Photocatalyst-, metal- and additive- free, direct C-H arylation of quinoxalin-2(1*H*)-ones with aryl acyl peroxides

induced by visible light †

Jun Xu,^{a,‡} Hongdou Zhang,^{a,‡} Jianming Zhao,^a Zhigang Ni,^a Pengfei Zhang,^a Bing-Feng Shi,^b and Wanmei Li^{a,*}

^a College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University,

Hangzhou 311121, China. E-mail: liwanmei@hznu.edu.cn

^b Department of Chemistry, Zhejiang University, Hangzhou, 310027, China

‡ Jun Xu and Hongdou Zhang contributed equally.

Supporting Information

Table of contents

1.	Ineffective transformations	2
2.	Fluorescence quenching experiment	2
3.	Computational details	3
4.	References	10
5.	Copies of NMR spectra	11
6.	GC-MS spectra of benzoic acid	53

1. Ineffective transformations

2. Fluorescence quenching experiment

The fluorescence quenching experiments were carried out, and the results were shown in Figure 1. In a typical experiment, to a 2.0 mL solution of 1-methyl-3-phenylquinoxalin-2(1H)-one (**3aa**) in acetone (2.0×10⁻⁶ mol/L) was added different amounts of BPO (**2a**). It was found that the emission intensity of 1-methyl-3-phenylquinoxalin-2(1H)-one has been decreased along with the increasing of the amount of BPO.

3. Computational details

Geometry optimizations of all stationary points were carried out at the M06-2X¹/6-311G(d,p) level. Vibrational frequency calculations were performed to identify that each of the species was a local minimum (no imaginary frequencies) or a transition state (one imaginary frequency). To confirm that each transition state connects the desired reactants and products along the reaction path, intrinsic reaction coordinate (IRC) calculations were conducted at the same level of theory. In order to obtain more accurate energies, single point energies were computed at the M06-2X/def2-TZVPP² level. The solvent effect of acetone was considered with SMD solvation model.³ All calculations were performed using the Gaussian 16 C.01 package.⁴

Α			
0	-2.43321200	-1.02213500	-0.00066200
С	-1.70639000	-0.00001000	0.00002800
0	-2.43321100	1.02214100	0.00076400
С	-0.23964800	0.00000100	0.00000200
С	0.44465300	-1.21516900	0.00039000
С	0.44465000	1.21516900	-0.00041100
С	1.83266100	-1.21103400	0.00037900
Н	-0.10763500	-2.14842400	0.00073800
С	1.83266100	1.21103300	-0.00045000
Н	-0.10763000	2.14842900	-0.00074100
С	2.52234200	0.00000100	-0.00004700
Н	2.37739600	-2.14713500	0.00071100
Н	2.37739300	2.14713600	-0.00080200
Н	3.60628800	0.00000100	-0.00006600
TS _{A-B}			
0	2.35326600	1.14239500	0.12358000
С	2.03821200	0.00000000	0.00000000
0	2.35326600	-1.14239500	-0.12358100
С	0.17224700	0.00000000	0.00000000
С	-0.44883400	1.22653600	-0.05050000
С	-0.44883500	-1.22653600	0.05050000
С	-1.84559600	1.20736700	-0.05268500
Н	0.10859900	2.15228400	-0.08315500
С	-1.84559600	-1.20736700	0.05268500
Н	0.10859900	-2.15228400	0.08315500
С	-2.53538500	0.00000000	0.00000000
Н	-2.38392000	2.14733500	-0.09181100
Н	-2.38392100	-2.14733400	0.09181100
Н	-3.61888400	0.00000000	0.00000000

Cartesian coordinates of the optimized structures

B

С	0.00000000	1.39583600	0.00000000
С	-1.22265200	0.76868800	0.00015300
С	1.22265200	0.76868800	-0.00015300
С	-1.21077300	-0.63038900	-0.00016000
Н	-2.15636800	1.32011100	0.00013500
С	1.21077300	-0.63038900	0.00016000
Н	2.15636800	1.32011100	-0.00013500
С	0.00000000	-1.32010400	0.00000000
Н	-2.14849700	-1.17517100	-0.00011600
Н	2.14849700	-1.17517100	0.00011600
Н	0.00000000	-2.40387000	0.00000000
Int1			
С	2.08780000	-2.22172400	-1.10108700
С	1.57419300	-0.99137300	-1.47487000
С	1.41640900	0.01820400	-0.51398700
С	1.78528200	-0.23912800	0.82139800
С	2.30605500	-1.49011300	1.17339300
С	2.45715300	-2.48135000	0.22339700
Н	2.20082200	-2.99369400	-1.85331900
Н	1.28965400	-0.81968000	-2.50387400
Н	2.57649000	-1.64651500	2.21132200
Н	2.85678300	-3.44918600	0.49937900
С	1.10481500	1.83676200	1.49148900
С	0.64661600	2.20826200	0.13487600
Н	0.96126500	2.60237500	2.24972600
Ν	1.62890700	0.71577100	1.81785000
Ν	0.87414700	1.25566300	-0.83370400
С	0.42208800	1.52270500	-2.19563400
Н	1.25093900	1.40335400	-2.89411900
Н	-0.38392900	0.83435400	-2.46038300
Н	0.05667700	2.54398100	-2.23068300
0	0.11018200	3.28113000	-0.08812600
С	-1.50374100	-0.10626000	0.57122400
С	-1.54553900	-1.47266800	0.42544800
С	-2.56198500	0.75427600	0.40236800
С	-2.78499400	-2.02814700	0.09103900
Н	-0.66533100	-2.09408500	0.56045000
С	-3.79096700	0.17598000	0.06584000
Н	-2.45761200	1.82770000	0.51998700
С	-3.89636100	-1.20534700	-0.08556900
Н	-2.87698100	-3.10146900	-0.03382300
Н	-4.66044200	0.80789900	-0.07798400
Н	-4.85211600	-1.64459600	-0.34664200

TS _{1-C}			
С	3.43434200	-1.11032000	-1.19908100
С	2.67835700	0.04859500	-1.25897800
С	1.74219900	0.32518000	-0.25262300
С	1.58181200	-0.58769300	0.81402400
С	2.36579600	-1.75101500	0.85141200
С	3.28535200	-2.01625300	-0.14298100
Н	4.15200200	-1.31099900	-1.98578700
Н	2.81411600	0.73453300	-2.08399700
Н	2.21752900	-2.42651000	1.68624500
Н	3.88486900	-2.91743500	-0.10853000
С	-0.10730200	0.65915500	1.72052100
С	0.04953400	1.74139400	0.71807900
Н	-0.79605400	0.88872800	2.52891700
Ν	0.66500400	-0.37863100	1.82608700
Ν	0.98019900	1.48836000	-0.26353700
С	1.16895600	2.47515900	-1.32286700
Н	2.20133900	2.82771800	-1.32656000
Н	0.93030600	2.03159000	-2.29099900
Н	0.49907600	3.30595600	-1.12620500
0	-0.61196800	2.76486400	0.77110400
С	-1.89164200	-0.17809900	0.43223000
С	-1.85869500	-1.54579400	0.31282600
С	-2.84677700	0.65697200	-0.09517900
С	-2.89568200	-2.13314800	-0.41916700
Н	-1.07228600	-2.14236200	0.76358700
С	-3.87497500	0.04566100	-0.82046800
Н	-2.80265000	1.73262200	0.03695800
С	-3.89442900	-1.33885700	-0.97908700
Н	-2.91939800	-3.20973300	-0.54754200
Н	-4.65611500	0.65583200	-1.26055200
Н	-4.69449000	-1.80258500	-1.54418000
С			
С	-3.87757300	-0.86095500	0.71035000
С	-3.05504500	0.25217400	0.84410200
С	-1.85556100	0.33389600	0.13930700
С	-1.45985700	-0.75232500	-0.72119900
С	-2.34916700	-1.86606700	-0.84051200
С	-3.52702400	-1.92230200	-0.14145100
Н	-4.80385300	-0.90039800	1.27053900
Н	-3.35967800	1.05691100	1.49899200
Н	-2.03620700	-2.66577400	-1.50158100

-4.18291800	-2.77862300	-0.23920300
0.61772500	0.28576300	-1.19638700
0.13304600	1.55051800	-0.49413500
0.97722700	0.61610800	-2.17566900
-0.32202400	-0.78976000	-1.39856600
-1.04401300	1.46082000	0.21606900
-1.48278100	2.61685800	0.99375600
-2.43815200	2.98432900	0.61489600
-1.58897600	2.34063400	2.04391500
-0.72945500	3.39136700	0.89502800
0.79329400	2.56644700	-0.53869300
1.83281100	-0.21716200	-0.41589500
1.65937700	-1.01966300	0.71149400
3.11742300	0.15844900	-0.80353000
2.76415500	-1.44258700	1.44397000
0.66162900	-1.31721300	1.01719300
4.22165900	-0.26583900	-0.07045500
3.25070200	0.78271700	-1.68033400
4.04703800	-1.06724400	1.05417500
2.62262600	-2.06703900	2.31863400
5.21833800	0.02685600	-0.38045500
4.90726800	-1.39994200	1.62350900
	$\begin{array}{c} -4.18291800\\ 0.61772500\\ 0.13304600\\ 0.97722700\\ -0.32202400\\ -1.04401300\\ -1.48278100\\ -2.43815200\\ -1.58897600\\ -0.72945500\\ 0.79329400\\ 1.83281100\\ 1.65937700\\ 3.11742300\\ 2.76415500\\ 0.66162900\\ 4.22165900\\ 3.25070200\\ 4.04703800\\ 2.62262600\\ 5.21833800\\ 4.90726800\end{array}$	-4.18291800 -2.77862300 0.61772500 0.28576300 0.13304600 1.55051800 0.97722700 0.61610800 -0.32202400 -0.78976000 -1.04401300 1.46082000 -1.48278100 2.61685800 -2.43815200 2.98432900 -1.58897600 2.34063400 -0.72945500 3.39136700 0.79329400 2.56644700 1.83281100 -0.21716200 1.65937700 -1.01966300 3.11742300 0.15844900 2.76415500 -1.31721300 4.22165900 -0.26583900 3.25070200 0.78271700 4.04703800 -1.06724400 2.62262600 -2.06703900 5.21833800 0.02685600 4.90726800 -1.39994200

Int2

С	-2.47496800	-1.88490400	-1.67042800
С	-1.56785100	-2.38107800	-0.78027900
С	-0.44817500	-1.59296300	-0.41279800
С	-0.30531200	-0.24720200	-1.02340000
С	-1.30721900	0.19049600	-1.99269600
С	-2.35301500	-0.59525500	-2.29986500
Н	-3.33582600	-2.49565100	-1.92041200
Н	-1.71698000	-3.35690400	-0.34218500
Н	-1.15752600	1.17511500	-2.41830300
Н	-3.11211300	-0.27814900	-3.00266600
С	1.59625400	0.21327900	0.27236200
С	1.52169800	-1.17078500	0.88327100
Н	1.29450600	0.89120500	1.09757700
Ν	0.66120100	0.54688100	-0.76113600
Ν	0.48947400	-2.03787100	0.41083500
С	0.40576700	-3.37641300	1.00413700
Н	-0.44695600	-3.41114200	1.68429800
Н	0.29530600	-4.11692200	0.21385200
Н	1.32210900	-3.55627200	1.55462300

Ο	2.28967000	-1.55291700	1.71797500	
С	3.01793400	0.54410700	-0.14387300	
С	3.42942900	0.34009100	-1.45967500	
С	3.92333400	1.02399800	0.80027700	
С	4.74146300	0.61869900	-1.82971300	
Н	2.72551300	-0.03391700	-2.19555300	
С	5.23529900	1.29818700	0.42887400	
Н	3.59798400	1.18483400	1.82192000	
С	5.64597100	1.09664500	-0.88617700	
Н	5.05629900	0.46104100	-2.85478200	
Н	5.93512900	1.67507700	1.16565600	
Н	6.66777600	1.31395400	-1.17504600	
Ο	-0.80313500	-0.18014300	2.04534000	
С	-1.11649900	0.96812100	1.65321900	
Ο	-0.40926400	1.99485400	1.69990900	
С	-2.47910000	1.09416600	0.96600200	
С	-3.38887400	0.03859600	0.99896600	
С	-2.79528300	2.24304600	0.23873500	
С	-4.59448800	0.12254400	0.30834200	
Η	-3.12868900	-0.85012600	1.56206300	
С	-3.99534100	2.32934600	-0.46042100	
Н	-2.07874400	3.05626400	0.22560000	
С	-4.89621100	1.26632600	-0.42927200	
Н	-5.29798400	-0.70264300	0.34014000	
Н	-4.22948200	3.22155700	-1.03073700	
Н	-5.83209100	1.33098100	-0.97326800	
TS ₂₋₃				
С	-2.70634300	1.63229500	1.73520900	
С	-1.80222100	2.24425900	0.91482800	
С	-0.59136600	1.58140100	0.59888200	
С	-0.34518900	0.25074600	1.18829300	
С	-1.34230500	-0.31477700	2.08623200	
С	-2.48766100	0.34583000	2.33866900	
Н	-3.63834900	2.14525800	1.94671800	
Н	-2.02117400	3.21440100	0.49424800	
Н	-1.11617900	-1.29032700	2.49915800	
Н	-3.25078500	-0.07221000	2.98192700	
С	1.60326500	-0.00897100	-0.07422900	
С	1.51304100	1.41886100	-0.55025700	
Н	1.17553100	-0.59801800	-0.95960800	
Ν	0.71195500	-0.43567800	0.94299200	
Ν	0.34034300	2.13478600	-0.16892900	
С	0.13105300	3.45897700	-0.76135300	

Н	-0.71351400	3.39831700	-1.44940900
Н	-0.06526400	4.18659200	0.02437300
Н	1.03016600	3.73072000	-1.30198700
0	2.33789700	1.94003400	-1.24609700
С	3.02387200	-0.47291800	0.14680300
С	3.52542000	-0.61883200	1.43867900
С	3.84122600	-0.74869400	-0.94877500
С	4.83744100	-1.04007800	1.63350700
Н	2.88938600	-0.40535700	2.29089300
С	5.15270300	-1.16611100	-0.75198100
Н	3.44582000	-0.64143800	-1.95273600
С	5.65287100	-1.31309500	0.53947400
Н	5.22182900	-1.15277200	2.64067000
Н	5.78215000	-1.38312300	-1.60719300
Н	6.67447200	-1.64159000	0.69196600
0	-0.84448700	0.50229400	-2.10253500
С	-0.99269800	-0.67079000	-1.71173800
0	-0.11032200	-1.56789500	-1.70163700
С	-2.34288500	-1.03990000	-1.09744900
С	-3.40082200	-0.13278500	-1.12636900
С	-2.50896500	-2.26189500	-0.44349000
С	-4.60871400	-0.43727500	-0.50481800
Н	-3.25605900	0.81517900	-1.63158100
С	-3.71254600	-2.56876100	0.18346400
Н	-1.67630000	-2.95543700	-0.42734000
С	-4.76411600	-1.65473800	0.15577300
Н	-5.42835000	0.27259700	-0.53276100
Н	-3.83183800	-3.51711500	0.69560700
Н	-5.70269700	-1.89138900	0.64463200

Int3

С	-3.76453600	1.44340700	1.15673600
С	-2.87558900	2.06508600	0.29516800
С	-1.52146700	1.70190200	0.31626300
С	-1.08452200	0.70920200	1.21171300
С	-2.00473300	0.08651700	2.06487500
С	-3.33702900	0.45163800	2.04605300
Н	-4.80815600	1.73481300	1.13476400
Н	-3.23021200	2.82910100	-0.38293400
Н	-1.63243000	-0.68270300	2.73201300
Н	-4.04584600	-0.02935100	2.70883300
С	1.10218100	0.86752900	0.48446900
С	0.75813200	1.97917600	-0.45643100

Н	2.31219400	-1.95399200	-1.06674400
Ν	0.23504400	0.30085600	1.25036600
Ν	-0.58407500	2.28873200	-0.52142000
С	-1.01157500	3.31905300	-1.46530500
Н	-1.78479300	2.91613200	-2.12073900
Н	-1.40310700	4.18359300	-0.92613200
Н	-0.14946300	3.61560400	-2.05283300
0	1.59402100	2.57410400	-1.11272900
С	2.50705300	0.39046500	0.55727300
С	2.96781800	-0.13893500	1.76778900
С	3.35146500	0.37170400	-0.55995100
С	4.24465200	-0.67579400	1.86407400
Н	2.31303300	-0.12658100	2.63061200
С	4.62410100	-0.18302300	-0.46234700
Н	3.00255400	0.76656400	-1.50253400
С	5.07585300	-0.70407700	0.74696300
Н	4.59117700	-1.07413300	2.81060100
Н	5.26476600	-0.20509300	-1.33643600
Н	6.07121300	-1.12711700	0.81940800
0	0.80080300	-0.66052700	-2.19986200
С	0.51542900	-1.52371100	-1.40531900
0	1.43700500	-2.28168700	-0.80125700
С	-0.87542100	-1.85270900	-0.99209600
С	-1.91605000	-1.10246900	-1.54132300
С	-1.14527800	-2.85692600	-0.06208700
С	-3.22766800	-1.36261000	-1.16667700
Н	-1.68367900	-0.31818900	-2.25292400
С	-2.46032600	-3.11751100	0.30626600
Н	-0.33173700	-3.42679400	0.36873200
С	-3.49949300	-2.37309400	-0.24596300
Н	-4.03732600	-0.77887400	-1.58883500
Н	-2.67387900	-3.89880700	1.02601500
Н	-4.52369400	-2.57533600	0.04644200

[1,2]-H shift

We have also calculated the [1,2]-H shift step and the structure of the transition state is shown in the following figure. The reaction barrier is calculated to be 36.9 kcal/mol.

Cartesian	coordinates	of the	transition	state

С	-4.33804200	-0.79431800	0.13678600
С	-3.56199200	0.35821700	0.20042700
С	-2.17669600	0.28734900	0.03298200
С	-1.57616800	-0.97061000	-0.19379900
С	-2.37807100	-2.11730200	-0.26312900
С	-3.74980300	-2.03640700	-0.09672900
Н	-5.41019600	-0.71517400	0.27092100
Н	-4.04227200	1.30963700	0.38204800
Н	-1.88372100	-3.06507000	-0.44317500
Н	-4.35805200	-2.93112000	-0.14747400
С	0.59783400	0.05744500	-0.29400200
С	0.00529600	1.38757000	-0.01897400
Н	0.20490100	-0.50388500	-1.37207200
Ν	-0.20881000	-1.13122900	-0.34275500
Ν	-1.37475600	1.43504500	0.07794100
С	-2.00632200	2.72983000	0.30624800
Н	-2.74852100	2.92274100	-0.47037300
Н	-2.49316600	2.74801600	1.28385000
Н	-1.23628000	3.49278700	0.27120700
0	0.68718700	2.38920700	0.10511300
С	2.04679800	-0.16964000	-0.11000700
С	2.48700700	-1.36725000	0.46892300
С	3.00164400	0.76702100	-0.53396800
С	3.84477600	-1.61615500	0.63322100
Н	1.75635700	-2.09690300	0.79465100
С	4.35618300	0.51069400	-0.36770000
Н	2.67775300	1.69026400	-0.99339200
С	4.78548000	-0.67912800	0.21706700
Н	4.16698000	-2.54428900	1.09151200
Н	5.08205300	1.24266700	-0.70324600
Н	5.84409000	-0.87394700	0.34426100

4. References

1. Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215-241.

2. F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297-3305.

3. A. V. Marenich, C. J. Cramer and D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B*, 2009, **113**, 6378-6396.

4. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian 16 Rev. C.01., Wallingford, CT, 2016.

5. Copies of NMR spectra

3aa ¹H NMR

3ab ¹H NMR

3ab ¹³C NMR

3ac ¹H NMR

3ac ¹³C NMR

3ad ¹H NMR

3ad ¹³C NMR

3ae ¹H NMR

3ae ¹³C NMR

3af ¹H NMR

3af ¹³C NMR

3ag ¹H NMR

3ag ¹³C NMR

-44.79

3ah ¹H NMR

3ah ¹³C NMR

3ai ¹H NMR

3ai ¹³C NMR

3aj ¹H NMR

3aj ¹³C NMR

3ak ¹H NMR

3ak ¹³C NMR

3al ¹H NMR

3al ¹³C NMR

3am ¹H NMR

3am ¹³C NMR

3an ¹H NMR

3an ¹³C NMR

3ao ¹H NMR

3ao ¹³C NMR

3ap ¹H NMR

3ap ¹³C NMR

3aq ¹H NMR

3aq ¹³C NMR

3ar ¹H NMR

3ar ¹³C NMR

-29.45

3as ¹³C NMR

3at ¹³C NMR

-29.51

3au ¹³C NMR

3av ¹H NMR

3av ¹³C NMR

91	8 2 1 2 28
4 0	~ 0 0 0 0 04
12 12	5 5 5 5 5 E

29.29 20.68 19.24

3aw ¹H NMR

-29.85

3aw ¹³C NMR

54.41	54.38	54.28	50.63	50.51	45.90	35.51	30.72	30.64	30.57	30.56	29.54	29.32	28.16	17.94	b2:23	02.11
1	7	-	T.	-	-	-	-	-	-	-	-	Tr	5	2	1	5

3ax ¹³C NMR

3ba ¹H NMR

3ba ¹³C NMR

3bb ¹H NMR

3bb ¹³C NMR

3bc ¹H NMR

3bc ¹³C NMR

3bd ¹H NMR

3bd ¹³C NMR

3be ¹H NMR

3be ¹³C NMR

3bf ¹H NMR

3bf ¹³C NMR

3bg ¹H NMR

3bg ¹³C NMR

3bh ¹H NMR

3bh ¹³C NMR

3bi ¹H NMR

3bi ¹³C NMR

3bj ¹H NMR

3bj ¹³C NMR

3bk ¹H NMR

3bk ¹³C NMR

3bl ¹³C NMR

3bm ¹³C NMR

3bn ¹H NMR

3bn ¹³C NMR

3bo ¹H NMR

3bo ¹³C NMR

3bp ¹H NMR

3bp ¹³C NMR

3bq ¹H NMR

3bq ¹³C NMR

7¹H NMR

7¹³C NMR

6. GC-MS spectra of benzoic acid

