Emissive Tetraphenylethylene (TPE) Derivatives in a Dissolved State Tightly Fastened by a Short Oligo(Ethylene Glycol) Chain

Yuma Tanaka, ${ }^{a}$ Takashi Machida, ${ }^{a}$ Toshiaki Noumi, ${ }^{b}$ Kazuki Sada, ${ }^{* a, c}$ and Kenta Kokado*d,e

${ }^{a}$ Graduate School of Chemical Sciences and Engineering, ${ }^{b}$ Department of Chemistry, School of Science, and ${ }^{c}$ Department of Chemistry, Faculty of Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
${ }^{d}$ Research Institute for Electronic Science, Hokkaido University, Kita20 Nishi10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan.
${ }^{e}$ JST-PRESTO.

E-mail: sadatcm@sci.hokudai.ac.jp, kokado@es.hokudai.ac.jp
Experimental section S3-S6
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of TPE macrocycles S7-S18
Crystallographic data S19-S20
Chiral column chromatograms of TPE macrocycles S21-S23
Summary of quantum yield of aggregate and solid S23
Emission spectra of aggregate and solid S24-S26
Absorption and emission spectra in various solvents S27
${ }^{1} \mathrm{H}$ NMR spectra upon photoirradiation S28-S33
The calculated geometrical parameters for TPE macrocycles S34
References S36

Experimental section

Materials and general measurements.

Unless stated otherwise, all reagents were obtained from commercial sources and used without further purification. The reaction was carried out under nitrogen atmosphere. ${ }^{1} \mathrm{H}(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(126 \mathrm{MHz})$ NMR measurements were recorded on a Bruker Biospin AVANCE DRX500 instrument, using 0.05\% tetramethylsilane (TMS) as an internal standard. UV-vis spectra were recorded on a JASCO V-570 spectrophotometer. Emission spectra and fluorescence quantum yield (Φ_{F}) were obtained with SHIMADZU RF5300PC spectrofluorometer. The absolute Φ_{F} was measured by a Hamamatsu C9920-02 absolute photoluminescence quantum yield measurement system equipped with an integrating sphere apparatus and a 150W continuous-wave xenon light source. X-ray diffraction (XRD) patterns were obtained by using a Bruker D8Advance / D with $\mathrm{Cu} \mathrm{K} \alpha$ radiation source ($40 \mathrm{kV}, 40 \mathrm{~mA}$). Electrospray ionization mass spectroscopy (ESI-MS) was carried out at Global facility center, Hokkaido University. Chiral column chromatography was carried out on a SHIMAZU LC-9A system (DAICEL CHIRALPAK IF column) with a SHIMAZU RID-10A reflective index.

X-ray crystallography analysis.

Single crystal was mounted in the loop using paraffin oil. The data were collected on a Rigaku XtaLAB Synergy-S with graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.5418 \AA$) and a PhotonJet-S microfocus generator operating at 50 kV and 1 mA . Diffraction data were collected and processed using the CrysAlisPro program. Structures were solved by direct methods using SHELXS. ${ }^{2}$ Structural refinements were conducted by the full-matrix least-squares method using SHELXS. ${ }^{2}$ Non-H atoms were refined anisotropically, and H atoms were refined using a riding model. All calculations were performed using the OLEX2 ${ }^{3}$ software packages.

Fluorescence quantum yields.

Fluorescence quantum yields were measured in THF or cyclohexane from the following formula(1) with corresponding 9,10-diphenylanthracene as a standard ${ }^{1}$. The quantum yields of PAHs in $\mathrm{CH}_{3} \mathrm{CN}$ were determined with their quantum yields in cyclohexane or ethanol as standards. ${ }^{1}$ All measurements were carried out in the same experimental settings: excitation wavelength, slit widths, photomultiplier voltage.
$\Phi_{x}=\Phi_{s t d .} \times \frac{A_{s t d .}}{A_{x}} \times \frac{F_{x}}{F_{s t d .}} \times \frac{n_{s t d .}{ }^{2}}{n_{x}{ }^{2}}$
Φ : quantum yield
A : absorbance
F : integral area of emission spectrum
n : reflective index of solvent

Photoirradiation. Photoirradiation was carried out using USHIO Deep UV lamp UXM-500SX with bandpass filter (AGC Asahi Glass UV-D33S and HOYA HA50). TPE macrocycles were dissolved in CDCl_{3}, (3 mM), and the first isomer ratio was determined by integral ratio of ${ }^{1} \mathrm{H}$ NMR. Then the photoirradiation was carried out by the deep UV lamp with setting the quartz NMR tube at 15 cm position from the lamp. Then, the second isomer ratio was determined by integral ratio of ${ }^{1} \mathrm{H}$ NMR.

Synthesis and characterization ${ }^{4}$

Synthesis of bis(benzophenone) oligoethylene glycol ether. In a 200 mL two necked flask, A suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(1.67 \mathrm{~g}, 12.1 \mathrm{mmol})$, 4-hydroxybenzophenone ($1.24 \mathrm{~g}, 2.99 \mathrm{mmol}$) and diethyleneglycol ditosylate $(1.24 \mathrm{~g}, 2.99 \mathrm{mmol})$ in DMF (40 mL) was stirred at $80^{\circ} \mathrm{C}$ for 16 h . After filtration and distilling off DMF, the organic layer was separation and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was combined, dried over MgSO_{4} and the solvent was removed under reduced pressure. After the purification of the crude product by flash chromatography on SiO_{2} (n-hexane/ethyl acetate), $\mathbf{b z - p \mathbf { p }}$ was obtained.
bz-p2 $(0.551 \mathrm{~g}, 40 \%):{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.99(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 4.25(4 \mathrm{H}, \mathrm{t}, J=4.8$ $\mathrm{Hz}), 6.99(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.47(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.75(4 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz}), 7.82$ ($4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$).
bz-p3 (1 .27g, 83\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.78(4 \mathrm{H}, \mathrm{s}), 3.91(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.21(4 \mathrm{H}, \mathrm{t}$, $J=4.8 \mathrm{~Hz}), 6.97(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.47(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.74(4 \mathrm{H}, \mathrm{d}, J=7.1$ $\mathrm{Hz}), 7.81(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$.
bz-p4 ($2.20 \mathrm{~g}, 60 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.70-3.76(8 \mathrm{H}, \mathrm{m}), 3.89(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.21$ $(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 6.97(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.47(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.74(4 \mathrm{H}, \mathrm{d}, J$ $=8.5 \mathrm{~Hz}), 7.81(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$.
bz-p5 ($0.588 \mathrm{~g}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.67-3.70(8 \mathrm{H}, \mathrm{m}), 3.73-3.74(4 \mathrm{H}, \mathrm{m}), 3.89$ $(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.21(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 6.97(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.47(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{t}, J$ $=7.6 \mathrm{~Hz}), 7.74(4 \mathrm{H}, \mathrm{d}, J=5.0 \mathrm{~Hz}), 7.81(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$.
bz-p6 ($1.78 \mathrm{~g}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.65-3.69(12 \mathrm{H}, \mathrm{m}), 3.73(4 \mathrm{H}, \mathrm{t}, J=5.1), 3.89$ $(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 4.21(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}), 6.97(4 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}), 7.47(4 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 7.56(2 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}), 7.74(4 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 7.81(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$.
bz-m2 ($1.15 \mathrm{~g}, 82 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.96(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 4.21(4 \mathrm{H}, \mathrm{t}, J=4.7$ $\mathrm{Hz}), 7.14-7.17(2 \mathrm{H}, \mathrm{m}), 7.34-7.39(6 \mathrm{H}, \mathrm{m}), 7.48(4 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.59(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.79(4 \mathrm{H}, \mathrm{d}, J$ $=7.8 \mathrm{~Hz}$).
bz-m3 ($0.679 \mathrm{~g}, 53 \%):{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.75(4 \mathrm{H}, \mathrm{s}), 3.88(4 \mathrm{H}, \mathrm{t}, J=4.9 \mathrm{~Hz}), 4.17$ $(4 \mathrm{H}, \mathrm{t}, J=4.7), 7.13-7.15(2 \mathrm{H}, \mathrm{m}), 7.33-7.37(6 \mathrm{H}, \mathrm{m}), 7.46(4 \mathrm{H}, \mathrm{t}, J=7.9 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz})$, $7.78(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$.
bz-m4 ($1.29 \mathrm{~g}, 78 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.68-3.74(8 \mathrm{H}, \mathrm{m}), 3.87(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz})$, $4.17(4 \mathrm{H}, \mathrm{t}, J=4.8), 7.13-7.16(2 \mathrm{H}, \mathrm{m}), 7.33-7.38(6 \mathrm{H}, \mathrm{m}), 7.47(4 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $7.79(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$.
bz-m5 ($1.42 \mathrm{~g}, 83 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.66-3.73(12 \mathrm{H}, \mathrm{m}), 3.86(4 \mathrm{H}, \mathrm{t}, J=4.7$
$\mathrm{Hz}), 4.17(4 \mathrm{H}, \mathrm{t}, J=4.7), 7.14-7.16(2 \mathrm{H}, \mathrm{m}), 7.33-7.38(6 \mathrm{H}, \mathrm{m}), 7.48(4 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 7.58(2 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}), 7.79(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$.
bz-m6 (1.28 g, 93\%): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.65-3.73(16 \mathrm{H}, \mathrm{m}), 3.87(4 \mathrm{H}, \mathrm{t}$, $J=4.7 \mathrm{~Hz}), 4.17(4 \mathrm{H}, \mathrm{t}, J=4.8), 7.15(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 7.35-7.38(6 \mathrm{H}, \mathrm{m}), 7.48(4 \mathrm{H}, \mathrm{t}$, $J=7.6 \mathrm{~Hz}), 7.59(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.80(4 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz})$.
bz-o3 $(1.09 \mathrm{~g}, 93 \%):{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.18(4 \mathrm{H}, \mathrm{s}), 3.42(4 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}), 4.00(4 \mathrm{H}$, $\mathrm{d}, J=5.0 \mathrm{~Hz}), 6.96(2 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 7.37-7.42(6 \mathrm{H}, \mathrm{m}), 7.45(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz})$, $7.51(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 7.77(4 \mathrm{H}, \mathrm{d}, J=6.9 \mathrm{~Hz})$.
bz-o4 ($1.15 \mathrm{~g}, 71 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.32-3.39(8 \mathrm{H}, \mathrm{m}), 3.47(4 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz})$, $4.03(4 \mathrm{H}, \mathrm{t}, J=5.0 \mathrm{~Hz}), 6.97(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.06(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 7.39-7.46(8 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{t}, J$ $=7.4 \mathrm{~Hz}), 7.77(4 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz})$.
Synthesis of TPE macrocycles. In a 300 mL three necked flask, zinc powder ($3.17 \mathrm{~g}, 48.5 \mathrm{mmol}$), THF (58 mL), pyridine 0.5 mL and $1 \mathrm{M} \mathrm{TiCl} 4 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution were added and heated at $80^{\circ} \mathrm{C}$. Then bz-p2(0.500 g, 1.07 mmol) in anhydrous THF (21 mL) was dropped into this slurry over for 6 h and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 16 h . After cooling to room temperature, the mixture was hydrolyzed by addition of aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($18 \mathrm{~mL}, 10 \%$) and distilled water (18 mL). After filtration and distilling off THF, the organic layer was separation and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was combined, dried over MgSO_{4} and the solvent was removed under reduced pressure. After the purification of the crude product by flash chromatography on SiO_{2} (n-hexane/ethyl acetate), $\boldsymbol{p} \mathbf{2}$ was obtained.
$\boldsymbol{p 2}$ ($0.206 \mathrm{~g}, 44 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.61(4 \mathrm{H}, \mathrm{t}, J=4.4 \mathrm{~Hz}), 4.25(4 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz})$, $6.63(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 6.74(4 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}), 7.14-7.18(6 \mathrm{H}, \mathrm{m}), 7.21-7.23(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 68.77,71.85,115.76,126.72,127.80,130.86,132.18,138.12,141.35,142.10$, 157.36. HRMS(ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 457.1780$, Found: $m / z 457.1768$.
p3 ($0.12 \mathrm{~g}, 11 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.65(4 \mathrm{H}, \mathrm{s}), 3.72(4 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}), 4.24(4 \mathrm{H}, \mathrm{t}, J$ $=4.5 \mathrm{~Hz}), 6.70(4 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}), 6.85(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.09 \sim 7.12(10 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 68.46,70.50,71.47,115.05,126.43,127.65,131.25,132.36,137.34,140.62,142.94$, 157.14. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 501.2042, Found: $m / z 501.2028$.
$\boldsymbol{p 4}(0.0140 \mathrm{~g}, 4 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.61-3.65(8 \mathrm{H}, \mathrm{m}), 3.77(4 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}), 4.16$ $(4 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}), 6.67(4 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}), 6.88(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.05-7.12(10 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(126$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 67.92,69.66,70.64,71.20,114.38,126.33,127.61,131.31,132.46,137.05,140.25$, 143.45, 157.06. HRMS(ESI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 545.2304, Found: m / z 545.2286.
$\boldsymbol{p 5}(0.0895 \mathrm{~g}, 16 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.67-3.68(12 \mathrm{H}, \mathrm{m}), 3.79(4 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}), 4.10$ $(4 \mathrm{H}, \mathrm{t}, J=4.6), 6.66(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{HZ}), 6.89(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 7.03-7.05(4 \mathrm{H}, \mathrm{m}), 7.08-7.10(6 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 67.63,69.47,70.47,70.65,71.05,113.99,126.27,127.58,131.35$, 132.48, 136.86, 140.07, 143.68, 157.06. HRMS(ESI) Calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 589.2566$, Found: $m / z 589.2556$.
p6 ($0.341 \mathrm{~g}, 35 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 3.67-3.71(16 \mathrm{H}, \mathrm{m}), 3.82(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 4.08$ $(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 6.67(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{HZ}), 6.91(4 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.01-7.03(4 \mathrm{H}, \mathrm{m}), 7.07-7.09(6 \mathrm{H}, \mathrm{m})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 67.31,69.65,70.63,70.68,70.84,70.98,113.80,126.20,127.55$, $131.38,132.45,136.65,139.85,143.94,157.12$. $\mathrm{HRMS}(E S I)$ Calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 633.2829$, Found: $m / z 633.2810$.
$\boldsymbol{m 2}(0.177 \mathrm{~g}, 38 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.61(4 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz}), 4.16(4 \mathrm{H}, \mathrm{t}, J=4.6 \mathrm{~Hz})$, $6.60(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.67(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 7.01(2 \mathrm{H}, \mathrm{t}, J=16 \mathrm{~Hz}), 7.09-7.13$ $(10 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 68.89,71.43,116.16,119.16,123.89,126.53,127.68$, 128.67, 131.01, 141.10, 142.63, 144.94, 158.76. HRMS(ESI) Calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 457.1780$, Found: $m / z 457.1769$.
$\boldsymbol{m 3}(0.0470 \mathrm{~g}, 10 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.65-3.68(8 \mathrm{H}, \mathrm{m}), 3.94(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz})$, $6.60(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 6.71-6.72(4 \mathrm{H}, \mathrm{m}), 7.03-7.06(6 \mathrm{H}, \mathrm{m}), 7.09-7.10(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 67.68,69.41,71.04,114.11,118.10,123.83,126.51,127.65,128.78,131.18,141.00$, 143.03, 145.14, 158.06. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 501.2042$, Found: m / z 501.2031. $\boldsymbol{m} 4(0.238 \mathrm{~g}, 43 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.67-3.68(8 \mathrm{H}, \mathrm{m}), 3.71(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 3.86$ $(4 \mathrm{H}, \mathrm{t}, J=4.7 \mathrm{~Hz}), 6.60(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}), 6.67-6.71(4 \mathrm{H}, \mathrm{m}), 7.02-7.10(12 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 67.68,69.27,70.56,70.95,114.02,117.12,123.77,126.49,127.64,128.82,131.22,140.99$, 143.15, 145.13, 158.17. HRMS(ESI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 545.2304, Found: m / z 545.2288. $\boldsymbol{m} 5(0.201 \mathrm{~g}, 33 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.64-3.72(16 \mathrm{H}, \mathrm{m}), 3.84(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz})$, $6.61(4 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 6.69(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.02-7.10(12 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm): 67.43, 69.40, 70.70, 70.72, 70.81, 114.02, 116.87, 123.90, 126.47, 127.63, 128.78, 131.24, 140.94, 143.25, 145.08, 158.11. HRMS(ESI) Calcd. for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 589.2566, Found: $m / z 589.2550$. $\boldsymbol{m} 6(0.134 \mathrm{~g}, 21 \%):{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.61-3.69(22 \mathrm{H}, \mathrm{m}), 3.85(4 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz})$, $6.60-6.34(4 \mathrm{H}, \mathrm{m}), 6.69(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.01-7.11(12 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}):$ $67.43,69.43,70.76,70.81,70.85,113.97,117.16,123.93,126.47,127.62,128.78,131.24,140.90,143.28$, 145.03, 158.07. HRMS(ESI) Calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: m / z 633.2829$, Found: $m / z 633.2818$.
o3 ($0.0755 \mathrm{~g}, 16 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 3.57(2 \mathrm{H}, \mathrm{t}, J=8.8 \mathrm{~Hz}$), $3.76-3.81(8 \mathrm{H}, \mathrm{m}), 3.92$ $(2 \mathrm{H}, \mathrm{t}, J=8.3 \mathrm{~Hz}), 6.70(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 6.74(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 6.97-7.12(14 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 67.94,70.21,70.97,111.17,120.10,125.83,126.92,128.00,129.58,132.03,132.56$, 138.93, 143.12, 157.27. HRMS(ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 501.2042, Found: m / z 501.2027. $\boldsymbol{o 4}(0.0866 \mathrm{~g}, 16 \%)$: cis- $\mathbf{0 4}(0.0770 \mathrm{~g}, 14 \%)$ was obtained by silica gel column chromatography due to difference in retention time. In this system, cis-o4 was eluted first and cis-trans mixture (cis-o4 0.0175 g , 3% trans-o4 $0.0096,2 \%$) later eluted. cis-o4: ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 3.29-3.33(2 \mathrm{H}, \mathrm{m})$, $3.55-3.58(2 \mathrm{H}, \mathrm{m}), 3.66-3.77(12 \mathrm{H}, \mathrm{m}), 6.65-6.70(4 \mathrm{H}, \mathrm{m}), 6.98(1 \mathrm{H}, \mathrm{d}, J=1.7 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{d}, J=1.7$ Hz), 7.03-7.08 (12H, m). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}): 68.58,69.13,70.54,70.72,112.45,119.78$, 125.82, 127.28, 127.97, 130.74, 132.61, 132.95, 137.84, 143.61, 156.53. HRMS(ESI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{5}$ $[\mathrm{M}+\mathrm{Na}]^{+}: m / z$ 545.2304, Found: $m / z 545.2287$.

Fig. $\mathbf{S 1}{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{p} \mathbf{2}$.

Fig. S2 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{p} \mathbf{2}$.

Fig. $\mathbf{S 3}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{p 3}$.

Fig. S4 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{p 3}$

Fig. $55{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{p 4}$.

Fig. S6 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{p 4}$.

Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{p 5}$.

Fig. $\mathbf{S 8}{ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{p 5}$.

Fig. $\mathbf{S 9}{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{p} \mathbf{6}$.

Fig. S10 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{p} \mathbf{6}$.

Fig. S11 ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{m} \mathbf{2}$.

Fig. S12 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{m} \boldsymbol{2}$.

Fig. $\mathbf{S 1 3}{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{m 3}$.

Fig. S14 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{m 3}$.

Fig. $\mathbf{S 1 5}{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{m} \mathbf{4}$.

Fig. S16 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{m} \mathbf{4}$.

Fig. $\mathbf{S 1 7}{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{m 5}$.

Fig. S18 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{m} 5$.

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{m} \mathbf{6}$.

Fig. S20 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{m} \mathbf{6}$.

Fig. $\mathbf{S 2 1}{ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{o 3}$.

Fig. S22 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{o 3}$.

Fig. S23 ${ }^{1} \mathrm{H}$ NMR spectrum of $\boldsymbol{o 4}$ (cis).

Fig. S24 ${ }^{13} \mathrm{C}$ NMR spectrum of $\boldsymbol{o 4}$ (cis).

Table S1. Summary of crystallographic data.

Identification code	$\boldsymbol{p 3}$	$\boldsymbol{m} \mathbf{2}$
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{4}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{O}_{3}$
Formula weight	478.59	434.51
Temperature (K)	$193(2)$	$193(2)$
Crystal system	Triclinic	Monoclinic
Space group	$P-1$	$P 2_{1} / c$
a (\AA)	$13.9927(3)$	$13.49730(10)$
$\mathrm{b}(\AA)$	$13.9930(4)$	$8.90620(10)$
$\mathrm{c}(\AA)$	$14.3817(4)$	$19.1393(2)$
$\alpha\left({ }^{\circ}\right)$	$74.428(2)$	90
$\beta\left({ }^{\circ}\right)$	$74.344(2)$	$90.6610(10)$
$\gamma\left({ }^{\circ}\right)$	$71.519(2)$	90
Volume $\left(\AA^{3}\right)$	$2519.52(11)$	$2300.58(4)$
Z	2	4
Calculated density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.262	1.254
Absorption coefficient $\left(\mathrm{mm}{ }^{-1}\right)$	0.653	9.630
$\mathrm{~F}(000)$	1016	96.0%
Reflections collected $/$ unique	$17346 / 9007\left[R_{\text {int }}=0.0160\right]$	$16678 / 4690\left[R_{\text {int }}=0.0233\right]$
Completeness to theta $=77.40$	84.0%	1.052
Goodness-of-fit on F^{2}	1.016	$R_{1}=0.0513, w R_{2}=0.1331$
Final R indices [I>2sigma(I)]	$R_{1}=0.0744, w R_{2}=0.2159$	
R indices (all data)	$R_{1}=0.0790, w R_{2}=0.2206$	$R_{1}=0.0539, w R_{2}=0.1354$

Table S1 (continued). Summary of crystallographic data.

Identification code	$\boldsymbol{o 3}$	$\boldsymbol{o 4}($ cis $)$
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{O}_{4} \cdot \mathrm{CH}_{4} \mathrm{O}$	$\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{O}_{5}$
Formula weight	510.63	522.61
Temperature (K)	$193(2)$	$193(2)$
Crystal system	Triclinic	Triclinic
Space group	$P-1$	$P-1$
a ($\AA)$	$10.8265(3)$	$9.6286(3)$
$\mathrm{b}(\AA)$	$11.5183(3)$	$10.0918(3)$
$\mathrm{c}(\AA)$	$12.4106(3)$	$15.5411(3)$
$\alpha\left({ }^{\circ}\right)$	$78.076(2)$	$78.560(2)$
$\beta\left({ }^{\circ}\right)$	$66.748(2)$	$82.821(2)$
$\gamma\left({ }^{\circ}\right)$	$85.843(2)$	$67.359(3)$
Volume $\left(\AA \AA^{3}\right)$	$1391.18(6)$	$1364.09(6)$
Z	2	2
Calculated density $\left(\mathrm{g} / \mathrm{cm}{ }^{3}\right)$	1.219	1.272
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$	0.648	0.674
$\mathrm{~F}(000)$	544	556
Reflections collected / unique	$18129 / 5646\left[R_{\text {int }}=0.0223\right]$	$14953 / 5492\left[R_{\text {int }}=0.0265\right]$
Completeness to theta $=76.74$	96.1%	96.2%
Goodness-of-fit on F^{2}	1.066	1.059
Final R indices [I>2sigma(I)]	$R_{1}=0.0676, w R_{2}=0.2012$	$R_{1}=0.0519, w R_{2}=0.1435$
R indices (all data)	$R_{1}=0.0723, w R_{2}=0.2062$	$R_{1}=0.0544, w R_{2}=0.1461$

Fig. S25 Chiral column chromatograms of (a) p2, (b) p3, (c) p4, (d) p5, and (e) p6.

Fig. S26 Chiral column chromatograms of (a) $\boldsymbol{m} 2$, (b) $\boldsymbol{m 3}$, (c) $\boldsymbol{m 4}$, (d) $\boldsymbol{m 5}$, and (e) $\boldsymbol{m} \mathbf{6}$.

Fig. S27 Chiral column chromatograms of (a) o3 and (b) o4 (cis).

Table S2. Summary of fluorescence quantum yields of the aggregated state and absolute quantum yields of the solid state.

Molecule	$\Phi_{\mathrm{F}, \text { Aggregate }} \mathrm{a}^{\mathrm{a}}$	$\Phi_{\mathrm{F}, \text { Solid }}{ }^{\mathrm{b}}$
$\boldsymbol{p} \mathbf{2}$	0.537	0.433
$\boldsymbol{p 3}$	0.190	0.385
$\boldsymbol{p} \mathbf{4}$	0.180	0.431
$\boldsymbol{p 5}$	0.176	0.955
$\boldsymbol{p 6}$	0.173	0.688
$\boldsymbol{m} \mathbf{2}$	0.0710	0.804
$\boldsymbol{m 3}$	0.0526	0.184
$\boldsymbol{m 4}$	0.0423	0.109
$\boldsymbol{m 5}$	0.0311	0.157
$\boldsymbol{m} \mathbf{6}$	0.0255	0.350
$\boldsymbol{o 3}$	0.197	0.329
$\boldsymbol{0 4}$ (cis)	0.228	0.121
$\boldsymbol{o 4}$ (mixture)	0.149	0.239

${ }^{\text {a }}$ Fluorescence quantum yields of the aggregated state $\left(T H F / H_{2} \mathrm{O}=1 / 99,10 \mu \mathrm{M}\right)$. The concentration is set at $10 \mu \mathrm{M}$, and 9,10 -diphenylanthracene was used as a standard. ${ }^{1}$ b Absolute quantum yield estimated by an integral sphere.

Fig. S28 Normalized emission spectra of (a) p2, (b) p3 (c) p4, (d) p5, and (e) p6 in solution (only for $\boldsymbol{p 2}$), aggregate ($\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=1 / 99,10 \mu \mathrm{M}$), and solid.

Fig. S29 Normalized emission spectra of (a) $\boldsymbol{m} \mathbf{2}$, (b) $\boldsymbol{m 3}$, (c) $\boldsymbol{m 4}$, (d) $\boldsymbol{m} \mathbf{5}$, and (e) $\boldsymbol{m} \mathbf{6}$ in aggregate (THF/ $\mathrm{H}_{2} \mathrm{O}$ $=1 / 99,10 \mu \mathrm{M})$, and solid.

Fig. S30 Normalized emission spectra of (a) $\boldsymbol{o 3}$, (b) $\boldsymbol{o 4}$ (cis), and (c) $\boldsymbol{o 4}$ (mixture), in solution (only for $\boldsymbol{o 3}$), aggregate $\left(\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}=1 / 99,10 \mu \mathrm{M}\right)$, and solid.
(a) $p 2$

(b) 03

(c) 04 (mixture)

Fig. S31 The absorption (dashed line) and emission (solid line) spectra in various solvents such as ethanol, acetonitrile, dichloromethane, and THF of (a) p2, (b) o3, and (c) o4 (mixture) ($10 \mu \mathrm{M}$).

Table S3. Summary of fluorescence quantum yields (Φ_{F}) of $\boldsymbol{p 2}$, $\boldsymbol{o 3}$, and $\boldsymbol{o 4}$ (mixture) in solution ${ }^{\text {a }}$

Molecule	Solvent	Φ_{F}
	Acetonitrile	1.9×10^{-4}
$\boldsymbol{p} \mathbf{2}$	Ethanol	1.3×10^{-3}
	Dichloromethane	4.3×10^{-4}
	THF	2.3×10^{-3}
$\boldsymbol{o 3}$	Acetonitrile	0.29
	Ethanol	0.26
	Dichloromethane	0.30
	THF	0.30
(mixture)	Acetonitrile	2.6×10^{-3}
	Ethanol	5.5×10^{-3}
	Dichloromethane	5.4×10^{-3}
	THF	1.6×10^{-2}

${ }^{\text {a }}$ The concentration is set at $10 \mu \mathrm{M}$, and 9,10-diphenylanthracene was used as a standard. ${ }^{1}$

Fig. $\mathbf{S 3 2}{ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{p} \mathbf{2}$ upon photoirradiation.

Fig. S33 ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{p 3}$ upon photoirradiation.

Fig. $\mathbf{S 3 4}{ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{p} 4$ upon photoirradiation.

Fig. $\mathbf{S 3 5}{ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{p 5}$ upon photoirradiation.

Fig. S36 ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{p 6}$ upon photoirradiation.

Fig. S37 ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{m} \mathbf{2}$ upon photoirradiation.

Fig. $\mathbf{S 3 8}{ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{m} \mathbf{3}$ upon photoirradiation.

Fig. S39 ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{m} \mathbf{4}$ upon photoirradiation.

Fig. $\mathbf{S 4 0}{ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{m} \mathbf{5}$ upon photoirradiation.

Fig. S41 ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{m 6}$ upon photoirradiation.

Fig. S42 ${ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{o 3}$ upon photoirradiation.

Fig. $\mathbf{S 4 3}{ }^{1} \mathrm{H}$ NMR spectra of $\boldsymbol{o 4}$ (cis) upon photoirradiation.

Figure S44. The relationship between $\Delta\left|\theta_{\beta, \mathrm{S} 1}-\theta_{\beta, \mathrm{SO}}\right|$ (calculated) and Φ_{F} (observed).

Table S4. The calculated dihedral angle $\left(\theta_{\alpha}\right)$ and bond lengths $\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right.$ and $\left.\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ for TPE macrocycles at $\mathrm{S}_{0} \min$ and $\mathrm{S}_{1} \min$ at the B3LYP/6-31G(d) level.

Molecule	$\theta_{\alpha, \mathrm{SO}}\left({ }^{(}\right)^{\mathrm{a}}$	$\theta_{\alpha, S 1}\left({ }^{\circ}\right)^{\text {b }}$	$\Delta\left\|\theta_{\alpha, \mathrm{Sl}}-\theta_{\alpha, \mathrm{So}}\right\|\left({ }^{(}\right)$	$\mathrm{C}_{3}-\mathrm{C}_{4}(\AA)$		$\mathrm{C}_{2}-\mathrm{C}_{3}(\AA)$	
				$\mathrm{S}_{0} \mathrm{~min}$	S_{1} min	$\mathrm{S}_{0} \mathrm{~min}$	$\mathrm{S}_{1} \mathrm{~min}$
p2	59	34	25	1.369	1.473	1.499	1.458
p3	54	30	24	1.369	1.473	1.497	1.454
p4	47	16	31	1.368	1.477	1.492	1.443
$p 5$	48	19	29	1.369	1.475	1.492	1.445
$p 6$	46	16	30	1.369	1.475	1.493	1.443
$m 2$	53	12	41	1.364	1.484	1.497	1.466
m3	46	3	43	1.366	1.488	1.496	1.457
$m 4$	49	8	41	1.367	1.486	1.496	1.451
$m 5$	53	10	43	1.365	1.489	1.496	1.450
$m 6$	50	8	42	1.366	1.475	1.496	1.459
03 (cis)	83	37	46	1.360	1.485	1.504	1.452
o3 (trans)	116	135	19	1.358	1.457	1.497	1.454
04 (cis)	67	30	37	1.361	1.487	1.500	1.448
04 (trans)	129	140	11	1.363	1.465	1.495	1.452

$$
{ }^{\mathrm{a}} \theta_{\alpha} \text { at } \mathrm{S}_{0} \mathrm{~min} .{ }^{\mathrm{b}} \theta_{\alpha} \text { at } \mathrm{S}_{1} \mathrm{~min} .
$$

References

1. S. Hamai, F. Hirayama, J. Phys. Chem., 1983, 87. 83-89.
2. SHELXS-2013 and SHELXL-2013: G. M. Sheldrick, Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
3. Olex2: O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Pushmann, J. Appl. Crystallogr., 2009, 42, 339-341.
4. A. Fürstner, G. Seidel, C. Kopiske, C. Krüger, R. Mynott, Liebigs Ann., 1996, 655-662.
