Palladium-Catalyzed Carbonylative Arylacetamides Synthesis from Benzyl

Formates and Tertiary Amines

Ming Lai,^{‡,a} Zhi-Peng Bao,^{‡,a} Xinxin Qi,^a Xiao-Feng Wu*^{a,b}

^{a.} Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
^{b.} Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, Rostock 18059, Germany
^{c.} ‡These authors contributed equally to this work

Supporting Information

Table of Contents

1. General Information	S2		
 2. General Procedure for the Syntheses of the Benzyl Formates			
		5. Characterization of the Arylacetamides	S6
		6. References	S11
7. Spectra of Benzyl Formates			
10. Spectra of Arylacetamides			

1. General Information

Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. organic carbonates were from commercial sources and used as received without further purification. Benzyl formates that were not commercially available were synthesized according to existing method. Column chromatography was performed on silica gel (200-300 meshes) using petroleum ether (Bp. 60-90 °C) and ethyl acetate as eluent. ¹H and ¹³C NMR spectra were taken on 400 MHz instruments and spectral data were reported in ppm relative to tetramethylsilane (TMS) as internal standard and CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.0) as solvent. All coupling constants(*J*) are reported in Hz with the following abbreviations: s = singlet, d = doublet, dd = double doublet, ddd = double doublet of doublets, t = triplet, dt = double triplet, q = quartet, m = multiplet, br = broad. Gas chromatography (GC) analyses were performed on a Shimadzu GC-2014C chromatograph equipped with a FID detector. Mass spectra (MS) were measured on spectrometer by direct inlet at 70 eV. IR spectra were collected with Bruker-VERTEX 70 spectrometer and only major peaks were reported in cm⁻¹.

2. General Procedure for the Syntheses of the Benzyl Formates¹

Formic acid (50.0 mmol) was added to acetic anhydride (40.0 mmol) at room temperature. The resulting mixture was stirred at 60 °C for 1 h and then cooled at room temperature. Benzylalcohols (5.0 mmol) and NaHCO₃ (10.0 mmol) were added to the solution, and the mixture was stirred until starting material was consumed. The reaction was quenched by adding a mixture of EA and water, and the biphasic system was stirred vigorously. Then the organic phase was separated, and the aqueous phase was extracted with EA for 2 times. The organic phases were combined and washed with water and brine, and then dried over anhydrous Na_2SO_4 . The resulting mixture was concentrated by rotary evaporation. The crude mixture was purified by silica gel column chromatography to afford the desired product.

3. Characterization of the Benzyl Formates

$\label{eq:linear} \textbf{2-Methylbenzylformate}, \textbf{1}\textbf{b}^2$

 $0.56 \text{ g}, 75\% \text{ yield, colourless oil.} {}^{1}\text{H NMR} (400 \text{ MHz, CDCl}_3) \delta 8.02 (s, 1H), 7.24 (d, J = 6.9 \text{ Hz}, 1H), 7.18-7.08 (m, 3H), 5.11 (s, 2H), 2.26 (s, 3H). {}^{1}\text{C NMR} (101 \text{ MHz, CDCl}_3) \delta 160.7, 136.9, 133.1, 130.3, 129.4, 128.7, 126.0, 63.9, 18.7.$

3-Methylbenzylformate, 1c³

0.70 g, 93% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (s, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.04-6.95 (m, 3H), 5.00 (s, 2H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 138.0, 135.0, 128.9, 128.8, 128.3, 125.2, 65.4, 21.0.

4-Methylbenzyl formate, 1d⁴

0.41 g, 55% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.20 (d, J = 7.9 Hz, 2H), 7.10 (d, J = 7.8 Hz, 2H), 5.08 (s, 2H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 137.9, 132.1, 128.9, 128.2, 65.1, 20.7.

4-Ethylbenzylformate, 1e⁵

0.49 g, 60% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.9 Hz, 2H), 5.14 (s, 2H), 2.63 (q, J = 7.5 Hz, 2H), 1.22 (td, J = 7.6, 2.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 144.6, 132.4, 128.5, 128.0, 65.5, 28.5, 15.4.

4-Isopropylbenzyl formate, 1f⁵

0.51 g, 57% yield, colourless oil.¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.29 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 5.14 (s, 2H), 2.89 (hept, J = 6.8 Hz, 1H), 1.23 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 149.2, 132.5, 128.5, 126.6, 65.4, 33.8, 23.8.

4-(*tert*-Butyl)benzyl formate, 1g⁵

0.60 g, 62% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.29 (d, J = 8.3 Hz, 2H), 7.20 (d, J = 8.1 Hz, 2H), 5.06 (s, 2H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 151.4, 132.1, 128.2, 125.4, 65.3, 34.4, 31.1.

4-Methoxybenzylformate, 1h

0.71 g, 86% yield, colourless oil. ¹H NMR (400 MHz, CDCl3) δ 8.08 (s, 1H), 7.29 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 5.11 (s, 2H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.9, 159.6, 130.1, 127.2, 113.8, 65.4, 55.1. HRMS (ESI): [M+H⁺] calcd. for C₉H₁₁O₃⁺, 167.0703; found, 167.0713.

4-(Methylthio)benzyl formate, 1i⁵

0.77 g, 85% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.29 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 5.15 (s, 2H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 139.1, 131.8, 128.9, 126.4, 65.2, 15.5.

4-(Trifluoromethyl)benzylformate, 1j6

0.69 g, 68% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.62 (d, J = 8.2 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 5.24 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.4, 139.2, 130.4 (q, J = 32.5 Hz), 128.1, 125.5 (d, J = 3.5 Hz), 123.9 (q, J = 272.1 Hz), 64.5.

Methyl 4-((formyloxy)methyl)benzoate, 1k⁵

0.82 g, 85% yield, white solid, Mp. 67.9-70.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.94 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 5.14 (s, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.1, 160.2, 139.9, 129.7, 129.4, 127.4, 64.3, 51.7.

4-Cyanobenzyl formate, 116

0.56 g, 69% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.68 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 5.26 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.2, 140.3, 132.3, 128.2, 118.3, 112.1, 64.2.

4-Fluorobenzylformate, 1m⁵

0.50 g, 65% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.32-7.22 (m, 2H), 7.04-6.91 (m, 2H), 5.09 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7 (d, J = 247.3 Hz), 160.6, 131.1, 130.4 (d, J = 8.3 Hz), 115.6 (d, J = 21.6 Hz), 64.9.

$\label{eq:chlorobenzyl} \textbf{4-Chlorobenzyl formate, } 1 \textbf{n}^7$

0.79 g, 93% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.34 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.5 Hz, 2H), 5.16 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 134.4, 133.6, 129.7, 128.8, 64.8.

[1,1'-Biphenyl]-4-ylmethyl formate, 10⁵

0.62 g, 58% yield, white solid, Mp. 56.0-57.7 °C. ¹HNMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.58-7.29 (m, 9H), 5.19 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 141.5, 140.5, 134.1, 128.8, 128.8, 127.5, 127.4, 127.1, 65.4.

Naphthalen-2-ylmethyl formate, 1p⁶

0.80 g, 86% yield, white solid, Mp. 81.1-82.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.86-7.78 (m, 4H), 7.52-7.41 (m, 3H), 5.34 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.7, 133.1, 132.6, 128.4, 127.9, 127.7, 127.5, 126.4, 125.7, 65.8.

Naphthalen-1-ylmethyl formate, 1q⁶

0.82 g, 88% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.96-7.33 (m, 7H), 5.57 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.6, 133.6, 131.4, 130.6, 129.4, 128.6, 127.5, 126.5, 125.9, 125.1, 123.2, 63.7.

Benzo[d][1,3]dioxol-5-ylmethyl formate, 1r⁵

0.68 g, 75% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 6.82 (d, J = 9.0 Hz, 2H), 6.76 (d, J = 7.6 Hz, 1H), 5.92 (s, 2H), 5.06 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 147.5, 147.5, 128.7, 122.1, 108.7, 107.9, 100.9, 65.2.

Furan-2-ylmethyl formate, 1s⁸

0.51 g, 81% yield, colourless oil.¹HNMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.43 (s, 1H), 6.41 (d, J = 26.1 Hz,

Thiophen-3-ylmethyl formate, 1t

0.53 g, 75% yield, colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.33-7.25 (m, 2H), 7.11-7.03 (m, 1H), 5.18 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 160.5, 135.9, 127.4, 126.3, 124.6, 60.4. HRMS (ESI): [M+Na⁺] calcd. for C₆H₆NaO₂S⁺, 164.9981; found, 164.9967.

4. General Procedure for the Syntheses of the Arylacetamides

Under nitrogen, $Pd(OAc)_2$ (5 mol%), DPEphos (7.5 mol%) was added to a 15 mL tube. After refilled the tube with nitrogen, benzyl formates (1.0 mmol), tertiary amines (5.0 mmol), TFAA (2.0 equiv.) and CH₃CN (2 mL) were added by a syringe. Then the reaction mixture was stirred at 130 °C for 24 h. After the reaction was completed, the reaction mixture was concentrated by rotary evaporation. The crude mixture was purified by silica gel column chromatography (PE/1,4-dioxane = 9/1) to provide the desired products.

5. Characterization of the Arylacetamides

N,*N*-Diethyl-2-phenylacetamide, 3aa⁹

143.3 mg, 75% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.20 (m, 5H), 3.69 (s, 2H), 3.38 (q, *J* = 7.1 Hz, 2H), 3.29 (q, *J* = 7.1 Hz, 2H), 1.10 (dt, *J* = 17.4, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 135.3, 128.5, 128.4, 126.5, 42.2, 40.7, 40.0, 14.0, 12.7.

N,N-Diethyl-2-(o-tolyl)acetamide, 3ba¹⁰

176.3 mg, 86% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.11 (m, 4H), 3.65 (s, 2H), 3.42 (q, *J* = 7.1 Hz, 2H), 3.28 (q, *J* = 7.1 Hz, 2H), 2.27 (s, 3H), 1.15 (dd, J = 15.6, 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 136.3, 134.1, 130.2, 128.7, 126.8, 126.1, 42.3, 40.2, 38.4, 19.6, 14.2, 13.0.

N,*N*-Diethyl-2-(*m*-tolyl)acetamide, 3ca¹⁰

159.9 mg, 78% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (t, J = 7.5 Hz, 1H), 7.09-7.01 (m, 3H), 3.66 (s, 2H), 3.39 (q, J = 7.1 Hz, 2H), 3.29 (q, J = 7.1 Hz, 2H), 2.33 (s, 3H), 1.11 (dt, J = 14.1, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 138.2, 135.3, 129.4, 128.4, 127.4, 125.6, 42.3, 40.8, 40.1, 21.3, 14.2, 12.9.

N,*N*-Diethyl-2-(*p*-tolyl)acetamide, 3da¹⁰

153.8 mg, 75% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.13 (q, J = 8.2 Hz, 4H), 3.65 (s, 2H), 3.38 (q, J = 7.1 Hz, 2H), 3.28 (q, J = 7.1 Hz, 2H), 2.32 (s, 3H), 1.10 (dt, J = 12.6, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 136.1, 132.3, 129.2, 128.4, 42.2, 40.5, 40.0, 21.0, 14.1, 12.9.

N,N-Diethyl-2-(4-ethylphenyl)acetamide, 3ea

175.2 mg, 80% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.12 (m, 4H), 3.66 (s, 2H), 3.38 (q, J = 7.1 Hz, 2H), 3.29 (q, J = 7.1 Hz, 2H), 2.62 (q, J = 7.6 Hz, 2H), 1.22 (t, J = 7.6 Hz, 3H), 1.10 (dt, J = 12.7, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 142.5, 132.6, 128.5, 128.1, 42.3, 40.5, 40.1, 28.4, 15.5, 14.2, 12.9. HRMS (ESI): [M+H⁺] calcd. for C₁₄H₂₂NO⁺, 220.1696; found, 220.1705.

$N, N-{\rm Diethyl-2-(4-isopropylphenyl)acetamide, 3fa}$

202.7 mg, 87% yield, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 4H), 3.66 (s, 2H), 3.38 (q, *J* = 7.1 Hz, 2H), 3.29 (q, *J* = 7.1 Hz, 2H), 2.87 (hept, *J*=6.9 Hz, 1H), 1.23 (d, *J*=6.9 Hz, 6H), 1.10 (dt, *J*=14.6, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.3, 147.2, 132.7, 128.5, 126.6, 42.3, 40.4, 40.1, 33.7, 24.0, 14.2, 12.9. HRMS (ESI): [M+H⁺] calcd. for C₁₅H₂₄NO⁺, 234.1852; found, 234.1866.

$\label{eq:linear} \textbf{2-}(\textbf{4-}(\textit{tert-Butyl})\textbf{phenyl})\textbf{-}\textbf{N}, \textbf{N-} \textbf{diethylacetamide}, \textbf{3ga}^{11}$

197.6 mg, 80% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.1 Hz, 2H), 3.66 (s, 2H), 3.39 (q, J = 7.1 Hz, 2H), 3.31 (q, J = 7.1 Hz, 2H), 1.30 (s, 9H), 1.12 (dt, J = 11.2, 7.1 Hz, 6H). ¹³C

N,*N*-Diethyl-2-(4-methoxyphenyl)acetamide, 3ha¹²

179.0 mg, 81% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ7.17 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 3.79 (s, 3H), 3.63 (s, 2H), 3.38 (q, *J* = 7.1 Hz, 2H), 3.30 (q, *J* = 7.1 Hz, 2H), 1.10 (dt, *J* = 10.4, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ170.6, 158.4, 129.6, 127.5, 114.0, 55.2, 42.3, 40.2, 39.9, 14.2, 12.9.

N,N-Diethyl-2-(4-(methylthio)phenyl)acetamide, 3ia

177.8 mg, 75% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.16 (m, 4H), 3.65 (s, 2H), 3.39 (q, *J* = 7.1 Hz, 2H), 3.29 (q, *J* = 7.1 Hz, 2H), 2.47 (s, 3H), 1.11 (td, *J* = 7.1, 4.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 1700, 136.5, 132.4, 129.2, 127.1, 42.3, 40.3, 40.2, 16.1, 14.3, 12.9. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₂₀NOS⁺, 238.1260; found, 238.1272.

N,*N*-Diethyl-2-(4-(trifluoromethyl)phenyl)acetamide, 3ja¹¹

225.3 mg, 87% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 3.74 (s, 2H), 3.40 (q, *J* = 7.1 Hz, 2H), 3.32 (q, *J* = 7.2 Hz, 2H), 1.14 (dd, *J* = 13.5, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.2, 139.6, 129.2, 129.0 (d, *J* = 32.9 Hz), 125.4 (d, *J* = 3.6 Hz), 124.2 (q, *J* = 271.9 Hz), 42.3, 40.3, 40.2, 14.2, 12.8.

Methyl 4-(2-(diethylamino)-2-oxoethyl)benzoate, 3ka¹¹

174.3 mg, 70% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.2 Hz, 2H), 3.91 (s, 3H), 3.75 (s, 2H), 3.40 (q, J = 7.1 Hz, 2H), 3.30 (q, J = 7.1 Hz, 2H), 1.12 (q, J = 7.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.3, 166.9, 140.8, 129.9, 128.8, 128.6, 52.0, 42.4, 40.8, 40.2, 14.2, 12.9.

2-(4-Cyanophenyl)-N,N-diethylacetamide, 3la¹¹

183.6 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.2 Hz, 2Hz, 2H), 7.38 (d, $J = 8.2 \text{ Hz}, 2\text{Hz}, 2\text{H$

3.74 (s, 2H), 3.40 (q, J = 7.1 Hz, 2H), 3.32 (q, J = 7.2 Hz, 2H), 1.15 (dt, J = 12.4, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 141.0, 132.2, 129.8, 118.8, 110.6, 42.4, 40.4, 40.3, 14.3, 12.8.

N,*N*-Diethyl-2-(4-fluorophenyl)acetamide, 3ma¹⁰

146.3 mg, 70% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (dd, J = 8.6, 5.4 Hz, 2H), 7.06–7.00 (m, 2H), 3.69 (s, 2H), 3.42 (q, J = 7.1 Hz, 2H), 3.34 (q, J = 7.1 Hz, 2H), 1.15 (td, J = 7.1, 2.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.0, 161.7 (d, J = 244.9 Hz), 131.1 (d, J = 2.8 Hz), 130.2 (d, J = 7.9 Hz), 115.4 (d, J = 21.3 Hz), 42.3, 40.2, 39.8, 14.2, 12.9.

2-(4-Chlorophenyl)-N,N-diethylacetamide, 3na¹¹

162.0 mg, 72% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.4 Hz, 2H), 7.19 (d, *J* = 8.4 Hz, 2H), 3.65 (s, 2H), 3.39 (q, *J* = 7.1 Hz, 2H), 3.30 (q, *J* = 7.1 Hz, 2H), 1.12 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 134.0, 132.6, 130.1, 128.7, 42.3, 40.2, 40.0, 14.3, 12.9.

2-([1,1'-Biphenyl]-4-yl)-N,N-diethylacetamide, 30a¹³

181.6 mg, 68% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.53 (m, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.37-7.31 (m, 3H), 3.74 (s, 2H), 3.41 (q, *J* = 7.1 Hz, 2H), 3.34 (q, *J* = 7.2 Hz, 2H), 1.14 (td, *J* = 7.1, 4.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 140.7, 139.5, 134.4, 129.0, 128.6, 127.2, 127.1, 126.9, 42.3, 40.3, 40.2, 14.1, 12.8.

N,*N*-Diethyl-2-(naphthalen-2-yl)acetamide, 3pa¹²

209.7 mg, 87% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.74 (m, 3H), 7.69 (s, 1H), 7.49-7.38 (m, 3H), 3.86 (s, 2H), 3.42 (q, *J* = 7.1 Hz, 2H), 3.33 (q, *J* = 7.1 Hz, 2H), 1.12 (dt, *J* = 14.0, 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 133.6, 133.0, 132.3, 128.2, 127.6, 127.6, 127.0, 126.0, 125.6, 42.4, 41.1, 40.2, 14.2, 12.9.

N,N-Diethyl-2-(na phthalen-1-yl)acetamide, 3qa

188.0 mg, 78% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.3 Hz, 1H), 7.88-7.84 (m, 1H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.55-7.46 (m, 2H), 7.45-7.39 (m, 1H), 7.33 (d, *J* = 6.9 Hz, 1H), 4.12 (s, 2H), 3.45 (q, *J* = 7.1 Hz, 2H), 3.32 (q, *J* = 7.1 Hz, 2H), 1.18 (t, *J* = 7.1 Hz, 3H), 1.12 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.2, 133.8, 132.1, 131.8, 128.8, 127.5, 126.2, 126.1, 125.7, 125.5, 123.4, 42.4, 40.2, 38.3, 14.2, 13.0. HRMS (ESI): [M+H⁺] calcd. for C₁₆H₂₀NO⁺, 242.1539; found, 242.1550.

2-(Benzo[d][1,3]dioxol-5-yl)-N,N-diethylacetamide, 3ra

173.9 mg, 74% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 6.79-6.65 (m, 3H), 5.93 (s, 2H), 3.60 (s, 2H), 3.38 (q, *J* = 7.1 Hz, 2H), 3.30 (q, *J* = 7.1 Hz, 2H), 1.12 (td, *J* = 7.1, 2.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.1, 147.8, 146.3, 129.1, 121.7, 109.2, 108.2, 100.9, 42.3, 40.4, 40.2, 14.2, 12.9. HRMS (ESI): [M+H⁺] calcd. for C₁₃H₁₈NO₃⁺, 236.1281; found, 236.1291.

N,N-Diethyl-2-(furan-2-yl)acetamide, 3sa

153.9 mg, 85% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 1.3 Hz, 1H), 6.34-6.31 (m, 1H), 6.19 (d, J = 3.1 Hz, 1H), 3.72 (s, 2H), 3.38 (dq, J = 11.9, 7.1 Hz, 4H), 1.14 (dd, J = 13.4, 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 149.3, 141.6, 110.5, 107.4, 42.4, 40.3, 33.9, 14.2, 12.9. HRMS (ESI): [M+H⁺] calcd. for C₁₀H₁₆NO_{2⁺}, 182.1176; found, 182.1185.

N,*N*-Diethyl-2-(thiophen-3-yl)acetamide, 3ta¹¹

159.6 mg, 81% yield, brown oil. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (dd, J = 4.9, 2.9 Hz, 1H), 7.07 (dd, J = 2.8, 1.0 Hz, 1H), 7.03 (dd, J = 4.9, 1.0 Hz, 1H), 3.69 (s, 2H), 3.39 (q, J = 7.1 Hz, 2H), 3.31 (q, J = 7.1 Hz, 2H), 1.12 (dd, J = 15.5, 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.8, 135.2, 128.2, 125.7, 121.7, 42.4, 40.2, 35.6, 14.2, 12.9.

2-Phenyl-*N*,*N*-dipropylacetamide, **3ab**¹⁴ 170.8 mg, 78% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.19(m, 5H), 3.69 (s, 2H), 3.28 (t, *J* = 7.6 Hz, 2H), 3.20-3.14 (m, 2H), 1.60-1.46 (m, 4H), 0.89-0.81 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.4, 135.4, 128.5, 128.4, 126.4, 49.7, 47.3, 40.8, 22.0, 20.6, 11.2, 11.0.

N,N-Dipentyl-2-phenylacetamide, 3ac

195.3 mg, 71% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.28 (m, 2H), 7.27-7.22 (m, 3H), 3.69 (s, 2H), 3.35-3.27 (m, 2H), 3.22-3.16 (m, 2H), 1.58-1.42 (m, 4H), 1.37-1.17 (m, 8H), 0.90-0.86 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 135.6, 128.7, 128.6, 126.6, 48.3, 45.8, 41.0, 29.2, 29.0, 28.7, 27.3, 22.5, 22.4, 14.0, 14.0. HRMS (ESI): [M+H⁺] calcd. for C₁₈H₃₀NO⁺, 276.2322; found, 276.2334.

N,*N*-Diisopropyl-2-phenylacetamide, 3ad¹⁵

181.8 mg, 83% yield, yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.18 (m, 5H), 4.00-3.89 (m, 1H), 3.67 (s, 2H), 3.35 (s, 1H), 1.41 (dd, *J* = 6.7, 2.0 Hz, 6H), 0.98 (dd, *J* = 6.4, 2.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 169.6, 135.6, 128.3, 128.2, 126.2, 49.1, 45.5, 43.2, 20.2.

6. References

1 J. M. Álvarez-Calero, Z. D. Jorge, G. M. Massanet, TiCl₄/Et₃N-Mediated Condensation of Acetate and Formate Esters: Direct Access to β -Alkoxy-and β -Aryloxyacrylates, *Org. Lett.*, 2016, **18**, 6344-6347.

2 F. Shirini, M. Seddighi, M. Mamaghani, Brönsted acidic ionic liquid supported on rice husk ash (RHA-[pmim] HSO₄): a highly efficient and reusable catalyst for the formylation of amines and alcohols, *RSC Adv.*, 2014, **4**, 50631-50638.

3 M. Lai, X. Qi, X.-F. Wu, Palladium-Catalyzed Carbonylative Synthesis of Benzyl Benzoates Employing Benzyl Formates as Both CO Surrogates and Benzyl Alcohol Sources, *Eur. J. Org. Chem.*, 2019, **2019**, 3776-3778.

4 S. Liang, P. Monsen, G. B. Hammond, B. Xu, Au/TiO₂ catalyzed reductive amination of aldehydes and ketones using formic acid as reductant, *Org. Chem. Front.*, 2016, **3**, 505-509.

5 X. Qi, M. Lai, X.-F. Wu, Carbonylative transformation of benzyl formates into alkyl 2-arylacetates in organic carbonates, *Org. Chem. Front.*, 2019, **6**, 3397-3400.

6 W. Y. Fang, G. F. Zha, H. L. Qin, Making Carbonyls of Amides Nucleophilic and Hydroxyls of Alcohols Electrophilic Mediated by SO_2F_2 for Synthesis of Esters from Amides, *Org. Lett.*, 2019, **21**, 8657-8661.

7 S. Taheri, H. Veisi, M. Hekmati, Application of polydopamine sulfamic acid-functionalized magnetic Fe_3O_4 nanoparticles (Fe_3O_4 @ PDA-SO_3H) as a heterogeneous and recyclable nanocatalyst for the formylation of alcohols and amines under solvent-free conditions, *New J. Chem.*, 2017, **41**, 5075-5081.

8 J. Mitra, X. Zhou, T. Rauchfuss, Pd/C-catalyzed reactions of HMF: decarbonylation, hydrogenation, and hydrogenolysis, *Green Chem.*, 2015, **17**, 307-313.

9 V. Rathore, M. Sattar, R. Kumar, S. Kumar, Synthesis of Unsymmetrical Diaryl Acetamides, Benzofurans, Benzophenones, and Xanthenes by Transition-Metal-Free Oxidative Cross-Coupling of sp³ and sp² C-H Bonds, *J. Org. Chem.*, 2016, **81**, 9206-9218.

10 B. Zheng, T. Jia, P. J. Walsh, A General and Practical Palladium-Catalyzed Direct α -Arylation of Amides with Aryl Halides, *Adv. Synth. Catal.*, 2014, **356**, 165-178.

11 T. Hama, D. A. Culkin, J. F. Hartwig, Palladium-catalyzed intermolecular α -arylation of zinc a mide enolates under mild conditions, *J. Am. Chem. Soc.*, 2006, **128**, 4976-4985.

12 B. Xiong, L. Zhu, X. Feng, J. Lei, T. Chen, Y. Zhou, S. F. Yin, Direct Amidation of Carboxylic Acids with Tertiary Amines: Amide Formation over Copper Catalysts through C-N Bond Cleavage, *Eur. J. Org. Chem.*, 2014, **2014**, 4244-4247.

13 S. M. Wang, C. Zhao, X. Zhang, H. L. Qin, Clickable coupling of carboxylic acids and amines at room temperature mediated by SO₂F₂: a significant breakthrough for the construction of amides and peptide linkages, *Org. Biomol. Chem.*, 2019, **17**, 4087-4101.

14 M. York, R. A. Evans, The use of polyhedral oligomeric silsesquioxane (POSS) as a soluble support for organic synthesis: A case study with a POSS-bound isocyanate scavenger reagent, *Tetrahedron Lett.*, 2010, **51**, 4677-4680.
15 T. C. Malig, D. Yu, J. E. Hein, A Revised Mechanism for the Kinugasa Reaction, *J. Am. Chem. Soc.*, 2018, **140**, 9167-9173.

7. Spectra of Benzyl Formates

-0.00

-160.6 133.6 133.6 133.6 125.1

8. Spectra of Arylacetamides

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

S51

