 1.08-0.99 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 149.1, 122.1, 77.4, 44.9, 29.4, 27.9, 26.4, 26.2, 26.1. **IR** (film): 3217, 2924, 2851, 1603, 1450, 1415, 1030, 831 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₂H₁₈NO [M+H]⁺ 192.1383, found 192.1382.

50: Prepared following *general procedure A* using **20** (42.6 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **50** (53.4 mg, 91% yield).

50: White solid, mp 78-80 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.39 (d, J = 6.1 Hz, 2H), 7.20 (d, J = 6.0 Hz, 2H), 4.40 (d, J = 6.3 Hz, 1H), 4.26 (s, 1H), 4.10-4.01 (m, 2H), 2.55 (s, 2H), 1.79-1.61 (m, 2H), 1.38 (s, 9H), 1.33-1.27 (m, 1H), 1.25-1.17 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 153.1, 149.3, 121.9, 79.6, 76.4, 43.3, 28.5, 28.4, 27.4. **IR** (film): 3366, 2975, 2886, 1693, 1602, 1416, 1064, 931 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₆H₂₅N₂O₃ [M+H]⁺ 293.1860, found 293.1859.

5p: Prepared following *general procedure A* using **2p** (41.5 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **5p** (36.2 mg, 63% yield).

5p: White solid, mp 79-81 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 4.6 Hz, 2H), 7.37-7.32 (m, 5H), 7.25 (d, J = 4.3 Hz, 2H), 5.41 (s, 1H), 5.09 (s, 2H), 4.73 (dd, J = 9.7, 3.4 Hz, 1H), 4.48 (s, 1H), 3.52 (s, 1H), 3.30-3.20 (m, 1H), 1.92-1.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 153.8, 149.6, 136.4, 128.7, 128.4, 128.2, 120.9, 69.9, 67.1, 39.1, 37.9. **IR** (film): 3359, 2923, 2853, 1715, 1507, 1456, 1247, 869 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₆H₁₉N₂O₃ [M+H]⁺ 287.1390, found 287.1391.

5q: Prepared following *general procedure A* using **2q** (32.9 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **5q** (43.0 mg, 88% yield).

5q: White solid, m.p. 174-176 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.48 (d, J = 6.1 Hz, 2H), 7.18 (d, J = 6.1 Hz, 2H), 4.18 (s, 1H), 2.46 (s, 1H), 1.98-194 (m, 3H), 1.70-1.65 (m, 3H), 1.62-1.52 (m, 6H), 1.50-1.44 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 150.5, 148.8, 123.3, 81.6, 38.1, 37.2, 37.0, 28.3. **IR** (film): 3207, 2928, 2851, 1600, 1449, 1145, 828 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₆H₂₂NO [M+H]⁺ 244.1696, found 244.1696.

5r Prepared following *general procedure A* using **2r** (34.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **5r** (41.8 mg, 76% yield).

5r: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 7.1 Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 7.26-7.22 (m, 1H), 7.21-7.04 (m, 7H), 5.38 (d, J = 8.3 Hz, 1H), 4.15 (d, J = 8.3 Hz, 1H), 3.68 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 153.3, 148.7, 140.9, 140.1, 129.0, 128.8, 128.6, 128.4, 127.2, 126.9, 122.4, 75.3, 59.8. **IR** (film): 3060, 2922, 1617, 1601, 1494, 1416, 1064, 1031, 810 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₉H₁₈NO [M+H]⁺ 276.1383, found 276.1383.

5s: Prepared following *general procedure A* using **2s** (32.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **5s** (45.1 mg, 94% yield).

5s: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 6.1 Hz, 2H), 7.34-7.30 (m, 2H), 7.30-7.14 (m, 5H), 5.26 (d, J = 1.4 Hz, 1H), 5.06-5.02 (m, 1H), 4.72-4.66 (m, 1H), 4.35 (s, 1H), 2.69-2.52 (m, 2H), 1.85-1.74 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.0, 148.9, 147.7, 140.8, 128.5, 127.6, 126.2, 121.6, 113.1, 71.8, 37.4, 31.3. **IR** (film): 3200, 3080, 2923, 1619, 1603, 1414, 1220, 1065 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₆H₁₈NO [M+H]⁺ 240.1383, found 240.1387.

5t: Prepared following *general procedure A* using **2t** (34.8 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at room temperature. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **5t** (44.0 mg, 86% yield).

5t: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.38 (d, J = 6.1 Hz, 2H), 7.37-7.32 (m, 2H), 7.33-7.27 (m, 2H), 7.26-7.24 (m, 1H), 7.22 (d, J = 6.1 Hz, 2H), 5.26 (d, J = 1.4 Hz, 1H), 5.03 (d, J = 1.5 Hz, 1H) 4.65-4.62 (m, 1H), 4.15 (s, 1H), 2.52 (t, J = 7.3 Hz, 2H), 1.79-1.68 (m, 2H), 1.64-1.57 (m, 1H), 1.55-1.44 (m, 1H). ¹³C **NMR** (100 MHz, CDCl₃) δ 155.3, 149.1, 148.0, 141.1, 128.4, 127.5, 126.2, 121.3, 112.8, 72.3, 38.4, 35.0, 24.1. **IR** (film): 3200, 3079, 2939, 1621, 1603, 1414, 1212, 1065 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₇H₂₀NO [M+H]⁺ 254.1539, found 254.1543.

6a: Prepared following *general procedure A* using **2f** (27.6 mg, 0.2 mmol, 1.0 equiv.), 3-methylthio-4-cyanopyridine (45.0 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (5/3 PE/EtOAc) to afford **6a** (42.0 mg, 79% yield).

6a: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.30-8.26 (m, 2H), 7.44 (d, J = 5.0 Hz, 1H), 5.88 (d, J = 2.9 Hz, 1H), 5.82 (d, J = 2.9 Hz, 1H), 5.05 (dd, J = 8.7, 3.5 Hz, 1H), 3.99 (s, 1H), 2.83-2.73 (m, 2H), 2.45 (d, J = 1.3 Hz, 3H), 2.22 (s, 3H), 2.08-2.01 (m, 1H), 1.95-1.85 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 152.5, 150.6, 146.8, 146.5, 132.1, 120.2, 106.0, 105.9, 69.1, 35.6, 24.5, 16.3, 13.6. IR (film): 3212, 2921, 2852, 1681, 1434, 1218, 1020, 948 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₄H₁₈NO₂S [M+H]⁺ 264.1053, found 264.1053.

6e: Prepared following *general procedure A* using **2o** (42.7 mg, 0.2 mmol, 1.0 equiv.), 3-methyl-4-cyanopyridine (35.4 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **6e** (49.2 mg, 80% yield).

6e: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.37-8.20 (m, 2H), 7.35 (d, J = 5.1 Hz, 1H), 4.68-4.62 (m, 1H), 4.16-4.00 (m, 2H), 3.46 (s, 1H), 2.62-2.54 (m, 2H), 2.26 (s, 3H), 1.80-1.66 (m, 2H), 1.42 (s, 9H), 1.36-1.30 (m, 1H), 1.30-1.24 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.8, 151.4, 150.6, 147.5, 130.5, 121.5, 79.6, 72.9, 43.8, 42.6, 28.6, 27.2, 16.4. **IR** (film): 3290, 2922, 1704, 1589, 1402, 1218, 1092, 843 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₇H₂₇N₂O₃ [M+H]⁺ 307.2016, found 307.2013.

6f: Prepared following *general procedure A* using **2o** (42.7 mg, 0.2 mmol, 1.0 equiv.), 3-fluoro-4-cyanopyridine (36.6 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **6f** (26.7 mg, 43% yield).

6f: White solid, mp 76-78 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.36-8.28 (m, 2H), 7.44 (t, J = 5.5 Hz, 1H), 4.83-4.81 (m, 1H), 4.07 (s, 2H), 3.74 (s, 1H), 2.62-2.52 (m, 2H), 1.80-1.68 (m, 2H), 1.39 (s, 9H), 1.37-1.33 (m, 1H), 1.31-1.23 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.8 (d, $J_{C-F} = 254.6$ Hz), 154.9, 145.7, 139.6, 137.6 (d, $J_{C-F} = 26.9$ Hz), 122.7, 79.7, 70.1, 43.7, 42.7, 28.5, 27.6 (d, $J_{C-F} = 89.7$ Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -132.1. **IR** (film): 3420, 2929, 1693, 1417, 1218, 1163, 1092, 844 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₆H₂₄FN₂O₃ [M+H]⁺ 311.1765, found 311.1766.

6g: Prepared following *general procedure A* using **2o** (42.7 mg, 0.2 mmol, 1.0 equiv.), 3-chloro-4-cyanopyridine (41.6 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (1/1 PE/EtOAc) to afford **6g** (27.1 mg, 41% yield).

6g: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.45-8.38 (m, 2H), 7.46 (d, J = 5.0 Hz, 1H), 4.90 (d, J = 5.2 Hz, 1H), 4.15-4.03 (m, 2H), 3.69 (s, 1H), 2.62-2.50 (m, 2H), 1.80-1.56 (m, 2H), 1.40 (s, 9H), 1.40-1.36 (m, 2H), 1.32-1.28 (m, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 154.8, 150.2, 149.1, 147.7, 130.1, 122.9, 79.7, 72.5, 43.8, 42.0, 28.5, 26.3. **IR** (film): 3420, 2975, 2927, 2856, 1693, 1428, 1165, 731 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₆H₂₄ClN₂O₃ [M+H]⁺ 327.1470, found 327.1472...

6h: Prepared following *general procedure A* using **2j** (14.0 mg, 0.2 mmol, 1.0 equiv.), 4-cyanopyridine (31.2 mg, 0.3 mmol, 1.5 equiv.), $B_2(pin)_2$ (61.9 mg, 0.24 mmol, 1.2 equiv) and MTBE (1.0 mL) at 40 °C. After 24 hours, following the described workup procedure, the reaction mixture was purified by preparative TLC (2/1 PE/EtOAc) to afford **6h** (27.4 mg, 84% yield).

6h: gum. ¹**H NMR** (400 MHz, CDCl₃) δ 8.38-8.22 (m, 2H), 7.42 (d, J = 5.1 Hz, 1H), 4.42 (d, J = 7.4 Hz, 1H), 3.55 (s, 1H), 2.29 (s, 3H), 1.24-1.15 (m, 1H), 0.61-0.49 (m, 2H), 0.40-0.32 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 151.3, 150.5, 147.3, 130.6, 121.0, 72.5, 17.5, 16.4, 3.1, 2.5. **IR** (film): 3207, 2930, 2854, 1602, 1415, 1044, 966, 816 cm⁻¹. **HRMS** (ESI-TOF) calculated for C₁₀H₁₃NO [M+H]⁺ 164.1070, found 164.1068.

7: To a solution of 3zc (1.4 g, 5.0 mmol, 1.0 eq.) in 30.0 mL 1,4-dioxane, was added HCl dioxane aq. (10.0 eq.), the reaction mixture was stirred at room temperature for about 12 hours. Then, the reaction mixture was made alkaline with 2M Na₂CO₃ aq. and concentrated. After which, the crude product was redissolved in 20 mL MeOH/CHCl₃ (1:1). The organic layer was anhydrified with Na₂SO₄, and the solvent was removed, to yield the desired product 7 (0.8 g, 90% yield).

7: White solid. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 6.2 Hz, 2H), 7.41 (d, J = 6.2 Hz, 2H), 3.73 (s, 1H), 3.15-3.07 (m, 2H), 3.02-2.94 (m, 2H), 2.15 (s, 1H), 2.01-1.93 (m, 2H), 1.70-1.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 149.9, 119.8, 71.4, 42.1, 38.7. HRMS (ESI-TOF) calculated for C₁₀H₁₅N₂O [M+H]⁺ 179.1179, found 179.1179.

8a: White solid. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 10.40 (s, 1H), 9.12 (dd, *J* = 4.3, 1.8 Hz, 1H), 8.55-8.45 (m, 3H), 8.41 (dd, *J* = 7.4, 1.5 Hz, 1H), 8.27 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.76-7.68 (m, 2H), 7.52-7.41 (m, 2H), 7.21 (d, *J* = 8.6 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 5.38 (s, 1H), 4.31 (s, 1H), 4.04 (s, 1H), 3.16-2.98 (m, 2H), 1.88-1.72 (m, 2H), 1.62-1.38 (m, 2H). ¹³**CNMR** (100 MHz, DMSO-*d*₆) δ 168.3, 157.6, 151.5, 149.3, 142.7, 138.9, 136.9, 135.1, 134.4, 132.2, 130.9, 128.4, 127.9, 125.6, 122.6, 120.1, 118.5, 69.9, 38.5, 36.9. **HRMS** (ESI-TOF) calculated for C₂₆H₂₅N₄O₄S [M+H]⁺ 489.1591, found 489.1591.

8b: gum. ¹**H NMR** (400 MHz, CDCb) δ 8.49 (d, J = 5.1 Hz, 2H), 7.75-7.67 (m, 2H), 7.60-7.55 (m, 1H), 7.52-7.47 (m, 2H), 7.34 (d, J = 6.1 Hz, 2H), 4.54-4.40 (m, 1H), 4.20-4.08 (m, 2H), 3.77-3.67 (m, 1H), 3.64-3.58 (m, 2H), 3.55-3.47 (m, 1H), 3.21-2.90 (m, 1H), 3.64-3.58 (m, 2H), 3.55-3.47 (m, 1H), 3.21-2.90 (m, 1H), 3.64-3.58 (m, 2H), 3.55-3.47 (m, 1H), 3.21-2.90 (m, 1H), 3.55-3.47 (m, 2H), 3.55-3.58 (m, 2H), 3.55-3.58

6H), 2.65-2.56 (m, 6H), 1.98-1.78 (m, 2H), 1.77-1.67 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 156.9, 149.9, 135.3, 133.0, 129.2, 127.9, 119.9, 71.0, 70.2, 68.5, 57.4, 52.5, 45.9, 41.0, 38.4, 37.8, 37.3. **HRMS** (ESI-TOF) calculated for C₂₄H₃₃N₄O₅S [M+H]⁺ 489.2166, found 489.2165.

6. NMR Spectra

¹H and ¹³C NMR spectra for compound 3a

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound 3b

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,$ 3c $\,$

¹H and ¹³C NMR spectra for compound 3d

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,$ 3e $\,$

¹H and ¹³C NMR spectra for compound 3f

 1H and $\,^{13}C\,NMR$ spectra for compound $\,\,3g$

¹H and ¹³C NMR spectra for compound 3h

¹H and ¹³C NMR spectra for compound 3i

¹⁹F NMR spectra for compound 3i

¹H and ¹³C NMR spectra for compound 3j

¹H and ¹³C NMR spectra for compound 3k

 $^{1}\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound 31

¹⁹F NMR spectra for compound 31

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $3\mathrm{m}$

¹H and ¹³C NMR spectra for compound 3n

¹¹B NMR spectra for compound 3n

¹H and ¹³C NMR spectra for compound 30

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,$ 3p

¹H and ¹³C NMR spectra for compound 3q

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,3r$

¹H and ¹³C NMR spectra for compound 3s

¹⁹F NMR spectra for compound 3s

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,3t$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,3u$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,3v$

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,\mathbf{3w}$

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 - $^{11}_{f1 (ppm)}$ ¹H and ¹³C NMR spectra for compound **3**x

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,\mathbf{3y}$

 1H and $\,^{13}C\,NMR$ spectra for compound $\,\,3z$

¹H and ¹³C NMR spectra for compound 3za

¹H and ¹³C NMR spectra for compound 3zb

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound 3zc

¹H and ¹³C NMR spectra for compound 3zd

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,$ 3ze

¹H and ¹³C NMR spectra for compound 3zf

¹H and ¹³C NMR spectra for compound 3zg

¹⁹F NMR spectra for compound 3zg

¹H and ¹³C NMR spectra for compound 4a

¹H and ¹³C NMR spectra for compound 4b

¹H and ¹³C NMR spectra for compound 4c

¹H and ¹³C NMR spectra for compound 4d

¹H and ¹³C NMR spectra for compound 5a

¹H and ¹³C NMR spectra for compound 5b

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,$ 5c $\,$

¹H and ¹³C NMR spectra for compound 5d

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound 5e

¹H and ¹³C NMR spectra for compound 5f

¹H and ¹³C NMR spectra for compound 5g

¹H and ¹³C NMR spectra for compound 5h

¹H and ¹³C NMR spectra for compound 5i

¹H and ¹³C NMR spectra for compound 5k

¹H and ¹³C NMR spectra for compound 5l

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound 5m

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound ~5n

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound ~5o

¹H and ¹³C NMR spectra for compound **5p**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound ~5q

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound ~5r
8.37 8.37 7.33 7.7.31 7.7.31 7.7.31 7.7.31 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.29 7.7.20 7.7.29 7.7.29 7.7.29 7.7.20 7.7.29 7.7.20 7.7.29 7.7.20 7.7.29 7.7.20 7.7.20 7.7.29 7.7.20 7.2.20 7

¹H and ¹³C NMR spectra for compound **5s**

 1 H and 13 C NMR spectra for compound **5**t

¹H and ¹³C NMR spectra for compound **6a**

 $^1\mathrm{H}$ and $^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,6e$

¹H and ¹³C NMR spectra for compound **6f**

¹⁹F NMR spectra for compound **6f**

¹H and ¹³C NMR spectra for compound 6g

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound $\,$ 6h $\,$

 $^1\mathrm{H}$ and $\,^{13}\mathrm{C}\,\mathrm{NMR}$ spectra for compound 7

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound 8a.

77.50 7.50 7.48 7.48 7.48 7.48 7.35 7.33 7.33 7.33 4.44 4.44 4.44 4.44 1.84 1.82 1.74 1.70 0.86 0.86 8.50 8.49 1.55 .56 7.55 3.69 6 1.72 5 .52 .51 3.63 8.6 3.59 3.51 .50 5.61

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra for compound 8b.

7. Cartesian Coordinates and Energies of the Optimized Structures

Geometry optimizations and characters of all the stationary points were calculated by using the M06-2X/6-31G(d,p) method. Single point energies (**Esol**, a.u.) are computed by using the M06-2X/cc-PVTZ method in solvent (benzene). The solvent effect was treated with the polarizable continuum model (PCM).

2 (4-cyanopyridine)	
Thermal correction to Energy=	0.093717
Thermal correction to Enthalpy=	0.094661
Thermal correction to Gibbs Free Energy=	0.057431
Sum of electronic and zero-point Energies=	-340.327193
Sum of electronic and thermal Energies=	-340.321179
Sum of electronic and thermal Enthalpies=	-340.320235
Sum of electronic and thermal Free Energies=	-340.357464

Esol= -340.5237333

Input orientation:

Center	Atomic	Atomic	Coord	linates (Angsti	coms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.501623	1.141229	0.000013
2	6	0	0.111742	1.204296	0.000010
3	6	0	-0.599670	0.000000	0.000000
4	6	0	0.111742	-1.204295	-0.000010
5	6	0	1.501623	-1.141228	-0.000013
6	7	0	2.195794	0.000000	0.000000
7	1	0	2.086228	2.058582	0.000016
8	1	0	-0.407006	2.156103	0.000015
9	1	0	-0.407006	-2.156102	-0.000015
10	1	0	2.086228	-2.058581	-0.000015
11	6	0	-2.031091	0.000000	0.000000
12	7	0	-3.193446	0.000000	0.000000

4-CN-Py-Bpin

Thermal correction to Energy=	0.287707
Thermal correction to Enthalpy=	0.288652
Thermal correction to Gibbs Free Energy=	0.226908
Sum of electronic and zero-point Energies=	-751.343019
Sum of electronic and thermal Energies=	-751.326571
Sum of electronic and thermal Enthalpies=	-751.325627

Eso⊫ -751.8516827 Input orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Ζ
1	6	0	1.656372	1.187121	-0.160765
2	6	0	3.012996	1.206199	-0.163801
3	6	0	3.760870	-0.000018	-0.000056
4	6	0	3.012988	-1.206227	0.163712
5	6	0	1.656365	-1.187136	0.160716
6	7	0	0.939273	-0.000004	-0.000013
7	1	0	1.050493	2.075493	-0.280271
8	1	0	3.528811	2.150651	-0.291605
9	1	0	3.528798	-2.150685	0.291500
10	1	0	1.050481	-2.075502	0.280241
11	6	0	5.167592	-0.000025	-0.000077
12	7	0	6.337732	-0.000031	-0.000095
13	5	0	-0.499423	0.000003	0.000008
14	8	0	-1.233722	-1.131120	0.229716
15	8	0	-1.233719	1.131132	-0.229678
16	6	0	-2.602916	-0.777258	-0.102576
17	6	0	-2.602906	0.777282	0.102654
18	6	0	-3.539328	-1.540018	0.815886
19	1	0	-4.575645	-1.232238	0.646093
20	1	0	-3.465209	-2.611184	0.611149
21	1	0	-3.291809	-1.376633	1.865767
22	6	0	-2.822438	-1.183573	-1.556116
23	1	0	-2.594762	-2.246860	-1.664485
24	1	0	-3.857321	-1.017898	-1.867089
25	1	0	-2.163187	-0.623848	-2.225585
26	6	0	-3.539338	1.540050	-0.815782
27	1	0	-4.575653	1.232281	-0.645958
28	1	0	-3.465201	2.611216	-0.611049
29	1	0	-3 291852	1 376661	-1 865670
30	6	0	-2 822384	1 183598	1 556200
31	1	0	-2.594700	2.246884	1.664563
32	1	0 0	-3.857260	1.017929	1.867201
33	1	0 0	-2 163119	0 623869	2 225650
	1	~	2.103117	0.025007	2.225050

Acetone

Thermal correction to Energy=	0.089338
Thermal correction to Enthalpy=	0.090282
Thermal correction to Gibbs Free Energy=	0.055278
Sum of electronic and zero-point Energies=	-193.016311
Sum of electronic and thermal Energies=	-193.010876
Sum of electronic and thermal Enthalpies=	-193.009932
Sum of electronic and thermal Free Energies=	-193.044936

Esol= -193.1674538

Input orientation:

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.185437	0.644245	-0.605068
2	6	0	1.301232	0.720492	0.045799
3	6	0	-0.050504	1.401936	0.050209
4	8	0	-0.215198	2.495353	0.551552
5	1	0	-2.103341	1.230170	-0.549726
6	1	0	-0.946463	0.429125	-1.652588
7	1	0	2.037014	1.353037	0.543206
8	1	0	1.622652	0.518123	-0.982065
9	1	0	1.241919	-0.248029	0.554962
10	1	0	-1.334042	-0.321948	-0.109820

TS1

Thermal correction to Energy=	0.378322
Thermal correction to Enthalpy=	0.379266
Thermal correction to Gibbs Free Energy=	0.304807
Sum of electronic and zero-point Energies=	-944.362520
Sum of electronic and thermal Energies=	-944.340473
Sum of electronic and thermal Enthalpies=	-944.339528
Sum of electronic and thermal Free Energies=	-944.413988

Esol= -945.0166572

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
	6	0	0 80/186	3 514072	0 830585
2	6	0	0.386719	2.806939	1.285047
3	6	0	-0.031767	2.518550	-0.121736

4	8	0	0.325334	1.499405	-0.746025
5	1	0	-0.911528	3.305779	-1.900751
6	1	0	-1.917696	3.434077	-0.442628
7	1	0	0.886308	1.946430	1.727920
8	1	0	-0.473924	3.118082	1.885234
9	6	0	2.668541	-0.866999	-0.726426
10	6	0	2.504874	-0.894515	0.829694
11	8	0	1.351726	-0.052725	1.029096
12	5	0	0.601674	-0.135161	-0.160482
13	8	0	1.302520	-0.792061	-1.170050
14	6	0	3.300772	-2.114852	-1.319204
15	6	0	3.399026	0.381305	-1.219513
16	6	0	3.674328	-0.312295	1.604293
17	6	0	2.152524	-2.284237	1.355040
18	1	0	3.375325	-2.009831	-2.405099
19	1	0	4.309712	-2.265912	-0.922210
20	1	0	2.701359	-3.001199	-1.105184
21	1	0	3.267928	0.457983	-2.301806
22	1	0	2.985654	1.284450	-0.764340
23	1	0	4.469999	0.335960	-1.001624
24	1	0	3.465779	-0.355936	2.677048
25	1	0	4.588230	-0.883668	1.413760
26	1	0	3.850876	0.730209	1.333346
27	1	0	3.007230	-2.964909	1.307861
28	1	0	1.836009	-2.197720	2.397821
29	1	0	1.326757	-2.715444	0.783062
30	6	0	-2.935036	-0.898743	-1.162266
31	6	0	-1.574584	-0.910564	-1.135110
32	7	0	-0.860206	-0.475462	-0.039353
33	6	0	-1.557858	-0.035308	1.068030
34	6	0	-2.921510	0.009067	1.091543
35	6	0	-3.673258	-0.410876	-0.039210
36	6	0	-5.080769	-0.354335	-0.045954
37	7	0	-6.249439	-0.301021	-0.051388
38	1	0	-3.456753	-1.261401	-2.039949
39	1	0	-0.969443	-1.253716	-1.964767
40	1	0	-0.945738	0.234392	1.919067
41	1	0	-3.430058	0.348493	1.986921
42	1	0	-0.559388	4.539128	-0.643073
43	1	0	1.080333	3.658835	1.271236

Int1

Thermal correction to Energy=

0.379128

Thermal correction to Enthalpy=	0.380072
Thermal correction to Gibbs Free Energy=	0.304231
Sum of electronic and zero-point Energies=	-944.362742
Sum of electronic and thermal Energies=	-944.340287
Sum of electronic and thermal Enthalpies=	-944.339342
Sum of electronic and thermal Free Energies=	-944.415183

Esol= -945.0155274

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.088593	4.042960	-0.406968
2	6	0	2.856344	3.447860	1.977049
3	6	0	1.753227	3.657183	0.993954
4	8	0	0.528423	3.408499	1.248137
5	1	0	1.187411	4.059419	-1.020555
6	1	0	2.555205	5.035646	-0.428301
7	1	0	2.466636	3.281822	2.980506
8	1	0	3.558086	4.288387	1.959961
9	6	0	-1.430882	1.841455	3.463725
10	6	0	-0.441847	2.405997	4.534696
11	8	0	0.478030	3.152434	3.723028
12	5	0	-0.264738	3.597286	2.591994
13	8	0	-1.499878	2.919028	2.520214
14	6	0	-2.830458	1.555445	3.981479
15	6	0	-0.870612	0.614049	2.744416
16	6	0	0.334482	1.352647	5.306824
17	6	0	-1.121622	3.377990	5.498859
18	1	0	-3.451686	1.165170	3.170411
19	1	0	-2.804935	0.806907	4.779967
20	1	0	-3.303098	2.461995	4.363373
21	1	0	-1.484986	0.414981	1.862576
22	1	0	0.154263	0.794538	2.409765
23	1	0	-0.881029	-0.273995	3.383430
24	1	0	1.006078	1.837441	6.021265
25	1	0	-0.344283	0.702355	5.867721
26	1	0	0.936738	0.736791	4.636810
27	1	0	-1.770817	2.858114	6.209414
28	1	0	-0.351147	3.912249	6.061417
29	1	0	-1.717902	4.114020	4.953482
30	6	0	-1.528173	6.990605	1.462278
31	6	0	-1.513356	5.686816	1.870032

32	7	0	-0.439168	5.139392	2.511144
33	6	0	0.654292	5.925188	2.764455
34	6	0	0.708026	7.237576	2.367984
35	6	0	-0.387559	7.813478	1.689691
36	6	0	-0.353642	9.161124	1.261508
37	7	0	-0.323064	10.272645	0.904804
38	1	0	-2.404455	7.393980	0.969517
39	1	0	-2.339386	5.004514	1.710690
40	1	0	1.437705	5.456318	3.345706
41	1	0	1.584266	7.833699	2.596243
42	1	0	2.817016	3.346336	-0.841583
43	1	0	3.432850	2.559904	1.676579

TS2

Thermal correction to Energy=	0.378514
Thermal correction to Enthalpy=	0.379458
Thermal correction to Gibbs Free Energy=	0.304920
Sum of electronic and zero-point Energies=	-944.352399
Sum of electronic and thermal Energies=	-944.330370
Sum of electronic and thermal Enthalpies=	-944.329425
Sum of electronic and thermal Free Energies=	-944.403963

Esol= -945.003491

Input orientation:	
--------------------	--

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ
1	6	0	-1.489823	2.991664	-0.855418
2	6	0	0.344257	3.084970	0.982046
3	6	0	-0.342412	2.377882	-0.135604
4	8	0	0.358210	1.496383	-0.890852
5	1	0	-2.050724	2.230381	-1.405392
6	1	0	-2.165745	3.493900	-0.157925
7	1	0	1.006722	3.880163	0.600082
8	1	0	0.965023	2.399985	1.563167
9	6	0	2.772982	-1.055282	-0.682284
10	6	0	2.534100	-0.790983	0.847849
11	8	0	1.711734	0.394850	0.829319
12	5	0	1.069797	0.405753	-0.400758
13	8	0	1.591446	-0.506821	-1.297865
14	6	0	2.885680	-2.522580	-1.058946
15	6	0	3.960855	-0.272202	-1.237951

16	6	0	3.795455	-0.485458	1.639158
17	6	0	1.746520	-1.902907	1.536550
18	1	0	3.032940	-2.613425	-2.138591
19	1	0	3.740628	-2.988736	-0.558875
20	1	0	1.981065	-3.071199	-0.791448
21	1	0	3.945614	-0.340359	-2.328658
22	1	0	3.891363	0.784322	-0.964845
23	1	0	4.915491	-0.666318	-0.877952
24	1	0	3.538178	-0.310008	2.687469
25	1	0	4.490763	-1.329736	1.597424
26	1	0	4.299404	0.404800	1.259902
27	1	0	2.349401	-2.808411	1.650440
28	1	0	1.455770	-1.558848	2.533231
29	1	0	0.836862	-2.142580	0.984136
30	6	0	-2.917216	-0.895700	-1.033739
31	6	0	-1.543017	-1.034847	-0.921565
32	7	0	-0.840993	-0.543485	0.104065
33	6	0	-1.483857	0.144647	1.057661
34	6	0	-2.862205	0.345001	1.040322
35	6	0	-3.591669	-0.180964	-0.027045
36	6	0	-5.007371	0.007439	-0.096544
37	7	0	-6.158453	0.162106	-0.154924
38	1	0	-3.458138	-1.315003	-1.873671
39	1	0	-0.959014	-1.541433	-1.685140
40	1	0	-0.870307	0.497509	1.880594
41	1	0	-3.355798	0.900478	1.829291
42	1	0	-1.155128	3.742714	-1.589989
43	1	0	-0.388590	3.562861	1.638872

Acetone-Bpin—Int2

Thermal correction to Energy=	0.283265
Thermal correction to Enthalpy=	0.284209
Thermal correction to Gibbs Free Energy=	0.225523
Sum of electronic and zero-point Energies=	-604.011345
Sum of electronic and thermal Energies=	-603.996052
Sum of electronic and thermal Enthalpies=	-603.995108
Sum of electronic and thermal Free Energies=	-604.053794

Esol= -604.470722

Center	Atomic	Atomic	Coordinates (Angstroms))
Number	Number	Туре	X Y	Ζ

$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6	0	0.014605	-1.932990	-0.583818
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	0.353270	-2.009488	-3.159040
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6	0	-0.022121	-1.276101	-1.920893
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	8	0	-1.032116	-0.357065	-2.140103
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	1	0	0.024036	-1.194530	0.222483
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1	0	-0.862625	-2.585115	-0.429590
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	1	0	0.507548	-1.315140	-3.990893
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1	0	-0.431617	-2.719496	-3.471484
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	6	0	-2.390434	2.471537	-0.491848
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6	0	-0.938594	2.426574	0.094752
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	8	0	-0.508908	1.090605	-0.256828
1380 -2.290782 1.588842 -1.630865 1460 -2.841912 3.840464 -0.968944 1560 -3.426594 1.866453 0.452184 1660 -0.852420 2.588366 1.601778 1760 0.012347 3.395096 -0.602954 1810 -3.856643 3.773789 -1.370214 1910 -2.849835 4.554780 -0.139595 2010 -2.191177 4.222790 -1.756827 2110 -4.362301 1.726713 -0.094683 2210 -3.098739 0.889870 0.819811 2310 -3.618658 2.515903 1.310746 2410 0.192283 2.533663 1.919380 2510 -1.250839 3.560766 1.907395 2610 -0.195330 4.432834 -0.327765 2810 1.037490 3.156349 -0.308736 2910 -0.060667 3.300819 -1.690094 3010 0.907130 -2.558158 -0.492725 3110 1.272117 -2.582183 -3.005135	12	5	0	-1.255708	0.729690	-1.355549
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	8	0	-2.290782	1.588842	-1.630865
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	0	-2.841912	3.840464	-0.968944
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	-3.426594	1.866453	0.452184
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	-0.852420	2.588366	1.601778
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	6	0	0.012347	3.395096	-0.602954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1	0	-3.856643	3.773789	-1.370214
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	0	-2.849835	4.554780	-0.139595
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-2.191177	4.222790	-1.756827
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	-4.362301	1.726713	-0.094683
2310-3.6186582.5159031.31074624100.1922832.5336631.9193802510-1.2508393.5607661.9073952610-1.4065571.8040192.1197542710-0.1953304.432834-0.32776528101.0374903.156349-0.3087362910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	22	1	0	-3.098739	0.889870	0.819811
24100.1922832.5336631.9193802510-1.2508393.5607661.9073952610-1.4065571.8040192.1197542710-0.1953304.432834-0.32776528101.0374903.156349-0.3087362910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	23	1	0	-3.618658	2.515903	1.310746
2510-1.2508393.5607661.9073952610-1.4065571.8040192.1197542710-0.1953304.432834-0.32776528101.0374903.156349-0.3087362910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	24	1	0	0.192283	2.533663	1.919380
2610-1.4065571.8040192.1197542710-0.1953304.432834-0.32776528101.0374903.156349-0.3087362910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	25	1	0	-1.250839	3.560766	1.907395
2710-0.1953304.432834-0.32776528101.0374903.156349-0.3087362910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	26	1	0	-1.406557	1.804019	2.119754
28101.0374903.156349-0.3087362910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	27	1	0	-0.195330	4.432834	-0.327765
2910-0.0606673.300819-1.69009430100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	28	1	0	1.037490	3.156349	-0.308736
30100.907130-2.558158-0.49272531101.272117-2.582183-3.005135	29	1	0	-0.060667	3.300819	-1.690094
31 1 0 1.272117 -2.582183 -3.005135	30	1	0	0.907130	-2.558158	-0.492725
	31	1	0	1.272117	-2.582183	-3.005135

Int3

Thermal correction to Energy=	0.577354
Thermal correction to Enthalpy=	0.578298
Thermal correction to Gibbs Free Energy=	0.484131
Sum of electronic and zero-point Energies=	-1355.428798
Sum of electronic and thermal Energies=	-1355.397282
Sum of electronic and thermal Enthalpies=	-1355.396338
Sum of electronic and thermal Free Energies=	-1355.490506

Esol= -1356.3960843

Center	enter Atomic Atomic		Coord	linates (Angst	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	0.080904	-0.200627	-4.468643
2	6	0	-0.382326	1.779499	-2.980067
3	6	0	0.112842	0.339294	-3.046055
4	8	0	-0.672586	-0.490484	-2.183022
5	1	0	0.397748	-1.246414	-4.482809
6	1	0	-0.933253	-0.124343	-4.865442
7	1	0	-0.352632	2.151431	-1.952506
8	1	0	-1.409700	1.829713	-3.344909
9	6	0	-4.066654	-1.383688	-1.736993
10	6	0	-4.088888	-0.788772	-3.185192
11	8	0	-2.827176	-0.083206	-3.241413
12	5	0	-2.001566	-0.700901	-2.322537
13	8	0	-2.656820	-1.597372	-1.513701
14	6	0	-4.794975	-2.707204	-1.583791
15	6	0	-4.541119	-0.386334	-0.683219
16	6	0	-5.212066	0.195497	-3.457103
17	6	0	-4.044770	-1.864768	-4.266722
18	1	0	-4.722073	-3.049369	-0.548167
19	1	0	-5.855061	-2.594628	-1.832213
20	1	0	-4.362799	-3.476538	-2.225704
21	1	0	-4.294329	-0.777204	0.306866
22	1	0	-4.037995	0.577481	-0.801401
23	1	0	-5.621621	-0.225862	-0.735285
24	1	0	-5.141132	0.562876	-4.484562
25	1	0	-6.185925	-0.288886	-3.335887
26	1	0	-5.161231	1.054072	-2.785650
27	1	0	-4.994805	-2.401075	-4.341446
28	1	0	-3.838749	-1.391086	-5.230066
29	1	0	-3.250962	-2.589419	-4.064606
30	6	0	7.018705	-1.480524	-5.606700
31	6	0	6.430545	-2.926332	-5.473106
32	8	0	5.397863	-2.745736	-4.471012
33	5	0	5.041624	-1.424157	-4.541363
34	8	0	5.862337	-0.652188	-5.322889
35	6	0	7.541654	-1.130278	-6.987459
36	6	0	8.061765	-1.165121	-4.538819
37	6	0	7.413471	-3.970317	-4.975793
38	6	0	5.736776	-3.403659	-6.745395
39	1	0	7.924635	-0.106422	-6.988084

40	1	0	8.360360	-1.799674	-7.268805
41	1	0	6.756030	-1.199434	-7.741304
42	1	0	8.265121	-0.091474	-4.549132
43	1	0	7.697664	-1.433337	-3.543057
44	1	0	8.999085	-1.697079	-4.722598
45	1	0	6.916330	-4.941400	-4.906645
46	1	0	8.254480	-4.067412	-5.669384
47	1	0	7.799874	-3.715902	-3.987775
48	1	0	6.459042	-3.637873	-7.532140
49	1	0	5.166279	-4.307878	-6.518981
50	1	0	5.042480	-2.647832	-7.123207
51	6	0	2.578470	1.017035	-3.235968
52	6	0	3.626431	0.472583	-3.863337
53	7	0	3.907769	-0.891229	-3.851503
54	6	0	3.061543	-1.706445	-3.096316
55	6	0	1.996748	-1.248719	-2.432736
56	6	0	1.568845	0.203454	-2.455967
57	6	0	1.539700	0.706678	-1.065190
58	7	0	1.557254	1.121181	0.019481
59	1	0	2.455175	2.093081	-3.260825
60	1	0	4.336759	1.073190	-4.419335
61	1	0	3.341567	-2.753127	-3.082769
62	1	0	1.384171	-1.930250	-1.856741
63	1	0	0.234322	2.428032	-3.607756
64	1	0	0.759554	0.372294	-5.105558

TS3

Thermal correction to Energy=	0.573042
Thermal correction to Enthalpy=	0.573986
Thermal correction to Gibbs Free Energy=	0.476214
Sum of electronic and zero-point Energies=	-1355.372076
Sum of electronic and thermal Energies=	-1355.339549
Sum of electronic and thermal Enthalpies=	-1355.338605
Sum of electronic and thermal Free Energies=	-1355.436377
Esol= -1356.3351232	
Input orientation:	

Center	Atomic	Atomic	Coord	linates (Angstr	coms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.003218	-0.984445	-6.908764
2	6	0	4.409659	-0.747976	-7.861821

3	6	0	3.191586	-0.157872	-7.245583
4	8	0	3.022813	1.169457	-7.542960
5	1	0	1.359623	-0.472478	-6.185292
6	1	0	1.381432	-1.211315	-7.787885
7	1	0	5.314240	-0.193707	-7.592524
8	1	0	4.338817	-0.740529	-8.961922
9	6	0	0.333476	3.493771	-7.713928
10	6	0	-0.375461	2.145840	-8.098288
11	8	0	0.746822	1.271594	-8.381373
12	5	0	1.814646	1.790954	-7.697271
13	8	0	1.601876	3.040067	-7.178472
14	6	0	-0.383015	4.302925	-6.648183
15	6	0	0.659282	4.361360	-8.926007
16	6	0	-1.253201	2.221773	-9.334910
17	6	0	-1.139634	1.519911	-6.938266
18	1	0	0.187314	5.210934	-6.433813
19	1	0	-1.375293	4.602505	-7.000171
20	1	0	-0.493664	3.742543	-5.718411
21	1	0	1.325004	5.169139	-8.611817
22	1	0	1.170104	3.781537	-9.700314
23	1	0	-0.242306	4.803863	-9.358352
24	1	0	-1.698547	1.242495	-9.529847
25	1	0	-2.065004	2.939950	-9.184146
26	1	0	-0.681596	2.517090	-10.216276
27	1	0	-2.045920	2.083171	-6.701877
28	1	0	-1.425338	0.501257	-7.213688
29	1	0	-0.529650	1.475775	-6.034381
30	6	0	7.240279	-2.130782	-4.624908
31	6	0	6.397317	-3.407294	-4.293416
32	8	0	5.231577	-2.837894	-3.638037
33	5	0	5.112016	-1.577363	-4.164511
34	8	0	6.204719	-1.143575	-4.868552
35	6	0	8.105630	-2.239392	-5.866902
36	6	0	8.058783	-1.637814	-3.436342
37	6	0	7.060330	-4.392484	-3.352076
38	6	0	5.882985	-4.094351	-5.555868
39	1	0	8.644706	-1.301218	-6.022017
40	1	0	8.842664	-3.040250	-5.753257
41	1	0	7.505847	-2.435963	-6.756661
42	1	0	8.436825	-0.636532	-3.656806
43	1	0	7.444884	-1.580380	-2.533140
44	1	0	8.910801	-2.293732	-3.238073
45	1	0	6.392390	-5.239095	-3.173010
46	1	0	7.986267	-4.776590	-3.790950

47	1	0	7.291654	-3.931870	-2.390374
48	1	0	6.679268	-4.612146	-6.096108
49	1	0	5.110251	-4.817188	-5.284554
50	1	0	5.440893	-3.337821	-6.210007
51	6	0	2.748506	1.269676	-4.484821
52	6	0	3.841215	0.468198	-4.650263
53	7	0	3.931812	-0.777847	-4.018144
54	6	0	2.829704	-1.233392	-3.292313
55	6	0	1.714863	-0.481483	-3.138811
56	6	0	1.630036	0.821373	-3.738070
57	6	0	0.486003	1.627294	-3.591870
58	7	0	-0.467122	2.299512	-3.489047
59	1	0	2.721252	2.232909	-4.979378
60	1	0	4.728911	0.788364	-5.175487
61	1	0	2.942886	-2.219371	-2.860571
62	1	0	0.884220	-0.870840	-2.562431
63	1	0	4.533883	-1.788128	-7.549548
64	1	0	2.329023	-1.929337	-6.465153

Int4

Thermal correction to Energy=	0.577588
Thermal correction to Enthalpy=	0.578532
Thermal correction to Gibbs Free Energy=	0.484547
Sum of electronic and zero-point Energies=	-1355.432831
Sum of electronic and thermal Energies=	-1355.401348
Sum of electronic and thermal Enthalpies=	-1355.400404
Sum of electronic and thermal Free Energies=	-1355.494389
Esol= -1356.3989738	
Input orientation:	

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.975524	-0.779981	-5.727502	
2	6	0	3.219309	-0.504237	-6.823707	
3	6	0	2.313877	-0.054768	-5.683689	
4	8	0	2.118805	1.368004	-5.748566	
5	1	0	0.309157	-0.405385	-4.947479	
6	1	0	0.504393	-0.626614	-6.700162	
7	1	0	4.181534	0.010718	-6.780434	
8	1	0	2.733926	-0.292938	-7.778913	
9	6	0	0.808875	3.758459	-8.006922	

10	6	0	0.196625	2.429974	-8.565438
11	8	0	1.014208	1.426475	-7.918907
12	5	0	1.484320	2.007625	-6.757781
13	8	0	1.258916	3.361806	-6.693956
14	6	0	-0.179153	4.902323	-7.862341
15	6	0	2.041798	4.211174	-8.785249
16	6	0	0.306497	2.255553	-10.069241
17	6	0	-1.239026	2.200279	-8.101588
18	1	0	0.332375	5.781916	-7.462741
19	1	0	-0.606557	5.168703	-8.834144
20	1	0	-0.990040	4.643963	-7.179640
21	1	0	2.544236	5.000081	-8.220100
22	1	0	2.746815	3.385238	-8.916514
23	1	0	1.776875	4.604267	-9.770764
24	1	0	-0.134463	1.299221	-10.363323
25	1	0	-0.233299	3.052863	-10.589450
26	1	0	1.347283	2.264808	-10.396723
27	1	0	-1.937432	2.877009	-8.601448
28	1	0	-1.526988	1.172098	-8.335415
29	1	0	-1.328827	2.342636	-7.021036
30	6	0	7.009794	-1.783036	-4.964600
31	6	0	6.570235	-3.285741	-4.950790
32	8	0	5.315311	-3.230857	-4.227681
33	5	0	4.833129	-1.958735	-4.418260
34	8	0	5.735728	-1.092917	-4.984073
35	6	0	7.807299	-1.362476	-6.185524
36	6	0	7.723156	-1.362106	-3.683432
37	6	0	7.515125	-4.219450	-4.217081
38	6	0	6.256213	-3.822208	-6.344327
39	1	0	8.056495	-0.300506	-6.114236
40	1	0	8.742233	-1.927805	-6.247885
41	1	0	7.240695	-1.517144	-7.105000
42	1	0	7.800342	-0.272190	-3.664227
43	1	0	7.163022	-1.679581	-2.799460
44	1	0	8.731180	-1.781916	-3.627643
45	1	0	7.125423	-5.240229	-4.251190
46	1	0	8.502224	-4.216209	-4.689601
47	1	0	7.625300	-3.932981	-3.170160
48	1	0	7.165388	-3.970571	-6.933236
49	1	0	5.746354	-4.783837	-6.246211
50	1	0	5.596908	-3.139814	-6.888434
51	6	0	2.179394	0.281913	-3.178079
52	6	0	3.039718	-0.204825	-4.307460
53	7	0	3.509839	-1.571105	-4.051867

54	6	0	2.697191	-2.453139	-3.355646
55	6	0	1.674984	-2.034101	-2.586450
56	6	0	1.495262	-0.598014	-2.414260
57	6	0	0.620338	-0.129976	-1.383327
58	7	0	-0.103612	0.229692	-0.546668
59	1	0	2.084026	1.350614	-3.033115
60	1	0	3.924585	0.434323	-4.388324
61	1	0	2.983871	-3.496342	-3.430972
62	1	0	1.058624	-2.735334	-2.040723
63	1	0	3.400640	-1.580637	-6.763128
64	1	0	1.120589	-1.851248	-5.571773

NMR

$$\begin{array}{c} \mathsf{CH}_3\\ \mathsf{H}_3\mathsf{C}\overset{\mathsf{Si}}{\overset{\mathsf{I}}{\overset{\mathsf{I}}}}\mathsf{CH}_3\\ \mathsf{TMS} \\ \mathsf{CH}_3 \end{array}$$

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	14	0	-0.504440	0.481018	0.000000	
2	6	0	0.124746	1.366880	1.536657	
3	1	0	-0.223110	2.399899	1.569001	
4	1	0	-0.219835	0.873517	2.446090	
5	1	0	1.214819	1.384552	1.563284	
6	6	0	0.123155	-1.293638	0.000080	
7	1	0	-0.223532	-1.836099	0.880295	
8	1	0	-0.223465	-1.836158	-0.880124	
9	1	0	1.213142	-1.326371	0.000124	
10	6	0	-2.386417	0.480313	-0.000072	
11	1	0	-2.782925	1.496155	-0.000116	
12	1	0	-2.780923	-0.028316	-0.880309	
13	1	0	-2.780991	-0.028265	0.880163	
14	6	0	0.124860	1.366784	-1.536665	
15	1	0	1.214934	1.384461	-1.563211	
16	1	0	-0.219649	0.873360	-2.446094	
17	1	0	-0.223000	2.399800	-1.569104	

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Type	Х	Y	Z	
1	6	0	-1.571266	-1.676317	-1.604782	
2	6	0	-0.519504	-1.405027	-3.868533	
3	6	0	-0.474166	-0.986304	-2.406198	
4	8	0	-0.597007	0.431242	-2.294258	
5	1	0	-1.547831	-1.366829	-0.562018	
6	1	0	-2.542172	-1.422501	-2.021984	
7	1	0	0.243604	-0.884569	-4.442998	
8	1	0	-1.496051	-1.170654	-4.284551	
9	6	0	-2.720810	3.137233	-3.139048	
10	6	0	-3.712399	1.921973	-3.248110	
11	8	0	-2.809590	0.793215	-3.256421	
12	5	0	-1.643180	1.206976	-2.653768	
13	8	0	-1.604211	2.561204	-2.437594	
14	6	0	-3.239683	4.320757	-2.342470	
15	6	0	-2.203598	3.610471	-4.494613	
16	6	0	-4.550765	1.886125	-4.512612	
17	6	0	-4.608261	1.769709	-2.023212	
18	1	0	-2.479936	5.099544	-2.314213	
19	1	0	-4.133369	4.739648	-2.804471	
20	1	0	-3.472385	4.045611	-1.317947	
21	1	0	-1.380037	4.302577	-4.331364	
22	1	0	-1.829361	2.780125	-5.091257	
23	1	0	-2.975136	4.125429	-5.064249	
24	1	0	-5.191305	1.005978	-4.502369	
25	1	0	-5.190901	2.765547	-4.575509	
26	1	0	-3.933542	1.842200	-5.405198	
27	1	0	-5.359947	2.555540	-1.977716	
28	1	0	-5.121248	0.811345	-2.077160	
29	1	0	-4.030258	1.791958	-1.101192	
30	6	0	6.477422	-3.118098	-4.789628	
31	6	0	5.827022	-4.547746	-4.707061	
32	8	0	4.747448	-4.339224	-3.765304	
33	5	0	4.454355	-3.003514	-3.795300	
34	8	0	5.352500	-2.253376	-4.502820	
35	6	0	7.040241	-2.745775	-6.148299	

36	6	0	7.518378	-2.868113	-3.704130
37	6	0	6.736033	-5.636572	-4.168633
38	6	0	5.192944	-4.995872	-6.019248
39	1	0	7.447235	-1.737148	-6.110093
40	1	0	7.846341	-3.422148	-6.430348
41	1	0	6.278240	-2.771218	-6.921636
42	1	0	7.773979	-1.810558	-3.698629
43	1	0	7.138139	-3.126896	-2.717593
44	1	0	8.428201	-3.437646	-3.883619
45	1	0	6.194629	-6.580049	-4.133864
46	1	0	7.602071	-5.770215	-4.815878
47	1	0	7.083572	-5.411698	-3.164718
48	1	0	5.947313	-5.240125	-6.764771
49	1	0	4.595605	-5.886548	-5.835168
50	1	0	4.537788	-4.229858	-6.430129
51	6	0	2.033538	-0.501210	-2.519683
52	6	0	3.077622	-1.066787	-3.119258
53	7	0	3.308764	-2.440438	-3.142784
54	6	0	2.390825	-3.231839	-2.464507
55	6	0	1.315437	-2.754410	-1.840361
56	6	0	0.960093	-1.285390	-1.798137
57	6	0	0.949961	-0.856552	-0.384028
58	7	0	0.975481	-0.557824	0.726690
59	1	0	1.936178	0.571938	-2.530484
60	1	0	3.822185	-0.474708	-3.627855
61	1	0	2.614262	-4.287311	-2.466017
62	1	0	0.685307	-3.447040	-1.305016
63	1	0	-0.349424	-2.475252	-3.964994
64	1	0	-1.462492	-2.757869	-1.650500

8. References

- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennuc ci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [2]. a) A. D. Becke, *Phys. Rev. A* 1988, 38, 3098. b) J. P. *Perdew in Electronic Structure of Solids, 91th ed.* (Eds.: P. Ziesche, H. Eschrig), Akademie Verlag, Berlin, 1991. c) A. D. Becke, *J. Chem. Phys.* 1993, 98, 5648. d) K. Burke, J. P. Perdew, Y. Wang, *Electronic Density Functional Theory: Recent Progress and New Directions* (Eds.: J. F. Dobson, G. Vignale, M. P. Das), Plenum, New York, 1998. e) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, 132, 154104.
- [3]. C. Gonzalez and H. B. Schlegel, An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154–2161.
- [4]. J. Tomasi and M. Persico, Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent. *Chem. Rev.* 1994, 94, 2027–2094.
- [5]. CYLview, 1.0b. C. Y. Legault, Université de Sherbrooke, 2009. (http://www.cylview.org)
- [6]. G. Wang, J. Cao, L. Gao, W. Chen, W. Huang, X. Cheng and S. Li, Metal-Free Synthesis of C-4 Substituted Pyridine Derivatives Using Pyridine-boryl Radicals via a Radical Addition/Coupling Mechanism: A Combined Computational and Experimental Study, J. Am. Chem. Soc., 2017, 139, 3904–3910.
- F. G. Salituro, J. O. Saunders and S. Yan. Therapeutic compounds and compositions: U.S. Patent 8, 785, 450[P]. 2014-7-22.
- [8]. S. Oberboersch, M. Reich, S. Schunk, S. Hees, R. Jostock, M. Engels, A. Kless, T. Christoph, K. Schiene, T. Germann and E. Bijsterveld. Substituted sulfonamide compounds: U.S. Patent 11, 905, 381[P]. 2008-6-26.