Supporting Information

Pd/NBE-Catalyzed Sequential Carbamoylation/Olefination of Aryl Iodides

Chen Chen,*a Liying Liu,a Wan Sun, Jie Ding, Yan-Ping Zhu, and Bolin Zhu*a

^a Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China. E-mail: <u>hxxycc@tjnu.edu.en</u>, hxxyzbl@tjnu.edu.en.
^b School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, P. R. China.

Table of Contents

General Information	S02
Optimization of reaction conditions	S02
Preparation of Starting Materials	
S03	
General Procedures for the Synthesis of 4-methylene-3,4-dihydro-1(2	H)-isoquinolin-1-one
analogues	S04
Characterization of Products	S04
Application investigation	S13
NMR Spectra	S16

General information:

The ¹H NMR, ¹⁹F NMR and ¹³C NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl₃. The chemical shifts (δ) of ¹H NMR and ¹³C NMR were measured in ppm, referenced to residual ¹H and ¹³C signals of nondeuterated CDCl₃ (δ = 7.26 and 77.00) as internal standards. All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates and visualized by UV-light (254 nm). Melting points were obtained on a Yanaco-241 apparatus and are uncorrected. HRMS were recorded on VG ZAB-HS mass spectrometer with ESI resource.

Optimization of reaction conditions

Entry	Ligand	Base	Solvent	Temperature	Yield ^b (%)
1	P(4-F-C ₆ H ₄) ₃	Cs ₂ CO ₃	DCE	100°C	36%
2	P(2-furyl) ₃	Cs_2CO_3	DCE	100°C	77%
3	$P(4-OMe-C_6H_4)_3$	Cs_2CO_3	DCE	100°C	25%
4	DPPF	Cs_2CO_3	DCE	100°C	20%
5	DPPE	Cs_2CO_3	DCE	100°C	25%
6	P(2-furyl) ₃	K_2CO_3	DCE	100°C	22%
7	P(2-furyl) ₃	NaOAc	DCE	100°C	20%
8	P(2-furyl) ₃	K_3PO_4	DCE	100°C	30%
9	P(2-furyl) ₃	Na ₂ CO ₃	DCE	100°C	22%
10	P(2-furyl) ₃	NaHCO ₃	DCE	100°C	20%
11	P(2-furyl) ₃	Et ₃ N	DCE	100°C	25%
12	P(2-furyl) ₃	Cs_2CO_3	MeCN	100°C	50%
13	P(2-furyl) ₃	Cs_2CO_3	Toluene	100°C	55%
14	P(2-furyl) ₃	Cs_2CO_3	Dioxane	100°C	63%
15	P(2-furyl) ₃	Cs ₂ CO ₃	DME	100°C	75%

1	16	P(2-furyl) ₃	Cs ₂ CO ₃	THF	100°C	80%
1	17	P(2-furyl) ₃	Cs ₂ CO ₃	THF	70°C	90%
1	18	P(2-furyl) ₃	Cs ₂ CO ₃	THF	50°C	93%
1	19	P(2-furyl) ₃	Cs ₂ CO ₃	THF	30°C	92%
2	20^d	P(2-furyl) ₃	Cs ₂ CO ₃	THF	30°C	64%
2	21e	P(2-furyl) ₃	Cs ₂ CO ₃	THF	30°C	80%

^{*a*} The reactions were conducted with **1a** (0.4 mmol), **2a** (0.2 mmol), Pd(OAc)₂ (0.02 mmol), ligand (0.04 mmol), norbornene (0.2 mmol), base (0.8 mmol), and indicated solvent (2.0 mL) under N₂ atmosphere at 100 °C for 12 h. ^{*b*} Isolated yield. ^{*c*} ligand (0.02 mmol). ^{*d*} norbornene (0.1 mmol), ^{*e*} Cs₂CO₃ (0.4 mmol).

Preparation of Starting Materials:

General Procedure 1:

The mixture of **SI-1** (1.0 equiv), 3-bromopropene (1.5 equiv), K_2CO_3 (1.5 equiv) and an appropriate amount of KI in MeCN (1g/45mL) was stirred at 90 °C and stirred until the starting material disappeared. The solvent was evaporated under reduced pressure, the mixture was extracted with ethyl acetate, and washed twice with brine, the organic layer was dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography to obtain **SI-2**.

SI-2 (1.0 equiv) was dissolved in dichloromethane (0.3 M) and cooled to 0 °C. Then pyridine (2.0 equiv) was added followed by triphosgene (0.5 equiv). The reaction was warmed to room temperature and stirred until TLC indicated completion. The reaction was quenched with water and extracted twice with dichloromethane. The organic layer was dried over magnesium sulfate, filtered, and concentrated under reduced pressure. The crude starting material was purified by flash column chromatography in an ethyl acetate / petroleum ether mixture to give **1**.

General Procedure for the Synthesis of 4-methylene-3,4-dihydro-

1(2H)-isoquinolin-1-one analogues

In a 38 mL sealed tube, the mixture of 2 (0.2 mmol), 1 (0.4 mmol), $Pd(OAc)_2$ (4.5 mg, 0.02 mmol), tri(2-furyl)phosphine (9.3 mg, 0.04 mmol), NBE (18.8 mg, 0.2 mmol) and Cs_2CO_3 (260.8 mg, 0.8 mmol) was dissolved in anhydrous THF (2.0 mL). The tube was then purged 3 times with N₂ and sealed with a PTEF cap. The reaction mixture was allowed to react at 30 °C for 12 h. After the reaction was completed, the solvent was removed from the mixture under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give product **3** and **3'**.

Characterization of Products:

3-Benzyl-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (3aa)

Yellow oil (55 mg, 92%), ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.0 Hz, 1H), 8.27 (d, *J* = 8.8 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.56 – 7.51 (m, 2H), 7.35 – 7.27 (m, 5H), 5.69 (s, 1H), 5.59 (s, 1H), 4.88 (s, 2H), 4.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 136.9, 135.7, 135.5, 135.0, 128.7, 128.6, 128.5, 128.4, 127.9, 127.4, 126.8, 126.3, 126.1, 124.3, 119.7, 53.6, 50.2. ESI-MS: Calcd for C₂₁H₁₇NO: [M+H⁺] 300.1383, found 300.1385.

3-(4-Fluoro-benzyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3ba**) Yellow oil (53 mg, 83%), ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.90 – 7.86 (m, 2H), 7.57 – 7.53 (m, 2H), 7.36 – 7.32 (m, 2H), 7.05 – 7.01 (m, 2H), 5.70 (s, 1H), 5.61 (s, 1H), 4.84 (s, 2H), 4.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 163.4, 161.0, 135.7, 135.5, 135.0, 132.7 (d, *J* = 3.0 Hz), 129.6 (d, *J* = 8.0 Hz), 128.7, 128.5, 127.5, 126.9, 126.2, 126.1, 124.2, 119.7, 115.5 (d, *J* = 21.0 Hz), 53.5, 49.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.93. ESI-MS: Calcd for C₂₁H₁₆FNO: [M+H⁺] 318.1289, found 318.1290.

3-(4-Chloro-benzyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3ca**) Yellow oil (48 mg, 72%), ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.0 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.58 – 7.53 (m, 2H), 7.34 – 7.30 (m, 4H), 5.71 (s, 1H), 5.61 (s, 1H), 4.84 (s, 2H), 4.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.8, 135.7, 135.5, 135.4, 135.0, 133.3, 130.3, 129.3, 128.8, 128.7, 128.5, 127.5, 126.9, 126.1, 124.2, 119.8, 53.6, 49.6. ESI-MS: Calcd for C₂₁H₁₆CINO: [M+H⁺] 334.0993, found 334.0995.

3-(4-Bromo-benzyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3da**) White solid (34 mg, 45%) M.P.:148-152 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.4 Hz, 1H), 8.25 (d, *J* = 8.8 Hz, 1H), 7.88 (t, *J* = 8.0 Hz, 2H), 7.59 – 7.45 (m, 4H), 7.26 – 7.22 (m, 2H), 5.71 (s, 1H), 5.61 (s, 1H), 4.82 (s, 2H), 4.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 136.1, 135.7, 135.4, 135.0, 131.8, 129.7, 128.7, 128.5, 128.5, 127.6, 126.9, 126.2, 124.2, 121.4, 119.9, 53.7, 49.7. ESI-MS: Calcd for C₂₁H₁₆BrNO: [M+H⁺] 378.0488, found 378.0486.

1-Methylene-3-(4-trifluoromethyl-benzyl)-2,3-dihydro-1H-benzo[f]isoquinolin-4one(**3ea**)

Yellow oil (44 mg, 60%), ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.0 Hz, 1H),

8.26 (d, J = 8.8 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.62 – 7.54 (m, 4H), 7.48 (d, J = 8.0 Hz, 2H), 5.74 (s, 1H), 5.64 (s, 1H), 4.93 (s, 2H), 4.15 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 141.2, 135.8, 135.3, 135.1, 129.8 (q, J = 32.0 Hz), 128.8, 128.6, 128.5, 128.1, 127.6, 127.0, 126.2, 126.1, 125.7 (q, J = 4.0 Hz), 124.2, 122.7, 120.0, 53.9, 50.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.45. ESI-MS: Calcd for C₂₂H₁₆F₃NO: [M+H⁺] 368.1257, found 368.1255.

3-(3,5-Dimethoxy-benzyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3fa**)

Yellow oil (54 mg, 75%), ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.0 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 7.86 – 7.81 (m, 2H), 7.55 – 7.47 (m, 2H), 7.29 (d, J = 8.0 Hz, 1H), 6.48 – 6.42 (m, 2H), 5.67 (s, 1H), 5.61 (s, 1H), 4.81 (s, 2H), 4.16 (s, 2H), 3.82 (s, 3H), 3.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 160.2, 158.5, 136.0, 135.5, 134.9, 130.4, 128.6, 128.4, 128.2, 127.3, 126.7, 126.6, 126.1, 124.2, 119.3, 117.4, 104.1, 98.3, 55.3, 55.2, 53.9, 44.8. ESI-MS: Calcd for C₂₃H₂₁NO₃: [M+H⁺] 360.1594, found 360.1596.

1-methylene-3-(1-phenylethyl)-2,3-dihydrobenzo[f]isoquinolin-4(1H)-one (**3ga**) Yellow oil (44 mg, 70%), ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.4 Hz, 1H), 8.28 (d, J = 8.8 Hz, 1H), 7.89 – 7.84 (m, 2H), 7.56 – 7.48 (m, 2H), 7.42 – 7.24 (m, 5H), 6.32 (q, J = 7.2 Hz, 1H), 5.63 (s, 1H), 5.48 (s, 1H), 4.01 (d, J = 12.8 Hz, 1H), 3.71 (d, J = 12.8 Hz, 1H), 1.65 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 140.3, 136.0, 135.6, 134.8, 128.7, 128.5, 128.4, 128.4, 127.4, 127.4, 127.3, 126.8, 126.6, 126.1, 124.4, 119.2, 50.5, 48.5, 15.8. ESI-MS: Calcd for C₂₂H₁₉NO: [M+H⁺] 314.1539, found 314.1539.

1-Methylene-3-thiophen-2-ylmethyl-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3ha**) Yellow oil (26 mg, 43%), ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 8.0 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.50 – 7.43 (m, 2H), 7.16 (t, *J* = 5.6 Hz, 1H), 6.99 (d, *J* = 3.6 Hz, 1H), 6.90 – 6.86 (m, 1H), 5.63 (s, 1H), 5.58 (s, 1H), 4.93 (s, 2H), 4.11 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 139.4, 135.7, 135.5, 135.1, 128.7, 128.5, 128.4, 127.5, 126.8, 126.7, 126.2, 126.2, 125.5, 124.2, 119.9, 53.6, 45.1. ESI-MS: Calcd for C₁₉H₁₅NOS: [M+H⁺] 306.0947, found 306.0946.

3-Furan-2-ylmethyl-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3ia**) Yellow oil (46 mg, 80%), ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.0 Hz, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.89 – 7.82 (m, 2H), 7.56 – 7.51 (m, 2H), 7.38 – 7.37 (m, 1H), 6.36 – 6.32 (m, 2H), 5.71 (s, 1H), 5.68 (s, 1H), 4.85 (s, 2H), 4.21 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 150.6, 142.4, 135.7, 135.5, 135.1, 128.7, 128.5, 128.4, 127.5, 126.8, 126.3, 126.1, 124.2, 119.7, 110.4, 108.5, 53.8, 43.0. ESI-MS: Calcd for C₁₉H₁₅NO₂: [M+H⁺] 290.1176, found 290.1175.

1-Methylene-3-phenyl-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3ja**) Yellow oil (36 mg, 63%), ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 9.2 Hz, 1H), 8.18 (d, *J* = 8.8 Hz, 1H), 7.85 – 7.78 (m, 2H), 7.53 – 7.49 (m, 2H), 7.38 – 7.36 (m, 4H), 7.21 – 7.17 (m, 1H), 5.73 (s, 1H), 5.71 (s, 1H), 4.53 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 142.4, 135.9, 135.7, 135.4, 129.0, 128.8, 128.6, 128.5, 127.7, 127.0, 126.8, 126.4, 126.2, 125.3, 124.4, 119.8, 57.4. ESI-MS: Calcd for C₂₀H₁₅NO: [M+H⁺] 286.1226, found 286.1226.

1-Methylene-3-o-tolyl-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (3ka)

Yellow oil (42 mg, 71%), ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, J = 9.2 Hz, 1H), 8.26 (d, J = 8.8 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.60 – 7.55 (m, 2H), 7.34 – 7.25 (m, 4H), 5.81 (s, 1H), 5.77 (s, 1H), 4.61 (d, J = 12.8 Hz, 1H), 4.30 (d, J = 12.8 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.1, 141.3, 135.9, 135.8, 135.7, 135.4, 131.1, 128.8, 128.5, 128.5, 127.9, 127.6, 127.1, 126.9, 126.7, 126.2, 124.4, 119.6, 57.3, 18.1. ESI-MS: Calcd for C₂₁H₁₇NO: [M+H⁺] 300.1383, found 300.1385.

1-Methylene-3-m-tolyl-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3la**) White solid (37 mg, 63%) M.P.:143-146 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 9.2 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.60 – 7.53 (m, 2H), 7.35 – 7.21 (m, 3H), 7.09 (d, *J* = 7.2 Hz, 1H), 5.78 (s, 1H), 5.76 (s, 1H), 4.57 (s, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 142.3, 138.7, 135.8, 135.7, 135.3, 128.8, 128.7, 128.5, 128.4, 127.6, 127.3, 126.9, 126.8, 126.2, 126.1, 124.4, 122.2, 119.7, 57.4, 21.3. ESI-MS: Calcd for C₂₁H₁₇NO: [M+H⁺] 300.1383, found 300.1385.

1-Methylene-3-p-tolyl-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (3ma)

White solid (27 mg, 44%) M.P.:142-145 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 9.2 Hz, 1H), 8.26 (d, *J* = 8.4 Hz, 1H), 7.92 – 7.85 (m, 2H), 7.61 – 7.54 (m, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.4 Hz, 2H), 5.79 (s, 1H), 5.77 (s, 1H), 4.58 (s, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 139.8, 136.2, 135.8, 135.3, 129.6, 128.8, 128.5, 128.5, 127.6, 126.9, 126.8, 126.2, 125.1, 124.4, 119.7, 57.5, 21.0. ESI-MS: Calcd for C₂₁H₁₇NO: [M+H⁺] 300.1383, found 300.1386.

3-(4-Methoxy-phenyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3na**) Yellow oil (59 mg, 95%), ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 9.2 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 7.93 – 7.85 (m, 2H), 7.60 – 7.56 (m, 2H), 7.38 – 7.35 (m, 2H), 7.00 – 6.95 (m, 2H), 5.79 (s, 1H), 5.78 (s, 1H), 4.56 (s, 2H), 3.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 157.9, 135.7, 135.7, 135.2, 135.2, 128.7, 128.5, 128.4, 127.6, 126.9, 126.7, 126.6, 126.2, 124.3, 119.7, 114.3, 57.6, 55.5. ESI-MS: Calcd for C₂₁H₁₇NO₂: [M+H⁺] 316.1332, found 316.1332.

3-(4-Chloro-phenyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**30a**) Yellow oil (20 mg, 32%), ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 7.6 Hz, 1H), 8.24 (d, *J* = 8.8 Hz, 1H), 7.93 – 7.87 (m, 2H), 7.62 – 7.58 (m, 2H), 7.41 (s, 4H), 5.82 (s, 1H), 5.81 (s, 1H), 4.59 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 140.8, 135.9, 135.4, 131.8, 129.1, 128.8, 128.7, 128.4, 127.8, 127.1, 126.4, 126.2, 124.3, 120.1, 57.3. ESI-MS: Calcd for C₂₀H₁₄CINO: [M+H⁺] 320.0837, found 320.0839.

3-(3,5-Dimethyl-phenyl)-1-methylene-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3pa**)

White solid (46 mg, 74%) M.P.:149-152 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 9.2 Hz, 1H), 8.26 (d, *J* = 8.8 Hz, 1H), 7.90 – 7.84 (m, 2H), 7.59 – 7.52 (m, 2H), 7.05 (s, 2H), 6.92 (s, 1H), 5.77 (s, 1H), 5.75 (s, 1H), 4.55 (s, 2H), 2.35 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 142.2, 138.7, 135.8, 135.8, 135.2, 128.7, 128.5, 128.4, 128.3, 127.5, 126.9, 126.8, 126.2, 124.4, 123.1, 119.6, 57.5, 21.3, 21.2. ESI-MS: Calcd for C₂₂H₁₉NO: [M+H⁺] 314.1539, found 314.1537.

1-Methylene-3-naphthalen-1-yl-2,3-dihydro-1H-benzo[f]isoquinolin-4-one (**3qa**) White solid (34 mg, 50%) M.P.:113-116 °C, ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 8.8 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 7.97 – 7.90 (m, 5H), 7.66 – 7.51 (m, 6H), 5.91 (s, 1H), 5.84 (s, 1H), 4.75 (d, *J* = 12.8 Hz, 1H), 4.49 (d, *J* = 12.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 139.2, 135.9, 135.9, 135.6, 134.8, 129.9, 128.8, 128.6, 128.5, 128.4, 127.7, 127.0, 127.0, 126.7, 126.3, 126.3, 125.8, 124.9, 124.5, 122.9, 120.0, 58.0. ESI-MS: Calcd for C₂₄H₁₇NO: [M+H⁺] 336.1383, found 336.1374.

(R) -3-benzyl-1-(prop-1-en-2-yl)-2,3-dihydrobenzo[f]isoquinolin-4(1H)-one (**3ra**) Yellow oil (46 mg, 70%), ¹H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.8 Hz, 1H), 7.88 – 7.80 (m, 3H), 7.55 – 7.47 (m, 2H), 7.35 – 7.26 (m, 5H), 5.08 (d, J = 14.8 Hz, 1H), 4.80 (s, 1H), 4.49 (d, J = 14.4 Hz, 1H), 4.18 (s, 1H), 3.97 (d, J = 4.8 Hz, 1H), 3.80 (dd, J_I = 4.8 Hz, J_2 = 12.8 Hz, 1H), 3.53 (dd, J_I = 1.2 Hz, J_2 = 12.8 Hz, 1H), 1.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 143.1, 136.9, 136.9, 135.1, 130.0, 128.7, 128.6, 128.4, 127.6, 127.4, 127.3, 127.1, 126.6, 124.3, 124.3, 115.6, 115.5, 50.2, 47.9, 41.1, 21.3.ESI-MS: Calcd for C₂₃H₂₁NO: [M+H⁺] 328.1696, found 328.1695.

2-Benzyl-5-methyl-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (**3ab**) Yellow oil (38 mg, 73%), ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.8 Hz, 1H), 7.38– 7.27(m, 7H), 5.42 (s, 1H), 5.32 (s, 1H), 3.95 (s, 2H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 136.9, 136.2, 135.1, 134.8, 133.9, 129.5, 128.6, 127.9, 127.7, 127.4, 126.7, 117.9, 53.7, 50.1, 21.2. ESI-MS: Calcd for C₁₈H₁₇NO: [M+H⁺] 264.1383, found 264.1388.

2-Benzyl-5,6-dimethyl-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (**3ac**) Yellow oil (43 mg, 78%), ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.6 Hz, 1H), 7.34 – 7.23 (m, 6H), 5.77 (s, 1H), 5.43 (s, 1H), 5.24 (s, 2H), 3.94 (s, 2H), 2.36 (d, *J* = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.0, 142.0, 137.0, 136.6, 135.8, 132.3, 129.5, 128.5, 127.9, 127.4, 127.3, 126.1, 118.4, 53.8, 50.0, 21.3, 17.1. ESI-MS: Calcd for C₁₉H₁₉NO: [M+H⁺] 278.1539, found 278.1535.

2-Benzyl-5,7-dimethyl-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (**3ad**) Yellow oil (17 mg, 31%), ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.32 – 7.20 (m, 6H), 5.37 (s, 1H), 5.28 (s, 1H), 4.82 (s, 2H), 3.93 (s, 2H), 2.44 (s, 3H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.2, 137.6, 136.9, 136.1, 135.6, 135.6, 133.9, 132.4, 129.3, 128.6, 127.9, 127.4, 127.2, 117.1, 53.9, 50.2, 21.2, 21.0. ESI-MS: Calcd for C₁₉H₁₉NO: [M+H⁺] 278.1539, found 278.1535.

2-Benzyl-6-chloro-5-methyl-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (**3ae**) Yellow oil (52 mg, 88%), ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 8.4 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.25 (m, 5H), 5.48 (s, 1H), 5.30 (s, 1H), 4.81 (s, 2H), 3.95 (s, 2H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.2, 139.7, 137.4, 136.7, 135.9, 131.9, 128.8, 128.6, 128.0, 127.9, 127.5, 127.4, 119.6, 53.5, 50.1, 18.1. ESI-MS: Calcd for C₁₈H₁₆CINO: [M+H⁺] 298.0993, found 298.0998.

2-Benzyl-7-methoxy-5,6-dimethyl-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (**3af**)

Yellow solid (43 mg, 70%) M.P.:101-104 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.33 – 7.27 (s, 5H), 5.35 (s, 1H), 5.15 (s, 1H), 4.83 (s, 2H), 3.94 (s, 2H), 3.91 (s, 3H), 2.38 (s, 3H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.1, 157.1, 137.0, 136.5, 134.0, 130.6, 128.9, 128.6, 127.9, 127.7, 127.4, 117.1, 107.4, 55.6, 54.1, 50.3, 17.6, 12.7. ESI-MS: Calcd for C₂₀H₂₁NO₂: [M+H⁺] 308.1645, found 308.1645.

2-Benzyl-5-methoxy-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (3ag)

2-Benzyl-5-methoxy-4-methyl-2H-isoquinolin-1-one (3ag')

Yellow oil (18 mg, 33%,23 mg, 41%), ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 7.6 Hz, 0.8H), 7.43 – 7.24 (m, 11H), 7.06 (d, *J* = 8.0 Hz, 1.6H), 6.73 (s, 1H), 5.98 (s, 0.8H), 5.37 (s, 0.8H), 5.17 (s, 2H), 4.80 (s, 1.6H), 3.99 (s, 1.6H), 3.87 (s, 2.4H), 3.85 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.6, 161.3, 156.8, 156.0, 136.9, 136.7, 132.5, 130.0, 128.8, 128.8, 128.6, 128.5, 128.0, 127.9, 127.8, 127.8, 127.6, 127.3, 127.1, 124.2, 120.9, 120.5, 118.1, 114.2, 113.0, 112.6, 55.6, 53.5, 51.4, 50.1, 20.7, 20.7. ESI-MS: Calcd for C₁₈H₁₇NO₂: [M+H⁺] 280.1332, found 280.1330.

2-Benzyl-5-fluoro-4-methylene-3,4-dihydro-2H-isoquinolin-1-one (3ah)

2-Benzyl-5-fluoro-4-methyl-2H-isoquinolin-1-one (3ah')

Yellow oil (20 mg, 37%, 14 mg, 27%), ¹HNMR (400 MHz, CDCl₃) δ 8.32 (d, J = 8.0 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.43 – 7.21 (m, 16.58H), 6.81 (s, 1H), 5.82 (s,

1.36H), 5.41 (s, 1.36H), 5.18 (s, 2H), 4.81 (s, 2.71H), 4.06 (s, 2.70H), 2.37 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7, 160.7, 160.3 (d, J = 11.0 Hz), 157.7 (d, J = 11.0Hz), 136.7, 136.5, 131.0 (d, J = 2.0 Hz), 130.3 (d, J = 2.0 Hz), 129.8, 129.1 (d, J = 9.0 Hz), 128.8, 128.7, 128.3 (d, J = 5.0 Hz), 127.9, 127.9, 127.8, 127.6, 127.2 (d, J = 8.0 Hz), 126.4 (d, J = 12.0 Hz), 124.7 (d, J = 3.0 Hz), 124.4 (d, J = 3.0 Hz), 123.4 (d, J = 13.0 Hz), 119.4 (d, J = 22.0 Hz), 118.5 (d, J = 22.0 Hz), 110.2, 52.7, 51.5, 50.2, 18.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.78, -116.53. ESI-MS: Calcd for C₁₇H₁₄FNO: [M+H⁺] 268.1132, found 268.1125.

2-benzyl-5-methoxy-4-methylene-3,4-dihydro-2,6-naphthyridin-1(2H)-one (**3ai**) 2-benzyl-5-methoxy-4-methyl-2,6-naphthyridin-1(2H)-one (**3ai'**) Yellow oil (20 mg, 35%, 20 mg, 35%), ¹HNMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 5.2 Hz, 1H), 8.13 (d, *J* = 5.6 Hz, 1H), 7.83 (d, *J* = 5.6 Hz, 1H), 7.66 (d, *J* = 5.2 Hz, 1H), 7.35 – 7.27 (m, 10H), 6.86 (s, 1H), 6.11 (s, 1H), 6.5.39 (s, 1H), 5.17 (s, 2H), 4.78 (s, 2H), 4.05 (s, 2H), 4.03 (s, 3H), 4.01 (s, 3H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.0, 161.1, 160.6, 160.1, 145.9, 142.8, 137.2, 136.4, 136.3, 133.8, 131.0, 130.4, 128.8, 128.7, 128.0, 127.9, 127.6, 122.4, 118.5, 118.5, 118.0, 115.2, 114.1, 112.1, 53.9, 53.4, 52.9, 51.7, 50.3, 19.9. ESI-MS: Calcd for C₁₇H₁₆N₂O₂: [M+H⁺] 281.1285, found: 281.1288.

Application investigation:

In a round bottom flask, the mixture of **1a** (6.0 mmol), **2a** (3.0 mmol), $Pd(OAc)_2$ (67.3 mg, 0.3 mmol), tri(2-furyl)phosphine (139.3 mg, 0.6 mmol), NBE (282.5 mg, S13

3.0 mmol) and Cs_2CO_3 (3.9 g, 12.0 mmol) was dissolved in anhydrous THF (30 mL). The flask was then purged 3 times with N₂ and protected with N₂. The reaction mixture was allowed to react at 30 °C for 12 h. After the reaction was completed, the solvent was removed from the mixture under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether) to give product **3aa** (760 mg, 85% yield) as a yellow oil.

A 10-mL dried Schlenk tube containing a stirring bar was charged with tris(triphenylphosphine)rhodium(I) chloride (2 mol%) and **3aa** (0.5 mmol). After then, the schlenk tube kept under argon and vaccum for three times. Under Ar flow dry THF (2.0 mL) and PhSiH₃ (2.0 mmol) were added, and the mixture was stirred at rt-50°C for 24 h. Then, the reaction mixture was cooled to room temperature. Next, the solvent was removed from the mixture under reduced pressure. The residue was purified by column chromatography on silica gel (ethyl acetate/petroleum ether) to give product **4** (90 mg, 63% yield) as a yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.51 – 7.33 (m, 7H), 7.12 (d, *J* = 8.4 Hz, 1H), 5.78 (s, 1H), 5.48 (s, 1H), 3.98 (s, 2H), 3.78 (s, 2H), 3.54 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 138.1, 133.2, 133.0, 130.2, 129.1, 128.5, 128.3, 127.7, 127.2, 126.1, 125.2, 125.1, 124.7, 116.0, 61.2, 59.3, 56.4. ESI-MS: Calcd for C₂₁H₁₉N: [M+H⁺] 286.1590, found 286.1592.

In a 38 mL sealed tube, the mixture of **3aa** (0.20 mmol) and Cs_2CO_3 (195.6 mg, 0.6 mmol) was dissolved in anhydrous DMF (2.0 mL). The reaction mixture was allowed

to react at 100 °C for 12 h. The resulting mixture was diluted with water and extracted with EtOAc. Combined organic phase was dried with Na₂SO₄ and concentrated under reduced pressure. The crude product was then purified by flash column chromatography on silica gel to give product **3aa'** (35 mg, 58% yield) as a white solid. M.P.:193-196 °C ¹H NMR (400 MHz, CDCl₃) δ 8.85 (d, *J* = 8.4 Hz, 1H), 8.57 (d, *J* = 8.8 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.8 Hz, 1H), 7.66 – 7.57(m, 2H), 7.37 – 7.29(m, 5H), 7.10 (s, 1H), 5.29 (s, 2H), 2.76 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.6, 136.7, 136.1, 136.1, 132.3, 132.2, 130.2, 129.0, 128.8, 127.9, 127.8, 127.5, 127.0, 125.9, 124.9, 124.6, 113.2, 51.6, 23.4. ESI-MS: Calcd for C₂₁H₁₇NO: [M+H⁺] 300.1383, found 300.1380.

NMR Spectra:

^{3ba} ¹H NMR (400 MHz, CDCl₃)

$\begin{array}{c} \begin{array}{c} 8.445\\ 8.425\\ 8.2358\\ 8.2358\\ 7.7814\\ 7.7899\\ 7.7814\\ 7.7814\\ 7.7814\\ 7.7512\\ 7.7512\\ 7.$

O 3ha

¹H NMR (400 MHz, CDCl₃)

-163.51 -163.56 132.56 132.55 132.55 132.55 122.79 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.745 122.658 -132.658 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.656 -132.756-132.756

-163.49 -163.49 -163.49 -135.75 -135.75 -128.67 -128.67 -128.67 -128.675 -126.23 -126.23 -119.80 -57.42 -57.42

8.519 8.270 8.270 7.385 7.7.884 7.7.884 7.7.884 7.7.554 7.7.5547 7.7.55777 7.7.55777

3ka ¹H NMR (400 MHz, CDCI₃)

$\begin{array}{c} \begin{array}{c} 8.511\\ -8.468\\ -8.488\\ -7.393\\ -7.397\\ -7.587\\ -7.587\\ -7.587\\ -7.587\\ -7.587\\ -7.587\\ -7.587\\ -7.586\\ -7.56\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.566\\ -7.56\\ -7.566\\ -7.56\\$

3ma ¹H NMR (400 MHz, CDCl₃)

-163.48 -163.48 -138.23 -138.23 -138.52 -138.52 -128.65 -128.65 -127.67 -126.18 -126.18 -126.18 -126.18 -126.18 -126.18 -127.66 -57.49 -57.49-57.49

2.375
2.375
2.375
2.375
2.375
2.375
2.375
2.375
2.376
2.376

% 8.023 % 7.328 7.7.328 7.7.328 7.7.328 7.7.328 7.7.288

~5.348 ~6.152 ~4.826 ~3.942 ~3.911

-2.382

¹H NMR (400 MHz, CDCl₃)

~8.564 ~8.543 8.543 7.7814 7.7814 7.7.68 7.7.68 7.7.68 7.7.47 7.445 7.7.45 7.7.45 7.7.45 7.7.3564 7.7.3564 7.7.3564 7.7.3564 7.7.356 7.7.35 7.3.578 ~3.578 ~3.578

4 ¹H NMR (400 MHz, CDCl₃)

2.00 4 1.00-1 1.00-₹ 100. 80 8 5.0 4.5 f1 (ppm) 6.0 5.5 4.0 3.5 .0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0 138.25 138.11 138.11 138.13 133.13 133.13 133.13 133.13 133.13 133.13 133.13 133.13 123.17 125.14 125.12 125.17 125.12 12 77.32 77.00 76.68 61.22 59.29 56.40 Bn 4

¹³C NMR (100 MHz, CDCI₃) 140 130 120 110 100 90 f1 (ppm) 190 180 170 160 150 80 70 60 30 20 10 0 -1 200 50 40

-2.763

