Supporting Information

Fushuai Li,^{+,a} Xuling Chen,^{+,b} Shuai Liang,^a Zhenyan Shi,^a Pengfei Li,^{*,b} and Wenjun Li^{*,a}

^a Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.

^b Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

A: General Information and Starting Materials	2
B: General Procedure	2
C: Characterization Data	3
D: Large Scale Reaction	14
E: Control Experiment	15
F: Synthetic Transformations	16
G: ESI-MS Studies	19
H: Possible Transition State	21
I: HPLC Analysis	22
J: NMR Analysis	45
K: X-Ray Analysis Data	71
L: Reference	73

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker ACF300 spectrometer (500 MHz and 125 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent ($(CD_3)_2SO: \delta 2.50$). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent ($(CD_3)_2SO: \delta 39.50$). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T mass spectrometer. Optical Rotation was measured on a Rudolph Autopol I polarimeter. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

Starting Materials. All solvents, inorganic reagents and 3-oxo-*N*-phenylbutanamide were from commercial sources and used without purification unless otherwise noted. The propargylic alcohols were prepared following the literature procedures.¹

B: General Procedure

To a solution of $PhCF_3$ (0.3 mL) was added propargylic alcohol **1** (0.06 mmol), 3-oxo-*N*-phenylbutanamide **2** (0.05 mmol) and **CPA-4** (0.0005 mmol). The reaction mixture was stirred at room temperature for 36 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product **3**.

C: Characterization Data

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)p henyl)adamantane-1-carboxamide (3aa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 29.1 mg, 94% yield. mp 107.3-110.7 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.96 (s, 1H), 9.03 (s, 1H), 7.59-7.56 (m, 4H), 7.51 (s, 4H), 7.43-7.42 (m, 3H), 7.37-7.33 (m, 4H), 7.25-7.20 (m, 3H), 7.03-7.00 (m, 1H), 5.07 (s, 1H), 2.15 (s, 3H), 1.96 (s, 3H), 1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.0, 176.3, 165.1, 144.0, 138.8, 138.4,

138.1, 131.7, 129.2, 129.1, 128.9, 127.3, 127.2, 127.1, 124.2, 123.5, 120.2, 120.1, 119.8, 92.4, 87.9, 68.0, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+(C_{42}H_{40}O_3N_2Na)$ requires m/z 643.2931, found m/z 643.2938. The enantiomeric excess was determined to be 95% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 80:20, 1.0 mL/min]: 7.9 min (minor), 13.6 min (major). $[\alpha]^{22}_{D} = 69.00$ (c = 1.00, CH₂Cl₂).

N-(4-((3*R*,4*S*)-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl)-3,5-bis(trifluoromethyl)benzamide (3ba)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 8:1. Yellow solid, 33.1 mg, 95% yield. mp 113.3-116.0 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 10.61 (s, 1H), 9.99 (s, 1H), 8.53 (s, 2H), 8.31 (s, 1H), 7.66-7.64 (m, 6H), 7.61-7.60 (m, 2H), 7.45-7.37 (m, 7H), 7.26-7.23 (m, 3H), 7.03-7.00 (m, 1H), 5.12 (s, 1H), 2.20 (s, 3H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.9, 165.1, 162.9, 143.8, 139.5, 138.8, 137.5, 137.4, 131.8, 131.0, 130.8, 129.2,

129.1 (2), 128.9, 128.8, 127.7, 127.3, 127.2, 124.6, 124.2, 123.5, 122.4, 120.7, 119.9, 92.3, 88.0, 68.0, 50.5, 30.4. ¹⁹F NMR ((CD₃)₂SO, 470 MHz): δ (ppm) -61.34. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₂₈O₃N₂F₆Na) requires m/z 721.1896, found m/z 721.1900. The enantiomeric excess was determined to be 94% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 90:10, 1.0 mL/min]: 8.9 min (minor), 11.3 min (major). [α]²²_D = 47.90 (c = 1.00, CH₂Cl₂).

(2S,3R)-2-acetyl-N,3,5-triphenyl-3-(4-pivalamidophenyl)pent-4-ynamide (3ca)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 23.5 mg, 87% yield. mp 149.8-152.4 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.94 (s, 1H), 9.11 (s, 1H), 7.59-7.56 (m, 4H), 7.51 (s, 4H), 7.43-7.42 (m, 3H), 7.37-7.33 (m, 4H), 7.25-7.20 (m, 3H), 7.03-7.00 (m, 1H), 5.06 (s, 1H), 2.16 (s, 3H), 1.14 (s, 9H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.0, 176.8, 165.1, 144.0, 138.8, 138.4, 138.2, 131.7, 129.2, 129.1, 128.9, 127.4, 127.3, 127.2,

124.2, 123.5, 120.2, 119.8, 110.0, 92.4, 87.9, 68.0, 50.4, 30.4, 29.5, 27.6. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₃₆H₃₄O₃N₂Na) requires m/z 565.2462, found m/z 565.2466. The enantiomeric excess was determined to be 84% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 4.9 min (minor), 6.3 min (major). $[\alpha]^{22}_{D} = 78.00$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(4-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ea)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 24.3 mg, 76% yield. mp 119.6-120.3 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.94 (s, 1H), 9.02 (s, 1H), 7.63-7.56 (m, 4H), 7.52-7.48 (m, 4H), 7.36-7.33 (m, 4H), 7.29-7.22 (m, 5H), 7.03-7.00 (m, 1H), 5.06 (s, 1H), 2.14 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.9, 176.3, 165.0, 162.3 (d, *J* = 985.0 Hz), 143.9, 138.8, 138.2 (d, *J* = 140.0 Hz), 134.0, 133.9, 129.2,

128.9, 127.3, 127.2, 127.1, 124.2, 120.2, 120.0, 119.8, 116.3 (d, J = 85.0 Hz), 92.1, 86.8, 67.9, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. ¹⁹F NMR ((CD₃)₂SO, 470 MHz): δ (ppm) -111.15. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₃₉O₃N₂FNa) requires m/z 661.2837, found m/z 661.2839. The enantiomeric excess was determined to be 88% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.5 min (minor), 9.0 min (major). [α]²²_D = 51.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(4-chlorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3fa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 26.9 mg, 82% yield. mp 110.4-112.4 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.95 (s, 1H), 9.03 (s, 1H), 7.59-7.55 (m, 4H), 7.52-7.47 (m, 6H), 7.36-7.33 (m, 4H), 7.25-7.20 (m, 3H), 7.03-7.00 (m, 1H)), 5.07 (s, 1H), 2.14 (s, 3H), 1.95 (s, 3H), 1.81 (s, 6H), 1.64 (s, 6H).

¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.8, 176.3, 165.0, 143.8, 138.8, 138.4, 138.0, 133.5, 130.1, 129.3 (2), 129.2, 128. 9, 127.3, 127.1, 124.2, 122.4, 120.2, 119.9, 93.7, 86.7, 67.9, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₂H₃₉O₃N₂ClNa) requires m/z 677.2541, found m/z 677.2543. The enantiomeric excess was determined to be 82% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 70:30, 1.0 mL/min]: 5.6 min (minor), 9.0 min (major). [α]²²_D = 40.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5S)-*N*-(4-((3*R*,4*S*)-1-(4-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ga)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 26.7 mg, 76% yield. mp 119.2-121.0 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.95 (s, 1H), 9.02 (s, 1H), 7.64-7.62 (m, 2H), 7.56-7.55 (m, 2H), 7.52-7.47 (m, 6H), 7.36-7.33 (m, 4H), 7.25-7.20 (m, 3H), 7.03-7.00 (m, 1H), 5.07 (s, 1H), 2.14 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.64 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.7, 176.3, 165.0, 143.8, 138.8, 138.4, 137.9, 133.7, 132.2 (2), 129.2, 128.9, 127.3, 127.1, 124.2, 122.8, 122.1, 120.2, 119.9, 93.9,

86.7, 67.9, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₂H₃₉O₃N₂BrNa) requires m/z 721.2036, found m/z 721.2039. The enantiomeric excess was determined to be 87% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.9 min (minor), 9.4 min (major). $[\alpha]^{22}_{D} = 39.60$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(4-methoxyphenyl)-5-oxo-3-phenyl-4-(phenylcarbamo yl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ha)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 5:1. Yellow solid, 22.5 mg, 69% yield. mp 126.0-127.1 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.91 (s, 1H), 9.03 (s, 1H), 7.59 (d, *J* = 5.0 Hz, 2H), 7.51-7.49 (m, 5H), 7.37-7.35 (m, 2H), 7.34-7.32 (m, 2H), 7.25-7.19 (m, 4H), 7.03-7.01 (m, 1H), 7.00-6.98 (m, 2H), 5.04 (s, 1H), 3.78 (s, 3H), 2.14 (s, 3H), 1.96 (s, 3H), 1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.2, 176.3, 165.1, 159.7, 144.1, 138.8,

138.7, 138.3, 133.2, 129.2, 128.8, 127.3, 127.2, 124.1, 120.2, 119.8, 115.4, 114.7, 114.6, 90.6, 87.9, 68.1, 55.7, 50.5, 41.3, 38.7, 36.4, 30.5, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₃H₄₂O₄N₂Na) requires m/z 673.3042, found m/z 673.3023. The enantiomeric excess was determined to be 70% by HPLC. [ID column,

254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 9.1 min (minor), 14.5 min (major). $[\alpha]_{D}^{22} = 59.00$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(3-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ia)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 24.9 mg, 78% yield. mp 113.7-116.4 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.97 (s, 1H), 9.03 (s, 1H), 7.57-7.56 (m, 2H), 7.53-7.47 (m, 5H), 7.41-7.33 (m, 6H), 7.28-7.22 (m, 4H), 7.03-7.00 (m, 1H), 5.08 (s, 1H), 2.15 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.64 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.7, 176.3, 165.0, 162.4 (d, *J* = 970.0 Hz), 143.8,

138.8, 138.4, 137.9, 131.3 (d, J = 35.0 Hz), 129.2, 128.9, 128.1 (d, J = 10.0 Hz), 127.3, 127.1, 125.5 (d, J = 40.0 Hz), 124.2, 120.2, 119.9, 118.3 (d, J = 90.0 Hz), 116.1 (d, J = 85.0 Hz), 110.0, 93.8, 86.6, 67.9, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. ¹⁹F NMR ((CD₃)₂SO, 470 MHz): δ (ppm) -112.74. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₃₉O₃N₂FNa) requires m/z 661.2837, found m/z 661.2836. The enantiomeric excess was determined to be 90% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.1 min (minor), 8.1 min (major). [α]²²_D = 53.60 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(3-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ja)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 29.1 mg, 83% yield. mp 142.9-143.9 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.97 (s, 1H), 9.03 (s, 1H), 7.74 (s, 1H), 7.62 (d, *J* = 10.0 Hz, 1H), 7.57-7.55 (m, 3H), 7.53-7.47 (m, 4H), 7.40-7.33 (m, 5H), 7.25-7.20 (m, 3H), 7.03-7.00 (m, 1H), 5.09 (s, 1H), 2.14 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.64 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.7, 176.3, 164.9,

143.7, 138.8, 138.4, 137.9, 133.9, 131.8, 131.2, 130.8, 129.2, 128.9, 127.3, 127.1, 125.8, 124.2, 122.1, 120.2, 119.9, 110.0, 94.2, 86.2, 67.9, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₂H₃₉O₃N₂BrNa) requires m/z 721.2036, found m/z 721.2041. The enantiomeric excess was determined to be 81% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.3 min (minor), 9.3 min (major). [α]²²_D = 44.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-oxo-3-phenyl-4-(phenylcarbamoyl)-1-(*m*-tolyl)hex-1-y n-3-yl)phenyl)adamantane-1-carboxamide (3ka)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 30.2 mg, 95% yield. mp 117.9-120.1 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.93 (s, 1H), 9.03 (s, 1H), 7.58 (d, *J* = 10.0 Hz, 2H), 7.53-7.49 (m, 4H), 7.38-7.29 (m, 7H), 7.25-7.20 (m, 4H), 7.03-7.00 (m, 1H), 5.05 (s, 1H), 2.32 (s, 3H), 2.15 (s, 3H), 1.96 (s, 3H), 1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.0, 176.3, 165.1, 144.0, 138.8,

138.4, 138.3, 138.2, 132.1, 129.6, 129.2, 129.0, 128.9, 128.8, 127.3, 127.2, 127.1, 124.2, 123.3, 120.2, 119.8, 92.0, 88.0, 68.0, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1, 21.2. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₃H₄₂O₃N₂Na) requires m/z 657.3088, found m/z 657.3089. The enantiomeric excess was determined to be 85% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.6 min (minor), 9.5 min (major). [α]²²_D = 58.70 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3la)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 31.9 mg, 99% yield. mp 147.1-149.6 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.97 (s, 1H), 9.03 (s, 1H), 7.63-7.60 (m, 1H), 7.58 (d, *J* = 5.0 Hz, 1H), 7.51 (s, 4H), 7.47-7.44 (m, 1H), 7.36-7.31 (m, 5H), 7.28-7.20 (m, 5H), 7.03-7.00 (m, 1H), 5.07 (s, 1H), 2.16 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.64 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.8,

176.4, 165.0, 162.6 (d, *J* = 990.0 Hz), 143.7, 138.8, 138.4, 137.9, 133.9, 131.0 (d, *J* = 30.0 Hz), 129.2, 128.9, 127.3, 127.2, 127.1, 125.2 (d, *J* = 15.0 Hz), 124.2, 120.2, 119.9, 116.2 (d, *J* = 80.0 Hz), 111.7 (d, *J* = 65.0 Hz), 97.7, 81.4, 67.9, 50.6, 41.3, 38.7, 36.4, 30.3, 28.1. ¹⁹F NMR ((CD₃)₂SO, 470 MHz): δ (ppm) -110.65. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₃₉O₃N₂FNa) requires m/z 661.2837, found m/z 661.2836. The enantiomeric excess was determined to be 90% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 6.3 min (minor), 8.7 min (major). [α]²²_D = 48.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-chlorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ma)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 24.1 mg, 74% yield. mp 141.5-145.4 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.97 (s, 1H), 9.03 (s, 1H), 7.64-7.60 (m, 4H), 7.58-7.55 (m, 2H), 7.53-7.51 (m, 2H), 7.44-7.40 (m, 2H), 7.38-7.33 (m, 4H), 7.25-7.22 (m, 3H), 7.03-7.00 (m, 1H), 5.09 (s, 1H), 2.16 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.64 (s, 6H). ¹³C NMR

((CD₃)₂SO, 125 MHz): δ (ppm) 201.8, 176.3, 165.0, 143.8, 138.8, 138.4, 137.9, 134.9, 134.1, 130.4, 129.8, 129.2, 128.9, 127.8, 127.3, 127.2, 124.2, 123.2, 120.2, 119.9, 110.0, 97.8, 84.7, 67.9, 50.7, 41.3, 38.7, 36.4, 30.5, 28.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₃₉O₃N₂ClNa) requires m/z 677.2541, found m/z 677.2545. The enantiomeric excess was determined to be 84% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH =

70:30, 1.0 mL/min]: 5.8 min (minor), 8.7 min (major). $[\alpha]_{D}^{22} = 42.70$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3na)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 24.3 mg, 70% yield. mp 143.0-146.8 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.96 (s, 1H), 9.03 (s, 1H), 7.74 (d, *J* = 10.0 Hz, 1H), 7.64-7.61 (m, 3H), 7.58-7.56 (m, 2H), 7.52-7.51 (m, 1H), 7.46-7.43 (m, 1H), 7.37-7.33 (m, 5H), 7.25-7.20 (m, 4H), 7.03-7.00 (m, 1H), 5.09 (s, 1H), 2.16 (s, 3H), 1.95 (s, 3H), 1.82 (s, 6H), 1.64 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz):

δ (ppm) 201.8, 176.3, 165.0, 143.7, 138.8, 138.4, 137.9, 134.3, 132.9, 130.6, 129.2, 128.9, 128.3, 127.4, 127.3, 127.2, 125.5, 124.7, 124.2, 120.2, 119.9, 97.1, 86.4, 67.9, 50.7, 41.3, 38.7, 36.4, 30.5, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₂H₃₉O₃N₂BrNa) requires m/z 721.2036, found m/z 721.2038. The enantiomeric excess was determined to be 72% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.8 min (minor), 9.1 min (major). $[\alpha]^{22}_{D} = 43.00$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-methoxyphenyl)-5-oxo-3-phenyl-4-(phenylcarbamo yl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (30a)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 5:1. Yellow solid, 28.7 mg, 88% yield. mp 192.6-193.5 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.90 (s, 1H), 9.03 (s, 1H), 7.65 (d, *J* = 10.0 Hz, 2H), 7.62-7.60 (m, 2H), 7.53-7.51 (m, 2H), 7.47 (d, *J* = 10.0 Hz, 1H), 7.40-7.37 (m, 2H), 7.35-7.32 (m, 3H), 7.25-7.23 (m, 1H), 7.21-7.19 (m, 2H), 7.10 (d, *J* = 10.0 Hz, 1H), 7.02-7.01 (m, 1H), 7.00-6.97 (m, 1H), 5.04 (s,

1H), 3.87 (s, 3H), 2.19 (s, 3H), 1.96 (s, 3H), 1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR

((CD₃)₂SO, 125 MHz): δ (ppm) 202.5, 176.3, 165.1, 160.5, 144.1, 138.8, 138.3, 138.2, 133.2, 130.4, 129.2, 128.8, 127.4, 127.3, 127.2, 124.2, 120.9, 120.1, 119.8, 112.5, 111.8, 95.9, 85.1, 68.3, 56.2, 50.8, 41.3, 38.7, 36.4, 30.5, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₃H₄₂O₄N₂Na) requires m/z 673.3042, found m/z 673.3023. The enantiomeric excess was determined to be 89% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 9.5 min (minor), 12.8 min (major). [α]²²_D = 49.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*S*,4*R*)-2-oxo-4-phenyl-3-(phenylcarbamoyl)dec-5-yn-4-yl)phen yl)adamantane-1-carboxamide (3pa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 7:1. White solid, 25.8 mg, 86% yield. mp 164.1-166.3 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.79 (s, 1H), 9.02 (s, 1H), 7.58 (d, *J* = 5.0 Hz, 2H), 7.50 (s, 4H), 7.38 (d, *J* = 10.0 Hz, 2H), 7.34-7.30 (m, 2H), 7.28-7.24 (m, 2H), 7.22-7.18 (m, 1H), 7.05-7.01 (m, 1H), 4.96 (s, 1H), 2.46-2.42 (m, 2H), 2.10 (s, 3H), 1.97 (s, 3H), 1.85 (s, 6H), 1.66 (s, 6H), 1.60-1.57 (m, 2H), 1.53-1.47 (m,

2H), 0.94-0.90 (m, 3H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.6, 176.3, 165.3, 144.6, 138.9, 138.8, 138.2, 129.2, 128.6, 127.3, 127.3, 127.1, 124.1, 120.0, 119.8, 88.9, 82.1, 68.1, 50.1, 41.3, 38.7, 36.5, 30.9, 30.6, 28.1, 21.9, 18.6, 14.0. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₄₀H₄₅O₃N₂) requires m/z 601.3425, found m/z 601.3422. The enantiomeric excess was determined to be 83% by HPLC. [ID column, 254 nm, *n*-hexane:IPA = 70:30, 1.0 mL/min]: 12.6 min (minor), 16.2 min (major). [α]²²_D = 142.70 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-cyclopropyl-5-oxo-3-phenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3qa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. White solid, 20.4 mg, 70% yield. mp 232.2-225.0 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.80 (s, 1H), 9.03 (s, 1H), 7.54-7.49 (m, 4H), 7.46-7.44 (m, 2H), 7.39-7.37 (m, 2H), 7.34-7.30 (m, 2H), 7.28-7.24 (m, 2H), 7.21-7.18 (m, 1H), 7.05-7.01 (m, 1H), 4.94 (s, 1H), 2.08 (s, 3H), 1.98 (s, 3H), 1.84 (s, 6H), 1.67 (s, 6H), 1.56-1.52 (m,

1H), 0.89-0.85 (m, 2H), 0.76-0.73 (m, 2H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.1, 175. 9, 164.8, 144.0, 138.4, 138.3, 137.8, 128.8, 128.2, 126.8, 126.8, 126.6, 123.7, 119.6, 119.3, 91.4, 76.5, 67.7, 49.6, 40.9, 38.3, 36.0, 30.1, 27.7, 8.0, -0.3. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₃₉H₄₁O₃N₂) requires m/z 585.3112, found m/z 585.3109. The enantiomeric excess was determined to be 83% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 70:30, 1.0 mL/min]: 7.1 min (minor), 11.2

min (major). $[\alpha]^{22}{}_{D} = 129.40$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((4-chlorophenyl)carbamoyl)-5-oxo-1,3-diphenylhex-1 -yn-3-yl)phenyl)adamantane-1-carboxamide (3ab)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 25.6 mg, 78% yield. mp 181.5-184.1 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 10.12 (s, 1H), 9.03 (s, 1H), 7.59-7.56 (m, 4H), 7.52-7.48 (m, 4H), 7.43-7.39 (m, 5H), 7.36-7.33 (m, 2H), 7.30-7.28 (m, 2H), 7.23-7.20 (m, 1H), 5.04 (s, 1H), 2.14 (s, 3H), 1.96 (s, 3H),

1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.8, 176.3, 165.2 143.9, 138.4, 138.1, 137.8, 131.7 (2), 129.1 (2), 129.0, 128.9, 127.7, 127.3, 127.2, 123.5, 121.3, 120.2, 92.3, 87.9, 68.1, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₂H₃₉O₃N₂ClNa) requires m/z 677.2541, found m/z 677.2544. The enantiomeric excess was determined to be 76% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 5.0 min (minor), 7.6 min (major). [α]²²_D = 75.00 (c = 1.00, CH₂Cl₂).

(1r, 3R, 5S)-N-(4-((3R, 4S)-5-0x0-1, 3-diphenyl-4-(p-tolylcarbamoyl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ac)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 27.7 mg, 87% yield. mp 195.6-198.4 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.83 (s, 1H), 9.03 (s, 1H), 7.58-7.56 (m, 4H), 7.51-7.48 (m, 4H), 7.43-7.41 (m, 3H), 7.36-7.33 (m, 2H), 7.25-7.21 (m, 3H), 7.04-7.02 (m, 2H), 5.03 (s, 1H), 2.20 (s, 3H), 2.16 (s,

3H), 1.96 (s, 3H), 1.82 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.1, 176.3, 164.8, 144.0, 138.4, 138.1, 136.3, 133.2, 131.7, 129.5, 129.1, 128.8, 127.3, 127.2, 127.1, 123.5, 120.1, 119.8, 110.0, 92.5, 87.9, 68.0, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1, 20.9. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₃H₄₂O₃N₂Na) requires m/z 657.3088, found m/z 657.3088. The enantiomeric excess was determined to be 92% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 6.1 min (minor), 9.9 min (major). [α]²²_D = 61.30 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((4-methoxyphenyl)carbamoyl)-5-oxo-1,3-diphenylhex -1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ad)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 5:1. Yellow solid, 29.1 mg, 89% yield. mp 111.7-114.1 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.78 (s, 1H), 9.04 (s, 1H), 7.57-7.56 (m, 4H), 7.53-7.48 (m, 5H), 7.42-7.41 (m, 2H), 7.36-7.33 (m, 2H), 7.25 (d, *J* = 10.0 Hz, 2H), 7.23-7.20 (m, 1H), 6.80

(d, J = 10.0 Hz, 2H), 4.99 (s, 1H), 3.67 (s, 3H), 2.16 (s, 3H), 1.96 (s, 3H), 1.83 (s, 6H), 1.65 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.1, 176.3, 164.6, 156.0, 144.0, 138.4, 138.1, 131.9, 131.7, 129.1, 128.8, 127.4, 127.3, 127.2, 123.5, 121.6, 121.5, 120.1, 114.3, 92.5, 87.8, 67.9, 55.6, 50.4, 41.3, 38.7, 36.4, 30.4, 28.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₃H₄₂O₄N₂Na) requires m/z 673.3037, found m/z 673.3039. The enantiomeric excess was determined to be 81% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0mL/min]: 7.5 min (minor), 12.2 min (major). [α]²²_D = 47.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-oxo-1,3-diphenyl-4-((4-(trifluoromethyl)phenyl)carba moyl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ae)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 7:1. Yellow solid, 28.8 mg, 84% yield. mp 211.0-213.2 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 10.37 (s, 1H), 9.05 (s, 1H), 7.66-7.65 (m, 7H), 7.63-7.61 (m, 2H), 7.57-7.56 (m, 3H), 7.46-7.43 (m, 3H), 7.41-7.38 (m, 2H), 7.27-7.24 (m, 1H), 5.14 (s, 1H), 2.19 (s, 3H), 1.97 (s,

3H), 1.86 (s, 6H), 1.66 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.8, 176.4, 165.8, 143.8, 142.4, 138.5, 138.1, 131.8, 129.1, 128.9, 127.4, 127.3, 127.2, 126.5 (q, *J* = 20.0 Hz), 124.4, 124.0, 123.5, 123.4, 120.3, 119.7, 92.2, 88.1, 68.2, 50.6, 41.3, 38.7, 36.5, 30.5, 28.1. ¹⁹F NMR ((CD₃)₂SO, 470 MHz): δ (ppm) -60.48.. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₄₃H₄₀O₃N₂F₃) requires m/z 689.3251, found m/z 689.3250. The enantiomeric excess was determined to be 94% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 4.7 min (minor), 7.2 min (major). [α]²²_D = 198.80 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-oxo-1,3-diphenyl-4-(*o*-tolylcarbamoyl)hex-1-yn-3-yl)p henyl)adamantane-1-carboxamide (3af)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 20.8 mg, 66% yield. mp 105.3-109.9 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.36 (s, 1H), 9.09 (s, 1H), 7.61 (d, *J* = 5.0 Hz, 2H), 7.57 (s, 4H), 7.54-7.53 (m,

2H), 7.40-7.39 (m, 2H), 7.35-7.32 (m, 2H), 7.22-7.19 (m, 1H), 7.16-7.11 (m, 2H), 7.07-7.00 (m, 3H), 5.31 (s, 1H), 2.20 (s, 3H), 1.96 (s, 6H), 1.85 (s, 6H), 1.66 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 201.9, 176.4, 165.2, 144.3, 138.5, 138.0, 136.1, 131.8, 131.7, 130.7, 130.1, 129.1 (2), 128.8, 127.6, 127.1, 126.3, 125.7, 125.0, 123.6, 120.2, 92.6, 87.7, 67.3, 50.3, 41.3, 38.7, 36.4,

30.5, 28.1, 17.9. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₃H₄₂O₃N₂Na) requires m/z 657.3088, found m/z 657.3089. The enantiomeric excess was determined to be 70% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 70:30, 1.0 mL/min]: 7.3 min (minor), 9.5 min (major). $[\alpha]^{22}_{D} = 45.80$ (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((2,4-dimethylphenyl)carbamoyl)-5-oxo-1,3-diphenylh ex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ag)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 6:1. Yellow solid, 26.8 mg, 83% yield. mp 105.1-108.1 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.14 (s, 1H), 9.08 (s, 1H), 7.58-7.56 (m, 4H), 7.54-7.52 (m, 4H), 7.40-7.39 (m, 3H), 7.35-7.32 (m, 2H), 7.22-7.20 (m, 1H), 7.01 (d, *J* = 5.0 Hz, 1H), 6.93 (s, 1H), 6.86 (d, *J* = 10.0 Hz, 1H), 5.18 (s, 1H), 2.20 (s,

3H), 2.18 (s, 3H), 1.98 (s, 3H), 1.90 (s, 3H), 1.85 (s, 6H), 1.67 (s, 6H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 202.0, 176.4, 165.1, 144.2, 143.4, 138.5, 138.0, 134.9, 133.5, 131.7, 131.6, 131.2, 131.1, 129.1, 128.8, 127.6, 127.2, 126.8, 124.9, 123.5, 120.1, 92.6, 87.8, 67.4, 50.3, 41.3, 38.7, 36.4, 30.4, 28.1, 20.9, 17.8. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₄H₄₄O₃N₂Na) requires m/z 671.3244, found m/z 671.3246. The enantiomeric excess was determined to be 93% by HPLC. [ID column, 254 nm, *n*-hexane: EtOH = 70:30, 1.0 mL/min]: 7.0 min (minor), 10.7 min (major). [α]²²_D = 64.00 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-6-methyl-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hept-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ah)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 8:1. Yellow solid, 26.4 mg, 81% yield. mp 101.5-104.2 °C. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.90 (s, 1H), 9.04 (s, 1H), 7.57-7.55 (m, 8H), 7.44-7.40 (m, 3H), 7.36-7.32 (m, 4H), 7.25-7.20 (m, 3H), 7.03-7.00 (m, 1H), 5.19 (s, 1H), 2.94-2.87 (m, 1H), 1.95 (s, 3H), 1.83 (s, 6H), 1.64 (s, 6H), 0.90 (d, J = 5.0 Hz, 3H), 0.86 (d, J = 5.0 Hz, 3H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 207.6, 176.3, 164.8, 143.9, 138.7, 138.4, 138.0, 131.7, 129.2, 129.1, 128.8, 128.7, 127.5, 127.2, 127.1, 124.2, 123.6, 120.1, 119.8, 92.5, 87.9, 66.5, 50.7, 41.3, 38.7, 36.4, 28.1, 19.0, 18.8. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₄H₄₄O₃N₂Na) requires m/z 671.3244, found m/z 671.3246. The enantiomeric excess was determined to be 86% by HPLC. [IA column, 254 nm, *n*-hexane: IPA = 70:30, 1.0 mL/min]: 5.6 min (minor), 9.8 min (major). [α]²²_D = 92.30 (c = 1.00, CH₂Cl₂).

D: Large Scale Reaction

To a solution of PhCF₃ (6.0 mL) were added propargylic alcohol **1a** (554.4 mg, 1.2 mmol), 3-oxo-*N*-phenylbutanamide **2a** (177.0 mg, 1.0 mmol) and **CPA-4** (7.0 mg, 0.01 mmol). The reaction mixture was stirred at room temperature for 36 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product **3aa** as a yellow solid (610.0 mg, 98% yield, 95% ee, >20:1 dr).

E: Control Experiment

To a solution of $PhCF_3$ (0.3 mL) were added substrate **1a** (27.72 mg, 0.06 mmol), nucleophiles **2i-k** and **CPA-4** (0.35 mg, 0.0005 mmol). The reaction mixture was stirred at room temperature for 36 h. No desired product was observed under the optimized conditions.

F: Synthetic Transformations.

To a solution of **3aa** (31.1 mg, 0.05 mmol) in MeOH (2.5 mL) was added NaBH₄ (9.5 mg, 0.25 mmol) in one portion at 0 °C. It was stirred at room termperature for 1 h. Then a saturated aqueous NH₄Cl solution (2.5 mL) was added to quench the reaction. The aqueous layer was extracted with ethyl acetate (3×5 mL). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue was purified by silica gel chromatography (eluent: hexanes/ethyl acetate = 3:1) to afford compound **4aa** (29.0 mg, 93% yield, 99% ee, >20:1 dr).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-hydroxy-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3 -yl)phenyl)adamantane-1-carboxamide (4aa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate =3:1. White solid, 29.0 mg, 93% yield. mp 165.5-167.1 °C. ¹H NMR (CDCl₃, 500 MHz): δ (ppm) 8.59 (s, 1H), 7.67-7.65 (m, 3H), 7.63-7.61 (m, 3H), 7.49 (d, J = 10.0 Hz, 2H), 7.43-7.43 (m, 2H), 7.42-7.41 (m, 1H), 7.32-7.26 (m, 5H), 7.22-7.21 (m, 1H), 7.20-7.18 (m, 2H), 7.05-7.01 (m, 1H), 4.23-4.18 (m, 1H), 3.97 (d, J = 10.0 Hz, 1H), 2.56 (d, J = 5.0 Hz, 1H), 2.05 (s, 3H),

1.89 (s, 6H), 1.75-1.66 (m, 6H), 1.48 (d, J = 10.0 Hz, 3H). ¹³C NMR (CDCl₃, 125 MHz): δ (ppm) 176.2, 169.4, 143.1, 139.3, 137.3, 137.1, 131.7, 129.3, 129.0, 128.9, 128.8, 127.4, 126.7, 124.6, 121.8, 120.3, 120.0, 91.0, 90.9, 68.2, 62.4, 50.4, 41.5, 39.2, 36.4, 28.1, 21.1. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₄₂H₄₃O₃N₂) requires m/z 623.3268, found m/z 623.3270. The enantiomeric excess was determined to be 99% by HPLC. [IA column, 254 nm, *n*-hexane:EtOH = 75:25, 1.0 mL/min]: 8.7 min (major), 15.3 min (minor). [α]²²_D = 13.88 (c = 1.00, CH₂Cl₂).

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-hydroxy-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3 -yl)phenyl)adamantane-1-carboxamide (4aa)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-hydroxy-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3 -yl)phenyl)adamantane-1-carboxamide (4aa)

G: ESI-MS Studies

a) ESI(+)-MS spectra for the reaction of catalyst **CPA-4** and propargylic alcohol **1a** for 2 h; b) ESI(+)-MS spectra for the 1,6-conjugate addition of propargylic alcohol **1a** and 3-oxo-*N*-phenylbutanamide **2a** catalyzed by catalyst **CPA-4** for 12 h. Other unidentified ions are likely to correspond to either impurities or side-reaction products.

a)

H: Possible Transition State

I: HPLC Analysis

 $\label{eq:N-(4-((3R,4S)-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl)-3,5-bis(trifluoromethyl)benzamide~(3ba)$

(2S,3R)-2-acetyl-N,3,5-triphenyl-3-(4-pivalamidophenyl)pent-4-ynamide (3ca)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(4-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ea)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(4-chlorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3fa)

(1*r*,3*R*,5S)-*N*-(4-((3*R*,4*S*)-1-(4-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ga)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(4-methoxyphenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ha)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(3-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ia)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(3-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ja)

(1r, 3R, 5S)-N-(4-((3R, 4S)-5-0xo-3-phenyl-4-(phenylcarbamoyl)-1-(m-tolyl)hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ka)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(2-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3la)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-chlorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ma)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(2-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3na)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(2-methoxyphenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (30a)

(1r, 3R, 5S)-N-(4-((3S, 4R)-2-0x0-4-phenyl-3-(phenylcarbamoyl)dec-5-yn-4-yl)phenyl) adamantane-1-carboxamide (3pa)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-cyclopropyl-5-oxo-3-phenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide~(3qa)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((4-chlorophenyl)carbamoyl)-5-oxo-1,3-diphenylhex-1 -yn-3-yl)phenyl)adamantane-1-carboxamide (3ab)

(1r, 3R, 5S)-N-(4-((3R, 4S)-5-0x0-1, 3-diphenyl-4-(p-tolylcarbamoyl)hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ac)

(1r, 3R, 5S)-N-(4-((3R, 4S)-4-((4-methoxyphenyl)carbamoyl)-5-oxo-1, 3-diphenylhex-1-yn-3-yl)phenyl) adamantane-1-carboxamide~(3ad)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-oxo-1,3-diphenyl-4-(*o*-tolylcarbamoyl)hex-1-yn-3-yl)p henyl)adamantane-1-carboxamide (3af)

#	Time	Area	Height	Width	Symmetry	Area %	
1	7.07	6364.2	194.3	0.546	0.433	49.931	
2	9.579	6381.7	144.7	0.7353	0.569	50.069	
VWD1 A, Wavelength=254 nm (LiFushuai\101910\20191007\W-113D-1.D)							

(1r, 3R, 5S)-N-(4-((3R, 4S)-4-((2, 4-dimethylphenyl)carbamoyl)-5-oxo-1, 3-diphenylh ex-1-yn-3-yl)phenyl) adamantane-1-carboxamide~(3ag)

(1r, 3R, 5S)-N-(4-((3R, 4S)-6-methyl-5-oxo-1, 3-diphenyl-4-(phenylcarbamoyl)hept-1-yn-3-yl)phenyl) adamantane-1-carboxamide~(3ah)

J: NMR Analysis

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)p henyl)adamantane-1-carboxamide (3aa)

N-(4-((3R,4S)-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl)-3,5-bis(trifluoromethyl)benzamide (3ba)

(2S,3R)-2-acetyl-N,3,5-triphenyl-3-(4-pivalamidophenyl)pent-4-ynamide (3ca)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(4-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ea)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(4-chlorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3fa)

(1*r*,3*R*,5S)-*N*-(4-((3*R*,4*S*)-1-(4-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ga)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(4-methoxyphenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3ha)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(3-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ia)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(3-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ja)

(1r, 3R, 5S)-N-(4-((3R, 4S)-5-oxo-3-phenyl-4-(phenylcarbamoyl)-1-(m-tolyl)hex-1-y n-3-yl)phenyl)adamantane-1-carboxamide (3ka)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3la)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-chlorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ma)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-bromophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3na)

S57

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(2-methoxyphenyl)-5-oxo-3-phenyl-4-(phenylcarbamo yl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (30a)

(1*r*,3*R*,5*S*)-*N*-(4-((3*S*,4*R*)-2-oxo-4-phenyl-3-(phenylcarbamoyl)dec-5-yn-4-yl)phen yl)adamantane-1-carboxamide (3pa)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-cyclopropyl-5-oxo-3-phenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3qa)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((4-chlorophenyl)carbamoyl)-5-oxo-1,3-diphenylhex-1 -yn-3-yl)phenyl)adamantane-1-carboxamide (3ab)

(1r, 3R, 5S) - N - (4 - ((3R, 4S) - 5 - 0xo - 1, 3 - diphenyl - 4 - (p - tolylcarbamoyl)hex - 1 - yn - 3 - yl)p henyl) adamantane - 1 - carboxamide (3ac)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((4-methoxyphenyl)carbamoyl)-5-oxo-1,3-diphenylhex -1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ad)

(1r, 3R, 5S)-N-(4-((3R, 4S)-5-0x0-1, 3-diphenyl-4-((4-(trifluoromethyl)phenyl)carba moyl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ae)

(1r, 3R, 5S) - N - (4 - ((3R, 4S) - 5 - 0xo - 1, 3 - diphenyl - 4 - (o - tolylcarbamoyl)hex - 1 - yn - 3 - yl)p henyl) adamantane - 1 - carboxamide (3af)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-4-((2,4-dimethylphenyl)carbamoyl)-5-oxo-1,3-diphenylh ex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ag)

(1r, 3R, 5S)-N-(4-((3R, 4S)-6-methyl-5-oxo-1, 3-diphenyl-4-(phenylcarbamoyl)hept-1-yn-3-yl)phenyl) adamantane-1-carboxamide~(3ah)

N-(4-((3R,4S)-5-oxo-1,3-diphenyl-4-(phenylcarbamoyl)hex-1-yn-3-yl)phenyl)-3,5-bis(trifluoromethyl)benzamide~(3ba)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(4-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ea)

(1*r*,3*R*,5*S*)-*N*-(4-((3*R*,4*S*)-1-(3-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ia)

(1r, 3R, 5S)-N-(4-((3R, 4S)-1-(2-fluorophenyl)-5-oxo-3-phenyl-4-(phenylcarbamoyl) hex-1-yn-3-yl)phenyl) adamantane-1-carboxamide (3la)

(1r, 3R, 5S)-N-(4-((3R, 4S)-5-0x0-1, 3-diphenyl-4-((4-(trifluoromethyl)phenyl)carba moyl)hex-1-yn-3-yl)phenyl)adamantane-1-carboxamide (3ae)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -120 -130 -140 -150 -160 -170 -180 -190 -200 fit (ppm)

K: X-Ray Analysis Data

Identification code	3na			
Empirical formula	$C_{42}H_{39}BrN_2O_3$			
Formula weight	698.21			
Temperature/K	100			
Crystal system	monoclinic			
Space group	P21			
a/Å	11.8175(4)			
b/Å	22.6082(8)			
c/Å	15.1003(6)			
α/\circ	90			
β/°	94.6410(10)			
$\gamma/^{\circ}$	90			
Volume/Å ³	4021.2(3)			
Z	2			
$\rho_{calc}g/cm^3$	1.279			
μ/mm^{-1}	1.067			
F(000)	1626.0			
Crystal size/mm ³	$0.36\times 0.28\times 0.26$			
Radiation	MoKa ($\lambda = 0.71073$)			
2Θ range for data collection/° 4.506 to 55.134				
Index ranges	$\text{-}15 \leq h \leq 15, \text{-}29 \leq k \leq 29, \text{-}19 \leq l \leq 19$			
Reflections collected	59272			
Independent reflections	18547 [$R_{int} = 0.0514$, $R_{sigma} = 0.0613$]			
Data/restraints/parameters	18547/96/994			
Goodness-of-fit on F ²	1.033			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0483, wR_2 = 0.1100$			
Final R indexes [all data]	$R_1 = 0.0671, wR_2 = 0.1185$			
Largest diff. peak/hole / e Å ⁻³ 0.56/-0.54				
Flack parameter	-0.005(3)			

Table Crystal data and structure refinement for 3na.
L: Reference

a) M. Chen, J. Sun, Angew. Chem. Int. Ed. 2017, 56, 4583. b) D. Qian, L. Wu, Z. Lin, J. Sun, Nat. Commun. 2017, 8, 567.