Palladium-Catalyzed Intramoecular Aerobic Oxidative Alkenlhydroxylation of Allenamides via Molecular Oxygen Activation

Jun Li,^{a, §} Long Meng,^{a, §} Xin Du,^{a, §} Qing Liu,^a Liping Xu, ^a Lizhi Zhang,^a Fenggang Sun,^a Xinjin Li,^a Daopeng Zhang, ^a Xiao Xiao ^b and Hui Liu^{a,*}

[†]School of Chemistry & Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, P. R. China

[‡]Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Chaowang Road 18[#], Hangzhou 310014, P. R. China

Supporting Information

Table of Contents

I.	General Information	•••••	3
II.	The General Synthetic Procedure and Analytical Data for Compounds 1a-1t		4
III.	Optimization of reaction conditions		10
IV	Another plausible reaction mechanism.		11
V	Analytical Data for product 2a-2t	•••••	12
VI	Copies of the ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR		25
VII	¹ H NOE of product 2l and 2n.		48
VIII	Isotope tracking experiment		50

I. General Information

Organic solvents (Aldrich) were used without further purification. Purifications of reactions products were carried out by flash chromatography using Merck silica gel (40-63 μ m).

NMR spectra were recorded on a AVANCE III HD 400MHz spectrometer [¹H NMR (400 MHz) and ¹³C NMR (100 MHz)]. Chemical shifts for 1H NMR are reported in parts per million (δ) relative to methylbenzenesulfonyl as the internal standard. Coupling constant (*J*) are reported in hertz (Hz). The following abbreviations are used for spin multiplicity: s = singlet, d = doublet, t = triplet, m = multiplet. Chemical shifts for ¹³C NMR are reported in parts per million (δ) relative to the solvent (CDCl₃, δ 77.16 and DMSO-d₆ δ 39.6).

All commercially available reagents were bought from Macklin, Aladdin and used without further purification. Dry THF was steamed with metal sodium. Tri-2,4-xylylphosphine and AgF were directly purchased from Aladdin. Structure **1a** and **1p** are known compounds and were prepared according to reported procedures and other substrates are synthesized in same way.

Reactions were conducted in dry solvents under Nitrogen atmosphere unless otherwise stated. The abbreviation "rt" refers to reactions carried out approximately at 23-27°C. Reaction mixtures were stirred using Teflon-coated Magnetic stirring rotor. Thin-layer chromatography (TLC) was performed on silica gel plates and components were visualized by observation under UV light, flash chromatography was carried out on silica gel unless otherwise stated. Dryings were performed with anhydrous Na₂SO₄ or MgSO₄. Concentration refers to the removal of volatile solvents via distillation using a Büchi rotary evaporator, followed by residual solvent removal under high vacuum. The reactions were monitored by tlc or **GC-MS**.

II. The General Synthetic Procedure and Analytical Data for Compounds 1a-1t.

General Procedure:

Firstly, prepare phenyl Grignard reagent. In a 250 ml three-necked flask, 3 g magnesium shavings (2.5 equiv, 125 mmol) was added. Anhydrous tetrahydrofuran was added until it just exceeded the magnesium turnings.0.3 ml bromobenzene was injected once with a syringe and heated by a hair dryer until the solution became cloudy and bubbles appeared, indicating that the format reagent was successfully initiated.13 ml (2.5 equiv, 125 mmol) of bromobenzene in 100 ml of THF was slowly added dropwise through a 150 ml dropping funnel, and the reaction solution was kept under reflux by adjusting the dropping rate. After the completion of the dropwise addition, the reaction was stir at room temperature for 2 h until the magnesium turnings exhaust, and a clear solution is obtained. At this time, the Grignard reagent has been prepared, waiting for the next step. In another 500 ml three-necked flask, 2.8 g of propargyl alcohol (1.0 equiv, 50 mmol) was dissolved in 70 ml THF, and 0.95 g of CuI (10 mol%, 5 mmol) was added under stirring, and the whole system was operated under nitrogen atmosphere. The suspension was then cooled to -78 °C. At this time, the freshly prepared Grignard reagent was transferred to a constant pressure dropping funnel under nitrogen protection. With vigorous stirring, the Grignard reagent was added dropwise and the reaction temperature was kept below -60°C. After the completion of the dropwise addition, stir at low temperature for 1 h, warm to room temperature and stir for 18 h. Then, the reaction system was again cooled to -78 °C, and 13 g (1.1 equiv, 55 mmol) I₂ in 40 ml dry THF was added dropwise with vigorous stirring, keeping the temperature below -60 °C. Stir for 0.5 h after the drop, and then stir at room temperature for 1 h. The system was cooled to 0 °C and the reaction was quenched by slow dropwise addition of saturated NH₄Cl solution. After liquid separation, the aqueous phase was extracted with ethyl acetate (3×50 ml) and the organic phases were combined. The organic phase was washed with a saturated $Na_2S_2O_3$ solution. Finally, the organic phase was washed with a saturated NaCl solution and dried over anhydrous Na₂SO₄. The crude product was purified by column chromatography using petroleum Petroleum ether/ethyl acetate (10:1) as eluent to afford a yellow liquid(68% yield).

*n*Pr_\

iBu 、

Synthesize material **S3** according to the general operation method of Mitsunobu. In a 100 ml round bottom flask, 2.6 g (1.0 equiv, 10 mmol) of **S1** was dissolved in 30 ml of THF, followed by 2.3 g (1.1 equiv, 11 mmol) of **S2**, 2.9 g (1.1 equiv, 11 mmol) of PPh₃ and 2.2 ml (1.1 equiv, 11 mmol) DIAD. Stir at room temperature overnight. The reaction was followed by TLC. After the material was consumed, ethyl acetate (3 × 50 ml) was combined and the organic phase was combined and purified by column chromatography to give a white solid **S3**(3.74 g, 8.3 mmol).

Synthesize material **1a** according to the general operation method of preparation of allene. In a 100 ml round bottom flask, 1.1 g (2.0 equiv, 10 mmol) of potassium tert-butoxide was added under nitrogen atmosphere. Then, 10 ml dry THF was added with vigorous stirring. Next, 2.3 g (1.0 equiv, 5 mmol) of **S3** dissolved in 10 ml of THF. The mixed solution was added dropwise with vigorous stirring, keeping the temperature below -20 °C over 1 hour. The reaction was followed by TLC. After the material **S3** was consumed, the organic phase was directly purified by column chromatography to give a white solid **1a**(2g, 4.5 mmol).

(Z)-N-(2-(iodomethylene)pentyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 1b

Ts following the general procedure described above, compound 1b (2.04 g, 4.5 mmol, Non-white liquid) was obtained in 98 % yield. (Z)-N-(2-(iodomethylene)-4-methylpentyl)-4-methyl-N-(propa-1,2-dien-1yl)benzenesulfonamide, 1c

following the general procedure described above, compound 1c (2.07

g, 4.8 mmol, Non-white liquid) was obtained in 96 % yield.

¹**H NMR (400 MHz, Chloroform-***d***) δ:** 7.70 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 6.72 (t, *J* = 6.0 Hz, 1H), 6.02 (s, 1H), 5.25 (d, *J* = 6.0 Hz, 2H), 3.78 (s, 2H), 2.45 (s, 3H), 2.13 (d, *J* = 7.2 Hz, 2H), 1.98 (dp, *J* = 13.2, 6.7 Hz, 1H), 0.89 (s, 3H), 0.88 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ: 201.3, 145.1, 144.0, 134.5, 129.8, 127.4, 99.5, 88.6, 78.0, 53.0, 44.6, 25.7, 22.4, 21.7.

(Z)-N-(2-(iodomethylene)tetradecyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 1d

C₁₂H₂₅

following the general procedure described above, compound 1d

(2.67 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield. (Z)-N-(3-iodo-2-(4-methoxyphenyl)allyl)-4-methyl-N-(propa-1,2-dien-1yl)benzenesulfonamide, 1e

Ts following the general procedure described above, compound 1e (2.31 g, 4.8 mmol, white amorphous solid) was obtained in 95 % yield. (Z)-N-(3-iodo-2-(p-tolyl)allyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 1f

following the general procedure described above, compound 1f

(2.28 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield. (Z)-N-(2-(4-butylphenyl)-3-iodoallyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 1g

 $rac{N_s}{T_s}$ following the general procedure described above, compound 1g (2.43 g, 4.8 mmol, white amorphous solid) was obtained in 96 % yield.

(Z)-N-(2-(4-ethylphenyl)-3-iodoallyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 1h

Ts following the general procedure described above, compound **1h** (2.30 g, 4.8 mmol, white amorphous solid) was obtained in 96 % yield.

¹**H** NMR (400 MHz, Chloroform-*d*) δ : 7.68 (d, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 7.2 Hz, 2H), 7.16 (d, *J* = 7.6 Hz, 2H), 6.45 (s, 1H), 6.40 (t, *J* = 6.0 Hz, 1H), 5.25 (d, *J* = 6.0 Hz, 2H), 4.26 (s, 2H), 2.65 (q, *J* = 7.6 Hz, 2H), 2.45 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ: 201.9, 147.0, 144.3, 143.9, 135.8, 134.5, 129.8, 127.7, 127.4, 127.2, 99.2, 88.2, 81.2, 52.7, 28.6, 21.7, 15.3.

(Z)-N-(2-(iodomethylene)butyl)-4-methyl-N-(3-(p-tolyl)propa-1,2-dien-1-

yl)benzenesulfonamide, 1i

Me following the general procedure described above, compound 1i (2.79 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield. (Z)-N-(3-(4-chlorophenyl)propa-1,2-dien-1-yl)-N-(2-(iodomethylene)butyl)-4methylbenzenesulfonamide, 1j

CI following the general procedure described above, compound 1j (2.89 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield. (Z)-N-(3-(4-chlorophenyl)propa-1,2-dien-1-yl)-N-(3-iodo-2-phenylallyl)-4methylbenzenesulfonamide, 1k

Cl following the general procedure described above, compound 1k (2.69 g, 4.8 mmol, white amorphous solid) was obtained in 95 % yield.
(Z)-N-(3-(4-fluorophenyl)propa-1,2-dien-1-yl)-N-(2-(iodomethylene)butyl)-4-methylbenzenesulfonamide, 1l

F following the general procedure described above, compound 11 (2.39 g, 4.8 mmol, white amorphous solid) was obtained in 96 % yield.
(Z)-N-(2-(iodomethylene)butyl)-N-(3-(4-methoxyphenyl)propa-1,2-dien-1-yl)-4-methylbenzenesulfonamide, 1m

following the general procedure described above, compound 1m

(2.44 g, 4.8 mmol, white amorphous solid) was obtained in 96 % yield. (Z)-N-(3-(4-fluorophenyl)propa-1,2-dien-1-yl)-N-(2-(iodo(phenyl)methylene)butyl)-4-methylbenzenesulfonamide, 1n

F following the general procedure described above, compound 1n (2.81 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield.
 (Z)-N-(2-(iodo(phenyl)methylene)butyl)-4-methyl-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 10

following the general procedure described above, compound 10 (2.35

g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield. (Z)-N-(3-iodo-2-phenylallyl)-N-(propa-1,2-dien-1-yl)methanesulfonamide, 1p

Ph N Ms

following the general procedure described above, compound **1p** (1.80

g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield. (Z)-N-(2-(4-ethylphenyl)-3-iodoallyl)-N-(propa-1,2-dien-1-yl)methanesulfonamide, 1q

Ms following the general procedure described above, compound 1q (1.93 g, 4.8 mmol, white amorphous solid) was obtained in 96 % yield. (Z)-N-(2-(iodomethylene)hexyl)-N-(propa-1,2-dien-1-yl)methanesulfonamide, 1r nPr

Ms following the general procedure described above, compound 1q (1.74 g, 4.9 mmol, Non-white liquid) was obtained in 98 % yield. (Z)-N-(3-iodo-2-(4-methoxyphenyl)allyl)-4-nitro-N-(propa-1,2-dien-1-yl)benzenesulfonamide, 1s

following the general procedure described above, compound 1s

(2.51 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield.

(Z)-N-(3-iodo-2-(m-tolyl)allyl)-4-nitro-N-(propa-1,2-dien-1-yl) benzenesul fon a mide, 1to the second statement of the secon

Ns following the general procedure described above, compound 1t (2.43 g, 4.9 mmol, white amorphous solid) was obtained in 98 % yield.

III. Optimization of reaction conditions.

Ph I additive Catalyst, Ligand Ph I A Catalyst, Ligand Ph						
	∽ _N ∽	solve	ent, O ₂ , 3h	└м∕тон		
Ts ➤ Ts 1a 2a						
Entry	Catalyst(mol%)	Ligand(mol%)	Additive(equiv)	Solvent	Yield(%)	
1	Pd(OAc) ₂ (5)	L ₁ (20)		DCM	0	
2	Pd(OAc) ₂ (5)	L ₁ (20)	AgNO ₃ (1.5)	DCM	12	
3	Pd(OAc) ₂ (5)	L ₁ (20)	AgNO ₃ (1.5)	THF	22	
4	Pd(dba) ₂ (5)	L ₁ (20)	AgNO ₃ (1.5)	THF	25	
5	$Pd(PPh_3)_4(5)$	L ₁ (20)	AgNO ₃ (1.5)	THF	26	
6	Pd ₂ (dba) ₃ (5)	L ₁ (20)	AgNO ₃ (1.5)	THF	30	
7	Pd ₂ (dba) ₃ (5)	L ₁ (20)	AgOAc(1.5)	THF	34	
8	Pd ₂ (dba) ₃ (5)	L ₁ (20)	Ag ₂ CO ₃ (1.5)	THF	46	
9	Pd ₂ (dba) ₃ (5)	L ₁ (20)	Ag ₂ SO ₄ (1.5)	THF	32	
10	Pd ₂ (dba) ₃ (5)	L ₁ (20)	Ag ₂ O(1.5)	THF	0	
11	Pd ₂ (dba) ₃ (5)	L ₁ (20)	AgBF ₄ (1.5)	THF	0	
12	Pd ₂ (dba) ₃ (5)	L ₁ (20)	AgF(1.5)	THF	48	
13	Pd ₂ (dba) ₃ (5)	PPy ₃ (20)	AgF(1.5)	THF	7	
14	Pd ₂ (dba) ₃ (5)	L ₂ (20)	AgF(1.5)	THF	57	
15	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	THF	64	
16	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	acetone	33	
17	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	1,4-dioxane	0	
18	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	benzene	0	
19	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	toluene	0	
20	Pd ₂ (dba) ₃ (5)	L ₄ (20)	AgF(1.5)	THF	59	
21	Pd ₂ (dba) ₃ (5)	L ₅ (20)	AgF(1.5)	THF	34	
22	Pd ₂ (dba) ₃ (5)	DPPM (20)	AgF(1.5)	THF	17	
23	Pd ₂ (dba) ₃ (5)	DPPD (20)	AgF(1.5)	THF	56	
24	Pd ₂ (dba) ₃ (5)	L ₃ (20)	Cs ₂ CO ₃ (1.5)	THF	0	
25	Pd ₂ (dba) ₃ (5)	L ₃ (20)	KOtBu(1.5)	THF	0	
26	$Pd_{2}(dba)_{3}(5)$	L ₃ (20)	CsF(1.5)	THF	0	
27	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	THF(air)	88	
28	Pd ₂ (dba) ₃ (5)	L ₃ (20)	AgF(1.5)	THF(N ₂)	43	

L1: Tri(2-furyl)phosphine

L2: Cyclohexyldiphenylphosphine

 L_4 : Tris(4-methoxyphenyl)phosphine

Ť

L₃: Tris(2,4-dimethyiphenyl)phosphine

 L_5 : Tris(2,6-dimethoxyphenyl)phosphine

IV. Another plausible reaction mechanism.

Another plausible mechanism is illustrated above. Firstly, $\eta^3 \pi$ -allylpalladium intermediate II was formed. Molecular oxygen is acitived by AgF and reacted with THF to give 2-tetrahydrofuryl hydroperoxide III. Followed radical addition of hydroperide III with intermediate II probably generate a tentative intermediate IV which give product 2l *via* reductive elimination. Catalyst Pd(0) is regenerate associated by AgF and radical V.

V. Analytical Data for product 2a-2t

 $C_{19}H_{19}NO_3S$

MW: 341.42 g • mol⁻¹

Non-white liquid

Isolated Amount:24.0mg

Yield:88%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.72 (d, *J* = 8.2 Hz, 2H), 7.43 (d, *J* = 7.4 Hz, 2H), 7.31 (dt, *J* = 16.7, 7.3 Hz, 5H), 6.64 (s, 1H), 6.18 (s, 1H), 5.74 (s, 1H), 5.14 (d, *J* = 22.1 Hz, 2H), 4.26 (d, *J* = 16.7 Hz, 1H), 3.76 (d, *J* = 16.8 Hz, 1H), 2.32 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.76, 141.79, 137.19, 136.27, 133.69, 129.93, 129.22, 128.72, 128.14, 125.30, 122.15, 115.69, 77.64, 41.26, 21.47.

MS (EI) m/z 341 (M+); **HRMS (ESI)** Calcd for C₁₉H₁₉NO₃S+H 342.1164, Found 342.1165.

 $C_{16}H_{21}NO_3S$

MW: 307.41 g • mol⁻¹

Non-white liquid

Isolated Amount:13.6mg

Yield:56%

¹**H NMR (400 MHz, Chloroform-***d***,δ ppm):** 7.76 (d, *J* = 8.3 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 2H), 5.92 (s, 2H), 5.01 (d, *J* = 38.5 Hz, 2H), 3.89 (d, *J* = 16.9 Hz, 1H), 3.60 (d, *J* = 16.9 Hz, 1H), 2.42 (s, 3H), 2.24 (d, *J* = 4.3 Hz, 1H), 2.04 (t, *J* = 7.6 Hz, 2H), 1.45 (dtd, *J* = 14.3, 7.2, 2.8 Hz, 2H), 0.88 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*,δ ppm): 143.80, 140.07, 137.49, 135.98, 129.66,

127.68, 119.75, 113.24, 78.38, 42.50, 36.54, 21.60, 20.61, 13.76.

MS (EI) m/z 307 (M+); **HRMS (ESI)** Calcd for C₁₆H₂₁NO₃S+H 308.1320, Found 308.1321.

 $C_{17}H_{23}NO_3S$

MW: 321.43 g • mol⁻¹

Non-white liquid

Isolated Amount:25.2mg

Yield:98%

¹H NMR (400 MHz, DMSO- $d_{6,\delta}$ ppm): 7.71 (d, J = 7.8 Hz, 2H), 7.37 (d, J = 7.7 Hz, 2H), 6.07 (s, 1H), 5.87 (s, 1H), 5.71 (s, 1H), 4.95 (d, J = 43.0 Hz, 2H), 3.75 (d, J = 16.9 Hz, 1H), 3.37 (d, J = 16.1 Hz, 4H), 2.38 (s, 3H), 1.90 (d, J = 5.7 Hz, 2H), 1.68 (dt, J = 13.0, 6.4 Hz, 1H), 0.79 (dd, J = 13.5, 6.3 Hz, 6H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.62, 141.67, 136.64, 136.33, 129.86, 128.03, 121.80, 112.42, 77.83, 43.92, 42.65, 26.55, 22.68, 21.45.

MS (EI) m/z 321 (M+); **HRMS (ESI)** Calcd for C₁₇H₂₃NO₃S+H 322.1477, Found 322.1478.

 $C_{25}H_{39}NO_3S$

MW: 433.65 g • mol⁻¹

Non-white liquid

Isolated Amount:32.6mg

Yield:94%

¹**H** NMR (400 MHz, DMSO- $d_{6,\delta}$ ppm): 7.76 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 6.12 (d, J = 6.0 Hz, 1H), 5.92 (s, 1H), 5.75 (d, J = 5.9 Hz, 1H), 5.04 (s, 1H), 4.93 (s, 1H), 3.80 (d, J = 17.0 Hz, 1H), 3.41 (s, 4H), 2.43 (s, 3H), 2.06 (t, J = 7.4 Hz, 1H)

2H), 1.52-1.13 (m, 20H), 0.91 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.58, 141.68, 137.63, 136.34, 129.82, 128.05, 120.42, 112.31, 77.89, 42.63, 34.10, 31.79, 29.61-29.00 (m), 27.33, 22.59, 21.44, 14.44.

MS (EI) m/z 433 (M+); **HRMS (ESI)** Calcd for C₂₅H₃₉NO₃S+H 434.2729, Found 434.2730.

 $C_{20}H_{21}NO_4S$

MW: 371.45 g • mol⁻¹

Non-white liquid

Isolated Amount:24.9mg

Yield:84%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.78 (d, *J* = 8.1 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.60 (s, 1H), 6.22 (s, 1H), 5.79 (s, 1H), 5.15 (d, *J* = 21.9 Hz, 2H), 4.31 (d, *J* = 16.7 Hz, 1H), 3.78 (s, 4H), 2.38 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 159.78, 143.73, 141.92, 136.29, 133.26, 129.91, 129.50, 128.13, 126.62, 120.27, 114.66, 114.58, 77.67, 55.64, 41.25, 21.47.

MS (EI) m/z 371 (M+); **HRMS (ESI)** Calcd for C₂₀H₂₁NO₄S+H 372.1270, Found 372.1271.

 $C_{20}H_{21}NO_3S$

MW: 355.45 g • mol⁻¹

Non-white liquid

Yield:92%

¹**H NMR (400 MHz, DMSO-***d*₆,**\delta ppm):** 7.78 (d, *J* = 8.2 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 4H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.66 (s, 1H), 6.23 (d, *J* = 6.3 Hz, 1H), 5.80 (d, *J* = 6.3 Hz, 1H), 5.18 (d, *J* = 21.7 Hz, 2H), 4.31 (d, *J* = 16.7 Hz, 1H), 3.79 (d, *J* = 16.7 Hz, 1H), 2.38 (s, 3H), 2.31 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.74, 141.85, 138.19, 136.28, 134.30, 133.54, 129.92, 129.80, 128.12, 125.15, 121.25, 115.23, 77.66, 41.22, 21.47, 21.21.

MS (EI) m/z 355 (M+); **HRMS (ESI)** Calcd for C₂₀H₂₁NO₃S+H 356.1320, Found 356.1321.

 $C_{23}H_{27}NO_3S$

MW: 397.53 g • mol⁻¹

Non-white liquid

Isolated Amount:28.3mg

Yield:89%

¹H NMR (400 MHz, DMSO- $d_{6,\delta}$ ppm): 7.78 (d, J = 8.2 Hz, 2H), 7.39 (dd, J = 10.4, 8.3 Hz, 4H), 7.21 (d, J = 8.2 Hz, 2H), 6.66 (s, 1H), 5.80 (s, 1H), 5.18 (d, J = 22.1 Hz, 1H), 4.31 (d, J = 16.7 Hz, 1H), 3.79 (d, J = 16.7 Hz, 1H), 2.58 (t, J = 7.6 Hz, 2H), 2.38 (s, 3H), 1.55 (p, J = 7.5 Hz, 2H), 1.35-1.25 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.73, 143.07, 141.88, 136.30, 134.57, 133.63, 129.92, 129.13, 128.12, 125.20, 121.32, 115.21, 77.66, 41.25, 34.91, 33.45, 22.19, 21.47, 14.25.

MS (EI) m/z 397 (M+); **HRMS (ESI)** Calcd for C₂₃H₂₇NO₃S+H 398.1790, Found 398.1791.

 $C_{21}H_{23}NO_3S$

MW: 369.48 g • mol⁻¹

Non-white liquid

Isolated Amount:27.8mg

Yield:94%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.78 (d, J = 8.2 Hz, 2H), 7.40 (dd, J = 13.4, 8.2 Hz, 4H), 7.23 (d, J = 8.2 Hz, 2H), 6.65 (s, 1H), 6.23 (d, J = 6.3 Hz, 1H), 5.80 (d, J = 6.3 Hz, 1H), 5.18 (d, J = 22.0 Hz, 2H), 4.31 (d, J = 16.7 Hz, 1H), 3.79 (d, J = 16.7 Hz, 1H), 2.61 (q, J = 7.6 Hz, 2H), 2.38 (s, 3H), 1.18 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 144.47, 143.74, 141.85, 136.30, 134.61, 133.64, 129.92, 128.60, 128.12, 125.28, 121.33, 115.23, 77.66, 41.26, 28.29, 21.47, 15.93.

MS (EI) m/z 369 (M+); **HRMS (ESI)** Calcd for C₂₁H₂₃NO₃S+H 370.1477, Found 370.1478.

 $C_{22}H_{25}NO_3S$

MW: 383.50 g • mol⁻¹

Non-white liquid

Isolated Amount:28.5mg

Yield:93%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.65 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.03 (d, *J* = 7.8 Hz, 2H), 6.29 (s, 1H), 6.11 (s, 2H), 6.08 (d, *J* = 5.6 Hz, 1H), 5.65 (d, *J* = 5.6 Hz, 1H), 3.87 (d, *J* = 17.5 Hz, 1H), 3.44 (d, *J* = 17.5 Hz, 1H), 2.30 (s, 3H), 2.23 (s, 3H), 2.01 (q, *J* = 7.3 Hz, 2H), 0.90 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.64, 140.34, 136.91, 136.10, 133.51, 133.18, 129.81, 129.44, 129.31, 128.05, 125.50, 115.61, 79.85, 43.65, 27.17, 21.45, 21.27, 12.21.

MS (EI) m/z 383 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₅NO₃S+H 384.1633, Found 384.1634.

 $C_{21}H_{22}ClNO_3S$

MW: 403.92 g • mol⁻¹

Non-white liquid

Isolated Amount:23.2mg

Yield:72%

¹**H** NMR (400 MHz, DMSO- $d_{6,\delta}$ ppm): 7.77 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 6.44 (s, 1H), 6.28 (d, J = 5.6 Hz, 1H), 6.19 (s, 1H), 5.78 (d, J = 5.2 Hz, 1H), 4.02 (d, J = 17.7 Hz, 1H), 3.59 (d, J = 17.7 Hz, 1H), 2.42 (s, 3H), 2.14 (q, J = 7.4 Hz, 2H), 1.02 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.70, 141.54, 136.04, 135.28, 134.36, 132.03, 131.08, 129.82, 128.85, 128.04, 124.16, 115.22, 79.69, 43.66, 27.21, 21.45, 12.22.

MS (EI) m/z 403 (M+); **HRMS (ESI)** Calcd for C₂₁H₂₂ClNO₃S+H 404.1087, Found 404.1088.

C25H22CINO3S

MW: 451.97 g • mol⁻¹

Non-white liquid

Isolated Amount:30.0mg

Yield:93%

¹**H NMR (400 MHz, DMSO-***d*₆, δ **ppm):** 7.76 (d, *J* = 8.2 Hz, 2H), 7.47 (dd, *J* = 7.5, 4.4 Hz, 4H), 7.37 (dt, *J* = 21.2, 6 Hz, 4H), 7.26 (d, *J* = 8.4 Hz, 2H), 6.75 (s, 1H), 6.62 (s, 1H), 6.43 (d, *J* = 5.7 Hz, 1H), 5.83 (d, *J* = 5.7 Hz, 1H), 4.51 (d, *J* = 17.6 Hz, 1H), 3.97 (d, *J* = 17.7 Hz, 1H), 2.35 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.84, 137.34, 136.00, 135.00, 134.13, 132.46, 131.33, 129.90, 129.31, 129.02, 128.98, 128.02, 127.11, 125.66, 117.76, 79.35, 42.38, 21.45.

MS (EI) m/z 451 (M+); **HRMS (ESI)** Calcd for C₂₅H₂₂ClNO₃S+H 452.1087, Found 452.1088.

 $C_{21}H_{22}FNO_3S\\$

MW: 387.47 g • mol⁻¹

Non-white liquid

Isolated Amount:29.4mg

Yield:95%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.71 (d, *J* = 8.1 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.27-7.14 (m, 4H), 6.39 (s, 1H), 6.20 (d, *J* = 5.6 Hz, 1H), 6.13 (s, 1H), 5.72 (d, *J* = 5.6 Hz, 1H), 3.96 (d, *J* = 17.6 Hz, 1H), 3.53 (d, *J* = 17.6 Hz, 1H), 2.37 (s, 3H), 2.09 (q, *J* = 7.4 Hz, 2H), 0.97 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, DMSO- $d_{6,\delta}$ ppm): 162.78, 160.35, 143.68, 141.05, 136.06, 133.65, 132.81, 131.31 (d, J = 8.1 Hz), 129.81, 128.04, 124.35, 115.85, 115.64, 115.26, 79.75, 43.64, 27.19, 21.44, 12.23.

¹⁹F NMR (377 MHz, DMSO-*d*₆,δ ppm): -114.59 (ddd, *J* = 14.5, 8.4, 6.2 Hz).

MS (EI) m/z 387 (M+); **HRMS (ESI)** Calcd for C₂₁H₂₂FNO₃S+H 388.1383, Found 388.1384.

 $C_{22}H_{25}NO_4S$

MW: 399.50 g • mol⁻¹

Non-white liquid

Isolated Amount:29.7mg

Yield:93%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.71 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 7.16 (d, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 8.6 Hz, 2H), 6.33 (s, 1H), 6.18 (s, 1H), 6.11 (d, *J* = 5.6 Hz, 1H), 5.70 (d, *J* = 5.6 Hz, 1H), 3.94 (d, *J* = 17.5 Hz, 1H), 3.77 (s, 3H), 3.50 (d, *J* = 17.4 Hz, 1H), 2.37 (s, 3H), 2.08 (q, *J* = 7.4 Hz, 2H), 0.98 (t, *J* = 7.5 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 158.81, 143.63, 139.93, 136.09, 132.24, 130.70, 129.80, 128.77, 128.06, 125.25, 115.65, 114.31, 79.92, 55.56, 43.64, 27.18, 21.45, 12.26.

MS (EI) m/z 399 (M+); **HRMS (ESI)** Calcd for C₂₂H₂₅NO₄S+H 400.1583, Found 400.1584.

 $C_{27}H_{26}FNO_3S$

MW: 463.56 g • mol⁻¹

Non-white liquid

Isolated Amount:34.8mg

Yield:94%

¹**H** NMR (400 MHz, DMSO- $d_{6,\delta}$ ppm): 7.61 (d, J = 8.1 Hz, 2H), 7.53-7.39 (m, 6H), 7.32 (dt, J = 23.4, 8.0 Hz, 3H), 6.83 (d, J = 6.3 Hz, 1H), 6.08 (d, J = 6.3 Hz, 1H), 5.60 (s, 1H), 4.15 (d, J = 18.2 Hz, 1H), 3.86 (d, J = 18.3 Hz, 1H), 2.49 (s, 3H), 1.79 (h, J = 7.5 Hz, 2H), 0.88 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 163.12, 160.68, 143.94, 138.22, 136.08, 135.91, 134.94, 133.13 – 132.53 (m), 132.03, 130.83 (d, *J* = 8.1 Hz), 129.86 (d, *J* = 11.9 Hz), 128.78, 127.91, 127.59 (d, *J* = 14.5 Hz), 115.97 (d, *J* = 21.4 Hz), 74.30, 42.47, 25.34, 21.46, 13.31.

¹⁹F NMR (377 MHz, DMSO-*d*₆δ ppm): -114.24 (ddd, *J* = 14.4, 9.0, 5.6 Hz).

MS (EI) m/z 463 (M+); **HRMS (ESI)** Calcd for C₂₇H₂₆FNO₃S+H 464.1696, Found 464.1697.

 $C_{21}H_{23}NO_3S$

MW: 369.48 g • mol⁻¹

Non-white liquid

Isolated Amount:20.1mg

Yield:68%

¹**H NMR (400 MHz, DMSO-***d*₆, δ **ppm):** 7.76 (d, J = 8.2 Hz, 2H), 7.51-7.20 (m, 5H), 6.92 (d, J = 6.8 Hz, 2H), 6.24 (d, J = 5.8 Hz, 1H), 5.79 (d, J = 5.8 Hz, 1H), 5.04 (s, 1H), 4.21 (s, 1H), 4.03 (d, J = 17.4 Hz, 1H), 3.61 (d, J = 17.4 Hz, 1H), 2.42 (s, 3H), 1.77 (dh, J = 14.3, 7.3 Hz, 2H), 0.82 (t, J = 7.5 Hz, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 143.69, 136.06, 135.00, 128.68, 127.45, 113.98, 78.94, 42.71, 25.05, 21.46, 13.29.

MS (EI) m/z 369 (M+); **HRMS (ESI)** Calcd for C₂₁H₂₃NO₃S+H 370.1477, Found 370.1478.

 $C_{13}H_{15}NO_3S$

MW: 265.33 g • mol⁻¹

Non-white liquid

Isolated Amount:20.1mg

Yield:95%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 7.59 (d, *J* = 8.2 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 6.81 (s, 1H), 6.51 (s, 1H), 5.65 (s, 1H), 5.23 (s, 1H), 4.22 (s, 2H), 3.12 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 141.96, 137.36, 133.95, 129.22, 128.73, 125.30, 121.99, 115.61, 77.38, 41.50, 38.71.

MS (EI) m/z 265 (M+); **HRMS (ESI)** Calcd for C₁₃H₁₅NO₃S+H 266.0851, Found 266.0852.

 $C_{15}H_{19}NO_3S$

MW: 293.38 g • mol⁻¹

Non-white liquid

Isolated Amount:10.3mg

Yield:44%

¹H NMR (400 MHz, Chloroform-*d*,δ ppm): 7.39 (d, *J* = 8.1 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 6.60 (s, 1H), 5.90 (d, *J* = 3.9 Hz, 1H), 5.25 (d, *J* = 14.1 Hz, 2H), 4.55 (d, *J* = 16.6 Hz, 1H), 4.15 (d, *J* = 16.2 Hz, 1H), 3.03 (s, 3H), 2.67 (q, *J* = 7.6 Hz, 2H), 2.36 (s, 1H), 1.25 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*,δ ppm): 145.11, 140.48, 134.70, 134.27, 128.33, 125.23, 120.24, 115.81, 78.12, 41.35, 39.02, 28.58, 15.47.

MS (EI) m/z 293 (M+); **HRMS (ESI)** Calcd for C₁₅H₁₉NO₃S+H 294.1164, Found 294.1167.

C₁₀H₁₇NO₃S

MW: 231.31 g • mol⁻¹

Non-white liquid

Isolated Amount:16.5mg

Yield:89%

¹**H NMR (400 MHz, Chloroform-***d***,δ ppm):** 6.00 (s, 1H), 5.79 (d, *J* = 4.2 Hz, 1H), 5.06 (d, *J* = 30.1 Hz, 2H), 3.95 (d, *J* = 16.7 Hz, 1H), 3.75 (d, *J* = 16.7 Hz, 1H), 2.98 (s, 3H), 2.37-2.31 (m, 1H), 2.12 (t, *J* = 7.6 Hz, 2H), 1.54 (h, *J* = 7.0 Hz, 2H), 0.94 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*,δ ppm): 140.26, 137.62, 119.69, 113.52, 78.33, 42.73, 38.82, 36.62, 20.65, 13.81.

MS (EI) m/z 231 (M+); **HRMS (ESI)** Calcd for C₁₀H₁₇NO₃S+H 232.1007, Found 232.1008.

 $C_{19}H_{18}N_2O_6S$

MW: 402.42 g • mol⁻¹

Non-white liquid

Isolated Amount:27.3mg

Yield:85%

¹**H NMR (400 MHz, Chloroform-***d***,δ ppm):** 8.34 (d, *J* = 8.7 Hz, 2H), 8.10 (d, *J* = 8.7 Hz, 2H), 7.32 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 6.44 (s, 1H), 6.04 (d, *J* = 4.6 Hz, 1H), 5.23 (d, *J* = 27.6 Hz, 1H), 4.53 (d, *J* = 16.6 Hz, 1H), 3.97 (d, *J* = 16.7 Hz, 1H), 3.83 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*,δ ppm): 160.10, 150.20, 144.65, 139.90, 133.84, 129.12, 126.43, 124.16, 119.39, 115.83, 114.23, 78.31, 55.39, 41.35.

MS (EI) m/z 402 (M+); **HRMS (ESI)** Calcd for C₁₉H₁₈N₂O₆S+H 403.0964, Found 403.0964.

 $C_{19}H_{18}N_2O_5S$

MW: 386.42 g • mol⁻¹

Non-white liquid

Isolated Amount:27.2mg

Yield:88%

¹**H NMR (400 MHz, DMSO-***d*₆,δ **ppm):** 8.39 (d, *J* = 8.7 Hz, 2H), 8.19 (d, *J* = 8.7 Hz, 2H), 7.43-7.24 (m, 3H), 7.16 (d, *J* = 6.9 Hz, 1H), 6.70 (s, 1H), 6.42 (d, *J* = 6.3 Hz, 1H), 5.83 (d, *J* = 6.3 Hz, 1H), 5.24 (d, *J* = 23.3 Hz, 2H), 4.42 (d, *J* = 16.7 Hz, 1H), 3.90 (d, *J* = 16.9 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆,δ ppm): 150.37, 144.56, 141.28, 138.39, 137.04, 133.59, 129.76, 129.50, 129.08, 125.92, 124.76, 122.56, 121.99, 116.17, 77.88, 41.46, 21.51.

MS (EI) m/z 386 (M+); **HRMS (ESI)** Calcd for C₁₉H₁₈N₂O₅S+H 387.1015, Found 387.1016.

VI Copies of the ¹H NMR, ¹³C NMR, ¹⁹F NMR <5.260 5.245 -4.260 77.685 77.666 77.338 77.338 77.359 77.754 77.754 77.754 77.754 77.754 77.754 77.754 77.754 77.755 66.440 66.400 66.380 2.677 2.658 2.658 2.651 2.450 $\begin{pmatrix} 1269 \\ 1251 \\ 1232 \end{pmatrix}$ N Ts ^{6.9} 0.89₹ 1.99₋I 1.96-I 2.084 2.084 2.264 2.124 2.124 **Т 96.2** 2.5 3.69-≖ 5.0 1.5 f1 (ppm) 4.0 9.5 6.0 5. 5 2.0 0.0 9.0 8.5 8.0 3. 5 3.0 1.5 1.0 0.5 7.0 -201.88 147.03 144.32 143.93 135.79 135.79 135.79 135.79 127.68 127.48 -99.24 -88.15 81.15 77.38 76.74 -52.67 N Ts 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm) 200 190

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 f1 (nnm)

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppa)

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

VII ¹H NOE of product 2l and 2n.

VIII Isotope tracking experiment

GCMS of **2a** in presence of H₂O¹⁸ C:\GCMSsolution\Data\Project1\ML0503.gsd

1H NMR of **2b** in D-THF

