Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers This journal is © the Partner Organisations 2020

Supporting Information

Copper-Catalyzed Cascade Reactions of Ynamide Derivatives to Synthesize Medium-Sized Heterocycles

Xu-heng Yang, Jian Huang, Fang Wang, Zhuoliang Liu, Yujiao Li, Cheng-an Tao*, and Jianfang Wang*

College of Liberal Arts and Science, National University of Defense Technology, Changsha 410073, China E-mail: taochengan@ nudt.edu.cn and wangjianfang@nudt.edu.cn

List of Contents

(A) General Information	•••• S2
(B) General Experimental Procedures	····· S2
(C) Optimization of reaction conditions	••••• S4
(D) Analytical data	••••• S5
(E) References	····· S19
(F) Spectra ······	••••• S20
(G) X-ray crystallographic data of compound 3aa	••••• S65
(H) X-ray crystallographic data of compound 3ca	····· S78
(I) X-ray crystallographic data of compound 3da	····· S91

(A) General Information

All reagents were obtained from commercial suppliers and used without further purification. A series of substrates 1 were prepared according to the literature procedure.^[1-2] 6-chlorohex-1-yne and terminal alkyne are commercially available from TCI. Yields for all products were determined by the silica gel (300-400 mesh) column chromatography (eluent: petroleum ether 60-90/EtOAc), and the reactions were monitored by thin layer chromatography (TLC) on a glass plate coated with silica gel with fluorescent indicator (ZF7) using UV light. The ¹H; ¹³C; ¹⁹F nuclear magnetic resonance (NMR) spectra were recorded on a Agilent 400 MHz using CDCl₃ as solvent with TMS as internal standard. Chemical shifts are given in ppm (δ) referenced to CDCl₃ with 7.26 for ¹H and 77.00 for ¹³C. Signals are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet, and coupling constants are expressed in hertz. Melting points were measured on a YRT-3 and uncorrected. HRMS (ESI) was recorded using Agilent Q-TOF 6540. All calculations were carried out with the Gaussian 09 software.^[3] Geometry optimization and frequency analysis were completed at PBE0-D3BJ/def2-SVP level,^[4-6] and singlet point energy calculations were performed at PBE0-D3BJ/def2-TZVP level4. The SMD implicit solvation model was used to account for the solvation effect of toluene.^[7]

(B) General Experimental Procedures

(a) Materias

N-allyl ynamides were prepared according to literature procedures.^[1-2]

Preparation of bromoalkynes

To a stirred solution of terminal alkyne (10.0 mmol) in acetone (10.0 mL) was added N-bromosuccinimide (NBS) (1.2eq, 12.0 mmol) under N₂ atmosphere. The reaction mixture was stirred at room temperature and stirred for 3 h, then removal of solvent under reduced pressure. The residue was filtered through a pad of Celite with petroleum ether (PE) solvent. If necessary, further purification was performed by column chromatography on silica gel (PE as eluent) to afford bromoalkyne.

$$\begin{array}{c} O \\ R^1 \\ R^2 \\ H \\ R^2 \end{array} + R = Br \\ R \\ R^2 \\$$

Following a slight modification of Hsung's procedure

To a stirred solution of bromoalkyne (1.2 eq, 9.6 mmol), *N*-allyl sulfonamide (1 eq, 8.0 mmol), K_3PO_4 (2 eq, 16.0 mmol), $CuSO_4 \cdot 5H_2O$ (0.1 eq, 0.8 mmol) and 1,10-phenanthroline (0.2 eq, 1.6 mmol) in toluene (16.0 mL) was heated at 80 °C for 48 h. After cooling to room temperature, the mixture was filtered through a short pad of silica gel using CH_2Cl_2 (20 mL) as the eluent, and the filtrate was concentrated in vacuo. Purification of the residue by column chromatography (PE/ EtOAc = 20 : 1) gave the *N*-allyl ynamides.

Copper Titanate (CuTiO₃) were prepared according to literature procedures ^[8] and supplied by Dr. Zhang Y, the co-first author of the report.

(b) General Procedures for Copper-Catalyzed Aza-Claisen Rearrangement/Cross-Coupling/ Cyclization Cascades toward Medium-Sized Heterocycles:

To a Schlenk tube were added 1 (0.2 mmol), 2 (0.6 mmol), CuTiO₃ (0.02 mmol), 1,10phenanthroline (0.02 mmol), K_2CO_3 (0.4 mmol), and toluene (2.0 mL). Then the mixture was stirred at 100 °C (oil bath temperature) under argon atmosphere (1 atm) for 12 h until complete consumption of starting material as monitored by TLC and GC-MS analysis. After the reaction was finished, the reaction mixture was re-extracted with EtOAc. The combined organic extracts were concentrated in vacuum. The residue was purified by silica gel flash column chromatography (PE/ EtOAc = 20 : 1) to afford the desired products **3**.

(C) Optimization of reaction conditions

Variation from the Standard Conditions	Isolated Yield [%]	
none	62	
without Phen	0	
without CuTiO ₃	0	
CuTiO ₃ (5 mol%) and Phen (5 mol%)	45	
$CuTiO_3$ (20 mol%) and Phen (20 mol%)	66	
Cu(OAc) ₂ instead of CuTiO ₃	31	
Cu(TFA) ₂ instead of CuTiO ₃	28	
CuCl ₂ instead of CuTiO ₃	27	
Cu(OTf) ₂ instead of CuTiO ₃	34	
Cu(acac) ₂ instead of CuTiO ₃	37	
Cu(MeCN) ₄ PF ₆ instead of CuTiO ₃	29	
CuCl instead of CuTiO ₃	24	
CuBr instead of CuTiO ₃	25	
CuI instead of CuTiO ₃	23	
2,2'-Bipyridine instead of Phen	0	
DMEDA instead of Phen	0	
TMEDA instead of Phen	0	
Cs ₂ CO ₃ instead of K ₂ CO ₃	43	
t-BuOK instead of K ₂ CO ₃	0	
KOAc instead of K ₂ CO ₃	0	
Et ₃ N instead of K ₂ CO ₃	0	
without K ₂ CO ₃	0	
MeCN instead of toluene	46	
THF instead of toluene	39	
DMF instead of toluene	0	
DMSO instead of toluene	0	
at 80 °C	26	
at 120 °C	57	
	Variation from the Standard Conditionsnonewithout Phenwithout CuTiO3CuTiO3 (5 mol%) and Phen (5 mol%)CuTiO3 (20 mol%) and Phen (20 mol%)Cu(OAc)2 instead of CuTiO3Cu(OAc)2 instead of CuTiO3Cu(TFA)2 instead of CuTiO3Cu(OTf)2 instead of CuTiO3Cu(acac)2 instead of CuTiO3Cu(MeCN)4PF6 instead of CuTiO3CuCl instead of CuTiO3CuCl instead of CuTiO3CuI instead of CuTiO3CuS2CO3 instead of PhenDMEDA instead of PhenCS2CO3 instead of K2CO3 <i>t</i> -BuOK instead of K2CO3KOAc instead of K2CO3Without K2CO3MeCN instead of tolueneTHF instead of tolueneDMF instead of tolueneDMSO instead of tolueneDMSO instead of tolueneat 80 °Cat 120 °C	Variation from the Standard ConditionsIsolated Yield [%]none 62 without Phen 0 without CuTiO ₃ 0 CuTiO ₃ (5 mol%) and Phen (5 mol%) 45 CuTiO ₃ (20 mol%) and Phen (20 mol%) 66 Cu(OAc) ₂ instead of CuTiO ₃ 31 Cu(TFA) ₂ instead of CuTiO ₃ 28 CuCl ₂ instead of CuTiO ₃ 27 Cu(OTf) ₂ instead of CuTiO ₃ 34 Cu(acac) ₂ instead of CuTiO ₃ 29 CuCl instead of CuTiO ₃ 29 CuCl instead of CuTiO ₃ 24 CuBr instead of CuTiO ₃ 23 2,2'-Bipyridine instead of Phen 0 DMEDA instead of Phen 0 Cs2CO ₃ instead of K ₂ CO ₃ 0 KOAc instead of K ₂ CO ₃ 0 KOAc instead of K ₂ CO ₃ 0 without K ₂ CO ₃ 0 MeCN instead of toluene 39 DMF instead of toluene 0 DMSO instead of toluene 0 at 80 °C 26 at 120 °C 57

[a] Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), CuTiO₃ (10 mol%), Phen (10 mol%), K_2CO_3 (2 equiv), toluene (2 mL), argon, 100 °C and 12 h.

(D) Analytical data

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)-4methylbenzenesulfonamide (1a):

Ts Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 5.77-5.67 (m, 1H), 5.25-5.18 (m, 2H), 3.93-3.91 (m, 2H), 3.53 (t, J = 6.8Hz, 2H), 2.45 (s, 3H), 2.30 (t, J = 6.8 Hz, 2H), 1.86-1.79 (m, 2H), 1.65-1.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.5, 134.6, 131.1, 129.6, 127.6, 119.7, 73.6, 69.5, 54.2, 44.5, 31.4, 26.0, 21.6, 17.7; HRMS (ESI) for C₁₆H₂₀ClNO₂S [M+H]⁺calcd. 326.0976, found. 326.0974.

N-allyl-*N*-(5-chloropent-1-yn-1-yl)-4methylbenzenesulfonamide (1b):

Ts Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 5.69-5.59 (m, 1H), 5.19-5.11 (m, 2H), 3.86-3.84 (m, 2H), 3.52 (t, J = 6.4 Hz, 2H), 2.38 (t, J = 6.4 Hz, 2H), 2.37 (s, 3H) , 1.86-1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.4, 134.2, 130.8, 129.5, 127.4, 119.6, 73.8, 68.3, 53.9, 43.3, 31.2, 21.4, 15.6; HRMS (ESI) for C₁₅H₁₈CINO₂S [M+H]⁺calcd. 312.0820, found. 312.0817.

N-allyl-*N*-(7-bromohept-1-yn-1-yl)-4methylbenzenesulfonamide (1c):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.78 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 5.78-5.67 (m, 1H), 5.25-

5.17 (m, 2H), 3.93-3.91 (m, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.45 (s, 3H), 2.29-2.25 (m, 2H), 1.86-1.82 (m, 2H), 1.51-1.47 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.4, 134.7, 131.2, 129.6, 127.7, 119.6, 73.4, 69.8, 54.2, 33.6, 32.2, 27.9, 27.2, 21.6, 18.2; HRMS (ESI) for C₁₇H₂₂BrNO₂S [M+H]⁺calcd. 384.0627, found. 384.0631.

N-allyl-N-(8-bromooct-1-yn-1-yl)-4-

methylbenzenesulfonamide (1d):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.78 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 5.77-5.67 (m, 1H), 5.25-

5.18 (m, 2H), 3.92 (d, J = 6.4 Hz, 2H), 3.40 (t, J = 6.8 Hz, 2H), 2.46 (s, 3H), 2.26 (t, J = 6.8 Hz, 2H), 1.88-1.81 (m, 2H), 1.51-1.32 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.4, 134.6, 131.1, 129.6, 127.7, 119.6, 73.1, 70.1, 54.2, 33.9, 32.6, 28.6, 27.7, 27.6, 21.6, 18.3; HRMS (ESI) for C₁₈H₂₄BrNO₂S [M+H]⁺calcd. 398.0784, found. 398.0789.

N-allyl-*N*-(11-bromoundec-1-yn-1-yl)-4methylbenzenesulfonamide (1e):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.78 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 5.77-5.67 (m, 1H), 5.24-

5.17 (m, 2H), 3.91 (d, J = 6.4 Hz, 2H), 3.41 (t, J = 6.8 Hz, 2H), 2.45 (s, 3H), 2.23 (t, J = 6.8 Hz, 2H), 1.89-1.81 (m, 2H), 1.49-1.39 (m, 4H), 1.34-1.28 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.3, 134.7, 131.2, 129.5, 127.7, 119.5, 73.0, 70.4, 54.2, 34.0, 32.8, 29.3, 29.0, 28.8, 28.7, 28.6, 28.1, 21.6, 18.4; HRMS (ESI) for C₂₁H₃₀BrNO₂S [M+H]⁺calcd. 440.1253, found. 440.1261.

N-(6-chlorohex-1-yn-1-yl)-4-methyl-N-(2-

methylallyl)benzenesulfonamide (1f):

^Ts ¹ Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.92 (d, J = 15.2 Hz, 2H), 3.81 (s, 2H), 3.52 (t, J = 6.8 Hz, 2H), 2.45 (s, 3H), 2.29 (t, J = 6.8 Hz, 2H), 1.86-1.78 (m, 2H), 1.72 (s, 3H), 1.63-1.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.4, 138.9, 134.6, 129.6, 127.6, 115.4, 73.6, 69.3, 57.7, 44.5, 31.3, 26.0, 21.6, 19.6, 17.7; HRMS (ESI) for C₁₇H₂₂ClNO₂S [M+H]⁺calcd. 340.1133, found. 340.1128.

(E)-N-(but-2-en-1-yl)-*N-*(6-chlorohex-1-yn-1-yl)-4methylbenzenesulfonamide (1g):

Ts Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.70-5.61 (m, 1H), 5.40-5.32 (m, 1H), 3.84 (d, *J* = 6.8 Hz, 2H), 3.53 (t, *J* = 6.8 Hz, 2H), 2.45 (s, 3H), 2.31 (t, *J* = 6.8 Hz, 2H), 1.87-1.79 (m, 2H), 1.60-1.65 (m, 3H), 1.63-1.58 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.3, 134.6, 131.7, 129.5, 127.7, 123.8, 73.7, 69.3, 53.7, 47.9, 44.5, 31.3, 26.0, 21.5, 17.7; HRMS (ESI) for C₁₇H₂₂ClNO₂S [M+H]⁺calcd. 340.1133, found. 340.1125.

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)methanesulfonamide (1h):

Ms Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ : 5.97-5.87 (m, 1H), 5.39- 5.31 (m, 2H), 4.02 (d, J = 6.0 Hz, 2H), 3.57 (t, J = 6.4 Hz, 2H), 3.05 (s, 3H), 2.35 (t, J = 6.8 Hz, 2H), 1.92-1.85 (m, 2H), 1.71-1.64 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 131.0, 120.1, 73.1, 69.9, 54.1, 44.5, 38.3, 31.4, 26.0, 17.7; HRMS (ESI) for C₁₀H₁₆CINO₂S [M+H]⁺calcd. 250.0663, found. 250.0667.

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)ethanesulfonamide (1i): Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 5.91-5.81 (m, 1H), 5.33-5.25 (m, 2H), 3.98 (d, *J* = 6.4 Hz, 2H), 3.52 (t, *J* = 6.4 Hz, 2H), 3.23-3.17 (m, 2H), 2.29 (t, *J* = 6.8 Hz, 2H),

1.87-1.80 (m, 2H), 1.66-1.58 (m, 2H), 1.37 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 131.5, 119.7, 73.3, 69.3, 54.0, 46.3, 44.4, 31.4, 26.0, 17.7, 7.9; HRMS (ESI) for C₁₁H₁₈ClNO₂S [M+H]⁺calcd. 264.0820, found. 264.0816.

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)-2,4,6trimethylbenzenesulfonamide (1j):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ : 6.97 (s, 2H), 5.90-5.80 (m, 1H), 5.32-5.24 (m, 2H), 4.01 (d, *J* = 6.0 Hz, 2H), 3.45 (t, *J* = 6.4 Hz, 2H), 2.63 (s, 6H), 2.31 (s, 3H), 2.24 (t, *J* = 6.8 Hz, 2H), 1.72-1.65 (m, 2H), 1.55-1.48 (m, 2H); ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta$: 143.3, 140.6, 131.8, 131.7, 131.5, 119.6, 73.2, 70.4, 52.5, 44.4, 31.1, 25.8, 22.9, 21.0, 17.7; HRMS (ESI) for C₁₈H₂₄ClNO₂S [M+H]⁺calcd. 354.1289, found. 354.1287.

N-allyl-2-chloro-*N*-(6-chlorohex-1-yn-1yl)benzenesulfonamide (1k):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 8.15-8.13 (m, 1H), 7.57-7.55 (m, 2H), 7.46-7.42 (m, 1H), 5.94-5.84 (m, 1H), 5.36-5.27 (m, 2H), 4.17 (d, *J* = 6.0 Hz, 2H), 3.46 (t, *J* =

6.4 Hz, 2H), 2.23 (t, *J* = 6.8 Hz, 2H), 1.75-1.68 (m, 2H), 1.55-1.48 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 135.5, 134.4, 132.7, 132.4, 132.1, 131.6, 126.9, 119.6, 72.5, 70.3,

54.4, 44.5, 31.2, 25.8, 17.6; HRMS (ESI) for C₁₅H₁₇Cl₂NO₂S [M+H]⁺calcd. 346.0430, found. 346.0434.

yl)benzenesulfonamide (11):

N-allyl-4-chloro-N-(6-chlorohex-1-yn-1-

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.84 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.4 Hz, 2H), 5.77-5.67 (m, 1H), 5.27-5.21 (m, 2H), 3.94 (d, *J* = 6.4 Hz, 2H), 3.54 (t, *J* = 6.4 Hz, 2H), 2.31 (t, *J* = 6.8 Hz, 2H), 1.87-1.80 (m, 2H), 1.66-1.59 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ: 140.1, 136.0, 130.7, 129.4, 129.0, 120.1, 73.1, 69.9, 54.3, 44.5, 31.4, 25.9, 17.7; HRMS (ESI) for C₁₅H₁₇Cl₂NO₂S [M+H]⁺calcd. 346.0430, found. 346.0423.

N-allyl-N-(6-chlorohex-1-yn-1-yl)-4-

cyanobenzenesulfonamide (1m):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 8.02 (d, *J* = 8.8 Hz, 2H), 7.87 (d, *J* = 8.8 Hz, 2H), 5.75-5.65 (m, 1H), 5.27-5.22 (m, 2H), 3.98 (d, *J* = 6.4 Hz, 2H), 3.55 (t, *J* = 6.4 Hz, 2H), 2.32 (t, *J* = 6.8 Hz, 2H), 1.87-1.80 (m, 2H), 1.67-1.60 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ: 141.6, 132.9, 130.3, 128.2, 120.4, 117.2, 117.1, 72.6, 70.3, 54.5, 44.4, 31.4, 25.9, 17.7; HRMS (ESI) for C₁₆H₁₇ClN₂O₂S [M+H]⁺calcd. 337.0772, found. 337.0775.

N-allyl-N-(6-chlorohex-1-yn-1-yl)naphthalene-2-

sulfonamide (1n):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 8.46 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.90-7.87 (m, 1H), 7.70-7.62 (m, 2H), 5.78-5.68 (m, 1H), 5.26-5.17 (m, 2H), 4.00-3.98 (m, 2H), 3.47 (t, *J* = 6.4 Hz, 2H), 2.30 (t, *J* =

6.8 Hz, 2H), 1.82-1.75 (m, 2H), 1.61-1.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 135.1, 134.4, 131.9, 131.0, 129.3, 129.3, 129.3, 129.1, 127.9, 127.7, 122.6, 119.9, 73.5, 69.7, 54.3, 44.5, 31.3, 25.9, 17.7; HRMS (ESI) for C₁₉H₂₀ClNO₂S [M+H]⁺calcd. 362.0976, found. 362.0982.

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)thiophene-2-sulfonamide (10):

Colourless liquid. ¹H NMR (400 MHz, CDCl₃) δ: 7.69-7.67 (m, 2H), 7.17-7.14 (m, 1H), 5.80-5.70 (m, 1H), 5.28-5.21 (m, 2H), 3.96-3.94 (m, 2H), 3.54 (t, *J* = 6.4 Hz, 2H), 2.33 (t, *J* =

6.8 Hz, 2H), 1.89-1.82 (m, 2H), 1.68-1.61 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 137.0, 133.2, 133.0, 130.6, 127.4, 119.9, 73.0, 70.5, 54.4, 44.5, 31.3, 25.9, 17.6; HRMS (ESI) for C₁₃H₁₆CINO₂S₂ [M+H]⁺calcd. 318.0384, found. 318.0387.

6-Allyl-7-(phenylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3aa):

Isolated yield 62%, 48.5 mg; Light yellow solid, mp 105-107 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.87

(d, J = 8.4 Hz, 2H), 7.29-7.26 (m, 3H), 7.21-7.18 (m, 4H), 5.82-5.72 (m, 1H), 5.19-5.08 (m, 2H), 3.44-3.42 (m, 2H), 3.18 (d, J = 6.8 Hz, 2H), 2.43-2.41 (m, 2H), 2.36 (s, 3H), 1.94-1.89 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.5, 142.8, 138.2, 133.8, 131.3, 129.2, 128.2, 128.1, 127.5, 122.8, 120.4, 117.4, 93.6, 84.8, 49.7, 40.6, 32.1, 31.0, 23.7, 21.4; HRMS (ESI) for C₂₄H₂₅NO₂S [M+H]⁺calcd. 392.1679, found. 392.1682.

5-Allyl-6-(phenylethynyl)-1-tosyl-1,2,3,4-

tetrahydropyridine (3ba):

^b Isolated yield 72%, 54.2 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, J = 8.4 Hz, 2H), 7.36-7.29

(m, 5H), 7.23 (d, J = 8.0 Hz, 2H), 5.82-5.71 (m, 1H), 5.07-5.01 (m, 2H), 3.69-3.67 (m, 2H), 3.09 (d, J = 6.8 Hz, 2H), 2.39 (s, 3H), 2.11 (t, J = 6.8 Hz, 2H), 1.75-1.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 143.2, 137.8, 134.9, 134.5, 131.3, 129.4, 128.3, 128.2, 127.5, 123.0, 117.1, 116.3, 94.3, 84.0, 45.9, 39.4, 26.9, 21.8, 21.5; HRMS (ESI) for C₂₃H₂₃NO₂S [M+H]⁺calcd. 378.1522, found. 378.1523.

(*E*)-7-Allyl-8-(phenylethynyl)-1-tosyl-1,2,3,4,5,6hexahydroazocine (3ca): Isolated yield 47%, 38.1 mg. Light yellow solid, mp 112-114 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.79 (d, *J* = 8.4 Hz, 2H), 7.26-7.17 (m, 5H), 7.00- 6.98 (m, 2H), 5.91-5.81 (m, 1H), 5.24-5.10 (m, 2H), 3.75 (brs, 2H), 3.20-3.18 (m, 2H), 3.00 (brs, 2H), 2.32 (s, 3H), 1.70 (brs, 8H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.8, 142.9, 136.7, 134.1, 131.2, 129.2, 128.1, 128.0, 122.6, 117.3, 115.5, 93.3, 83.1, 49.9, 39.1, 31.4, 29.1, 27.1, 27.0, 21.4; HRMS (ESI) for C₂₅H₂₇NO₂S [M+H]⁺calcd. 406.1835, found. 406.1838.

(*E*)-8-Allyl-9-(phenylethynyl)-1-tosyl-2,3,4,5,6,7hexahydro-1*H*-azonine (3da):

Isolated yield 32%, 26.8 mg. Light yellow solid, mp 117-119 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃)

δ: 7.77 (d, J = 8.0 Hz, 2H), 7.26-7.18 (m, 5H), 6.93-6.91 (m, 2H), 5.92-5.81 (m, 1H), 5.26-5.11 (m, 2H), 3.65-3.59 (m, 1H), 3.29-3.21 (m, 2H), 3.07-3.01 (m, 2H), 2.30 (s, 3H), 2.14-2.08 (m, 1H), 1.88-1.66 (m, 4H), 1.62-1.56 (m, 1H), 1.51-1.37 (m, 2H), 1.33-1.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 154.8, 143.1, 135.3, 134.2, 131.1, 129.1, 128.3, 128.07, 128.0, 122.5, 117.3, 117.1, 93.2, 83.4, 48.2, 39.2, 30.0, 26.1, 25.5, 25.3, 23.7, 21.4; HRMS (ESI) for C₂₆H₂₉NO₂S [M+H]⁺calcd. 420.1992, found. 420.1994.

6-(2-Methylallyl)-7-(phenylethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3fa):

Isolated yield 60%, 48.6 mg. Light yellow solid, mp 116-118 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.87

(d, J = 8.4 Hz, 2H), 7.29-7.26 (m, 3H), 7.21-7.17 (m, 4H), 4.83 (d, J = 6.0 Hz, 2H), 3.45-3.43 (m, 2H), 3.13 (s, 2H), 2.41-2.38 (m, 2H), 2.36 (s, 3H), 1.96-1.90 (m, 2H), 1.75 (s, 3H), 1.49-1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.5, 142.8, 142.0, 138.3, 131.2, 129.2, 128.2, 128.1, 127.5, 122.8, 121.0, 113.1, 93.3, 85.1, 49.7, 44.6, 31.8, 31.2, 23.7, 22.0, 21.4; HRMS (ESI) for C₂₅H₂₇NO₂S [M+H]⁺calcd. 406.1835, found. 406.1830.

6-(But-3-en-2-yl)-7-(phenylethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3ga): Isolated yield 52%, 42.1 mg. Light yellow solid, mp 122-124 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, J = 8.4 Hz, 2H), 7.29-7.26 (m, 3H), 7.22-7.18 (m, 4H), 5.86-5.78 (m, 1H), 5.15-5.08 (m, 2H), 3.88-3.82 (m, 1H), 3.44-3.42 (m, 2H), 2.36 (s, 3H), 2.30-2.38 (m, 2H), 1.90 (t, J = 6.0 Hz, 2H), 1.48-1.42 (m, 2H), 1.17 (d, J = 6.8Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ: 155.0, 142.8, 139.3, 138.2, 131.3, 129.2, 128.2, 128.1, 127.5, 122.8, 119.6, 114.9, 93.6, 84.6, 49.5, 41.2, 31.0, 27.4, 24.4, 21.4, 16.2; HRMS (ESI) for C₂₅H₂₇NO₂S [M+H]⁺calcd. 406.1835, found. 406.1828.

6-Allyl-1-(methylsulfonyl)-7-(phenylethynyl)-2,3,4,5tetrahydro-1*H*-azepine (3ha):

Isolated yield 74%, 46.6 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.44-7.42 (m, 2H), 7.35-7.32 (m,

3H), 5.84-5.74 (m, 1H), 5.21-5.10 (m, 2H), 3.41-3.39 (m, 2H), 3.18 (d, *J* = 6.8 Hz, 2H), 3.14 (s, 3H), 2.46-2.43 (m, 2H), 1.92-1.86 (m, 2H), 1.53-1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 149.9, 133.8, 131.2, 128.6, 128.4, 122.5, 120.1, 117.5, 93.9, 84.2, 49.5, 40.6, 39.6, 32.2, 31.5, 23.7; HRMS (ESI) for C₁₈H₂₁NO₂S [M+H]⁺calcd. 316.1366, found. 316.1363.

6-Allyl-1-(ethylsulfonyl)-7-(phenylethynyl)-2,3,4,5tetrahydro-1*H*-azepine (3ia):

Isolated yield 68%, 44.7 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.42-7.38 (m, 2H), 7.35-7.31 (m, 3H), 5.84-5.74 (m, 1H), 5.21-5.10 (m, 2H), 3.47-3.45 (m,

2H), 3.38-3.32 (m, 2H), 3.19 (d, J = 6.8 Hz, 2H), 2.48-2.45 (m, 2H), 1.92-1.87 (m, 2H), 1.53-1.51 (m, 2H), 1.45 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.8, 133.7, 131.2, 128.6, 128.4, 122.6, 120.0, 117.4, 93.3, 84.6, 50.5, 47.7, 40.8, 32.3, 31.9, 23.7, 8.2; HRMS (ESI) for C₁₉H₂₃NO₂S [M+H]⁺calcd. 330.1522, found. 330.1527.

6-Allyl-1-((2-chlorophenyl)sulfonyl)-7-

(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-azepine (3ka): Isolated yield 49%, 40.3 mg. Light yellow solid, mp 126-128 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 8.12-8.09 (m, 1H), 7.44-7.42 (m, 1H), 7.29-7.15 (m, 5H), 6.95-S11

6.93 (m, 2H), 5.81-5.71 (m, 1H), 5.19-5.09 (m, 2H), 3.78-3.76 (m, 2H), 3.14 (d, J = 6.8Hz, 2H), 2.56-2.53 (m, 2H), 2.01-1.96 (m, 2H), 1.59-1.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) &: 152.2, 139.0, 133.5, 133.0, 132.2, 132.0, 131.5, 131.1, 128.2, 127.9, 126.6, 122.3, 119.4, 117.5, 93.5, 83.8, 51.2, 40.8, 32.4, 32.1, 23.6; HRMS (ESI) for C₂₃H₂₂ClNO₂S [M+H]⁺calcd. 412.1133, found. 412.1136.

6-Allyl-1-((4-chlorophenyl)sulfonyl)-7-

(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-azepine (3la): Isolated yield 54%, 44.3 mg. Light yellow solid, mp 132-134 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.91 (d, J = 8.8 Hz, 2H), 7.38-7.34 (m, 2H), 7.32-7.29 (m, 3H),7.18-7.16 (m, 2H), 5.82-5.72 (m, 1H), 5.20-5.09 (m, 2H),

3.44-3.42 (m, 2H), 3.18 (d, J = 6.8 Hz, 2H), 2.45-2.42 (m, 2H), 1.96-1.91 (m, 2H), 1.53-1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 151.0, 139.5, 138.6, 133.6, 131.2, 128.9, 128.8, 128.5, 128.3, 122.4, 120.0, 117.5, 93.9, 84.4, 49.8, 40.6, 32.1, 31.2, 23.6; HRMS (ESI) for C₂₃H₂₂ClNO₂S [M+H]⁺calcd. 412.1133, found. 412.1132.

4-((A-allyl-7-(phenylethynyl)-2,3,4,5-tetrahydro-1Hazepin-1-yl)sulfonyl)benzonitrile (3ma):

Isolated yield 41%, 33.0 mg. Light yellow solid, mp 137-139 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 1H NMR (400 MHz, Chloroform-d) δ 8.07 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.37-7.32 (m, 3H), 7.14-7.12 (m,

2H), 5.81-5.71 (m, 1H), 5.20-5.10 (m, 2H), 3.48-3.46 (m, 2H), 3.17 (d, J = 6.8 Hz, 2H), 2.47-2.44 (m, 2H), 1.99-1.93 (m, 2H), 1.55-1.53 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 151.4, 145.1, 133.3, 132.4, 131.1, 128.8, 128.4, 128.0, 122.1, 119.6, 117.7, 117.4, 115.7, 94.1, 84.0, 50.1, 40.5, 32.0, 31.3, 23.5; HRMS (ESI) for C₂₄H₂₂N₂O₂S [M+H]⁺calcd. 403.1475, found. 403.1473.

6-Allyl-1-(naphthalen-2-ylsulfonyl)-7-

(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-azepine (3na): Isolated yield 56%, 47.8 mg. Light yellow solid, mp 131-133 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 8.51 S12

(s, 1H), 8.02-7.99 (m, 1H), 7.87-7.83 (m, 2H), 7.76-7.74 (m, 1H), 7.60-7.56 (m, 1H), 7.50-7.46 (m, 1H), 7.22-7.18 (m, 1H), 7.13-7.09 (m, 2H), 6.97-6.95 (m, 2H), 5.82-5.72 (m, 1H), 5.20-5.08 (m, 2H), 3.50-3.49 (m, 2H), 3.19 (d, J = 6.8 Hz, 2H), 2.46-2.44 (m, 2H), 1.98-1.94(m, 2H), 1.52-1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.6, 137.9, 134.6, 133.7, 132.0, 131.1, 129.2, 128.8, 128.7, 128.4, 128.1, 128.0, 127.6, 127.0, 122.8, 122.4, 120.2, 117.4, 93.7, 84.4, 49.8, 40.6, 32.1, 31.1, 23.6; HRMS (ESI) for C₂₇H₂₅NO₂S [M+H]⁺calcd. 428.1679, found. 428.1686.

6-Allyl-7-(phenylethynyl)-1-(thiophen-2-ylsulfonyl)-2,3,4,5-tetrahydro-1*H*-azepine (30a):

Isolated yield 65%, 49.8 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ: 7.71-7.70 (m, 1H), 7.53-7.52 (m, 1H), 7.31-7.29 (m, 5H), 7.01-6.99 (m, 1H), 5.83-5.73 (m, 1H), 5.20-5.09 (m, 2H), 3.45-3.43 (m, 2H), 3.19 (d, *J* = 6.8

Hz, 2H), 2.43-2.40 (m, 2H), 1.96-1.90 (m, 2H), 1.52-1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 150.5, 142.8, 138.2, 133.8, 131.3, 129.2, 128.2, 128.1, 127.5, 122.8, 120.4, 117.4, 93.6, 84.8, 49.7, 40.6, 32.1, 31.0, 23.7, 21.4; HRMS (ESI) for C₂₁H₂₁NO₂S₂ [M+H]⁺calcd. 384.1086, found. 384.1084.

6-Allyl-7-(*p*-tolylethynyl)-1-tosyl-2,3,4,5-

tetrahydro-1*H*-azepine (3ab):

Isolated yield 68%, 55.1 mg. Light yellow solid, mp 118-120 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃)

δ: 7.87 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 5.82-5.72 (m, 1H), 5.18-5.07 (m, 2H), 3.82 (s, 3H), 3.43-3.41 (m, 2H), 3.16 (d, J = 6.8 Hz, 2H), 2.42-2.39 (m, 2H), 2.38 (s, 3H), 1.94-1.88 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.6, 149.5, 142.8, 138.3, 134.0, 132.8, 129.2, 127.5, 120.6, 117.3, 115.0, 113.8, 93.6, 83.5, 55.3, 49.7, 40.6, 32.0, 31.1, 23.8, 21.5; HRMS (ESI) for C₂₅H₂₇NO₂S [M+H]⁺calcd. 406.1835, found. 406.1831.

6-Allyl-7-((4-methoxyphenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ac): Isolated yield 76%, 64.0 mg. Light yellow solid, mp 127-129 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 5.82-5.72 (m, 1H), 5.18-5.07(m, 2H), 3.82 (s, 3H), 3.43-3.41 (m, 2H), 3.16 (d, J = 6.8 Hz, 2H), 2.42-2.39 (m, 2H), 2.38 (s, 3H), 1.94-1.88 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.6, 149.5, 142.8, 138.3, 134.0, 132.8, 129.2, 127.5, 120.6, 117.3, 115.0, 113.8, 93.6, 83.5, 55.3, 49.7, 40.6, 32.0, 31.1, 23.8, 21.5; HRMS (ESI) for C₂₅H₂₇NO₃S [M+H]⁺calcd. 422.1784, found. 422.1788.

6-Allyl-7-((4-chlorophenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ad):

Isolated yield 64%, 54.4 mg. Light yellow solid, mp 124-126 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.84 (d, J = 8.0 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.11 (d, J = 8.4 Hz, 2H), 5.81-5.71 (m, 1H), 5.18-5.08 (m, 2H), 3.44-3.42 (m, 2H), 3.16 (d, J = 7.2 Hz, 2H), 2.45-2.39 (m, 2H), 2.37 (s, 3H), 1.93-1.87 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 151.0, 142.9, 138.2, 134.2, 133.6, 132.4, 129.2, 128.4, 127.4, 121.3, 120.1, 117.5, 92.4, 85.8, 49.7, 40.6, 32.1, 31.0, 23.6, 21.4; HRMS (ESI) for C₂₄H₂₄CINO₂S [M+H]⁺calcd. 426.1289, found. 426.1293.

6-Allyl-7-((4-fluorophenyl)ethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3ae):

Isolated yield 53%, 43.3 mg. Light yellow solid, mp 116-118 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.85 (d, *J* = 8.0 Hz, 2H), 7.21-7.16 (m, 4H), 6.97 (t, *J* = 8.8 Hz, 2H), 5.81-5.71 (m, 1H), 5.18- 5.08 (m, 2H), 3.44-3.42 (m, 2H), 3.16 (d, *J* = 6.8 Hz, 2H), 2.42-2.39 (m, 2H), 2.37 (s, 3H), 1.92-1.88 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.7, 161.2, 150.6, 142.9, 138.3, 133.8, 133.2, 133.1, 129.2, 127.5, 120.3, 118.9, 117.4, 115.6, 115.3, 92.5, 84.5, 84.5, 49.7, 40.7, 32.1, 31.0, 23.7, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ : -110.8; HRMS (ESI) for C₂₄H₂₄FNO₂S [M+H]⁺calcd. 410.1585, found. 410.1591.

4-((3-Allyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepin-2-yl)ethynyl)benzonitrile (3af):

Isolated yield 42%,35.0 mg. Light yellow solid, mp 133-135 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.83 (d, *J* = 8.4 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 5.80-5.70 (m, 1H), 5.19-5.11 (m, 2H), 3.47-3.45 (m, 2H), 3.17 (d, *J* = 6.8 Hz, 2H), 2.40-2.38 (m, 2H), 2.39 (s, 3H), 1.93-1.87 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.9, 143.1, 138.3, 133.3, 131.8, 131.7, 129.3, 127.7, 127.4, 119.9, 118.4, 117.8, 111.4, 91.8, 89.4, 49.8, 40.7, 32.2, 30.8, 23.5, 21.5; HRMS (ESI) for C₂₅H₂₄N₂O₂S [M+H]⁺calcd. 417.1631, found. 417.1626.

6-Allyl-7-((4-nitrophenyl)ethynyl)-1-tosyl-

2,3,4,5-tetrahydro-1*H*-azepine (3ag):

Isolated yield 34%, 29.7 mg. Light yellow solid, mp 141-143 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 8.15 (d, J = 8.8 Hz, 2H), 7.84 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 7.6 Hz, 2H), 5.81-5.71 (m, 1H), 5.20-5.12 (m, 2H), 3.48-3.46 (m, 2H), 3.18 (d, J = 6.8 Hz, 2H), 2.41-2.38 (m, 2H), 2.40 (s, 3H), 1.93-1.88 (m, 2H), 1.52-1.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.4, 146.9, 143.2, 138.3, 133.3, 131.8, 129.7, 129.3, 127.4, 123.4, 119.8, 117.8, 91.6, 90.3, 49.8, 40.8, 32.3, 30.8, 23.5, 21.5; HRMS (ESI) for C₂₄H₂₄N₂O₄S [M+H]⁺calcd. 437.1530, found. 437.1539.

6-Allyl-7-((3-methoxyphenyl)ethynyl)-1-tosyl-

2,3,4,5-tetrahydro-1*H*-azepine (3ah):

Isolated yield 72%, 60.6 mg. Light yellow solid, mp 122-124 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃)

δ: 7.86 (d, J = 8.4 Hz, 2H), 7.22-7.17 (m, 3H), 6.87-6.79 (m, 2H), 6.78-6.72 (m, 1H), 5.82-5.72 (m, 1H), 5.19-5.08 (m, 2H), 3.79 (s, 3H), 3.44-3.42 (m, 2H), 3.18 (d, J = 6.8 Hz, 2H), 2.44-2.40 (m, 2H), 2.37 (s, 3H), 1.94-1.88 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.1, 150.6, 142.9, 138.2, 133.8, 129.2, 129.2, 127.5, 123.9, 123.8, 120.3, 117.4, 116.3, 114.5, 93.5, 84.5, 55.2, 49.7, 40.6, 32.1, 31.0, 23.7, 21.4; HRMS (ESI) for C₂₅H₂₇NO₃S [M+H]⁺calcd. 422.1784, found. 422.1786.

6-Allyl-7-((2-methoxyphenyl)ethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3ai):

Isolated yield 60%, 50.5 mg. Light yellow solid, mp 114-116 (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.92 (d, J = 8.4 Hz, 2H), 7.28-7.20 (m, 3H), 7.07-7.05 (m, 1H), 6.88-6.83 (m, 2H), 5.86-5.76 (m, 1H), 5.21-5.06 (m, 2H), 3.82 (s, 3H), 3.40-3.38 (m, 2H), 3.25 (d, J = 6.8 Hz, 2H), 2.44-2.41 (m, 2H), 2.38 (s, 3H), 1.94-1.88(m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 159.9, 150.4, 142.7, 138.1, 134.2, 132.7, 129.6, 129.2, 127.7, 120.6, 120.2, 117.1, 112.3, 110.5, 90.1, 89.0, 55.6, 49.5, 40.7, 32.1, 31.0, 23.8, 21.5; HRMS (ESI) for C₂₅H₂₇NO₃S [M+H]⁺calcd. 422.1784, found. 422.1781.

6-Allyl-7-((3,5-dimethoxyphenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3aj):

Isolated yield 67%, 60.5 mg. Light yellow solid, mp 136-138 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃)

δ: 7.86 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.42 (t, J = 2.4 Hz, 1H), 6.36 (d, J = 2.4 Hz, 2H), 5.82-5.72 (m, 1H), 5.19-5.09 (m, 2H), 3.77 (s, 6H), 3.43-3.41 (m, 2H), 3.17 (d, J = 6.8 Hz, 2H), 2.43-2.40 (m, 2H), 2.37 (s, 3H), 1.94-1.88 (m, 2H), 1.51-1.49 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ: 160.4, 150.7, 142.9, 138.2, 133.8, 129.2, 127.5, 124.1, 120.3, 117.4, 109.2, 101.4, 93.6, 84.3, 55.4, 49.7, 40.6, 32.1, 31.0, 23.7, 21.4; HRMS (ESI) for C₂₆H₂₉NO₄S [M+H]⁺calcd. 452.1890, found. 452.1895.

6-Allyl-7-(naphthalen-2-ylethynyl)-1-tosyl-

2,3,4,5-tetrahydro-1*H*-azepine (3ak):

Isolated yield 52%, 45.9 mg. Light yellow solid, mp 128-130 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.90 (d, J = 8.4 Hz, 2H), 7.81-7.79 (m, 1H), 7.75-7.72 (m, 2H), 7.68 (s, 1H), 7.50-7.47 (m, 2H), 7.25-7.20 (m, 3H), 5.86-5.75 (m, 1H), 5.22-5.10 (m, 2H), 3.48-3.46 (m, 2H), 3.23 (d, J = 6.8 Hz, 2H), 2.46-2.43 (m, 2H), 2.35 (s, 3H), 1.96-1.91 (m, 2H), 1.53-1.51 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.6, 142.9, 138.4, 133.9, 132.8, 132.7, 131.2, 129.3, 128.0, 127.7, 127.6, 127.5, 126.7, 126.6, 120.4, 120.1, 117.4,

110.0, 94.0, 85.1, 49.8, 40.7, 32.1, 31.1, 23.7, 21.5; HRMS (ESI) for C₂₈H₂₇NO₂S [M+H]⁺calcd. 442.1835, found. 442.1833.

6-Allyl-7-(pyridin-2-ylethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3al):

Isolated yield 48%, 37.7 mg. Light yellow solid, mp 113-115 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 8.58-8.57 (m, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.64-7.60 (m, 1H), 7.22-7.19 (m, 4H), 5.81-5.71 (m, 1H), 5.19-5.09 (m, 2H), 3.41-3.39 (m, 2H), 3.22 (d, *J* = 6.8 Hz, 2H), 2.40-2.37 (m, 2H), 2.35 (s, 3H), 1.92-1.87 (m, 2H), 1.49-1.47 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.8, 149.9, 143.1, 143.0, 137.8, 135.9, 133.6, 129.3, 127.7, 127.1, 122.7, 119.8, 117.6, 92.5, 84.7, 49.5, 40.7, 32.1, 30.8, 23.6, 21.4; HRMS (ESI) for C₂₃H₂₄N₂O₂S [M+H]⁺calcd. 393.1631, found. 393.1627.

6-Allyl-7-(thiophen-2-ylethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3am):

Isolated yield 70%, 55.6 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, J = 8.4 Hz, 2H), 7.27-7.25 (m, 1H),

7.22 (d, J = 8.0 Hz, 2H), 7.04-7.03 (m, 1H), 6.98-6.95 (m, 1H), 5.81-5.71 (m, 1H), 5.19-5.08 (m, 2H), 3.40-3.38 (m, 2H), 3.15 (d, J = 6.8 Hz, 2H), 2.44-2.41 (m, 2H), 2.38 (s, 3H), 1.94-1.89 (m, 2H), 1.51-1.49(m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.9, 143.0, 138.0, 133.7, 131.8, 129.3, 127.5, 127.4, 126.9, 122.8, 120.2, 117.5, 88.3, 86.8, 49.6, 40.7, 32.2, 31.0, 23.7, 21.5; HRMS (ESI) for C₂₂H₂₃NO₂S₂ [M+H]⁺calcd. 398.1243, found. 398.1238.

6-Allyl-7-(cyclohex-1-en-1-ylethynyl)-1-tosyl-2,3,4,5tetrahydro-1*H*-azepine (3an):

Isolated yield 55%, 43.4 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.86 (d, J = 8.4 Hz, 2H), 7.25 (d, J

= 8.0 Hz, 2H), 5.91-5.89 (m, 1H), 5.78-5.68 (m, 1H), 5.15-5.05 (m, 2H), 3.35-3.33 (m, 2H), 3.09 (d, J = 6.8 Hz, 2H), 2.41 (s, 3H), 2.37-2.35 (m, 2H), 2.10-2.07 (m, 2H), 2.01-1.98 (m, 2H), 1.90-1.84 (m, 2H), 1.63-1.55 (m, 4H), 1.47-1.45 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 149.0, 142.7, 138.2, 134.9, 134.0, 129.1, 127.5, 120.6, 120.4, 117.1,

95.5, 82.2, 49.5, 40.6, 31.9, 30.9, 28.8, 25.7, 23.7, 22.2, 21.4, 21.4; HRMS (ESI) for C₂₄H₂₉NO₂S [M+H]⁺calcd. 396.1992, found. 396.1988.

6-Allyl-7-(cyclopropylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ao):

NIsolated yield 48%, 34.0 mg. Light yellow oil; ¹H NMR (400
MHz, CDCl₃) δ : 7.84 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz,
2H), 5.76-5.66 (m, 1H), 5.13-5.04 (m, 2H), 3.33-3.31 (m, 2H), 3.05 (d, J = 6.8 Hz, 2H),
2.42 (s, 3H), 2.33-2.30 (m, 2H), 1.88-1.82 (m, 2H), 1.45-1.43 (m, 2H), 1.28-1.21 (m,
1H), 0.78-0.73 (m, 2H), 0.59-0.55 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.4,
142.8, 138.3, 134.2, 129.1, 127.6, 120.6, 117.0, 97.8, 71.2, 49.5, 40.4, 31.8, 30.9, 23.7,
21.5, 8.4, 0.1; HRMS (ESI) for C₂₁H₂₅NO₂S [M+H]⁺calcd. 356.1679, found. 356.1680.

6-Allyl-7-(oct-1-yn-1-yl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ap):

Isolated yield 53%, 42.3 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (d, J = 8.4 Hz, 2H), 7.25 (d, J

= 8.0 Hz, 2H), 5.77-5.67 (m, 1H), 5.14-5.04 (m, 2H), 3.34-3.32 (m, 2H), 3.06 (d, J = 6.8 Hz, 2H), 2.41 (s, 3H), 2.34-2.31 (m, 2H), 2.17 (t, J = 7.2 Hz, 2H), 1.89-1.83 (m, 2H), 1.45-1.38 (m, 4H), 1.34-1.23 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.0, 142.7, 138.3, 134.2, 129.0, 127.6, 120.7, 116.9, 94.9, 75.8, 49.5, 40.4, 31.7, 31.3, 31.0, 28.6, 28.4, 23.7, 22.5, 21.5, 19.5, 14.0; HRMS (ESI) for C₂₄H₃₃NO₂S [M+H]⁺calcd. 400.2305, found. 400.2299.

6-Allyl-1-tosyl-7-((trimethylsilyl)ethynyl)-2,3,4,5tetrahydro-1*H*-azepine (3aq):

Isolated yield 45%, 34.8 mg. Light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.88 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.0 Hz,

2H), 5.79-5.69 (m, 1H), 5.16-5.06 (m, 2H), 3.31-3.29 (m, 2H), 3.11 (d, *J* = 6.8 Hz, 2H), 2.42 (s, 3H), 2.40-2.38 (m, 2H), 1.91-1.85 (m, 2H), 1.48-1.46 (m, 2H), 0.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ: 151.7, 142.9, 138.0, 133.7, 129.1, 127.7, 120.4, 117.3, 99.7, 98.8, 49.3, 40.8, 32.1, 30.9, 23.7, 21.5, -0.2; HRMS (ESI) for C₂₁H₂₉NO₂SSi [M+H]⁺calcd. 388.1761, found. 388.1768.

(E) Reference

- K. A. DeKorver, W. L. Johnson, Y. Zhang, R. P. Hsung, H. Dai, J. Deng, A. G. Lohse and Y.-S. Zhang, *N*-Allyl-*N*-sulfonyl Ynamides as Synthetic Precursors to Amidines and Vinylogous Amidines. An Unexpected N-to-C 1,3-Sulfonyl Shift in Nitrile Synthesis, *J. Org. Chem.*, 2011, 76, 5092-5103.
- K. A. DeKorver, R. P. Hsung, A. G. Lohse and Y. Zhang, A Divergent Mechanistic Course of Pd(0)-Catalyzed Aza-Claisen Rearrangement and Aza-Rautenstrauch-Type Cyclization of *N*-Allyl Ynamides, *Org. Lett.*, 2010, **12**, 1840-1843.
- M. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Others, Gaussian 09, revision D. 01. In Gaussian, Inc., Wallingford CT: 2009.
- 4. C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, *J. Chem. Phys.*, 1999, **110**, 6158-6170.
- S. Grimme, J. Antony, S. Ehrlich and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, *J. Chem. Phys.*, 2010, 132, 154104.
- F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, 7, 3297-3305.
- A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B.*, 2009, **113**, 6378-6396.
- 8. J. Jin, Y. Zhang, G. Li, Z. Chu and G. Li, Synthesis and enhanced gas sensing properties of iron titanate and copper titanate nanomaterials, *Mater. Chem. Phys.*, 2020, **249**, 123016.

(F) Spectra

-144,450 -144,450 -123,683 -123,683 -123,683 -133,681 -133,668 -134,668 -13

N-allyl-*N*-(7-bromohept-1-yn-1-yl)-4-methylbenzenesulfonamide (1c)

150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

N-allyl-*N*-(11-bromoundec-1-yn-1-yl)-4-methylbenzenesulfonamide (1e)

N-(6-chlorohex-1-yn-1-yl)-4-methyl-N-(2-methylallyl)benzenesulfonamide (1f)

(E)-N-(but-2-en-1-yl)-N-(6-chlorohex-1-yn-1-yl)-4-methylbenzenesulfonamide (1g)

N-allyl-N-(6-chlorohex-1-yn-1-yl)methanesulfonamide (1h)

45 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 f1 (ppm)

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)ethanesulfonamide (1i)

N-allyl-N-(6-chlorohex-1-yn-1-yl)-2,4,6-trimethylbenzenesulfonamide (1j)

N-allyl-2-chloro-N-(6-chlorohex-1-yn-1-yl)benzenesulfonamide (1k)

N-allyl-4-chloro-N-(6-chlorohex-1-yn-1-yl)benzenesulfonamide (11)

N-allyl-N-(6-chlorohex-1-yn-1-yl)-4-cyanobenzenesulfonamide (1m)

N-allyl-*N*-(6-chlorohex-1-yn-1-yl)naphthalene-2-sulfonamide (1n)

N-allyl-N-(6-chlorohex-1-yn-1-yl)thiophene-2-sulfonamide (10)

6-Allyl-7-(phenylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3aa)

5-Allyl-6-(phenylethynyl)-1-tosyl-1,2,3,4-tetrahydropyridine (3ba)

(E)-7-Allyl-8-(phenylethynyl)-1-tosyl-1,2,3,4,5,6-hexahydroazocine (3ca)

(E)-8-Allyl-9-(phenylethynyl)-1-tosyl-2,3,4,5,6,7-hexahydro-1*H*-azonine (3da)

6-(2-Methylallyl)-7-(phenylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3fa)

6-(But-3-en-2-yl)-7-(phenylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ga)

6-Allyl-1-(methylsulfonyl)-7-(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-azepine (3ha)

6-Allyl-1-(ethylsulfonyl)-7-(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-azepine (3ia)

6-Allyl-1-((2-chlorophenyl)sulfonyl)-7-(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-

azepine (3ka)

6-Allyl-1-((4-chlorophenyl)sulfonyl)-7-(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-

90 80 f1 (ppm)

yl)sulfonyl)benzonitrile (3ma)

6-Allyl-1-(naphthalen-2-ylsulfonyl)-7-(phenylethynyl)-2,3,4,5-tetrahydro-1*H*-

6-Allyl-7-(phenylethynyl)-1-(thiophen-2-ylsulfonyl)-2,3,4,5-tetrahydro-1*H*-

6-Allyl-7-(*p*-tolylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ab)

6-Allyl-7-((4-methoxyphenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ac)

6-Allyl-7-((4-chlorophenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ad)

6-Allyl-7-((4-fluorophenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ae)

6-Allyl-7-((4-fluorophenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ae)

---10.81

4-((3-Allyl-1-tosyl-4,5,6,7-tetrahydro-1*H*-azepin-2-yl)ethynyl)benzonitrile (3af)

6-Allyl-7-((4-nitrophenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ag)

6-Allyl-7-((3-methoxyphenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ah)

6-Allyl-7-((2-methoxyphenyl)ethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ai)

(3aj)

6-Allyl-7-(naphthalen-2-ylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ak)

6-Allyl-7-(pyridin-2-ylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3al)

6-Allyl-7-(thiophen-2-ylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3am)

the second s

6-Allyl-7-(cyclohex-1-en-1-ylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3an)

6-Allyl-7-(cyclopropylethynyl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ao)

6-Allyl-7-(oct-1-yn-1-yl)-1-tosyl-2,3,4,5-tetrahydro-1*H*-azepine (3ap)

6-Allyl-1-tosyl-7-((trimethylsilyl)ethynyl)-2,3,4,5-tetrahydro-1*H*-azepine (3aq)

(G) X-ray crystallographic data of compound 3aa

Table 1. Crystal data and structure refinement for	d8v18637.	
Identification code	d8v18637	
Empirical formula	C24 H25 N O2 S	
Formula weight	391.51	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 9.3035(4) Å	$\alpha = 85.085(2)^{\circ}$.
	b = 9.6639(6) Å	β= 70.963(2)°.
	c = 13.7416(7) Å	$\gamma = 67.2140(10)^{\circ}$.
Volume	1075.59(10) Å ³	
Z	2	
Density (calculated)	1.209 Mg/m ³	
Absorption coefficient	0.169 mm ⁻¹	
F(000)	416	
Crystal size	$0.200 \ x \ 0.170 \ x \ 0.130 \ mm^3$	
Theta range for data collection	2.835 to 25.995°.	
Index ranges	-11<=h<=11, -11<=k<=11, -16	5<=l<=16
Reflections collected	17792	
Independent reflections	4181 [R(int) = 0.0389]	
Completeness to theta = 25.242°	99.1 %	
Absorption correction	Semi-empirical from equivalent	its
Max. and min. transmission	0.7456 and 0.6846	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4181 / 0 / 263	
Goodness-of-fit on F ²	1.013	
Final R indices [I>2sigma(I)]	R1 = 0.0438, $wR2 = 0.1045$	
R indices (all data)	R1 = 0.0571, $wR2 = 0.1145$	
Extinction coefficient	0.061(9)	
Largest diff. peak and hole	0.195 and -0.274 e.Å ⁻³	

	Х	У	Z	U(eq)
S(1)	2779(1)	5236(1)	8486(1)	52(1)
O(1)	1190(2)	6029(2)	9203(1)	70(1)
O(2)	3737(2)	6037(1)	7876(1)	63(1)
N(1)	2496(2)	4299(2)	7683(1)	53(1)
C(1)	1158(3)	3736(3)	8011(2)	74(1)
C(2)	-226(3)	4634(4)	7579(2)	100(1)
C(3)	250(3)	4604(3)	6416(2)	92(1)
C(4)	1577(3)	5201(2)	5889(2)	71(1)
C(5)	3281(2)	4145(2)	5837(1)	51(1)
C(6)	3716(2)	3771(2)	6691(1)	49(1)
C(7)	5329(2)	2781(2)	6683(1)	54(1)
C(8)	6670(2)	1976(2)	6707(2)	59(1)
C(9)	8253(2)	1007(2)	6771(2)	54(1)
C(10)	8361(3)	70(2)	7586(2)	74(1)
C(11)	9879(3)	-859(3)	7665(2)	82(1)
C(12)	11281(3)	-864(3)	6946(2)	77(1)
C(13)	11193(3)	50(3)	6135(2)	82(1)
C(14)	9687(2)	990(2)	6046(2)	68(1)
C(15)	4458(3)	3434(2)	4802(2)	62(1)
C(16)	4113(3)	2179(3)	4507(2)	76(1)
C(17)	3835(4)	2037(5)	3664(3)	108(1)
C(18)	3965(2)	3943(2)	9182(1)	49(1)
C(19)	3257(3)	3165(2)	9945(2)	68(1)
C(20)	4212(3)	2139(3)	10468(2)	83(1)
C(21)	5843(3)	1885(2)	10264(2)	72(1)
C(22)	6502(3)	2712(3)	9526(2)	74(1)
C(23)	5583(2)	3738(2)	8975(2)	64(1)
C(24)	6879(4)	741(3)	10839(2)	109(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for d8v18637. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(2)	1.4247(14)
S(1)-O(1)	1.4305(14)
S(1)-N(1)	1.6293(15)
S(1)-C(18)	1.7629(17)
N(1)-C(6)	1.437(2)
N(1)-C(1)	1.471(2)
C(1)-C(2)	1.519(3)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.513(3)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.509(3)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.499(3)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.340(2)
C(5)-C(15)	1.505(3)
C(6)-C(7)	1.430(2)
C(7)-C(8)	1.197(2)
C(8)-C(9)	1.434(2)
C(9)-C(14)	1.375(3)
C(9)-C(10)	1.384(3)
C(10)-C(11)	1.383(3)
C(10)-H(10)	0.9300
C(11)-C(12)	1.354(3)
C(11)-H(11)	0.9300
C(12)-C(13)	1.366(3)
C(12)-H(12)	0.9300
C(13)-C(14)	1.382(3)
С(13)-Н(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(16)	1.486(3)
C(15)-H(15A)	0.9700

Table 3. Bond lengths [Å] and angles $[\circ]$ for d8v18637.

C(15)-H(15B)	0.9700
C(16)-C(17)	1.295(4)
C(16)-H(16)	0.9300
C(17)-H(17A)	0.95(4)
C(17)-H(17B)	1.02(3)
C(18)-C(23)	1.373(3)
C(18)-C(19)	1.377(3)
C(19)-C(20)	1.380(3)
C(19)-H(19)	0.9300
C(20)-C(21)	1.373(3)
С(20)-Н(20)	0.9300
C(21)-C(22)	1.371(3)
C(21)-C(24)	1.515(3)
C(22)-C(23)	1.387(3)
C(22)-H(22)	0.9300
C(23)-H(23)	0.9300
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
O(2)-S(1)-O(1)	120.29(9)
O(2)-S(1)-N(1)	106.48(8)
O(1)-S(1)-N(1)	106.28(8)
O(2)-S(1)-C(18)	107.53(8)
O(1)-S(1)-C(18)	107.38(8)
N(1)-S(1)-C(18)	108.43(8)
C(6)-N(1)-C(1)	117.58(15)
C(6)-N(1)-S(1)	120.35(11)
C(1)-N(1)-S(1)	121.16(13)
N(1)-C(1)-C(2)	111.8(2)
N(1)-C(1)-H(1A)	109.3
C(2)-C(1)-H(1A)	109.3
N(1)-C(1)-H(1B)	109.3
C(2)-C(1)-H(1B)	109.3
H(1A)-C(1)-H(1B)	107.9
C(3)-C(2)-C(1)	115.4(2)
C(3)-C(2)-H(2A)	108.4
C(1)-C(2)-H(2A)	108.4

C(3)-C(2)-H(2B)	108.4
C(1)-C(2)-H(2B)	108.4
H(2A)-C(2)-H(2B)	107.5
C(4)-C(3)-C(2)	114.49(19)
C(4)-C(3)-H(3A)	108.6
C(2)-C(3)-H(3A)	108.6
C(4)-C(3)-H(3B)	108.6
C(2)-C(3)-H(3B)	108.6
H(3A)-C(3)-H(3B)	107.6
C(5)-C(4)-C(3)	114.65(19)
C(5)-C(4)-H(4A)	108.6
C(3)-C(4)-H(4A)	108.6
C(5)-C(4)-H(4B)	108.6
C(3)-C(4)-H(4B)	108.6
H(4A)-C(4)-H(4B)	107.6
C(6)-C(5)-C(4)	121.27(17)
C(6)-C(5)-C(15)	120.83(17)
C(4)-C(5)-C(15)	117.77(16)
C(5)-C(6)-C(7)	123.44(17)
C(5)-C(6)-N(1)	119.51(15)
C(7)-C(6)-N(1)	116.92(15)
C(8)-C(7)-C(6)	177.7(2)
C(7)-C(8)-C(9)	178.2(2)
C(14)-C(9)-C(10)	118.35(18)
C(14)-C(9)-C(8)	121.86(18)
C(10)-C(9)-C(8)	119.79(18)
C(11)-C(10)-C(9)	120.5(2)
С(11)-С(10)-Н(10)	119.7
C(9)-C(10)-H(10)	119.7
C(12)-C(11)-C(10)	120.5(2)
С(12)-С(11)-Н(11)	119.8
С(10)-С(11)-Н(11)	119.8
C(11)-C(12)-C(13)	119.6(2)
С(11)-С(12)-Н(12)	120.2
С(13)-С(12)-Н(12)	120.2
C(12)-C(13)-C(14)	120.7(2)
С(12)-С(13)-Н(13)	119.7
C(14)-C(13)-H(13)	119.7

C(9)-C(14)-C(13)	120.3(2)
C(9)-C(14)-H(14)	119.8
C(13)-C(14)-H(14)	119.8
C(16)-C(15)-C(5)	111.13(17)
C(16)-C(15)-H(15A)	109.4
C(5)-C(15)-H(15A)	109.4
C(16)-C(15)-H(15B)	109.4
C(5)-C(15)-H(15B)	109.4
H(15A)-C(15)-H(15B)	108.0
C(17)-C(16)-C(15)	126.3(3)
С(17)-С(16)-Н(16)	116.9
С(15)-С(16)-Н(16)	116.9
С(16)-С(17)-Н(17А)	120(2)
С(16)-С(17)-Н(17В)	114.7(19)
H(17A)-C(17)-H(17B)	125(3)
C(23)-C(18)-C(19)	120.24(18)
C(23)-C(18)-S(1)	119.85(15)
C(19)-C(18)-S(1)	119.90(14)
C(18)-C(19)-C(20)	119.0(2)
C(18)-C(19)-H(19)	120.5
C(20)-C(19)-H(19)	120.5
C(21)-C(20)-C(19)	122.1(2)
С(21)-С(20)-Н(20)	119.0
C(19)-C(20)-H(20)	119.0
C(22)-C(21)-C(20)	117.68(19)
C(22)-C(21)-C(24)	120.9(2)
C(20)-C(21)-C(24)	121.4(2)
C(21)-C(22)-C(23)	121.7(2)
С(21)-С(22)-Н(22)	119.1
С(23)-С(22)-Н(22)	119.1
C(18)-C(23)-C(22)	119.2(2)
С(18)-С(23)-Н(23)	120.4
С(22)-С(23)-Н(23)	120.4
C(21)-C(24)-H(24A)	109.5
C(21)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(21)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5

H(24B)-C(24)-H(24C) 109.5

Symmetry transformations used to generate equivalent atoms:
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	50(1)	54(1)	49(1)	4(1)	-22(1)	-14(1)
O(1)	55(1)	73(1)	61(1)	-7(1)	-17(1)	-3(1)
O(2)	76(1)	60(1)	63(1)	16(1)	-31(1)	-32(1)
N(1)	44(1)	72(1)	47(1)	3(1)	-19(1)	-22(1)
C(1)	62(1)	105(2)	67(1)	2(1)	-16(1)	-46(1)
C(2)	51(1)	163(3)	91(2)	-15(2)	-23(1)	-42(2)
C(3)	57(1)	131(2)	90(2)	-20(2)	-40(1)	-19(1)
C(4)	74(1)	68(1)	67(1)	-4(1)	-44(1)	-6(1)
C(5)	55(1)	51(1)	51(1)	2(1)	-23(1)	-19(1)
C(6)	44(1)	54(1)	50(1)	4(1)	-19(1)	-18(1)
C(7)	49(1)	61(1)	56(1)	4(1)	-21(1)	-20(1)
C(8)	53(1)	61(1)	64(1)	2(1)	-25(1)	-17(1)
C(9)	50(1)	50(1)	64(1)	1(1)	-26(1)	-13(1)
C(10)	65(1)	66(1)	77(2)	14(1)	-19(1)	-16(1)
C(11)	86(2)	64(1)	78(2)	15(1)	-36(1)	-6(1)
C(12)	63(1)	68(1)	93(2)	-1(1)	-42(1)	-3(1)
C(13)	50(1)	88(2)	102(2)	12(1)	-24(1)	-19(1)
C(14)	56(1)	71(1)	76(1)	17(1)	-27(1)	-20(1)
C(15)	69(1)	70(1)	51(1)	2(1)	-19(1)	-30(1)
C(16)	79(2)	70(1)	71(1)	-11(1)	-8(1)	-31(1)
C(17)	110(2)	131(3)	96(2)	-35(2)	-21(2)	-62(2)
C(18)	52(1)	53(1)	45(1)	3(1)	-22(1)	-17(1)
C(19)	66(1)	78(1)	66(1)	18(1)	-27(1)	-30(1)
C(20)	106(2)	82(2)	75(2)	31(1)	-44(1)	-42(1)
C(21)	95(2)	58(1)	68(1)	1(1)	-51(1)	-14(1)
C(22)	64(1)	81(2)	80(2)	1(1)	-42(1)	-16(1)
C(23)	59(1)	77(1)	64(1)	11(1)	-29(1)	-28(1)
C(24)	146(3)	76(2)	112(2)	12(2)	-92(2)	-12(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for d8v18637. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	Х	У	Z	U(eq)
H(1A)	726	3792	8758	89
H(1B)	1591	2690	7781	89
H(2A)	-1097	4253	7847	120
H(2B)	-670	5671	7832	120
H(3A)	622	3576	6163	110
H(3B)	-722	5192	6224	110
H(4A)	1554	5442	5193	85
H(4B)	1325	6127	6250	85
H(10)	7406	64	8084	89
H(11)	9936	-1486	8215	98
H(12)	12298	-1486	7005	92
H(13)	12156	39	5637	99
H(14)	9644	1615	5494	82
H(15A)	4362	4186	4286	74
H(15B)	5576	3057	4824	74
H(16)	4094	1424	4972	91
H(19)	2150	3329	10104	82
H(20)	3737	1603	10976	100
H(22)	7594	2583	9392	89
H(23)	6057	4281	8472	77
H(24A)	7145	1251	11283	163
H(24B)	7875	82	10353	163
H(24C)	6274	165	11244	163
H(17A)	3600(40)	1200(40)	3550(30)	139(12)
H(17B)	3840(40)	2900(40)	3180(30)	132(13)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for d8v18637.

Table 6.	Torsion	angles [°]	for	d8v18637.

O(2)-S(1)-N(1)-C(6)	30.77(15)
O(1)-S(1)-N(1)-C(6)	160.15(13)
C(18)-S(1)-N(1)-C(6)	-84.68(15)
O(2)-S(1)-N(1)-C(1)	-160.36(15)
O(1)-S(1)-N(1)-C(1)	-30.99(18)
C(18)-S(1)-N(1)-C(1)	84.19(17)
C(6)-N(1)-C(1)-C(2)	-83.8(2)
S(1)-N(1)-C(1)-C(2)	106.99(19)
N(1)-C(1)-C(2)-C(3)	61.1(3)
C(1)-C(2)-C(3)-C(4)	-59.5(3)
C(2)-C(3)-C(4)-C(5)	76.5(3)
C(3)-C(4)-C(5)-C(6)	-66.7(2)
C(3)-C(4)-C(5)-C(15)	109.2(2)
C(4)-C(5)-C(6)-C(7)	-179.40(17)
C(15)-C(5)-C(6)-C(7)	4.8(3)
C(4)-C(5)-C(6)-N(1)	4.8(3)
C(15)-C(5)-C(6)-N(1)	-170.99(16)
C(1)-N(1)-C(6)-C(5)	65.8(2)
S(1)-N(1)-C(6)-C(5)	-124.98(16)
C(1)-N(1)-C(6)-C(7)	-110.31(19)
S(1)-N(1)-C(6)-C(7)	58.9(2)
C(14)-C(9)-C(10)-C(11)	-0.1(3)
C(8)-C(9)-C(10)-C(11)	-179.2(2)
C(9)-C(10)-C(11)-C(12)	0.1(4)
C(10)-C(11)-C(12)-C(13)	-0.4(4)
C(11)-C(12)-C(13)-C(14)	0.7(4)
C(10)-C(9)-C(14)-C(13)	0.4(3)
C(8)-C(9)-C(14)-C(13)	179.5(2)
C(12)-C(13)-C(14)-C(9)	-0.7(4)
C(6)-C(5)-C(15)-C(16)	98.3(2)
C(4)-C(5)-C(15)-C(16)	-77.6(2)
C(5)-C(15)-C(16)-C(17)	125.3(3)
O(2)-S(1)-C(18)-C(23)	-7.81(18)
O(1)-S(1)-C(18)-C(23)	-138.59(16)
N(1)-S(1)-C(18)-C(23)	106.95(16)
O(2)-S(1)-C(18)-C(19)	170.83(16)

O(1)-S(1)-C(18)-C(19)	40.05(18)
N(1)-S(1)-C(18)-C(19)	-74.41(17)
C(23)-C(18)-C(19)-C(20)	-2.4(3)
S(1)-C(18)-C(19)-C(20)	178.92(17)
C(18)-C(19)-C(20)-C(21)	1.0(4)
C(19)-C(20)-C(21)-C(22)	1.3(4)
C(19)-C(20)-C(21)-C(24)	-179.3(2)
C(20)-C(21)-C(22)-C(23)	-2.1(3)
C(24)-C(21)-C(22)-C(23)	178.4(2)
C(19)-C(18)-C(23)-C(22)	1.6(3)
S(1)-C(18)-C(23)-C(22)	-179.76(16)
C(21)-C(22)-C(23)-C(18)	0.7(3)

Table 7. Hydrogen bonds for d8v18637 [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

(H) X-ray crystallographic data of compound 3ca

CCDC 1910930

Table 1. Crystal data and structure refinement for mo_dd18203_0m.			
Identification code	mo_dd18203_0m		
Empirical formula	C25 H27 N O2 S		
Formula weight	405.53		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.1582(2) Å	α=113.1630(10)°.	
	b = 11.9799(3) Å	β=109.3030(10)°.	
	c = 12.0459(3) Å	$\gamma = 97.3560(10)^{\circ}$.	
Volume	1094.87(5) Å ³		
Ζ	2		
Density (calculated)	1.230 Mg/m ³		
Absorption coefficient	0.168 mm ⁻¹		
F(000)	432		
Crystal size	0.200 x 0.180 x 0.140 mm ³		
Theta range for data collection	2.468 to 25.998°.		
Index ranges	-11<=h<=11, -14<=k<=14, -14<=l<=14		
Reflections collected	16240		
Independent reflections	4273 [R(int) = 0.0299]		
Completeness to theta = 25.242°	99.0 %		
Absorption correction	Semi-empirical from equivaler	nts	
Max. and min. transmission	0.7456 and 0.6550		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4273 / 0 / 272		
Goodness-of-fit on F ²	1.056		
Final R indices [I>2sigma(I)]	R1 = 0.0420, wR2 = 0.1100		
R indices (all data)	R1 = 0.0516, $wR2 = 0.1182$		
Extinction coefficient	0.051(11)		
Largest diff. peak and hole	0.267 and -0.311 e.Å ⁻³		

	Х	у	Z	U(eq)
S(1)	1764(1)	7641(1)	3180(1)	53(1)
O(1)	2522(2)	8479(1)	2818(1)	76(1)
O(2)	168(2)	6791(1)	2314(1)	70(1)
N(1)	2948(2)	6764(1)	3382(1)	46(1)
C(1)	4716(2)	7333(2)	4017(2)	60(1)
C(2)	5550(2)	6388(2)	3448(2)	66(1)
C(3)	4890(3)	5751(2)	1929(2)	67(1)
C(4)	3699(3)	4426(2)	1188(2)	65(1)
C(5)	2043(2)	4305(2)	1242(2)	55(1)
C(6)	2032(2)	4510(2)	2558(2)	47(1)
C(7)	2388(2)	5675(2)	3542(2)	43(1)
C(8)	2422(2)	5954(2)	4823(2)	47(1)
C(9)	2481(2)	6261(2)	5913(2)	49(1)
C(10)	2571(2)	6661(2)	7231(2)	45(1)
C(11)	1980(2)	5792(2)	7590(2)	52(1)
C(12)	2078(2)	6196(2)	8863(2)	62(1)
C(13)	2754(2)	7456(2)	9778(2)	68(1)
C(14)	3340(3)	8319(2)	9429(2)	71(1)
C(15)	3255(2)	7933(2)	8167(2)	59(1)
C(16)	1600(2)	3350(2)	2732(2)	59(1)
C(17)	2763(3)	2612(2)	2692(2)	73(1)
C(18)	2424(6)	1394(3)	1953(4)	106(1)
C(19)	1741(2)	8597(2)	4717(2)	47(1)
C(20)	379(2)	8356(2)	4937(2)	61(1)
C(21)	365(3)	9126(2)	6131(2)	69(1)
C(22)	1694(3)	10138(2)	7127(2)	61(1)
C(23)	3054(3)	10359(2)	6894(2)	66(1)
C(24)	3091(2)	9602(2)	5702(2)	62(1)
C(25)	1680(4)	10972(3)	8437(2)	94(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10^3) for mo_dd18203_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

S(1)-O(2)	1.4264(14)
S(1)-O(1)	1.4304(14)
S(1)-N(1)	1.6301(14)
S(1)-C(19)	1.7618(16)
N(1)-C(7)	1.4471(19)
N(1)-C(1)	1.469(2)
C(1)-C(2)	1.514(3)
C(1)-H(1A)	0.9700
C(1)-H(1B)	0.9700
C(2)-C(3)	1.532(3)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.517(3)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.530(3)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5)-C(6)	1.510(2)
C(5)-H(5A)	0.9700
C(5)-H(5B)	0.9700
C(6)-C(7)	1.336(2)
C(6)-C(16)	1.508(2)
C(7)-C(8)	1.433(2)
C(8)-C(9)	1.195(2)
C(9)-C(10)	1.437(2)
C(10)-C(15)	1.387(2)
C(10)-C(11)	1.388(2)
C(11)-C(12)	1.382(2)
C(11)-H(11)	0.9300
C(12)-C(13)	1.371(3)
C(12)-H(12)	0.9300
C(13)-C(14)	1.371(3)
C(13)-H(13)	0.9300
C(14)-C(15)	1.375(3)
C(14)-H(14)	0.9300

Table 3. Bond lengths [Å] and angles [°] for mo_dd18203_0m.

С(15)-Н(15)	0.9300
C(16)-C(17)	1.470(3)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-C(18)	1.303(4)
С(17)-Н(17)	0.9300
C(18)-H(18A)	0.99(3)
C(18)-H(18B)	0.96(4)
C(19)-C(20)	1.376(2)
C(19)-C(24)	1.383(2)
C(20)-C(21)	1.375(3)
C(20)-H(20)	0.9300
C(21)-C(22)	1.380(3)
C(21)-H(21)	0.9300
C(22)-C(23)	1.380(3)
C(22)-C(25)	1.505(3)
C(23)-C(24)	1.378(3)
С(23)-Н(23)	0.9300
C(24)-H(24)	0.9300
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
O(2)-S(1)-O(1)	120.55(9)
O(2)-S(1)-N(1)	106.68(7)
O(1)-S(1)-N(1)	105.68(8)
O(2)-S(1)-C(19)	107.50(8)
O(1)-S(1)-C(19)	106.89(8)
N(1)-S(1)-C(19)	109.21(7)
C(7)-N(1)-C(1)	114.70(13)
C(7)-N(1)-S(1)	119.18(11)
C(1)-N(1)-S(1)	119.95(11)
N(1)-C(1)-C(2)	111.28(15)
N(1)-C(1)-H(1A)	109.4
C(2)-C(1)-H(1A)	109.4
N(1)-C(1)-H(1B)	109.4
C(2)-C(1)-H(1B)	109.4
H(1A)-C(1)-H(1B)	108.0

C(1)-C(2)-C(3)	114.11(17)
C(1)-C(2)-H(2A)	108.7
C(3)-C(2)-H(2A)	108.7
C(1)-C(2)-H(2B)	108.7
C(3)-C(2)-H(2B)	108.7
H(2A)-C(2)-H(2B)	107.6
C(4)-C(3)-C(2)	116.21(16)
C(4)-C(3)-H(3A)	108.2
C(2)-C(3)-H(3A)	108.2
C(4)-C(3)-H(3B)	108.2
C(2)-C(3)-H(3B)	108.2
H(3A)-C(3)-H(3B)	107.4
C(3)-C(4)-C(5)	117.23(16)
C(3)-C(4)-H(4A)	108.0
C(5)-C(4)-H(4A)	108.0
C(3)-C(4)-H(4B)	108.0
C(5)-C(4)-H(4B)	108.0
H(4A)-C(4)-H(4B)	107.2
C(6)-C(5)-C(4)	115.87(15)
C(6)-C(5)-H(5A)	108.3
C(4)-C(5)-H(5A)	108.3
C(6)-C(5)-H(5B)	108.3
C(4)-C(5)-H(5B)	108.3
H(5A)-C(5)-H(5B)	107.4
C(7)-C(6)-C(16)	120.61(14)
C(7)-C(6)-C(5)	121.62(15)
C(16)-C(6)-C(5)	117.77(14)
C(6)-C(7)-C(8)	125.21(14)
C(6)-C(7)-N(1)	118.78(13)
C(8)-C(7)-N(1)	115.70(13)
C(9)-C(8)-C(7)	176.12(18)
C(8)-C(9)-C(10)	178.64(19)
C(15)-C(10)-C(11)	119.05(15)
C(15)-C(10)-C(9)	119.91(15)
C(11)-C(10)-C(9)	121.03(15)
C(12)-C(11)-C(10)	120.14(17)
С(12)-С(11)-Н(11)	119.9
С(10)-С(11)-Н(11)	119.9

C(13)-C(12)-C(11)	120.20(17)
С(13)-С(12)-Н(12)	119.9
С(11)-С(12)-Н(12)	119.9
C(12)-C(13)-C(14)	119.91(16)
С(12)-С(13)-Н(13)	120.0
С(14)-С(13)-Н(13)	120.0
C(13)-C(14)-C(15)	120.64(19)
C(13)-C(14)-H(14)	119.7
C(15)-C(14)-H(14)	119.7
C(14)-C(15)-C(10)	120.06(17)
С(14)-С(15)-Н(15)	120.0
С(10)-С(15)-Н(15)	120.0
C(17)-C(16)-C(6)	114.16(16)
С(17)-С(16)-Н(16А)	108.7
C(6)-C(16)-H(16A)	108.7
C(17)-C(16)-H(16B)	108.7
C(6)-C(16)-H(16B)	108.7
H(16A)-C(16)-H(16B)	107.6
C(18)-C(17)-C(16)	126.4(3)
С(18)-С(17)-Н(17)	116.8
С(16)-С(17)-Н(17)	116.8
C(17)-C(18)-H(18A)	109.7(17)
C(17)-C(18)-H(18B)	126(2)
H(18A)-C(18)-H(18B)	125(3)
C(20)-C(19)-C(24)	119.81(16)
C(20)-C(19)-S(1)	120.33(13)
C(24)-C(19)-S(1)	119.86(13)
C(21)-C(20)-C(19)	119.74(18)
С(21)-С(20)-Н(20)	120.1
С(19)-С(20)-Н(20)	120.1
C(20)-C(21)-C(22)	121.54(18)
С(20)-С(21)-Н(21)	119.2
C(22)-C(21)-H(21)	119.2
C(21)-C(22)-C(23)	117.95(17)
C(21)-C(22)-C(25)	121.4(2)
C(23)-C(22)-C(25)	120.6(2)
C(24)-C(23)-C(22)	121.44(18)
C(24)-C(23)-H(23)	119.3

C(22)-C(23)-H(23)	119.3
C(23)-C(24)-C(19)	119.52(18)
C(23)-C(24)-H(24)	120.2
C(19)-C(24)-H(24)	120.2
C(22)-C(25)-H(25A)	109.5
C(22)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(22)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	74(1)	51(1)	42(1)	24(1)	28(1)	24(1)
O(1)	127(1)	70(1)	73(1)	49(1)	64(1)	43(1)
O(2)	74(1)	65(1)	48(1)	17(1)	11(1)	29(1)
N(1)	56(1)	46(1)	44(1)	22(1)	28(1)	16(1)
C(1)	61(1)	56(1)	60(1)	25(1)	28(1)	8(1)
C(2)	53(1)	79(1)	77(1)	41(1)	33(1)	19(1)
C(3)	77(1)	82(1)	78(1)	47(1)	56(1)	37(1)
C(4)	88(1)	72(1)	59(1)	33(1)	49(1)	37(1)
C(5)	70(1)	56(1)	41(1)	19(1)	26(1)	21(1)
C(6)	51(1)	50(1)	44(1)	23(1)	24(1)	18(1)
C(7)	48(1)	49(1)	41(1)	24(1)	24(1)	16(1)
C(8)	52(1)	51(1)	45(1)	25(1)	26(1)	18(1)
C(9)	56(1)	56(1)	46(1)	27(1)	27(1)	20(1)
C(10)	47(1)	57(1)	41(1)	26(1)	23(1)	21(1)
C(11)	55(1)	59(1)	50(1)	28(1)	26(1)	18(1)
C(12)	61(1)	88(1)	57(1)	47(1)	31(1)	24(1)
C(13)	71(1)	99(2)	40(1)	32(1)	27(1)	29(1)
C(14)	84(1)	68(1)	45(1)	15(1)	24(1)	18(1)
C(15)	74(1)	56(1)	51(1)	26(1)	28(1)	16(1)
C(16)	71(1)	51(1)	63(1)	28(1)	36(1)	20(1)
C(17)	79(1)	77(1)	85(1)	52(1)	40(1)	33(1)
C(18)	163(4)	80(2)	128(3)	56(2)	99(3)	68(2)
C(19)	60(1)	40(1)	47(1)	20(1)	27(1)	16(1)
C(20)	56(1)	56(1)	62(1)	17(1)	28(1)	13(1)
C(21)	71(1)	74(1)	75(1)	32(1)	48(1)	30(1)
C(22)	86(1)	54(1)	54(1)	25(1)	37(1)	33(1)
C(23)	79(1)	46(1)	56(1)	13(1)	26(1)	8(1)
C(24)	72(1)	48(1)	63(1)	19(1)	38(1)	6(1)
C(25)	132(2)	93(2)	65(1)	26(1)	54(1)	55(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_dd18203_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}$]

	Х	у	Z	U(eq)
H(1A)	5106	7619	4965	72
H(1B)	4984	8067	3885	72
H(2A)	5437	5734	3724	80
H(2B)	6697	6823	3821	80
H(3A)	4364	6292	1623	80
H(3B)	5800	5705	1689	80
H(4A)	4205	3900	1537	78
H(4B)	3523	4074	263	78
H(5A)	1596	4915	1010	66
H(5B)	1327	3463	568	66
H(11)	1517	4936	6971	63
H(12)	1685	5610	9101	74
H(13)	2816	7726	10633	82
H(14)	3800	9174	10053	86
H(15)	3656	8526	7941	71
H(16A)	1523	3617	3578	71
H(16B)	540	2802	2037	71
H(17)	3848	3059	3249	87
H(20)	-528	7676	4280	73
H(21)	-561	8960	6270	83
H(23)	3965	11033	7555	79
H(24)	4017	9766	5563	74
H(25A)	1132	11584	8346	141
H(25B)	2774	11407	9098	141
H(25C)	1125	10458	8702	141
H(18A)	1260(40)	1040(30)	1350(30)	112(11)
H(18B)	3190(40)	920(30)	1960(30)	154(13)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_dd18203_0m.

O(2)-S(1)-N(1)-C(7)	-40.57(13)
O(1)-S(1)-N(1)-C(7)	-170.01(11)
C(19)-S(1)-N(1)-C(7)	75.33(13)
O(2)-S(1)-N(1)-C(1)	168.48(12)
O(1)-S(1)-N(1)-C(1)	39.05(14)
C(19)-S(1)-N(1)-C(1)	-75.62(13)
C(7)-N(1)-C(1)-C(2)	60.70(18)
S(1)-N(1)-C(1)-C(2)	-147.12(13)
N(1)-C(1)-C(2)-C(3)	52.3(2)
C(1)-C(2)-C(3)-C(4)	-99.5(2)
C(2)-C(3)-C(4)-C(5)	67.6(2)
C(3)-C(4)-C(5)-C(6)	-71.7(2)
C(4)-C(5)-C(6)-C(7)	83.0(2)
C(4)-C(5)-C(6)-C(16)	-97.17(19)
C(16)-C(6)-C(7)-C(8)	0.8(3)
C(5)-C(6)-C(7)-C(8)	-179.37(15)
C(16)-C(6)-C(7)-N(1)	174.10(14)
C(5)-C(6)-C(7)-N(1)	-6.0(2)
C(1)-N(1)-C(7)-C(6)	-98.05(17)
S(1)-N(1)-C(7)-C(6)	109.54(15)
C(1)-N(1)-C(7)-C(8)	75.91(17)
S(1)-N(1)-C(7)-C(8)	-76.50(16)
C(15)-C(10)-C(11)-C(12)	-0.1(2)
C(9)-C(10)-C(11)-C(12)	-179.98(16)
C(10)-C(11)-C(12)-C(13)	0.3(3)
C(11)-C(12)-C(13)-C(14)	-0.2(3)
C(12)-C(13)-C(14)-C(15)	0.1(3)
C(13)-C(14)-C(15)-C(10)	0.0(3)
C(11)-C(10)-C(15)-C(14)	0.0(3)
C(9)-C(10)-C(15)-C(14)	179.85(17)
C(7)-C(6)-C(16)-C(17)	-115.4(2)
C(5)-C(6)-C(16)-C(17)	64.7(2)
C(6)-C(16)-C(17)-C(18)	-128.4(3)
O(2)-S(1)-C(19)-C(20)	6.28(17)
O(1)-S(1)-C(19)-C(20)	137.03(16)
N(1)-S(1)-C(19)-C(20)	-109.08(16)

Table 6. Torsion angles [°] for mo_dd18203_0m.

O(2)-S(1)-C(19)-C(24)	-173.06(14)
O(1)-S(1)-C(19)-C(24)	-42.31(17)
N(1)-S(1)-C(19)-C(24)	71.57(16)
C(24)-C(19)-C(20)-C(21)	0.7(3)
S(1)-C(19)-C(20)-C(21)	-178.68(15)
C(19)-C(20)-C(21)-C(22)	-0.4(3)
C(20)-C(21)-C(22)-C(23)	-0.2(3)
C(20)-C(21)-C(22)-C(25)	-179.5(2)
C(21)-C(22)-C(23)-C(24)	0.4(3)
C(25)-C(22)-C(23)-C(24)	179.8(2)
C(22)-C(23)-C(24)-C(19)	-0.1(3)
C(20)-C(19)-C(24)-C(23)	-0.4(3)
S(1)-C(19)-C(24)-C(23)	178.91(15)

Table 7. Hydrogen bonds for mo_dd18203_0m [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

(I) X-ray crystallographic data of compound 3da

CCDC 1910931

Table 1. Crystal data and structure refinement for 2010226ZH_ZNZ7828_0m_a.				
Identification code	2010226ZH_ZNZ7828_0m_a			
Empirical formula	C26 H29 N O2 S			
Formula weight	419.56			
Temperature	296(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	a = 9.161(3) Å	<i>α</i> = 90°.		
	b = 20.083(6) Å	β=92.934(4)°.		
	c = 12.559(3) Å	$\gamma = 90^{\circ}$.		
Volume	2307.8(11) Å ³			
Z	4			
Density (calculated)	1.208 Mg/m ³			
Absorption coefficient	0.162 mm ⁻¹			
F(000)	896			
Crystal size	0.220 x 0.190 x 0.160 mm ³			
Theta range for data collection	1.914 to 25.003°.			
Index ranges	-10<=h<=7, -23<=k<=22, -13<=l<=14			
Reflections collected	11777			
Independent reflections	4055 [R(int) = 0.0277]			
Completeness to theta = 25.003°	99.9 %			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	4055 / 0 / 281			
Goodness-of-fit on F ²	1.035			
Final R indices [I>2sigma(I)]	R1 = 0.0536, $wR2 = 0.1333$			
R indices (all data)	R1 = 0.0792, $wR2 = 0.1500$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.414 and -0.258 e.Å ⁻³			

	Х	у	Z	U(eq)
C(1)	3327(3)	3551(2)	4164(2)	59(1)
C(2)	3547(4)	3719(2)	3119(2)	69(1)
C(3)	4694(4)	4120(2)	2877(2)	67(1)
C(4)	5614(3)	4362(2)	3669(3)	66(1)
C(5)	5419(3)	4200(1)	4716(2)	55(1)
C(6)	4266(3)	3790(1)	4975(2)	44(1)
C(7)	4051(3)	3607(1)	6054(2)	48(1)
C(8)	3852(3)	3432(1)	6942(2)	46(1)
C(9)	3544(3)	3241(1)	8006(2)	44(1)
C(10)	2746(3)	2709(1)	8229(2)	53(1)
C(11)	2222(3)	2241(2)	7351(2)	69(1)
C(12)	3127(4)	1630(2)	7274(3)	76(1)
C(13)	4335(4)	1500(2)	7801(3)	88(1)
C(14)	2333(4)	2534(2)	9332(3)	75(1)
C(15)	1060(5)	2924(2)	9739(3)	105(1)
C(16)	1568(7)	3585(4)	10316(4)	90(2)
C(17)	1250(5)	4196(3)	9811(5)	120(2)
C(18)	1909(4)	4406(2)	8762(4)	102(1)
C(19)	3536(3)	4376(1)	8755(2)	63(1)
C(20)	8805(3)	3949(2)	6673(3)	80(1)
C(21)	8428(4)	3314(2)	6941(3)	80(1)
C(22)	7497(3)	3189(2)	7747(2)	65(1)
C(23)	6947(3)	3713(1)	8308(2)	51(1)
C(24)	7305(3)	4354(2)	8051(3)	67(1)
C(25)	8224(4)	4466(2)	7233(3)	82(1)
C(26)	9826(5)	4081(3)	5781(4)	128(2)
C(15')	1060(5)	2924(2)	9739(3)	105(1)
C(16')	667(10)	3541(5)	9676(10)	89(3)
C(17')	1250(5)	4196(3)	9811(5)	120(2)
N(1)	4077(2)	3685(1)	8843(2)	46(1)
O(1)	5863(2)	2871(1)	9595(2)	70(1)
O(2)	6005(2)	4049(1)	10138(2)	74(1)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for 2010226ZH_ZNZ7828_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-C(2)	1.380(4)
C(1)-C(6)	1.384(4)
C(1)-H(1)	0.9300
C(2)-C(3)	1.371(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.361(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.375(4)
C(4)-H(4)	0.9300
C(5)-C(6)	1.390(4)
C(5)-H(5)	0.9300
C(6)-C(7)	1.428(3)
C(7)-C(8)	1.193(3)
C(8)-C(9)	1.432(3)
C(9)-C(10)	1.331(3)
C(9)-N(1)	1.444(3)
C(10)-C(14)	1.497(4)
C(10)-C(11)	1.509(4)
C(11)-C(12)	1.487(5)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.287(5)
C(12)-H(12)	0.9300
C(13)-H(13A)	0.9300
C(13)-H(13B)	0.9300
C(14)-C(15')	1.515(5)
C(14)-C(15)	1.515(5)
C(14)-H(14A)	0.9700
C(14)-H(14B)	0.9700
C(15)-C(16)	1.570(9)
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(16)-C(17)	1.405(8)
C(16)-H(16A)	0.9700
C(16)-H(16B)	0.9700
C(17)-C(18)	1.537(6)

Table 3. Bond lengths [Å] and angles [°] for 2010226ZH_ZNZ7828_0m_a.

C(17)-H(17A)	0.9700
C(17)-H(17B)	0.9700
C(18)-C(19)	1.493(5)
C(18)-C(17')	1.537(6)
C(18)-H(18A)	0.9700
C(18)-H(18B)	0.9700
C(19)-N(1)	1.475(3)
C(19)-H(19A)	0.9700
C(19)-H(19B)	0.9700
C(20)-C(21)	1.368(5)
C(20)-C(25)	1.375(5)
C(20)-C(26)	1.520(5)
C(21)-C(22)	1.379(5)
C(21)-H(21)	0.9300
C(22)-C(23)	1.376(4)
C(22)-H(22)	0.9300
C(23)-C(24)	1.371(4)
C(23)-S(1)	1.762(3)
C(24)-C(25)	1.380(5)
C(24)-H(24)	0.9300
C(25)-H(25)	0.9300
C(26)-H(26A)	0.9600
C(26)-H(26B)	0.9600
C(26)-H(26C)	0.9600
C(15')-C(16')	1.290(10)
C(15')-H(15C)	0.9700
C(15')-H(15D)	0.9700
C(16')-C(17')	1.427(11)
C(16')-H(16C)	0.9700
C(16')-H(16D)	0.9700
C(17')-H(17C)	0.9700
C(17')-H(17D)	0.9700
N(1)-S(1)	1.641(2)
O(1)-S(1)	1.420(2)
O(2)-S(1)	1.424(2)
C(2)-C(1)-C(6)	120.0(3)
C(2)-C(1)-H(1)	120.0

C(6)-C(1)-H(1)	120.0
C(3)-C(2)-C(1)	120.3(3)
C(3)-C(2)-H(2)	119.8
C(1)-C(2)-H(2)	119.8
C(4)-C(3)-C(2)	120.1(3)
C(4)-C(3)-H(3)	120.0
C(2)-C(3)-H(3)	120.0
C(3)-C(4)-C(5)	120.5(3)
C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7
C(4)-C(5)-C(6)	120.1(3)
C(4)-C(5)-H(5)	119.9
C(6)-C(5)-H(5)	119.9
C(1)-C(6)-C(5)	118.9(2)
C(1)-C(6)-C(7)	119.9(2)
C(5)-C(6)-C(7)	121.2(2)
C(8)-C(7)-C(6)	177.6(3)
C(7)-C(8)-C(9)	177.0(3)
C(10)-C(9)-C(8)	123.2(2)
C(10)-C(9)-N(1)	120.8(2)
C(8)-C(9)-N(1)	115.9(2)
C(9)-C(10)-C(14)	123.4(3)
C(9)-C(10)-C(11)	120.3(2)
C(14)-C(10)-C(11)	116.3(2)
C(12)-C(11)-C(10)	113.9(2)
С(12)-С(11)-Н(11А)	108.8
С(10)-С(11)-Н(11А)	108.8
С(12)-С(11)-Н(11В)	108.8
С(10)-С(11)-Н(11В)	108.8
H(11A)-C(11)-H(11B)	107.7
C(13)-C(12)-C(11)	127.0(3)
С(13)-С(12)-Н(12)	116.5
С(11)-С(12)-Н(12)	116.5
С(12)-С(13)-Н(13А)	120.0
С(12)-С(13)-Н(13В)	120.0
H(13A)-C(13)-H(13B)	120.0
C(10)-C(14)-C(15')	115.2(3)
C(10)-C(14)-C(15)	115.2(3)

C(10)-C(14)-H(14A)	108.5
C(15)-C(14)-H(14A)	108.5
C(10)-C(14)-H(14B)	108.5
C(15)-C(14)-H(14B)	108.5
H(14A)-C(14)-H(14B)	107.5
C(14)-C(15)-C(16)	112.2(4)
C(14)-C(15)-H(15A)	109.2
C(16)-C(15)-H(15A)	109.2
C(14)-C(15)-H(15B)	109.2
C(16)-C(15)-H(15B)	109.2
H(15A)-C(15)-H(15B)	107.9
C(17)-C(16)-C(15)	118.7(5)
C(17)-C(16)-H(16A)	107.6
C(15)-C(16)-H(16A)	107.6
C(17)-C(16)-H(16B)	107.6
C(15)-C(16)-H(16B)	107.6
H(16A)-C(16)-H(16B)	107.1
C(16)-C(17)-C(18)	123.1(4)
C(16)-C(17)-H(17A)	106.6
C(18)-C(17)-H(17A)	106.6
С(16)-С(17)-Н(17В)	106.6
C(18)-C(17)-H(17B)	106.6
H(17A)-C(17)-H(17B)	106.5
C(19)-C(18)-C(17')	115.4(4)
C(19)-C(18)-C(17)	115.4(4)
C(19)-C(18)-H(18A)	108.4
C(17)-C(18)-H(18A)	108.4
C(19)-C(18)-H(18B)	108.4
C(17)-C(18)-H(18B)	108.4
H(18A)-C(18)-H(18B)	107.5
N(1)-C(19)-C(18)	111.7(3)
N(1)-C(19)-H(19A)	109.3
C(18)-C(19)-H(19A)	109.3
N(1)-C(19)-H(19B)	109.3
C(18)-C(19)-H(19B)	109.3
H(19A)-C(19)-H(19B)	107.9
C(21)-C(20)-C(25)	118.0(3)
C(21)-C(20)-C(26)	121.1(4)

C(25)-C(20)-C(26)	120.9(4)
C(20)-C(21)-C(22)	121.5(3)
C(20)-C(21)-H(21)	119.2
С(22)-С(21)-Н(21)	119.2
C(21)-C(22)-C(23)	119.6(3)
С(21)-С(22)-Н(22)	120.2
C(23)-C(22)-H(22)	120.2
C(24)-C(23)-C(22)	119.9(3)
C(24)-C(23)-S(1)	120.2(2)
C(22)-C(23)-S(1)	119.8(2)
C(23)-C(24)-C(25)	119.4(3)
C(23)-C(24)-H(24)	120.3
C(25)-C(24)-H(24)	120.3
C(20)-C(25)-C(24)	121.6(3)
C(20)-C(25)-H(25)	119.2
C(24)-C(25)-H(25)	119.2
C(20)-C(26)-H(26A)	109.5
C(20)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(20)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
C(16')-C(15')-C(14)	133.8(5)
С(16')-С(15')-Н(15С)	103.8
C(14)-C(15')-H(15C)	103.8
С(16')-С(15')-Н(15D)	103.8
C(14)-C(15')-H(15D)	103.8
H(15C)-C(15')-H(15D)	105.4
C(15')-C(16')-C(17')	140.9(9)
С(15')-С(16')-Н(16С)	101.8
С(17')-С(16')-Н(16С)	101.8
C(15')-C(16')-H(16D)	101.8
C(17')-C(16')-H(16D)	101.8
H(16C)-C(16')-H(16D)	104.7
C(16')-C(17')-C(18)	108.2(6)
С(16')-С(17')-Н(17С)	110.1
С(18)-С(17')-Н(17С)	110.1
C(16')-C(17')-H(17D)	110.1

C(18)-C(17')-H(17D)	110.1
H(17C)-C(17')-H(17D)	108.4
C(9)-N(1)-C(19)	115.3(2)
C(9)-N(1)-S(1)	116.71(16)
C(19)-N(1)-S(1)	118.56(17)
O(1)-S(1)-O(2)	119.96(13)
O(1)-S(1)-N(1)	107.17(11)
O(2)-S(1)-N(1)	105.96(12)
O(1)-S(1)-C(23)	107.48(13)
O(2)-S(1)-C(23)	108.06(13)
N(1)-S(1)-C(23)	107.66(11)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 2010226ZH_ZNZ7828_0m_a. The anisotropic

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	63(2)	73(2)	42(2)	2(1)	3(1)	-7(1)
C(2)	88(2)	79(2)	39(2)	2(2)	-3(2)	8(2)
C(3)	94(2)	63(2)	45(2)	14(1)	18(2)	21(2)
C(4)	77(2)	59(2)	64(2)	17(2)	23(2)	-1(2)
C(5)	64(2)	50(2)	51(2)	4(1)	5(1)	1(1)
C(6)	54(1)	43(1)	36(1)	5(1)	5(1)	8(1)
C(7)	54(1)	48(2)	40(2)	3(1)	-2(1)	-1(1)
C(8)	49(1)	49(2)	39(2)	3(1)	-2(1)	-3(1)
C(9)	51(1)	45(1)	37(1)	5(1)	-2(1)	0(1)
C(10)	57(2)	56(2)	48(2)	12(1)	1(1)	-5(1)
C(11)	69(2)	66(2)	69(2)	7(2)	-12(2)	-25(2)
C(12)	84(2)	76(2)	69(2)	-9(2)	5(2)	-16(2)
C(13)	82(2)	91(3)	92(3)	-9(2)	11(2)	5(2)
C(14)	79(2)	81(2)	66(2)	24(2)	12(2)	-16(2)
C(15)	119(3)	118(4)	83(3)	1(3)	40(2)	-19(3)
C(16)	78(4)	160(7)	31(3)	-19(4)	7(3)	5(4)
C(17)	91(3)	136(4)	138(4)	-62(4)	48(3)	-16(3)
C(18)	82(2)	86(3)	136(4)	5(3)	-2(2)	26(2)
C(19)	74(2)	51(2)	62(2)	1(1)	-1(2)	7(1)
C(20)	54(2)	127(3)	60(2)	4(2)	-5(2)	1(2)
C(21)	74(2)	106(3)	58(2)	-19(2)	-5(2)	21(2)
C(22)	72(2)	67(2)	56(2)	-7(2)	-7(2)	5(2)
C(23)	47(1)	55(2)	49(2)	-6(1)	-12(1)	1(1)
C(24)	59(2)	64(2)	77(2)	-7(2)	1(2)	-4(1)
C(25)	63(2)	87(3)	96(3)	12(2)	1(2)	-15(2)
C(26)	81(3)	217(6)	87(3)	15(3)	25(2)	-9(3)
C(15')	119(3)	118(4)	83(3)	1(3)	40(2)	-19(3)
C(16')	74(6)	89(7)	106(8)	0(6)	26(6)	-8(5)
C(17')	91(3)	136(4)	138(4)	-62(4)	48(3)	-16(3)
N(1)	53(1)	49(1)	37(1)	3(1)	1(1)	0(1)
O(1)	79(1)	70(1)	59(1)	18(1)	-13(1)	9(1)
O(2)	86(1)	87(2)	46(1)	-18(1)	-13(1)	-2(1)

displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	x	У	Z	U(eq)
H(1)	2549	3278	4324	71
H(2)	2915	3558	2576	83
H(3)	4843	4228	2171	80
H(4)	6381	4640	3502	79
H(5)	6059	4364	5251	66
H(11A)	1223	2111	7470	82
H(11B)	2217	2476	6676	82
H(12)	2783	1307	6794	92
H(13A)	4728	1807	8291	106
H(13B)	4816	1100	7691	106
H(14A)	3177	2603	9817	90
H(14B)	2092	2064	9348	90
H(15A)	546	2649	10233	126
H(15B)	384	3033	9145	126
H(16A)	1138	3593	11006	107
H(16B)	2619	3560	10448	107
H(17A)	1506	4541	10328	144
H(17B)	196	4213	9689	144
H(18A)	1505	4122	8195	122
H(18B)	1602	4859	8599	122
H(19A)	3853	4572	8100	75
H(19B)	3955	4635	9346	75
H(21)	8809	2958	6572	96
H(22)	7243	2754	7910	78
H(24)	6933	4710	8425	80
H(25)	8456	4901	7055	99
H(26A)	10436	3699	5689	192
H(26B)	10427	4461	5960	192
H(26C)	9261	4167	5131	192
H(15C)	208	2684	9456	126
H(15D)	1110	2835	10499	126
H(16C)	-149	3551	10139	107

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for 2010226ZH_ZNZ7828_0m_a.

H(16D)	221	3563	8960	107
H(17C)	1998	4200	10387	144
H(17D)	482	4503	9989	144

C(6)-C(1)-C(2)-C(3)	0.1(5)
C(1)-C(2)-C(3)-C(4)	-0.7(5)
C(2)-C(3)-C(4)-C(5)	1.0(5)
C(3)-C(4)-C(5)-C(6)	-0.7(4)
C(2)-C(1)-C(6)-C(5)	0.2(4)
C(2)-C(1)-C(6)-C(7)	-178.9(3)
C(4)-C(5)-C(6)-C(1)	0.1(4)
C(4)-C(5)-C(6)-C(7)	179.2(2)
C(8)-C(9)-C(10)-C(14)	-175.6(3)
N(1)-C(9)-C(10)-C(14)	0.4(4)
C(8)-C(9)-C(10)-C(11)	5.2(4)
N(1)-C(9)-C(10)-C(11)	-178.8(2)
C(9)-C(10)-C(11)-C(12)	99.4(3)
C(14)-C(10)-C(11)-C(12)	-79.8(3)
C(10)-C(11)-C(12)-C(13)	-6.6(5)
C(9)-C(10)-C(14)-C(15')	79.5(4)
C(11)-C(10)-C(14)-C(15')	-101.3(4)
C(9)-C(10)-C(14)-C(15)	79.5(4)
C(11)-C(10)-C(14)-C(15)	-101.3(4)
C(10)-C(14)-C(15)-C(16)	-88.9(5)
C(14)-C(15)-C(16)-C(17)	108.9(6)
C(15)-C(16)-C(17)-C(18)	-65.4(8)
C(16)-C(17)-C(18)-C(19)	-53.4(7)
C(17')-C(18)-C(19)-N(1)	66.4(4)
C(17)-C(18)-C(19)-N(1)	66.4(4)
C(25)-C(20)-C(21)-C(22)	-0.1(5)
C(26)-C(20)-C(21)-C(22)	-179.7(3)
C(20)-C(21)-C(22)-C(23)	-1.0(5)
C(21)-C(22)-C(23)-C(24)	1.1(4)
C(21)-C(22)-C(23)-S(1)	179.6(2)
C(22)-C(23)-C(24)-C(25)	-0.3(4)
S(1)-C(23)-C(24)-C(25)	-178.8(2)
C(21)-C(20)-C(25)-C(24)	0.9(5)
C(26)-C(20)-C(25)-C(24)	-179.4(3)
C(23)-C(24)-C(25)-C(20)	-0.8(5)
C(10)-C(14)-C(15')-C(16')	-40.7(10)

Table 6. Torsion angles [°] for 2010226ZH_ZNZ7828_0m_a.

C(14)-C(15')-C(16')-C(17')	-47(2)
C(15')-C(16')-C(17')-C(18)	85.5(16)
C(19)-C(18)-C(17')-C(16')	-103.2(6)
C(10)-C(9)-N(1)-C(19)	-118.0(3)
C(8)-C(9)-N(1)-C(19)	58.3(3)
C(10)-C(9)-N(1)-S(1)	95.9(3)
C(8)-C(9)-N(1)-S(1)	-87.9(2)
C(18)-C(19)-N(1)-C(9)	59.3(3)
C(18)-C(19)-N(1)-S(1)	-155.2(3)
C(9)-N(1)-S(1)-O(1)	-50.2(2)
C(19)-N(1)-S(1)-O(1)	164.7(2)
C(9)-N(1)-S(1)-O(2)	-179.44(18)
C(19)-N(1)-S(1)-O(2)	35.5(2)
C(9)-N(1)-S(1)-C(23)	65.1(2)
C(19)-N(1)-S(1)-C(23)	-79.9(2)
C(24)-C(23)-S(1)-O(1)	-165.9(2)
C(22)-C(23)-S(1)-O(1)	15.7(2)
C(24)-C(23)-S(1)-O(2)	-35.1(3)
C(22)-C(23)-S(1)-O(2)	146.5(2)
C(24)-C(23)-S(1)-N(1)	79.0(2)
C(22)-C(23)-S(1)-N(1)	-99.5(2)

Table 7. Hydrogen bonds for 2010226ZH_ZNZ7828_0m_a [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)