Dearomative [4 + 2] annulations between 3-nitroindoles and enals through oxidative N-heterocyclic carbene catalysis †

Hua Huang,^{a,#} Qing-Zhu Li,^{b,#} Yan-Qing Liu,^{a,b} Hai-Jun Leng,^{a,b} Peng Xiang,^b Qing-Song Dai,^b Xiang-Hong He,^a Wei Huang,^{a*} Jun-Long Li^{b*}

^a State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,

Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

^b Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan

Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China

Supplementary Information

Table of Contents

1. General Information	
2. Further Optimization Studies	S3
3. General Procedure for the Synthesis of Product 3	S6
4. General Procedure for the Synthesis of Product 8	S21
5. Synthetic Transformations of the Product	S31
6. Crystal Data and Structure Refinement for Product 3a	S33
7. References and Notes	S34
8. NMR of the Products	

1. General Information

General Procedures.

- All reactions were performed in oven-dried or flame-dried reaction vessels, modified Schlenk flasks, or round-bottom flasks. The flasks were fitted with Teflon screw caps and reactions were conducted under an atmosphere of argon if needed. All moisture and/or air sensitive solid compounds were manipulated inside normal desiccators. Flash column chromatography was performed using silica gel (40–63 µm, 230–400 mesh).
- Analytical thin layer chromatography (TLC) was performed on silica gel 60 F_{254} aluminum plates containing a 254 nm fluorescent indicator.
- Organic solutions were concentrated at 30-50 °C on rotary evaporators at ~10 torr followed by drying on vacuum pump at ~1 torr. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated.

Materials.

• Commercial reagents and solvents were obtained from Adamas-beta, Aldrich Chemical Co., Alfa Aesar, Macklin and Energy Chemical. The 3-nitroindoles substrates were prepared according to literature procedure^[1]. The 3-phenyl crotonaldehyde substrates were prepared according to literature procedure^[2]. The nitrothiophene were prepared according to literature procedure^[3].

Instrumentation.

- Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with *JEOL* 600MHz spectrometers. Proton chemical shifts are reported in parts per million (δ scale), and are referenced using residual protium in the NMR solvent (CDCl₃: δ 7.26 (CHCl₃) or DMSO-*d*⁶: δ 2.54 (DMSO)). Data are reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad singlet), coupling constant(s) (Hz), integration].
- Carbon-13 nuclear magnetic resonance (¹³C NMR) spectra were recorded with *JEOL* 600MHz spectrometers. Carbon chemical shifts are reported in parts per million (δ scale), and are referenced using the carbon resonances of the solvent (δ 77.00 (CHCl₃) or δ 39.52 (DMSO)). Data are reported as follows: chemical shift [multiplicity (if not singlet), assignment (C_q = fully substituted carbon)].
- High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2 using an electrospray (ESI) ionization source.

2. Further Optimization Studies

Table 1. Optimization of reaction conditions for racemic product 3	a	a
--	---	---

	NO ₂ N Ts 1a	CHC 2a	base, NHC N2 , oxidant solvent, Temp.	O ₂ N N _{Ts} 3a	Ph
entry	solvent	base	Temp. (°C)	oxidant	yield[%] ^b
1^c	Tol	K ₂ CO ₃	rt	DQ	26
2	DCM	K ₂ CO ₃	rt	DQ	23
3	THF	K_2CO_3	rt	DQ	39
4	MeCN	K ₂ CO ₃	rt	DQ	35
5	C ₆ H ₅ Cl	K_2CO_3	rt	DQ	36
6^d	Mesitylene	DABCO	rt	DQ	32
7	Mesitylene	NaOAc	rt	DQ	25
8	Mesitylene	PhCO ₂ Na	rt	DQ	22
9^d	Mesitylene	DBU	rt	DQ	trace
10	Mesitylene	K ₃ PO ₄	rt	CCl_4	trace
11	Mesitylene	K ₃ PO ₄	-10	DQ	60

^{*a*} Reactions condition: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), base (0.15 mmol, 1.5 equiv), oxidant (0.2 mmol, 2.0 equiv) and NHC **N** (0.02 mmol, 0.2 equiv) in 1.0 mL of solvent for 6 hours. ^{*b*} Isolated yield. ^{*c*} DQ: 4,4'-diphenoquinone. ^{*d*} DABCO: triethylenediamine; DBU: 1,8-diazabicyclo [5.4.0]-7-Undecene.

Table 2. Optimization of reaction conditions for asymmetric product $3a^a$.

entry	solvent	NHC N	base	yield[%] ^b	e.r. $(\%)^c$
1^d	THF	N8	K ₂ CO ₃	23	58:42
2	Tol	N8	K_2CO_3	28	37:63
3	DCM	N8	K_2CO_3	37	59:41
4	MeCN	N8	K_2CO_3	17	84:16
5	MeCN	N8	K_3PO_4	9	80:20
6	MeCN	N8	DBU	<5	-
7	MeCN	N8	TEA	18	87:13
8	MeCN	N8	DABCO	<5	-
9	MeCN	N8	NaOAc	12	80:20
10	DCM	N8	K_3PO_4	41	59:41
11	DCM	N8	TEA	23	63:37
12	DCM	N8	DABCO	18	65:35
13^d	DCM	N9	K_3PO_4	N.R.	-
14	DCM	N10	K_3PO_4	50	38:62
15	DCM	N11	K_3PO_4	trace	-
16	DCM	N12	K ₃ PO ₄	trace	-
17	DCM	N13	K ₃ PO ₄	13	51:49
18	DCM	N14	K ₃ PO ₄	26	62:38

^{*a*} Reactions condition: **1a** (0.1 mmol, 1.0 equiv), **2a** (0.2 mmol, 2.0 equiv), base (0.15 mmol, 1.5 equiv), oxidant (0.2 mmol, 2.0 equiv) and NHC **N** (0.02 mmol, 0.2 equiv) in 1.0 mL of solvent for 20 hours. ^{*b*} Isolated yield. ^{*c*} Determined by HPLC analysis on a chiral stationary phase.^{*d*} DQ: 4,4'-diphenoquinone; N.R.: no reaction; DDQ: 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone.

	NO ₂	+ 2a base, I solv	NHC N , oxidant vent, Temp.	s s	
	6a			 ОН 8а	
entry	solvent	base	Temp. (°C)	oxidant	yield[%] ^b
1	Tol	K_3PO_4	rt	DQ	52
2	DCM	K_3PO_4	rt	DQ	56
3	THF	K_3PO_4	rt	DQ	19
4	MeCN	K_3PO_4	rt	DQ	33
5	Mesitylene	K_3PO_4	rt	DQ	57
6	Mesitylene	K_2CO_3	rt	DQ	27
7^c	Mesitylene	TMG	rt	DQ	N.R. ^{<i>c</i>}
8	Mesitylene	DABCO	rt	DQ	14
9	Mesitylene	NaOAc	rt	DQ	<5
10	Mesitylene	DBU	rt	DQ	17
11	Mesitylene	TEA	rt	DQ	10
12	Mesitylene	K_3PO_4	0	DQ	59
13	Mesitylene	K ₃ PO ₄	40	DQ	43

Table 3. Optimization of reaction conditions for racemic product 8a^a.

^a Reactions condition: 6a (0.1 mmol, 1.0 equiv), 2a (0.2 mmol, 2.0 equiv), base (0.15 mmol, 1.5 equiv), oxidant (0.2 mmol, 2.0 equiv) and NHC N2 (0.02 mmol, 0.2 equiv) in 1.0 mL of solvent for 20 hours.^b Isolated yield.^c N.R.: no reaction

3. General Procedure for the Preparation of Product 3

3.1 General Procedure for the Synthesis of Product 3

To a flame-dried Schlenk tube were added 3-nitroindole **1** (0.1 mmol), enals **2** (0.2 mmol), K₃PO₄ (0.15 mmol), DQ (0.2 mmol) and NHC **N2** catalyst (0.02 mmol), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the mesitylene (1.0 mL) were added. The resulting suspension was stirred at 0 °C for 6 hours. Then the resulting reaction mixture was purified through column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1 to 20/1) to afford the corresponding products **3a–3x**, which was dried under vacuum and further analyzed by ¹H-NMR, ¹³C-NMR, HRMS.

Procedure for the asymmetric synthesis of product 3a

To a flame-dried Schlenk tube were added 3-nitroindole **1a** (0.1 mmol, 31.6 mg), enal **2a** (0.2 mmol, 29.2 mg), K₃PO₄ (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and NHC **N8** catalyst (0.02 mmol, 8.4 mg), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the MeCN (1.0 mL) were added. The resulting suspension was stirred at room temperature for 20 hours. Then the resulting reaction mixture was purified through column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1 to 20/1) to afford corresponding chiral product **3a**, which was dried under vacuum and further analyzed by ¹H NMR, ¹³C NMR, HRMS, chiral HPLC analysis, *etc*.

3.2 Procedure for the gram-scale synthesis of product 3a

To a flame-dried Schlenk tube were added 3-nitroindole **1a** (3.2 mmol, 1.01g), enal **2a** (6.4 mmol, 932.7 mg), K_3PO_4 (4.8 mmol, 1.02 g), DQ (6.4 mmol, 2.61 g) and NHC **N2** catalyst (0.64 mmol, 201.1 mg), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the mesitylene (30.0 mL) were added. The resulting suspension was stirred at 0 °C for 48 hours. Then the resulting reaction mixture was purified through column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1 to 20/1) to afford the corresponding product **3a** (870 mg, 59%).

To a flame-dried Schlenk tube were added 3-nitroindole **1a** (0.1 mmol, 31.6 mg), enals **2a** (0.2 mmol, 29.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the mesitylene (1.0 mL) were added. The resulting suspension was stirred at 0 °C for 6 hours to afford **3a** (38.2 mg, m.p. = 137 - 142 °C) in 83% yield as white solid.

Prepared according to the procedure for the asymmetric synthesis to afford **3a** (8.3 mg) in 18% yield. The enantiomeric ratio was determined to be 87:13 by chiral HPLC analysis on Chiralpak IC column (*n*-hexane/DCM/2-propanol, 0.8 mL/min), UV 254 nm, $t_{major} = 14.0 \text{ min}, t_{minor} = 17.5 \text{ min}; [\alpha]_D^{25} = +62.0$ (*c* = 0.05 in CH₂Cl₂).

NMR and HRMS data for the product **3a**:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 7.84 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.59 – 7.56 (m, 3H), 7.53 (d, J = 8.4 Hz, 2H), 7.51 – 7.49 (m, 1H), 7.48 – 7.46 (m, 2H), 7.28 – 7.25 (m, 1H), 7.18 (d, J = 7.8 Hz, 2H), 6.67 (d, J = 1.8 Hz, 1H), 5.54 (t, J = 8.4 Hz, 1H), 3.80 (dd, J = 17.4, 7.2 Hz, 1H), 2.89 (dd, J = 16.8, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.4, 145.2, 142.0, 136.5, 134.2, 133.3, 131.6, 130.0, 129.1, 128.5, 126.6, 125.7, 123.4, 122.8, 116.8, 96.6, 66.6, 33.5, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₂₀N₂O₅S [M+H]⁺: 461.1166, found: 461.1162.

2-(4-fluorophenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3b

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2b** (0.2 mmol, 32.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3b** (35.4 mg, m.p. 155 – 160 °C) in 74% yield as white solid.

NMR and HRMS data for the product **3b**:

¹**H NMR** (**600 MHz**, **CDCl**₃) δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.61 – 7.56 (m, 4H), 7.52 (d, J = 8.4 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.18 – 7.15 (m, 4H), 6.62 (d, J = 2.4 Hz, 1H), 5.52 (dd, J = 9.0, 7.8 Hz, 1H), 3.76 (dd, J = 17.4, 7.8 Hz, 1H), 2.87 (dd, J = 18.0, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.5, 164.7 (d, ${}^{1}J_{C-F} = 252.8$ Hz), 158.0, 145.3, 142.0, 134.2, 133.3, 132.7, 130.0, 128.8 (d, ${}^{3}J_{C-F} = 8.6$ Hz), 128.6, 126.6, 125.8, 123.2, 122.7, 116.9, 116.4 (d, ${}^{2}J_{C-F} = 21.6$ Hz), 96.5, 66.5, 33.6, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉FN₂O₅S [M+H]⁺: 479.1071, found: 479.1065.

2-(4-chlorophenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3c

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2c** (0.2 mmol, 36.1 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3c** (31.2 mg, m.p. = 141 – 145 °C) in 63% yield as white solid.

NMR and HRMS data for the product **3c**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, *J* = 7.8 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.53 – 7.52 (m, 4H), 7.45 (d, *J* = 9.0 Hz, 2H), 7.29 – 7.25 (m, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 2.4 Hz, 1H), 5.52 (t, *J* = 7.8 Hz, 1H), 3.75 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.87 (dd, *J* = 16.8, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.5, 157.8, 145.3, 142.0, 137.9, 134.9, 134.1, 133.3, 130.0, 129.5, 128.6, 127.9, 126.6, 125.8, 123.6, 122.7, 116.9, 96.6, 66.5, 33.4, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉ClN₂O₅S [M+H]⁺: 495.0776(³⁵Cl), 497.0746(³⁷Cl), found: 495.0772(³⁵Cl), 497.0743(³⁷Cl).

4a-nitro-2-(p-tolyl)-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3d

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2d** (0.2 mmol, 32.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in

1mL mesitylene at 0 °C for 6 h to afford **3d** (35.1 mg, m.p. = 137 - 140 °C) in 74% yield as white solid.

NMR and HRMS data for the product **3d**:

¹**H NMR (600 MHz, CDCl**₃) δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 7.28 – 7.25 (m, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 3.0 Hz, 1H), 5.53 (dd, J = 9.0, 7.2 Hz, 1H), 3.80 (dd, J = 17.4, 7.2 Hz, 1H), 2.85 (dd, J = 17.4, 9.0 Hz, 1H), 2.41 (s, 3H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.2, 145.2, 142.5, 142.0, 134.3, 133.5, 133.2, 130.0, 129.9, 128.5, 126.6, 125.7, 122.9, 122.4, 116.8, 96.7, 66.6, 33.4, 21.6, 21.5.

HRMS (ESI) m/z calcd for C₂₆H₂₂N₂O₅S [M+H]⁺: 475.1322, found: 475.1315.

2-(4-ethylphenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3e

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2e** (0.2 mmol, 34.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3e** (41.0 mg, m.p. 138 – 144 °C) in 84% yield as white solid.

NMR and HRMS data for the product **3e**:

¹**H NMR** (**600 MHz**, **CDCl**₃) δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.54 – 7.52 (m, 4H), 7.30 (d, J = 8.4 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.18 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 3.0 Hz, 1H), 5.53 (dd, J = 9.0, 6.6 Hz, 1H), 3.81 (dd, J = 17.4, 7.2 Hz, 1H), 2.85 (dd, J = 16.8, 9.0 Hz, 1H), 2.71 (q, J = 7.8 Hz, 2H),2.37 (s, 3H), 1.26 (t, J = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.3, 148.7, 145.2, 142.0, 134.3, 133.8, 133.2, 130.0, 128.7, 128.6, 126.8, 126.6, 125.7, 122.9, 122.5, 116.8, 96.7, 66.6, 33.4, 28.8, 21.6, 15.2.

HRMS (ESI) m/z calcd for C₂₇H₂₄N₂O₅S [M+Na]⁺: 511.1298, found: 511.1295.

4a-nitro-2-(4-propylphenyl)-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3f

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2f** (0.2 mmol, 37.7 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3f** (45.7 mg, m.p. = 57 – 60 °C) in 91% yield as white solid.

NMR and HRMS data for the product **3f**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.4 Hz, 1H), 7.56 (t, J = 8.4 Hz, 1H), 7.52 (t, J = 8.4 Hz, 4H), 7.28 – 7.25 (m, 3H), 7.18 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 3.0 Hz, 1H), 5.53 (dd, J = 9.0, 7.8 Hz, 1H), 3.81 (dd, J = 16.8, 7.2 Hz, 1H), 2.86 (dd, J = 16.8, 9.0 Hz, 1H), 2.64 (t, J = 7.2 Hz, 2H), 2.36 (s, 3H), 1.70 – 1.63 (m, 2H), 0.95 (t, J = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.3, 147.2, 145.2, 142.0, 134.3, 133.8, 133.2, 130.0, 129.3, 128.6, 126.7, 126.6, 125.7, 122.9, 122.5, 116.8, 96.7, 66.6, 37.8, 33.4, 24.2, 21.6, 13.7.

HRMS (**ESI**) *m/z* calcd for C₂₈H₂₆N₂O₅S [M+H]⁺: 503.1035, found: 503.1626.

2-(4-isopropylphenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3g

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2g** (0.2 mmol, 37.7 mg), K₃PO₄ (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3g** (39.7 mg, m.p. = 101 - 106 °C) in 79% yield as white solid.

NMR and HRMS data for the product **3g**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.54 – 7.52 (m, 4H), 7.32 (d, J = 8.4 Hz, 2H), 7.27 – 7.25 (m, 1H), 7.18 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 2.4 Hz, 1H), 5.52 (dd, J = 9.0, 7.8 Hz, 1H), 3.80 (dd, J = 17.4, 7.8 Hz, 1H), 2.99 – 2.94 (m, 1H), 2.86 (dd, J = 17.4, 9.0 Hz, 1H), 2.37 (s, 3H), 1.27 (d, J = 6.6 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.3, 153.3, 145.2, 142.0, 134.3, 134.0, 133.2, 133.0, 128.6, 127.3, 126.8, 126.6, 125.7, 122.9, 122.5, 116.8, 96.7, 66.7, 34.1, 33.4, 23.7, 21.6.

HRMS (ESI) m/z calcd for C₂₈H₂₆N₂O₅S [M+Na]⁺: 525.1455, found: 525.1462.

2-(4-isobutylphenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3h

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2h** (0.2 mmol, 40.5 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3h** (47.0 mg, m.p. = 65 – 70 °C) in 91% yield as white solid.

NMR and HRMS data for the product **3h**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 7.2 Hz, 1H), 7.56 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 8.4 Hz, 4H), 7.27 – 7.24 (m, 3H), 7.18 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 1.8 Hz, 1H), 5.53 (dd, J = 9.0, 7.8 Hz, 1H), 3.81 (dd, J = 17.4, 6.6 Hz, 1H), 2.86 (dd, J = 17.4, 9.0 Hz, 1H), 2.53 (d, J = 6.6 Hz, 2H), 2.37 (s, 3H), 1.93 – 1.86 (m, 1H), 0.91 (d, J = 7.2, 6H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.3, 146.3, 145.2, 142.0, 134.3, 133.8, 133.2, 130.0, 129.9, 128.6, 126.6, 126.5, 125.7, 122.9, 122.5, 116.8, 96.7, 66.7, 45.2, 33.4, 30.1, 22.3, 21.6.

HRMS (ESI) *m/z* calcd for C₂₉H₂₈N₂O₅S [M+Na]⁺: 539.1611, found: 539.1613.

2-(3-fluorophenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3i

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2i** (0.2 mmol, 32.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3i** (30.1 mg, m.p. = 149 – 154 °C) in 63% yield as white solid.

NMR and HRMS data for the product **3i**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.47 – 7.43 (m, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.28 – 7.25 (m,

2H), 7.22 – 7.20 (m, 1H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 3.0 Hz, 1H), 5.52 (dd, *J* = 9.0, 7.2 Hz, 1H), 3.75 (dd, *J* = 18.0, 7.8 Hz, 1H), 2.89 (dd, *J* = 17.4, 8.4 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 163.0 (d, ${}^{1}J_{C-F} = 247.1$ Hz), 157.7, 145.3, 142.1, 138.8, 134.2, 133.3, 130.8 (d, ${}^{3}J_{C-F} = 8.7$ Hz), 130.0, 128.6, 126.7, 125.8, 124.2, 122.6, 122.4, 118.4 (d, ${}^{2}J_{C-F} = 21.6$ Hz), 116.9, 113.6 (d, ${}^{2}J_{C-F} = 23.1$ Hz), 96.6, 66.5, 33.5, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉FN₂O₅S [M+H]⁺: 479.1071, found: 479.1074.

2-(3-bromophenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3j

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2j** (0.2 mmol, 45.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3j** (29.1 mg, m.p. = 155 – 160 °C) in 54% yield as white solid.

NMR and HRMS data for the product 3j:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.70 (s, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.60 – 7.56 (m, 2H), 7.53 – 7.50 (m, 3H), 7.36 – 7.34 (m, 1H), 7.28 – 7.26 (m, 1H), 7.18 (d, J = 7.8 Hz, 2H), 6.64 (s, 1H), 5.52 (t, J = 7.8 Hz, 1H), 3.73 (dd, J = 17.4, 7.8 Hz, 1H), 2.87 (dd, J = 16.8, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.5, 157.6, 145.3, 142.1, 138.7, 134.3, 134.2, 133.4, 130.6, 130.0, 129.6, 128.5, 126.6, 125.8, 125.2, 124.3, 123.4, 122.6, 116.9, 96.6, 66.5, 33.5, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉BrN₂O₅S [M+H]⁺: 539.0271(⁷⁹Br), 541.0250(⁸¹Br), found: 539.0274(⁷⁹Br), 541.0255(⁸¹Br).

4a-nitro-2-(m-tolyl)-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3k

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2k** (0.2 mmol, 32.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in

1mL mesitylene at 0 °C for 6 h to afford **3k** (34.2 mg, m.p. = 140 - 142 °C) in 72% yield as white solid.

NMR and HRMS data for the product **3k**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.57 (t, J = 8.4 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 6.0 Hz, 2H), 7.35 (t, J = 6.6 Hz, 1H), 7.31 (d, J = 7.2 Hz, 1H), 7.29 – 7.25 (m, 1H), 7.18 (d, J = 7.8 Hz, 2H), 6.66 (d, J = 2.4 Hz, 1H), 5.53 (dd, J = 9.0, 7.2 Hz, 1H), 3.80 (dd, J = 18.0, 7.2 Hz, 1H), 2.87 (dd, J = 17.4, 9.0 Hz, 1H), 2.41 (s, 3H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.6, 145.2, 142.0, 138.9, 136.5, 134.2, 133.2, 132.4, 130.0, 129.0, 128.5, 127.3, 126.6, 125.7, 123.8, 123.2, 122.8, 116.8, 96.7, 66.6, 33.6, 21.6, 21.4.

HRMS (ESI) m/z calcd for C₂₆H₂₂N₂O₅S [M+H]⁺: 475.1322, found: 475.1313.

2-(3-methoxyphenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 31

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2l** (0.2 mmol, 35.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3l** (31.9 mg, m.p. = 144 – 148 °C) in 65% yield as white solid.

NMR and HRMS data for the product **3l**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 8.4 Hz, 1H), 7.61 (d, J = 7.2 Hz, 1H), 7.58 (t, J = 78 Hz, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.38 (t, J = 7.8 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.19 – 7.16 (m, 3H), 7.06 (s, 1H), 7.04 (d, J = 7.8 Hz, 1H), 6.65 (s, 1H), 5.53 (t, J = 7.8 Hz, 1H), 3.85 (s, 3H), 3.78 (dd, J = 17.4, 6.6 Hz, 1H), 2.87 (dd, J = 16.8, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.7, 160.0, 159.4, 145.2, 142.0, 138.0, 134.2, 133.3, 130.2, 130.0, 128.5, 126.6, 125.7, 123.6, 122.8, 119.1, 117.3, 116.9, 111.9, 96.7, 66.6, 55.4, 33.6, 21.6.

HRMS (ESI) m/z calcd for $C_{26}H_{22}N_2O_6S^+$ [M+H]⁺: 491.1271, found: 491.1276.

2-(2-fluorophenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3m

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2m** (0.2 mmol, 32.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3m** (12.9 mg, m.p. = 127 – 130 °C) in 27% yield as white solid.

NMR and HRMS data for the product **3m**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 7.2 Hz, 1H), 7.59 – 7.57 (m, 1H), 7.53 (d, *J* = 9.0 Hz, 2H), 7.48 – 7.40 (m, 2H), 7.29 – 7.24 (m, 2H), 7.18 – 7.15 (m, 3H), 6.62 (d, *J* = 3.0 Hz, 1H), 5.51 (dd, *J* = 9.0, 6.6 Hz, 1H), 3.68 (dd, *J* = 17.4, 7.8 Hz, 1H), 2.94 (dd, *J* = 17.4, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 160.1 (d, ${}^{1}J_{C-F} = 252.8$ Hz), 155.8, 145.2, 142.1, 134.3, 133.3, 132.7 (d, ${}^{3}J_{C-F} = 8.6$ Hz), 130.0, 129.0, 128.6, 127.0 (d, ${}^{3}J_{C-F} = 4.4$ Hz), 126.6, 125.8, 125.5 (d, ${}^{2}J_{C-F} = 11.4$ Hz), 124.8, 122.5, 116.9, 116.7, 96.7, 66.7, 34.7, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉FN₂O₅S [M+Na]⁺: 501.0891, found: 501.0895.

<u>2-(3,4-dichlorophenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one</u> <u>3n</u>

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2n** (0.2 mmol, 43.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3n** (32.3 mg, m.p. = 131 – 136 °C) in 61% yield as white solid.

NMR and HRMS data for the product **3n**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.83 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 1.8 Hz, 1H), 7.58 (d, J = 7.8 Hz, 2H), 7.56 – 7.51 (m, 3H), 7.42 (d, J = 8.4 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.18 (d, J = 8.4 Hz, 2H), 6.63 (d, J = 2.4 Hz, 1H), 5.52 (dd, J = 9.0, 7.2 Hz, 1H), 3.71 (dd, J = 17.4, 7.2 Hz, 1H), 2.86 (dd, J = 17.4, 9.0 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.4, 156.4, 145.4, 142.0, 136.4, 135.9, 134.1, 133.7, 133.4, 131.1, 130.0, 128.5, 128.5, 126.6, 125.8, 125.6, 124.3, 122.5, 116.9, 96.5, 66.4, 33.3, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₈Cl₂N₂O₅S [M+H]⁺: 529.0386(³⁵Cl), 531.0357(³⁷Cl), found: 529.0395(³⁵Cl), 531.0360(³⁷Cl).

<u>2-(3,4-dimethylphenyl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one</u> <u>30</u>

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2o** (0.2 mmol, 34.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3o** (39.5 mg, m.p. = 140 – 143 °C) in 81% yield as white solid.

NMR and HRMS data for the product **30**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.82 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.56 – 7.54 (m, 1H), 7.52 (d, *J* = 7.8 Hz, 2H), 7.35 (s, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.25 – 7.24 (m, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 6.64 (d, *J* = 2.4 Hz, 1H), 5.52 (dd, *J* = 9.0, 7.2 Hz, 1H), 3.80 (dd, *J* = 17.4, 7.2 Hz, 1H), 2.83 (dd, *J* = 17.4, 9.0 Hz, 1H), 2.35 (s, 3H), 2.30 (s, 6H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 159.5, 145.2, 142.0, 141.2, 137.5, 134.3, 134.0, 133.2, 130.4, 130.0, 128.6, 127.8, 126.6, 125.7, 124.2, 123.0, 122.3, 116.8, 96.7, 66.7, 33.4, 21.6, 19.8.

HRMS (ESI) m/z calcd for C₂₇H₂₄N₂O₅S⁺ [M+Na]⁺: 511.1298, found: 511.1301.

2-(naphthalen-2-yl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3p

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2p** (0.2 mmol, 39.3 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in

1mL mesitylene at 0 °C for 6 h to afford **3p** (30.6 mg, m.p. = 160 - 165 °C) in 60% yield as white solid.

NMR and HRMS data for the product **3p**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.10 (s, 1H), 7.91 (t, *J* = 8.4 Hz, 2H), 7.86 (t, *J* = 7.8 Hz, 2H), 7.65 (t, *J* = 7.8 Hz, 2H), 7.60 – 7.55 (m, 5H), 7.28 (d, *J* = 7.8 Hz, 1H), 7.19 (d, *J* = 7.8 Hz, 2H), 6.82 (d, *J* = 3.0 Hz, 1H), 5.60 (t, *J* = 7.8 Hz, 1H), 3.97 (dd, *J* = 17.4, 7.2 Hz, 1H), 2.99 (dd, *J* = 16.8, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.6, 158.9, 145.3, 142.0, 134.6, 134.3, 133.6, 133.3, 132.9, 130.0, 129.1, 129.0, 128.6, 128.2, 127.7, 127.6, 127.2, 126.7, 125.7, 123.6, 122.9, 116.9, 96.7, 66.7, 33.5, 21.6.

HRMS (ESI) m/z calcd for C₂₉H₂₂N₂O₅S [M+H]⁺: 511.1322, found: 511.1316.

2-(furan-3-yl)-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3q

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2q** (0.2 mmol, 27.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3q** (40.5 mg, m.p. = 146 – 149 °C) in 90% yield as white solid.

NMR and HRMS data for the product **3q**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.80 (d, J = 7.8 Hz, 1H), 7.63 (s, 1H), 7.60 (d, J = 7.8 Hz, 1H) 7.56 – 7.52 (m, 3H), 7.26 – 7.23 (m, 1H), 7.17 (d, J = 7.8 Hz, 2H), 7.01 (d, J = 3.6 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 6.59 (dd, J = 3.6, 1.8 Hz, 1H), 5.50 (dd, J = 9.0, 7.2 Hz, 1H), 3.69 (dd, J = 17.4, 7.8 Hz, 1H), 2.71 (dd, J = 17.4, 9.0 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.2, 150.3, 147.1, 145.7, 145.2, 141.9, 134.2, 133.2, 130.0, 128.6, 126.6, 125.7, 123.0, 118.5, 116.8, 116.2, 113.3, 96.8, 66.2, 30.7, 21.6.

HRMS (ESI) m/z calcd for C₂₃H₁₈N₂O₆S [M+Na]⁺: 473.0778, found: 473.0770.

4a-nitro-2-(thiophen-3-yl)-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3r

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1a** (0.1 mmol, 31.6 mg), **2r** (0.2 mmol, 30.4 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3r** (39.2 mg, m.p. = 159 – 162 °C) in 84% yield as white solid.

NMR and HRMS data for the product **3r**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.81 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 6.0 Hz, 2H), 7.56 – 7.54 (m, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.25 – 7.24 (m, 1H), 7.18 – 7.17 (m, 3H), 6.63 (d, J = 1.8 Hz, 1Hz), 5.53 (dd, J = 9.0, 7.8 Hz, 1H), 3.84 (dd, J = 17.4, 7.2 Hz, 1H), 2.84 (dd, J = 17.4, 9.0Hz, 1H), 2.36 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.1, 151.8, 145.3, 141.9, 140.5, 134.2, 133.2, 131.7, 130.0, 130.0, 129.0, 128.5, 126.6, 125.7, 123.0, 120.2, 116.9, 96.7, 66.2, 33.2, 21.6.

HRMS (ESI) m/z calcd for C₂₃H₁₈N₂O₅S₂ [M+Na]⁺: 489.0549, found: 489.0553.

5-fluoro-4a-nitro-2-phenyl-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3s

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1b** (0.1 mmol, 33.4 mg), **2a** (0.2 mmol, 29.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3s** (31.6 mg, m.p. = 164 – 165 °C) in 66% yield as white solid.

NMR and HRMS data for the product **3s**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.62 (d, J = 8.4 Hz, 1H), 7.58 – 7.52 (m, 5H), 7.51 – 7.45 (m, 3H), 7.21 (d, J = 8.4 Hz, 2H), 6.93 (t, J = 9.0 Hz, 1H), 6.69 (d, J = 3.0 Hz, 1H), 6.60 (t, J = 6.6 Hz, 1H), 3.81 (dd, J = 18.0, 7.8 Hz, 1H), 2.95 (dd, J = 18.0, 9.0 Hz, 1H), 2.39 (s, 3H).

¹³**C NMR** (**150 MHz, CDCl**₃) δ (ppm): 183.2, 161.3 (d, ${}^{1}J_{C-F} = 260.0$ Hz), 158.4, 145.5, 143.7, 136.3, 135.3 (d, ${}^{3}J_{C-F} = 8.6$ Hz), 134.3, 131.6, 130.1, 129.1, 126.7, 126.6, 123.2, 113.0 (d, ${}^{2}J_{C-F} = 20.1$ Hz), 112.3, 110.5 (d, ${}^{2}J_{C-F} = 17.3$ Hz), 97.9, 67.4, 33.8, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉FN₂O₅S [M+H]⁺: 479.1071, found: 479.1069.

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1b** (0.1 mmol, 33.4 mg), **2e** (0.2 mmol, 34.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3t** (38.0 mg, m.p. = 152 - 155°C) in 75% yield as white solid.

NMR and HRMS data for the product **3t**:

¹**H NMR** (600 MHz, CDCl₃) δ (ppm): 7.61 (d, J = 7.8 Hz, 1H), 7.56 – 7.51 (m, 5H), 7.29 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 7.8 Hz, 2H), 6.93 (t, J = 9.0 Hz, 1H), 6.69 (d, J = 3.0 Hz, 1H), 5.59 (dd, J = 9.6, 7.2 Hz, 1H), 3.81 (dd, J = 18.0, 7.2 Hz, 1H), 2.92 (dd, J = 18.0, 7.8 Hz, 1H), 2.70 (q, J = 7.8 Hz, 2H), 2.38 (s, 3H), 1.26 (t, J = 7.8 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 183.1, 161.3 (d, ¹ $J_{C-F} = 258.5$ Hz), 158.3, 148.7, 145.5, 143.7, 135.2 (d, ³ $J_{C-F} = 8.7$ Hz), 134.3, 133.5, 130.1, 128.7, 126.7, 122.4, 113.0 (d, ² $J_{C-F} = 20.1$ Hz), 112.3, 110.7, 110.5, 98.0, 67.4, 33.7, 28.7, 21.6, 15.1. HRMS (ESI) m/z calcd for C₂₇H₂₃FN₂O₅S [M+Na]⁺: 529.1204, found: 529.1202.

6-fluoro-4a-nitro-2-phenyl-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3u

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1c** (0.1 mmol, 33.4 mg), **2a** (0.2 mmol, 29.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3u** (28.7 mg, m.p. = 159 – 164 °C) in 60% yield as white solid.

NMR and HRMS data for the product **3u**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.80 (dd, J = 9.0, 4.2 Hz, 1H), 7.60 – 7.59 (m, 2H), 7.53 – 7.46 (m, 5H), 7.34 (dd, J = 7.8, 3.0 Hz, 1H), 7.28 (dd, J = 8.4, 3.0 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 3.0 Hz, 1H), 5.52 (dd, J = 9.0, 7.2 Hz, 1H), 3.80 (dd, J = 17.4, 6.6 Hz, 1H), 2.89 (dd, J = 17.4, 9.0 Hz, 1H), 2.38 (s, 3H).

¹³**C NMR** (**150 MHz, CDCl**₃) δ (ppm): 184.1, 160.0 (d, ${}^{1}J_{C-F} = 245.6$ Hz), 159.6, 145.5, 138.2, 136.5, 133.9, 131.8, 130.1, 129.2, 126.7, 126.7, 124.6 (d, ${}^{3}J_{C-F} = 8.6$ Hz),

123.3, 120.5 (d, ${}^{2}J_{C-F} = 23.0$ Hz), 118.3 (d, ${}^{3}J_{C-F} = 7.2$ Hz), 115.6 (d, ${}^{2}J_{C-F} = 24.5$ Hz), 95.9, 66.9, 33.4, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉FN₂O₅S [M+H]⁺: 479.1071, found: 479.1067.

<u>2-(4-ethylphenyl)-6-fluoro-4a-nitro-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-o</u> <u>ne 3v</u>

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1c** (0.1 mmol, 33.4 mg), **2e** (0.2 mmol, 34.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3v** (42.0 mg, m.p. = 149 – 153°C) in 83% yield as white solid.

NMR and HRMS data for the product **3v**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 7.80 (dd, J = 9.0, 4.2 Hz, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.35 (dd, J = 7.8, 3.0 Hz, 1H), 7.30 (d, J = 7.8 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.19 (d, J = 7.8 Hz, 2H), 6.67 (d, J = 1.8 Hz, 1H), 5.51 (dd, J = 9.0, 7.2 Hz, 1H), 3.80 (dd, J = 17.4, 7.8 Hz, 1H), 2.85 (dd, J = 16.8, 9.0 Hz, 1H), 2.71 (q, J = 7.8 Hz, 2H), 2.38 (s, 3H), 1.27 (t, J = 7.8 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.0, 160.4 (d, ${}^{1}J_{C-F} = 244.1$ Hz), 159.5, 148.9, 145.4, 138.2, 133.9, 133.7, 130.1, 128.7, 126.8, 126.7, 124.7 (d, ${}^{3}J_{C-F} = 10.1$ Hz), 122.4, 120.4 (d, ${}^{2}J_{C-F} = 24.5$ Hz) 118.3 (d, ${}^{3}J_{C-F} = 7.2$ Hz), 115.6 (d, ${}^{2}J_{C-F} = 26.0$ Hz), 95.9, 66.9, 33.2, 28.8, 21.6, 15.2.

HRMS (ESI) *m/z* calcd for C₂₇H₂₃FN₂O₅S [M+Na]⁺: 529.1204, found: 529.1204.

6-bromo-4a-nitro-2-phenyl-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3w

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1d** (0.1 mmol, 39.5 mg), **2a** (0.2 mmol, 29.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3w** (34.0 mg, m.p. = 112 - 117 °C) in 63% yield as white solid.

NMR and HRMS data for the product **3w**:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 7.75 (d, J = 1.8 Hz, 1H), 7.71 (d, J = 7.8 Hz, 1H), 7.66 (dd, J = 9.0, 1.8 Hz, 1H), 7.59 – 7.58 (m, 2H), 7.53 – 7.51 (m, 3H), 7.49 – 7.47 (m, 2H), 7.20 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 3.0 Hz, 1H), 5.50 (dd, J = 9.0, 7.2 Hz, 1H), 3.80 (dd, J = 17.4, 6.6 Hz, 1H), 2.88 (dd, J = 17.4, 9.0 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.0, 159.5, 145.6, 141.1, 136.4, 136.2, 133.9, 131.8, 131.5, 130.2, 129.2, 126.7, 126.6, 124.6, 123.3, 118.5, 118.2, 95.8, 66.7, 33.4, 21.6.

HRMS (ESI) m/z calcd for C₂₅H₁₉BrN₂O₅S [M+H]⁺: 539.0271(⁷⁹Br), 541.0250(⁸¹Br), found: 539.0265(⁷⁹Br), 541.0251(⁸¹Br).

7-bromo-4a-nitro-2-phenyl-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 3x

The general procedure was the same as the synthesis of product **3a**. Reactions were performed with **1e** (0.1 mmol, 39.5 mg), **2a** (0.2 mmol, 29.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 6 h to afford **3x** (30.2 mg, m.p. = 134 – 137 °C) in 56% yield as white solid.

NMR and HRMS data for the product **3x**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.01 (s, 1H), 7.59 (d, J = 7.8 Hz, 2H), 7.55 (d, J = 7.8 Hz, 2H), 7.53 – 7.46 (m, 4H), 7.39 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 3.0 Hz, 1H), 5.49 (dd, J = 9.0, 6.6 Hz, 1H), 3.80 (dd, J = 17.4, 7.2 Hz, 1H), 2.88 (dd, J = 16.8, 9.0 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 184.1, 159.4, 145.6, 143.1, 136.4, 134.0, 131.8, 130.2, 129.7, 129.2, 129.0, 127.7, 126.7, 126.6, 123.3, 121.8, 119.9, 95.9, 66.8, 33.4, 21.7.

HRMS (ESI) m/z calcd for C₂₅H₁₉BrN₂O₅S [M+H]⁺: 539.0271(⁷⁹Br), 541.0250(⁸¹Br), found: 539.0265(⁷⁹Br), 541.0251(⁸¹Br).

4. General Procedure for the Synthesis of Product 8.

To a flame-dried Schlenk tube were added nitrothiophene **6** (0.1 mmol), enals **2** (0.2 mmol), K₃PO₄ (0.15 mmol), DQ (0.2 mmol) and NHC **N2** catalyst (0.02 mmol), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the mesitylene (1.0 mL) were added. The resulting suspension was stirred at 0 °C for 20 hours. Then the resulting reaction mixture was purified through column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1 to 20/1) to afford corresponding products **8a** – **8r**, which was dried under vacuum and further analyzed by ¹H-NMR, ¹³C-NMR, HRMS.

Procedure for the synthesis of product 8a

To a flame-dried Schlenk tube were added nitrothiophene **6a** (0.1 mmol, 18.0 mg), enal **2a** (0.2 mmol, 29.2 mg), K₃PO₄ (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and NHC **N2** catalyst (0.02 mmol, 6.3 mg), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the mesitylene (1.0 mL) were added. The resulting suspension was stirred at 0 °C for 20 hours. Then the resulting reaction mixture was purified through column chromatography on silica gel (petroleum ether / ethyl acetate = 30/1 to 20/1) to afford corresponding product **8a**, which was dried under vacuum and further analyzed by ¹H-NMR, ¹³C-NMR, HRMS.

2-phenyldibenzo[b,d]thiophen-4-ol 8a

To a flame-dried Schlenk tube were added nitrothiophene **6a** (0.1 mmol, 18.0 mg), enal **2a** (0.2 mmol, 29.2 mg), K₃PO₄ (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and NHC **N2** catalyst (0.02 mmol, 6.3 mg), after which the tube was evacuated and back-filled with argon three times. Subsequently, under the protection of Ar, the mesitylene (1.0 mL) were added. The resulting suspension was stirred at 0 °C for 20 hours to afford **8a** (16.3 mg, m.p. = 161 - 163 °C) in 59% yield as white solid. *NMR and HRMS data for the product* **8a**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.20 – 8.18 (m, 1H), 7.98 (s, 1H), 7.91 – 7.89 (m, 1H), 7.68 (d, *J* = 7.2 Hz, 2H), 7.50 – 7.47 (m, 4H), 7.40 – 7.38 (m, 1H), 7.13 (s, 1H), 5.64 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.6, 141.0, 140.0, 139.8, 138.2, 135.9, 128.9, 127.4, 127.4, 127.0, 125.7, 124.5, 123.2, 122.0, 113.1, 111.2.

HRMS (ESI) *m*/*z* calcd for C₁₈H₁₂OS [M+H]⁺: 277.0682, found: 277.0677.

2-(4-fluorophenyl)dibenzo[b,d]thiophen-4-ol 8b

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2b** (0.2 mmol, 32.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8b** (19.1 mg, m.p. = 187 – 188 °C) in 65% yield as white solid.

NMR and HRMS data for the product 8b:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.18 (d, J = 8.4 Hz, 1H), 7.92 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.62 (t, J = 6.6 Hz, 2H), 7.50 – 7.47 (m, 2H), 7.17 (t, J = 8.4 Hz, 2H), 7.07 (s, 1H), 5.36 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 162.6 (d, ${}^{1}J_{C-F} = 245.6$ Hz), 150.6, 140.0, 138.9, 138.4, 137.2, 135.9, 128.9 (d, ${}^{3}J_{C-F} = 7.2$ Hz), 127.1, 125.8, 124.6, 123.2, 122.0, 115.7 (d, ${}^{2}J_{C-F} = 21.6$ Hz), 113.1, 111.2.

HRMS (ESI) *m*/*z* calcd for C₁₈H₁₁FOS [M+H]⁺: 295.0587, found: 295.0583.

2-(4-chlorophenyl)dibenzo[b,d]thiophen-4-ol 8c

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2c** (0.2 mmol, 36.1 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8c** (17.1 mg, m.p. = 179 – 182 °C) in 55% yield as white solid.

NMR and HRMS data for the product 8c:

¹**H NMR (600 MHz, DMSO-***d*_{*b*}) δ (ppm): 10.73 (s, 1H) 8.48 – 8.46 (m, 1H), 8.19 (s, 1H), 8.07 – 8.06 (m, 1H), 7.82 – 7.81 (m, 2H), 7.61 – 7.59 (m, 2H), 7.57 – 7.54 (m, 2H), 7.23 (s, 1H).

¹³C-NMR (150 MHz, DMSO-*d*₆) δ (ppm): 152.6, 139.2, 139.1, 137.5, 137.5, 135.7, 132.2, 128.9, 128.6, 127.2, 125.4, 124.7, 123.3, 122.6, 111.3, 110.0.

HRMS (ESI) m/z calcd for C₁₈H₁₁ClOS [M+H]⁺: 311.0292(³⁵Cl), 313.0262(³⁷Cl), found: 311.0286(³⁵Cl), 313.0270(³⁷Cl).

2-(p-tolyl)dibenzo[b,d]thiophen-4-ol 8d

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2d** (0.2 mmol, 32.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8d** (21.5 mg, m.p. = 158 – 162 °C) in 74% yield as white solid.

NMR and HRMS data for the product 8d:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.19 – 8.18 (m, 1H), 7.96 (s, 1H), 7.91 – 7.89 (m, 1H), 7.58 (d, J = 7.2 Hz, 2H), 7.49 – 7.47 (m, 2H), 7.29 (d, J = 8.4 Hz, 2H), 7.11 (s, 1H), 5.36 (s, 1H), 2.43 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.5, 139.9, 139.7, 138.2, 138.1, 137.2, 135.9, 129.6, 128.9, 124.5, 123.1, 122.0, 112.9, 111.1, 21.1.

HRMS (ESI) *m*/*z* calcd for C₁₉H₁₄OS [M+H]⁺: 291.0838, found: 291.0836.

2-(p-tolyl)dibenzo[b,d]thiophen-4-ol 8e

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2e** (0.2 mmol, 34.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8e** (20.1 mg, m.p. = 170 - 173 °C) in 66% yield as white solid.

NMR and HRMS data for the product **8e**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.19 – 8.18 (m, 1H), 7.97 (s, 1H), 7.90 – 7.89 (m, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.47 (m, 2H), 7.32 (d, *J* = 7.2 Hz, 2H), 7.11 (s, 1H), 5.53 (s, 1H), 2.73 (q, *J* = 7.8 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm):150.5, 143.6, 139.9, 139.7, 138.3, 138.2, 135.9, 128.4, 127.2, 127.0, 125.4, 124.5, 123.1, 122.0, 112.9, 111.1, 28.5, 15.6.

HRMS (ESI) m/z calcd for C₂₀H₁₆OS [M+H]⁺: 305.0995, found: 305.0988.

2-(4-propylphenyl)dibenzo[b,d]thiophen-4-ol 8f

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2f** (0.2 mmol, 37.7 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8f** (23.3 mg, m.p. = 156 – 161 °C) in 73% yield as white solid.

NMR and HRMS data for the product 8f:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.19 – 8.17 (m, 1H), 7.97 (s, 1H), 7.90 – 7.88 (m, 1H), 7.59 (d, *J* = 7.8 Hz, 2H), 7.49 – 7.46 (m, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.12 (s, 1H), 5.40 (s, 1H), 2.67 (t, *J* = 7.8 Hz, 2H), 1.75 – 1.70 (m, 2H), 1.01 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.5, 142.1, 139.9, 139.7, 138.3, 138.2, 136.0, 129.0, 127.1, 126.9, 125.4, 124.5, 123.1, 122.0, 112.9, 111.2, 37.7, 24.6, 13.9. HRMS (ESI) m/z calcd for C₂₁H₁₈OS [M+H]⁺: 319.1151, found: 319.1145.

2-(4-isopropylphenyl)dibenzo[b,d]thiophen-4-ol 8g

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2g** (0.2 mmol, 37.7 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8g** (23.9 mg, m.p. = 169 – 171 °C) in 75% yield as white solid.

NMR and HRMS data for the product 8g:

¹**H** NMR (600 MHz, CDCl₃) δ (ppm): 8.19 – 8.17 (m, 1H), 7.97 (s, 1H), 7.90 – 7.89 (m, 1H), 7.61 (d, J = 7.8 Hz, 2H), 7.50 – 7.46 (m, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.12 (s, 1H), 5.51 (s, 1H), 3.01 – 2.97 (m, 1H), 1.32 (d, J = 7.2 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.5, 148.2, 139.9, 139.7, 138.4, 138.2, 135.9, 127.2, 127.0, 125.4, 124.5, 123.2, 122.0, 113.0, 111.2, 33.8, 24.0.

HRMS (ESI) m/z calcd for C₂₁H₁₈OS [M+H]⁺: 319.1151, found: 319.1150.

2-(4-isobutylphenyl)dibenzo[b,d]thiophen-4-ol 8h

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2h** (0.2 mmol, 40.5 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8h** (24.3 mg, m.p. = 138 – 141 °C) in 73% yield as white solid.

NMR and HRMS data for the product **8h**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.17 – 8.16 (m, 1H), 7.96 (s, 1H), 7.88 – 7.87 (m, 1H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.48 – 7.44 (m, 2H), 7.24 (d, *J* = 6.6 Hz, 2H), 7.10 (s, 1H), 5.51 (s, 1H), 2.53 (d, *J* = 7.2 Hz, 2H), 1.94 – 1.90 (m, 1H), 0.95 (d, *J* = 7.2 Hz, 6H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.5, 141.1, 139.9, 139.7, 138.3, 138.2, 135.9, 129.6, 127.0, 126.9, 125.4, 124.5, 123.1, 122.0, 112.9, 111.1, 45.1, 30.2, 22.4. HRMS (ESI) m/z calcd for C₂₂H₂₀OS [M+H]⁺: 333.1308, found: 333.1303.

2-(2-fluorophenyl)dibenzo[b,d]thiophen-4-ol 8i

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2m** (0.2 mmol, 32.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8i** (18.2 mg, m.p. = 154 – 155 °C) in 62% yield as white solid.

NMR and HRMS data for the product **8i**:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.16 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.55 (t, J = 7.2 Hz, 1H), 7.50 – 7.46 (m, 2H), 7.38 – 7.34 (m, 1H), 7.27 – 7.24 (m, 1H), 7.20 (t, J = 9.0 Hz, 1H), 7.11 (s, 1H), 5.39 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 159.7 (d, ¹*J*_{C-F} = 247.1 Hz), 150.2, 139.9, 137.9, 135.8, 133.8, 130.9, 129.1 (d, ³*J*_{C-F} = 8.6 Hz), 128.7 (d, ³*J*_{C-F} = 12.9 Hz), 127.0, 126.1, 124.5, 124.4, 123.1, 122.0, 116.2 (d, ²*J*_{C-F} = 21.6 Hz), 115.0, 112.8.

HRMS (ESI) *m/z* calcd for C₁₈H₁₁FOS [M+H]⁺: 295.0587, found: 295.0585

2-(o-tolyl)dibenzo[b,d]thiophen-4-ol 8j

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2q** (0.2 mmol, 32.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h Prepared according to the general procedure to afford **8j** (12.2 mg, m.p. = 157 – 160 °C) in 42% yield as white solid.

NMR and HRMS data for the product 8j :

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.11 (d, *J* = 6.6 Hz, 1H), 7.91 (d, *J* = 7.2 Hz, 1H), 7.72 (s, 1H), 7.49 – 7.45 (m, 2H), 7.33 – 7.28 (m, 4H), 6.86 (s, 1H), 5.52 (s, 1H), 2.33 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 149.9, 141.5, 140.1, 139.9, 137.7, 135.9, 135.5, 130.4, 129.9, 127.5, 127.0, 125.8, 125.1, 124.5, 123.1, 122.0, 115.2, 113.2, 20.5.

HRMS (ESI) *m*/*z* calcd for C₁₉H₁₄OS [M+H]⁺: 291.0838, found: 291.0833.

2-(3-fluorophenyl)dibenzo[b,d]thiophen-4-ol 8k

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2i** (0.2 mmol, 32.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8k** (17.4 mg, m.p. = 170 - 174 °C) in 59% yield as white solid.

NMR and HRMS data for the product 8k:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.20 – 8.17 (m, 1H), 7.95 (s, 1H), 7.92 – 7.89 (m, 1H), 7.51 – 7.48 (m, 2H), 7.46 – 7.42 (m, 2H), 7.38 – 7.36 (m, 1H), 7.09 – 7.06 (m, 2H), 5.55 (s, 1H).

¹³**C NMR (150 MHz, CDCl₃)** δ (ppm): 163.2 (d, ¹*J*_{C-F} = 244.2 Hz), 150.6, 143.2 (d, ³*J*_{C-F} = 7.2 Hz), 140.0, 138.3 (d, ²*J*_{C-F} = 17.3 Hz), 135.8, 130.4, 130.3, 127.2, 126.3, 124.6, 123.2, 123.0, 122.0, 114.3 (d, ³*J*_{C-F} = 7.2 Hz), 114.1 (d, ³*J*_{C-F} = 7.2 Hz), 113.1, 111.0.

HRMS (ESI) *m*/*z* calcd for C₁₈H₁₁FOS [M+H]⁺: 295.0587, found: 295.0579.

2-(3-chlorophenyl)dibenzo[b,d]thiophen-4-ol 81

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2r** (0.2 mmol, 36.1 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8l** (15.9 mg, m.p. = 177 – 178 °C) in 51% yield as white solid.

NMR and HRMS data for the product 81:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.20 – 8.19 (m, 1H), 7.94 (s, 1H), 7.91 – 7.89 (m, 1H), 7.66 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.41 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 9.0 Hz, 1H), 7.08 (s, 1H), 5.52 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.7, 142.8, 140.0, 138.3, 138.3, 135.8, 134.7, 130.1, 127.5, 127.4, 127.2, 126.3, 125.5, 124.6, 123.2, 122.1, 113.1, 111.0.

HRMS (ESI) m/z calcd for C₁₈H₁₁ClOS [M+H]⁺: 311.0292(³⁵Cl), 313.0262(³⁷Cl), found: 311.0283(³⁵Cl), 313.0266(³⁷Cl).

2-(m-tolyl)dibenzo[b,d]thiophen-4-ol 8m

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2k** (0.2 mmol, 32.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8m** (21.8 mg, m.p. = 160 - 163 °C) in 75% yield as white solid.

NMR and HRMS data for the product 8m:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.20 – 8.18 (m, 1H), 7.97 (s, 1H), 7.90 – 7.88 (m, 1H), 7.49 – 7.46 (m, 4H), 7.37 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.12 (s, 1H), 5.74 (s, 1H), 2.46 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm):150.5, 140.9, 139.9, 139.9, 138.5, 138.2, 135.9, 128.7, 128.1, 127.0, 125.6, 124.4, 123.1, 122.0, 113.0, 111.2, 21.5.

HRMS (ESI) *m*/*z* calcd for C₁₉H₁₄OS [M+H]⁺: 291.0838, found: 291.0831.

2-(3-methoxyphenyl)dibenzo[b,d]thiophen-4-ol 8n

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2l** (0.2 mmol, 35.2 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8n** (12.3 mg, m.p. = 152 - 157 °C) in 40% yield as white solid.

NMR and HRMS data for the product 8n:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.19 – 8.17 (m, 1H), 7.96 (s, 1H), 7.90 – 7.89 (m, 1H), 7.50 – 7.46 (m, 2H), 7.40 (t, *J* = 7.8 Hz, 1H), 7.27 – 7.25 (m, 1H), 7.21 (s, 1H), 7.11 (s, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.60 (s, 1H), 3.90 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 160.0, 150.5, 142.5, 139.9, 139.6, 138.2, 135.9, 129.9, 127.0, 125.8, 124.5, 123.2, 122.0, 119.9, 113.2, 113.1, 112.7, 111.2, 55.4.

HRMS (ESI) m/z calcd for C₁₉H₁₄O₂S [M+H]⁺: 307.0786, found: 307.0786.

2-(3,4-dichlorophenyl)dibenzo[b,d]thiophen-4-ol 80

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2n** (0.2 mmol, 43.0 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8o** (18.0 mg, m.p. = 168 – 172 °C) in 52% yield as white solid.

NMR and HRMS data for the product 80:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.19 – 8.18 (m, 1H), 7.91 – 7.89 (m, 1H), 7.75 (s, 1H), 7.54 – 7.47 (m, 5H), 7.05 (s, 1H), 5.68 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.8, 141.0, 140.0, 138.4, 137.1, 135.7, 132.9, 131.5, 130.7, 129.1, 127.3, 126.6, 126.5, 124.6, 123.2, 122.1, 112.9, 110.7.

HRMS (ESI) m/z calcd for C₁₈H₁₀Cl₂OS [M+H]⁺: 344.9902(³⁵Cl), 346.9873(³⁷Cl), found: 344.9905(³⁵Cl), 346.9867(³⁷Cl).

2-(3,4-dimethylphenyl)dibenzo[b,d]thiophen-4-ol 8p

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2o** (0.2 mmol, 34.8 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8p** (25.3 mg, m.p. 173 – 174 °C) in 83% yield as white solid.

NMR and HRMS data for the product 8p:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.20 – 8.19 (m, 1H), 7.96 (s, 1H), 7.90 – 7.89 (m, 1H), 7.48 – 7.47 (m, 3H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.11 (s, 1H), 5.33 (s, 1H), 2.38 (s, 3H), 2.34 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.5, 140.0, 139.9, 138.6, 138.2, 137.0, 136.0, 135.9, 130.2, 128.6, 126.9, 125.4, 124.7, 124.5, 123.1, 122.0, 113.0, 111.2, 19.9, 19.4.

HRMS (ESI) *m*/*z* calcd for C₂₀H₁₆OS [M+H]⁺: 305.0995, found: 305.0991.

2-(naphthalen-1-yl)dibenzo[b,d]thiophen-4-ol 8q

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2s** (0.2 mmol, 39.3 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8q** (20.2 mg, m.p. = 180 - 183 °C) in 62% yield as white solid.

NMR and HRMS data for the product 8q:

¹**H NMR** (**600 MHz**, **DMSO-***d*₆) δ (ppm): 10.71 (s, 1H), 8.38 (d, J = 7.2 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.97 (s, 1H), 7.94 (d, J = 7.8 Hz, 1H), 7.67 – 7.64 (m, 1H), 7.61 – 7.50 (m, 5H), 7.08 (s, 1H),. ¹³**C-NMR** (**150 MHz**, **DMSO-***d*₆) δ (ppm): 151.9, 139.7, 139.1, 138.4, 137.0, 135.7, 133.4, 131.1, 128.3, 127.6, 127.1, 127.0, 126.4, 125.9, 125.5, 124.9, 124.7, 123.2, 122.5, 114.2, 113.3.

HRMS (ESI) m/z calcd for C₂₂H₁₄OS [M+Na]⁺: 349.0658, found: 349.0661.

2-(naphthalen-2-yl)dibenzo[b,d]thiophen-4-ol 8r

The general procedure was the same as the synthesis of product **6a**. Reactions were performed with **6a** (0.1 mmol, 18.0 mg), **2p** (0.2 mmol, 39.3 mg), K_3PO_4 (0.15 mmol, 31.8 mg), DQ (0.2 mmol, 81.7 mg) and **NHC N2** catalyst (0.02 mmol, 6.3 mg) in 1mL mesitylene at 0 °C for 20 h to afford **8r** (13.1 mg, m.p. = 178 - 183 °C) in 40% yield as white solid.

NMR and HRMS data for the product 8r:

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.25 – 8.22 (m, 1H), 8.12 (s, 1H), 8.10 (s, 1H), 7.96 – 7.89 (m, 4H), 7.83 (d, *J* = 8.4 Hz, 1H), 7.55 – 7.48 (m, 4H), 7.25 (s, 1H), 5.60 (s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 150.7, 140.0, 139.7, 138.3, 138.3, 135.9, 133.7, 132.7, 128.6, 128.2, 127.7, 127.1, 126.4, 126.0, 126.0, 125.8, 125.7, 124.5, 123.2, 122.1, 113.4, 111.4.

HRMS (ESI) m/z calcd for C₂₂H₁₄OS [M+Na]⁺: 349.0658, found: 349.0651.

5. Synthetic Transformations of the Product 3a

Procedure for the synthesis of compound 4.

A glass tube was charged with compound **3a** (46.0 mg, 0.1 mmol) and Pd(C) (4.6 mg, 10 %) in a mixed solution of EtOH (0.5 mL) and Et₂O (0.5 mL) under hydrogen (1 atm). The mixture was stirred at room temperature for 12 h. When the reaction was complete, the reaction mixture was concentrated under reduced pressure and the resulting crude material was purified by flash chromatography on silica gel (petroleum ether / ethyl acetate = 20:1) to give compound **4**, which was dried under vacuum and further analyzed by ¹H-NMR, ¹³C-HMR, HRMS.

2-phenyl-9-tosyl-1,4a,9,9a-tetrahydro-4H-carbazol-4-one 4

Purification of the crude product via column chromatography delivered **4** (36.6 mg, m.p. = 107 - 112 °C) in 88% yield as white solid.

¹**H NMR (600 MHz, CDCl**₃) δ (ppm): 7.72 (d, J = 8.4 Hz, 1H), 7.55 (d, J = 8.4 Hz, 2H), 7.52 (d, J = 8.4 Hz, 2H), 7.43 – 7.40 (m, 3H), 7.34 – 7.30 (m, 2H), 7.18 (d, J = 7.8 Hz, 2H), 7.15 – 7.12 (m, 1H), 6.49 (d, J = 3.0 Hz, 1H), 4.97 – 4.92 (m, 1H), 3.54 (d, J = 7.8 Hz, 1H), 3.33 (dd, J = 17.4, 6.6 Hz, 1H), 2.95 (dd, J = 17.4, 9.0 Hz, 1H), 2.37 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 193.9, 157.7, 144.5, 140.8, 137.6, 135.3, 130.7, 129.9, 129.1, 129.0, 128.9, 126.7, 126.4, 126.0, 125.0, 124.9, 118.3, 61.8, 49.5, 31.5, 21.6.

HRMS (ESI) *m/z* calcd for C₂₅H₂₁NO₃S [M+Na]⁺: 438.1134, found: 438.1135.

Procedure for the synthesis of compound 5.

A glass tube was charged with compound 3a (46.0 mg, 0.1 mmol) in 2.0 mL DCM. Subsequently, DBU (22.8 mg, 0.15 mmol) was added. The mixture was stirred at room temperature for 12 hours. When the reaction was complete, the mixture was directly purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to give the desired product **5**, which was dried under vacuum and further analyzed by 1H-NMR, 13C-HMR, HRMS.

2-phenyl-9-tosyl-9H-carbazol-4-ol 5

Purification of the crude product via column chromatography delivered 5 (26.5 mg, m.p. = 116 - 120 °C) in 64% yield as white solid

¹**H NMR (600 MHz, CDCl₃)** δ (ppm): 8.32 (d, *J* = 7.8 Hz, 1H), 8.20 (d, *J* = 7.2 Hz, 1H), 8.18 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.67 (d, *J* = 8.4 Hz, 2H), 7.49 – 7.45 (m, 3H), 7.40 – 7.36 (m, 2H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.96 (s, 1H), 5.80 (s, 1H), 2.25 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ (ppm): 151.5, 144.9, 141.6, 140.9, 140.5, 138.1, 134.9, 129.7, 128.8, 127.7, 127.5, 126.5, 125.3, 124.1, 123.0, 114.6, 113.8, 109.3, 106.4, 21.5.

HRMS (ESI) m/z calcd for C₂₅H₁₉NO₃S [M+H]⁺: 414.1158, found: 414.1158.

6. Crystal Data and Structure Refinement for Product 3a

Identification code 3a $C_{25}H_{20}N_2O_5S$ Empirical formula 460.49 Formula weight Temperature/K 296.26(10) Crystal system monoclinic Space group $P2_1/c$ a/Å 13.0391(5) b/Å 15.7147(5) c/Å 11.2733(4) $\alpha/^{\circ}$ 90 β/° 110.729(4) γ/° 90 Volume/Å³ 2160.43(15) Ζ 4 $\rho_{calc}g/cm^3$ 1.416 μ/mm^{-1} 1.684 F(000) 960.0 Crystal size/mm³ $0.5 \times 0.3 \times 0.3$ Radiation CuKa ($\lambda = 1.54184$) 2Θ range for data collection/° 9.18 to 143.328 Index ranges $-15 \le h \le 15, -13 \le k \le 19, -12 \le l \le 13$ Reflections collected 11854 4162 [$R_{int} = 0.0369$, $R_{sigma} = 0.0325$] Independent reflections Data/restraints/parameters 4162/0/299 Goodness-of-fit on F² 1.035 Final R indexes $[I \ge 2\sigma(I)]$ $R_1 = 0.0689, wR_2 = 0.1744$ $R_1 = 0.0747, wR_2 = 0.1842$ Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ 0.42/-0.63

7. References and Notes

[1] E. T. Pelkey, G. W. Gribble, Synthesis and Reactions of N-Protected 3-Nitroindoles, *Synthesis*, 1999, **7**, 1117.

[2] R. J. Rahaim, Jr. and R. E. Maleczka, C–O Hydrogenolysis Catalyzed by Pd-PMHS Nanoparticles in the Company of Chloroarenes, *Org. Lett.*, 2011, **13**, 584.

[3] Q. Cheng, H. Zhang, W. Yue and S. You, Palladium-Catalyzed Highly Stereoselective Dearomative [3 + 2] Cycloaddition of Nitrobenzofurans, *Chem.*, 2017, **3**, 428.

8. NMR of the Products

No.	Ret. Time	Height	Area	Rel. Area	
1	13.493	22662.666	504967.219	49.8233	
2	16.772	17938.270	508549.781	50.1767	
Total		40600.936	1013517.000	100.0000	

No.	Ret. Time	Height	Area	Rel. Area
1	13.957	248847.234	6078955.500	86.5543
2	17.502	30758.172	944329.188	13.4457
Total		279605.406	7023284.688	100.0000

S37

S66

S71

