Ruthenium(II)-Catalyzed Acyloxylation of the *ortho* C-H Bonds in 2-Aroyl-Imidazoles with Carboxylic Acids

Chen-an Wang and Naoto Chatani*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

chatani@chem.eng.osaka-u.ac.jp

Contents

I. General Information	S 1
II. Materials	S1-2
III. Synthesis of Starting Materials	S2
IV. General Procedure for the Ru-Catalyzed Acyloxylation of 2-Aroyl-Imidazoles with	S2
Carboxylic Acids.	
V. Spectroscopic Data	S3-15
VI. Mechanistic Studies	S16-18
VII. Removal of a Directing Group	S18-21
VIII. Copies of ¹ H and ¹³ C NMR Spectra	S21-42

I. General Information.

¹H NMR and ¹³C NMR spectra were recorded on a JEOL ECS-400 spectrometer in CDCl₃ with tetramethylsilane as the internal standard. Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, and m = multiplet), coupling constant (Hz), and integration. In some cases, it was not possible to assign some of the peaks in the ¹³C NMR spectra because of overlapping. Infrared spectra (IR) were recorded on a JASCO FT/IR-4000 spectrometer using the ATR method. Absorption data are reported in reciprocal centimeters from 800 to 3500 cm⁻¹ with the following relative intensities: s (strong), m (medium), or w (weak). Mass spectra and high resolution mass spectra (HRMS) were obtained using a JEOL JMS-700 or JMS-T100LP spectrometer. Melting points were determined using a Yamato melting point apparatus. Column chromatography was performed with SiO₂ (Silicycle SiliaFlash F60 (230-400 mesh). Some of the compounds that were prepared were purified by LC-908 HPLC (GPC). Medium-pressure liquid chromatography (MPLC) was performed with Biotage Isolera® equipped with Biotage® SNAP Ultra flash chromatography cartridges.

II. Materials

Ruthenium source: [Ru(*p*-cymene)Cl₂]₂(Sigma-Aldrich Co.)

Additives: Ag₂CO₃ (Wako Pure Chemicals Industries, Ltd), AgOAc (Wako Pure Chemicals Industries, Ltd), Ag₂O (Wako Pure Chemicals Industries, Ltd), Na₃PO₄ (Sigma-Aldrich Co.),

AgSbF₆ (Tokyo Chemical Industry Co., Ltd), AgNO₃, (Nacalai Tesque, Inc.), MnO₂ (Wako Pure Chemicals Industries, Ltd)

Benzoic acid:

2,6-dimethylbenzoic acid, 4-methylbenzoic acid, 4-acetoxybenzoic acid, 4-fluorobenzoic acid, 4-chlorobenzoic acid, 3-(trifluoromethyl) benzoic acid, trans-cinnamic acid, 2thiophenecarboxylic acid, 2-furoic acid, benzofuran-2-carboxylic acid, 2-naphthoic acid (Tokyo Chemical Industry Co., Ltd)

2,4,6-trimethylbenzoic acid (Sigma-Aldrich Co.)

4-bromobenzoic acid, 3-methoxybenzoic acid (Kanto Chemical Co., Inc.), acetic acid (Nacalai Tesque, Inc.)

III. Synthesis of Starting Materials.

All of the 2-acyl imidazole derivatives were prepared by reacting the corresponding acids or the corresponding acid chlorides with 1-methylimidazole.¹

To a stirred solution of 1-methylimidazole (30 mmol) in CH₃CN (120 mL) at 0 °C, a solution of acid chlorides (45 mmol) and triethylamine (36 mmol) was added dropwise. The resulting mixture was allowed to warm to room temperature and then stirred overnight. The crude product was washed with saturated aqueous NaHCO₃ (20 mL), brine (50 mL), and EtOAc (3x50 mL). The organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed by evaporation under reduced pressure. The residue was purified by MPLC (rate: 40 mL/min., eluent: hexane/EtOAc = 3/1).

IV. General Procedure for the Ru-Catalyzed Acyloxylation of 2-Aroyl-Imidazoles with Carboxylic Acids.

To an oven-dried 5 mL screw-capped vial, (1-methyl-1H-imidazol-2-yl)(2-methylphenyl)methanone (**1a**, 60.1 mg, 0.3 mmol), [Ru(*p*-cymene)Cl₂]₂ (9.2 mg, 0.015mmol), 2,6-dimethylbenzoic acid (90.1mg, 0.6 mmol), Ag₂CO₃ (124.1 mg, 0.45mmol), and PhCl (1.5 mL) were added. The mixture was stirred for 18 h at 110 °C and then allowed to cool to room temperature. The resulting mixture was filtered through a celite pad and the filtrate concentrated in vacuo. The residue was purified by MPLC (rate: 36 mL/min., eluent: hexane/EtOAc = 3/1 to 1/1) to afford the acyloxylation product **3aa** (88.6 mg, 85%) as a white powder.

^{1.} S. K. Mahato, N. Chatani. ACS Catal., 2020, 10, 5173.

V. Spectroscopic Data.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 2,4,6-trimethylbenzoate

73.4 mg, 68% yield, $R_f 0.43$ (hexane/EtOAc = 1:1). white solid, m.p. 180.6-180.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (m, 12H), 4.03 (s, 3H), 6.80-6.81 (m, 2H), 7.03 (s, 1H), 7.14-7.21 (m, 3H), 7.39 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 19.8, 21.2, 36.2, 120.0, 127.4, 127.8, 128.6, 129.8, 130.0, 130.8, 132.9, 135.9, 136.9, 139.9, 143.4, 147.6, 168.0, 186.7; IR (ATR): 3109 w, 2958 w, 2922 w, 2863 w, 2363 w, 1746 s, 1655 s, 1609 m, 1576 w, 1507 w, 1460 m, 1429 w, 1395 s, 1293 w, 1254 m, 1218 s, 1161 s, 1053 s, 1011 w, 936 s, 900 m, 851 w, 773 w, 733 w, 699 w; MS *m*/*z* (relative intensity, %) 362 (4, M⁺), 148 (11), 147 (100), 119 (11); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₂H₂₂N₂O₃: 362.1630; Found: 362.1628.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 4-methylbenzoate

67.1 mg, 67% yield, $R_f 0.35$ (hexane/EtOAc = 10:1). white solid, m.p. 108.8-109.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 2.39 (s, 3H), 3.95 (s, 3H), 6.95 (s, 1H), 7.12 (s, 1H), 7.15-7.21 (m, 4H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.69-7.71 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 21.8, 35.9, 120.2, 126.5, 127.0, 128.0, 129.1, 130.0, 130.3, 130.5, 132.3, 137.4, 143.8, 144.3, 148.2, 164.2, 186.6; IR (ATR) 3016 w, 2968 w, 1740 s, 1657 m, 1610 m, 1397 s, 1263 w, 1225 s, 1073 w, 1019 w, 936 w, 901 w, 836 w, 775 w, 746 w; MS *m/z* (relative intensity, %) 334 (4, M⁺), 200 (11), 199 (76), 119 (100), 91 (23); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₀H₁₈N₂O₃: 334.1314; Found: 334.1317.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 4-acetoxybenzoate

76.2 mg, 67% yield, $R_f 0.24$ (hexane/EtOAc = 1:1). white solid, m.p. 108.5-108.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H), 2.34 (s, 3H), 3.96 (s, 3H), 6.96 (s, 1H), 7.09-7.13 (m, 3H), 7.18-7.21 (m, 2H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.87 (dt, *J* = 9.0, 2.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 21.3, 36.0, 120.2, 121.7, 126.9, 127.2, 128.2, 130.3, 130.6, 131.6, 132.4, 137.5, 143.7, 148.0, 154.7, 163.4, 169.0, 186.5; IR (ATR) 3399 w, 2925 w, 2361 w, 1741 s, 1655 m, 1604 w, 1578 w, 1504 w, 1462 w, 1397 s, 1371 w, 1261 m, 1222 s, 1195 s, 1160s, 1053 m, 1024 m, 1008 m, 935 w, 901 w, 857 w, 825 w, 769 w, 732 w, 700 w, 680 w, 663 w; MS *m*/*z* (relative intensity, %) 378 (4, M⁺), 215 (10), 200 (14), 199 (98), 163 (13), 121 (100); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₁H₁₈N₂O₅: 378.1216; Found: 378.1212.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 4-fluorobenzoate

66.9 mg, 66% yield, $R_f 0.38$ (hexane/EtOAc = 1:1). white solid, m.p. 112.2-112.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 3.97 (s, 3H), 6.96 (s, 1H), 7.02-7.06 (m, 2H), 7.12 (d, *J* = 0.9 Hz, 1H), 7.17-7.21 (m, 2H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.83-7.87 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.49, 35.97, 115.64 (d, *J* = 22.04 Hz), 120.145, 125.52 (d, *J* = 2.82 Hz), 127.09, 128.1881, 130.34, 130.55, 132.25, 132.52 (d, *J* = 9.59 Hz), 137.48, 143.66. 147.95, 163.23, 166.04 (d, *J* = 254.0 Hz); IR (ATR) 3468 w, 3111 w, 3073 w, 3006 w, 2962 w, 1741 s, 1603 s. 1579 w, 1506 w, 1462 w, 1397 s, 1262 m, 1224 s, 1154 m, 1073 m, 1013w, 934 w, 900 w, 855w, 762 w, 732 w, 685 w; MS *m/z* (relative intensity, %) 337 (1, M⁺), 215 (12), 200 (14), 199 (100), 123 (72), 95 (20); HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₉H₁₅FN₂O₃: 338.1067; Found: 338.1069.

3-methyl-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl 4-chlorobenzoate

74.0 mg, 70% yield, $R_f 0.43$ (hexane/EtOAc = 1:1). white solid, m.p. 98.3-98.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 3.97 (s, 3H), 6.97 (s, 1H), 7.12 (s, 1H), 7.19 (dd, *J* = 7.8, 5.0 Hz, 2H), 7.33-7.36 (m, 2H), 7.40 (t, *J* = 7.9 Hz, 1H), 7.75-7.78 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 36.0, 120.1, 127.1, 127.8, 128.3, 128.8, 130.4, 130.5, 131.3, 132.2, 137.5, 140.0, 143.6, 147.9, 163.4, 186.3; IR (ATR) 3461 w, 3107 w, 2959 w, 2926 w, 1741s, 1655 m, 1594 m, 1462m, 1397 s, 1261 s, 1224 s, 1172 w, 1151 w, 1087 w, 1013 w, 935 w, 900 w, 851 w, 777 w, 753 w, 724 w, 700 w, 681 w, 665 w; MS *m*/*z* (relative intensity, %) 354 (1, M⁺), 215 (12), 200 (13), 199 (100), 141 (18), 139 (59), 111 (16); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₉H₁₅ClN₂O₃: 354.0771; Found: 354.0775.

3-methyl-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl 4-bromobenzoate

75.6 mg, 63% yield, $R_f 0.45$ (hexane/EtOAc = 1:1). white solid, m.p. 120.6-120.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 3.97 (s, 3H), 6.98 (s, 1H), 7.12 (s, 1H), 7.18-7.21 (m, 2H), 7.41 (t, *J* = 7.9 Hz, 1H), 7.51-7.53 (m, 2H), 7.69 (dd, *J* = 6.8, 1.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 36.1, 120.1, 127.1, 128.2, 128.3, 128.8, 130.4, 131.4, 131.8, 132.1, 137.6, 143.6, 147.9, 163.5, 186.3; IR (ATR) 3470 w, 3105 w, 3035 w, 2959 w, 2924 w, 1739 s, 1711 w, 1653 s, 1604 w, 1589 w, 1507 w, 1482 w, 1461 m, 1395 s, 1260 s, 1222 s, 1173 m, 1149 w, 1071 s, 1009 m, 934 w, 899 m, 847 w, 776 w, 748 m, 715 w, 699 w, 678 w, 664 w; MS *m/z* (relative intensity, %) 398 (1, M⁺), 215 (11), 200 (13), 199 (100), 185 (32), 183 (33); HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₉H₁₅BrN₂O₃: 398.0266; Found: 398.0261.

3-methyl-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl 3-(trifluoromethyl)benzoate

87.1 mg, 75% yield, $R_f 0.46$ (hexane/EtOAc = 1:1). white solid, m.p. 133.0-133.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 3.99 (s, 3H), 6.97 (s, 1H), 7.10 (s, 1H), 7.21 (d, J = 7.7 Hz, 1H), 7.26-7.28 (m, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.55 (t, J = 7.8 Hz, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.91 (s, 1H), 8.10 (d, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.52, 36.06, 119.99, 123.60 (q, J = 271.2 Hz); 126.46 (q, J = 3.83 Hz), 127.31, 128.42, 129.25, 129.97 (q, J = 3.83 Hz), 130.32, 130.40, 130.57, 131.04 (q, J = 32.6 Hz), 132.01, 133.32, 137.68, 143.53, 147.79, 162.83, 186.23; IR (ATR) 3107 w, 2962 w, 2927 w, 2868 w, 1745 m, 1654 m, 1609 w, 1577 w, 1508 w, 1462 w, 1443 w, 1396 m, 1334 m, 1294 w, 1240 m, 1218 s, 1169 m, 1127 m, 1070 m, 1003 w, 934 w, 899 m, 868 w, 810 w, 771w, 747 w, 696 w, 665 w; MS *m/z* (relative intensity, %) 388 (1, M⁺), 215 (11), 200 (14), 199 (100), 173 (35), 145 (28); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₀H₁₅F₃N₂O₃: 388.1035; Found: 388.1030.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 3-methoxybenzoate

66.3 mg, 63% yield, $R_f 0.34$ (hexane/EtOAc = 1:1). white solid, m.p. 104.5-104.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 3.79 (s, 3H), 3.96 (s, 3H), 6.96 (s, 1H), 7.08 (dd, J = 8.1, 2.6 Hz, 1H), 7.12 (s, 1H), 7.19 (dd, J = 11.7, 7.8 Hz, 2H), 7.26 (t, J = 7.9 Hz, 1H), 7.36-7.42 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 35.9, 55.5, 114.2, 120.1, 122.3, 127.1, 128.1, 129.4, 130.3, 130.5, 132.3, 137.4, 143.7, 148.1, 159.6, 164.1, 186.5; IR (ATR) 3107 w, 3006 w, 2958 w, 2837 w, 1738 m, 1654 m, 1602 w, 1586 w, 1485 w, 1460 w, 1432 w, 1396 s, 1333 w, 1274 s, 1212 s, 1175 m, 1150 w, 1130 w, 1091 w, 1065 w, 1039 w, 995 w, 934 w, 899 w, 829 w, 772 w, 747 w, 699 w, 680 w, 665 w; MS *m*/*z* (relative intensity, %) 350 (4, M⁺), 215 (12), 200 (14), 199 (100), 135 (97), 107 (20), 77 (10); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₀H₁₈N₂O₄: 350.1267; Found: 350.1266.

3-methyl-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl cinnamate

76.3 mg, 74% yield, $R_f 0.32$ (hexane/EtOAc = 1:1). white solid, m.p. 137.7-137.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H), 4.04 (s, 3H), 6.35 (d, *J* = 15.9 Hz, 1H), 7.03 (s, 1H), 7.12-7.16 (m, 2H), 7.17 (d, *J* = 0.8 Hz, 1H), 7.35-7.39 (m, 4H), 7.45 (dd, *J* = 4.6, 3.0 Hz, 2H), 7.54 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 36.1, 116.9, 120.1, 127.2, 127.9, 128.2, 129.0, 130.2, 130.5, 130.7, 132.4, 134.1, 137.2, 143.6, 146.2, 147.8, 164.5, 186.5; IR (ATR) 3299 w, 3106 w, 3062 w, 3027 w, 2959 w, 2924 w, 2362 w, 1733 m, 1654 m, 1635 w, 1605 w, 1576 w, 1461 w, 1396 s, 1330 w, 1308 w, 1257 w, 1220 s, 1199 m, 1173 w, 1133 s, 1076 w, 1028 w, 979 w, 936 w, 900 w, 863 w, 766 w, 703 w, 683 w, 665 w; MS *m*/*z* (relative intensity, %) 347 (4, M⁺+1), 346 (16, M⁺), 216 (37), 215 (17), 199 (45), 188 (15), 187 (14), 132 (10), 131 (100), 105 (10), 103 (40), 77 (18); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₁H₁₈N₂O₃: 346.1317; Found: 346.1315.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl thiophene-2-carboxylate

74.5 mg, 76% yield, $R_f 0.29$ (hexane/EtOAc = 1:1). white solid, m.p. 98.2-98.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H), 4.02 (s, 3H), 6.97 (d, *J* = 0.5 Hz, 1H), 7.05 (dd, *J* = 4.9, 3.8 Hz, 1H), 7.11 (d, *J* = 0.9 Hz, 1H), 7.17 (dt, *J* = 7.7, 0.9 Hz, 1H), 7.27-7.28 (m, 1H), 7.39 (t, *J* = 7.9 Hz, 1H), 7.53 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.68 (dd, *J* = 3.8, 1.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.4, 36.0, 120.0, 127.0, 127.9, 128.1, 130.2, 130.5, 132.1, 132.5, 133.4, 134.5, 137.4, 143.6, 147.7, 159.4, 186.3; IR (ATR) 3105 w, 2956 w, 2925 w, 2868 w, 1730 s, 1653 s, 1606 w, 1579 w, 1521 w, 1461 w, 1396 s, 1358 w, 1335 w, 1252 m, 1221 s, 1173 w, 1150 w, 1083 w, 1062 w, 1008 w, 936 w, 900 m, 861 w, 838 w, 773 w, 735 m, 700 w, 663 w; MS *m/z* (relative intensity, %) 326 (1, M⁺), 215 (11), 200 (14), 199 (100), 111 (70); HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₇H₁₄N₂O₃S: 326.0725; Found: 326.0729.

3-methyl-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl furan-2-carboxylate

72.9 mg, 78% yield, $R_f 0.24$ (hexane/EtOAc = 1:1). yellow solid, m.p. 108.4-108.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 4.03 (s, 3H), 6.44-6.46 (m, 1H), 6.93-6.94 (m, 1H), 7.00 (s, 1H), 7.11 (d, *J* = 0.9 Hz, 1H), 7.16-7.22 (m, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.55-7.56 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 36.0, 112.0, 118.9, 120.1, 127.0, 128.2, 130.3, 130.5, 132.2, 137.5, 143.7, 143.7, 147.1, 147.4, 155.9, 186.2; IR (ATR) 3455 w, 3133 w, 2959 w, 2926 w, 2857 w, 2334 w, 1742s, 1654 s, 1607 w, 1569 w,1463 w, 1396 s, 1336 w, 1293 w, 1256 w, 1225 s, 2282 m, 1097 s, 1012 w, 935 w, 900 w, 842 w, 769 w, 730 w, 699 w, 665 w; MS *m*/*z* (relative intensity, %) 310 (0, M⁺), 200 (15), 199 (100), 95 (32); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₇H₁₄N₂O₄: 310.0954; Found: 310.0950.

3-methyl-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl benzofuran-2-carboxylate

73.1 mg, 68% yield, $R_f 0.31$ (hexane/EtOAc = 1:1). white solid, m.p.139.2-139.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H), 3.94 (s, 3H), 6.86 (s, 1H), 7.03 (d, J = 0.9 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.17-7.24 (m, 3H), 7.31-7.39 (m, 2H), 7.45-7.48 (m, 1H), 7.56-7.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 36.0, 112.4, 114.9, 120.0, 123.0, 124.0, 126.8, 127.1, 128.1, 128.4, 130.4, 130.5, 132.2, 137.7, 143.7, 144.6, 147.5, 156.0, 156.9, 186.1; IR (ATR) 3299 w, 3105 w, 3067 w, 3026 w, 2957 w, 2925 w, 2358 w, 1745 s, 1654 s, 1609 w, 1562 w, 1508 w, 1461 w, 1397 s, 1349 w, 1330 s, 1294m, 1257 w, 1224 m, 1167 s, 1143 m, 1081 w, 958 w, 936 w, 900 w, 846 w, 749 w, 699 w, 664 w; MS *m/z* (relative intensity, %) 360 (1, M⁺), 304, 200 (13), 199 (100), 145 (35), 89 (11); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₁H₁₆N₂O₄: 360.1110; Found: 360.1114.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 2-naphthoate

80.6 mg, 73% yield, $R_f 0.38$ (hexane/EtOAc = 1:1). white solid, m.p.115.8-116.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 3H), 3.89 (s, 3H), 6.89 (s, 1H), 7.14 (s, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 7.26 (d, *J* = 7.1 Hz, 1H), 7.42 (t, *J* = 7.9 Hz, 1H), 7.51-7.60 (m, 2H), 7.79-7.86 (m, 4H), 8.33 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 35.9, 120.2, 125.2, 126.5, 126.9, 127.0, 127.9, 128.1, 128.2, 128.6, 129.4, 130.3, 130.5, 131.6, 132.3, 132.4, 135.7, 137.5, 143.8, 148.2, 164.3, 186.5; IR (ATR) 3458w, 3108 w, 3061 w, 2959 w, 1736 s, 1654 m, 1605 w, 1461 m, 1396 s, 1356 w, 1279 m, 1261 m, 1219 s, 1188 s, 1149 w, 1128 m, 1070 m, 957 w, 936 w, 900 m, 868 w, 828 w, 774 m, 763 m, 729 m; MS *m/z* (relative intensity, %) 370 (6, M⁺), 199 (57), 156 (12) 155 (100), 127 (43); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₃H₁₈N₂O₃: 370.1317; Found: 370.1317.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl acetate

27.6 mg, 36% yield, $R_f 0.22$ (hexane/EtOAc = 1:1). colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.99 (s, 3H), 2.25 (s, 3H), 4.12 (s, 3H), 7.06 (d, *J* = 8.2 Hz, 1H), 7.11-7.14 (m, 2H), 7.18 (d, *J* = 0.7 Hz, 1H), 7.35 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.6, 20.8, 36.3, 120.3, 127.3, 128.0, 130.2, 130.7, 132.2, 137.3, 143.6, 147.8, 168.7, 186.6; IR (ATR) 3110 w, 3023 w, 2960 w, 2362 w, 2334 w, 1770 m, 1655 s, 1606 w, 1577 w, 1508 w, 1462 w, 1397 s, 1369 w, 1292 w, 1257 w, 1217 s, 1197 w, 1148 w, 1178 w, 1031 w, 901 w, 868 w, 792 w, 777 w, 702 w, 663 w; MS *m*/*z* (relative intensity, %) 258 (2, M⁺), 216 (26), 200 (14), 199 (100), 188 (29), 187 (57), 105 (56); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₄H₁₄N₂O₃: 258.1004; Found: 258.1007.

2-(1-benzyl-1*H*-imidazole-2-carbonyl)-3-methylphenyl 2,6-dimethylbenzoate

101.3 mg, 80% yield, $R_f 0.62$ (hexane/EtOAc = 1:1). white solid, m.p. 115.8-116.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 2.13 (s, 3H), 2.24 (s, 6H), 5.64 (s, 2H), 6.97 (d, *J* = 7.5 Hz, 2H), 7.06-7.25 (m, 10H), 7.38 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.3, 19.8, 51.7, 119.8, 126.5, 127.5, 127.8, 128.1, 128.8, 129.7, 129.9, 131.2, 132.5, 132.8, 135.8, 136.2, 136.8, 142.9, 147.5, 167.7, 186.6; IR (ATR) 3030 w, 2959 w, 2924 w, 1745 s, 1657 s, 1607 w, 1578 w, 1496 w, 1461 m, 1430 w, 1399 s, 1381m, 1296 w, 1259 w, 1240 w, 1217 s, 1162 w, 1135 w, 1103 m,1052 s, 1013 w, 930 w, 899 m, 858 w, 776 m, 715 m, 695 w, 668 w; MS *m/z* (relative intensity, %) 424 (10, M⁺), 275 (12), 134 (10), 133 (100), 105 (14), 91 (12); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₇H₂₄N₂O₃: 424.1787; Found: 424.1786.

3-methyl-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 2,6-dimethylbenzoate

88.6 mg, 85% yield, $R_f 0.31$ (hexane/EtOAc = 1:1). white solid, m.p. 150.8-160.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H), 2.28 (s, 6H), 4.03 (s, 3H), 6.99 (d, *J* = 7.5 Hz, 2H), 7.03 (s, 1H), 7.14-7.18 (m, 3H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.40 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.5, 19.7, 36.1, 119.9, 127.5, 127.7, 127.9, 129.8, 130.0, 130.9, 132.8, 132.9, 135.6, 136.9, 143.4, 147.5, 167.8, 186.7; IR (ATR) 3107 w, 3067 w, 2959 w, 2925 w, 1746 m, 1655 m, 1607 w, 1577 w, 1506 w, 1461 w, 1424 w, 1395 s, 1292 w, 1258 m, 1240 w, 1216 s, 1174 w, 1149 w, 1103 m, 1052 s, 1014 w, 935 w, 900 m, 858 w, 776 m, 720 w, 700 w, 667 w; MS *m/z* (relative intensity, %) 348 (6, M⁺), 134 (10), 133 (100), 105 (16); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₁H₂₀N₂O₃: 348.1474; Found: 348.1479.

2-(1-methyl-1H-imidazole-2-carbonyl)-[1,1'-biphenyl]-3-yl 2,6-dimethylbenzoate

82.3 mg, 67% yield, $R_f 0.46$ (hexane/EtOAc = 1:1). colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 6H), 3.77 (s, 3H), 6.77 (d, J = 0.5 Hz, 1H), 6.94 (d, J = 0.7 Hz, 1H), 6.99-7.01 (m, 2H), 7.15-7.24 (m, 4H), 7.28-7.33 (m, 3H), 7.42 (dd, J = 8.2, 0.9 Hz, 1H), 7.55-7.59 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 35.6, 121.6, 126.5, 127.5, 127.8, 128.0, 129.1, 129.9, 130.2, 130.3, 132.2, 132.6, 135.8, 139.7, 142.3, 143.9, 147.8, 167.9, 185.9; IR (ATR) 3303 w, 3105 w, 3063 w, 3027 w, 2965 w, 1746 s, 1658 m, 1599 w, 1566 w, 1460 m, 1397 s, 1256 w, 1237 m, 1217 s, 1166 w, 1103 m, 1046 m, 937 w, 902 w, 861 w, 769 w, 702 w, 667 w; MS *m/z* (relative intensity, %) 410 (5, M⁺), 134 (10), 133 (100), 105 (14); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₅H₂₂N₂O₃: 410.1630; Found: 410.1623.

3-methoxy-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 2,6-dimethylbenzoate

89.1 mg, 82% yield, $R_f 0.34$ (hexane/EtOAc = 1:1). white solid, m.p. 203.8-204.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 6H), 3.78 (s, 3H), 4.05 (s, 3H), 6.90 (d, J = 8.6 Hz, 1H), 6.98-7.03 (m, 4H), 7.14-7.19 (m, 2H), 7.46 (t, J = 8.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 36.2, 56.4, 109.1, 115.1, 122.9, 127.2, 127.7, 129.8, 130.6, 130.8, 132.7, 135.6, 143.7, 148.3, 158.0, 167.7, 184.1; IR (ATR) 3106 w, 3069 w, 3007 w, 2963 w, 1748 w, 1658 s, 1606 m, 1585 w, 1467 m, 1436 w, 1398 s, 1268 m, 1257 m, 1240 m, 1220 s, 1169 w, 1103 m, 1077 s, 1047 w, 937 w, 901 m, 780 w, 749 w; MS m/z (relative intensity, %) 364 (4, M⁺), 213 (11), 133 (100), 105 (16); HRMS (EI) m/z: [M]⁺ Calcd for C₂₁H₂₀N₂O₄: 364.1423; Found: 364.1426.

3-fluoro-2-(1-methyl-1*H*-imidazole-2-carbonyl)phenyl 2,6-dimethylbenzoate

83.1 mg, 79% yield, $R_f 0.4$ (hexane/EtOAc = 1:1). white solid, m.p. 114.5-114.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 6H), 4.03 (s, 3H), 7.01 (d, J = 7.5 Hz, 2H), 7.07-7.11 (m, 2H), 7.17-7.21 (m, 3H), 7.47-7.53 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.86, 36.14, 133.41, 133.62, 118.74 (d, J = 3.84 Hz), 122.06 (d, J = 21.08 Hz),127.49, 127.84, 130.06, 130.85, 131.37 (d, J = 9.58 Hz), 132.31, 135.78, 143.10, 148.57, 148.64, 159.93 (d, J = 248.2 Hz), 167.47, 180.50; IR (ATR) 3449 w, 3107 w, 3066 w, 2965 w, 2927 w, 2361 w, 1752 w, 1660 m, 1617 w, 1585 w, 1507 w, 1461 m, 1398 s, 1293 w, 1256 m, 1218 s, 1174 w, 1153 w, 1102 w, 1049 s, 979 w, 936 w, 901 m, 856 w, 777 w, 718 w, 698 w, 665 w; MS *m/z* (relative

intensity, %) 352 (1, M⁺), 134 (10), 133 (100), 105 (19); HRMS (EI) m/z: [M]⁺ Calcd for C₂₀H₁₇FN₂O₃: 352.1223; Found: 352.1217.

2-(1-methyl-1H-imidazole-2-carbonyl)-3-(trifluoromethyl)phenyl 2,6-dimethylbenzoate

70 mg, 58% yield, $R_f 0.51$ (hexane/EtOAc = 1:1). white solid, m.p. 137.0-137.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 6H), 4.02 (s, 3H), 6.99-7.00 (m, 2H), 7.05 (s, 1H), 7.14 (d, *J* = 0.9 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 7.64 (t, *J* = 1.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 19.82, 35.97, 123.41 (q, *J* = 273.1 Hz), 123.97 (q, *J* = 4.8 Hz), 126.50, 127.63, 127.90, 129.28 (q, *J* = 31.58 Hz), 130.16, 130.38, 131.39, 132.01, 135.82, 143.23, 148.10, 167.30, 183.11; IR (ATR) 3108 w, 3067 w, 2965 w, 2928 w, 2356 w, 1752 s, 1666 w, 1592 w, 1508 w, 1463 w, 1399 s, 1319 s, 1294 w, 1255 w,1221 s, 1167 m, 1131m, 1077 w, 1035 m, 938 w, 901 w, 860 w, 777 w, 737 , w 701 , w 682 , w 669 w; MS *m*/*z* (relative intensity, %) 402 (4, M⁺), 258 (12), 134 (13), 133 (100), 118 (72), 117 (12), 105 (22), 91 (15), 57 (21); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₁H₁₇F₃N₂O₃: 402.1191; Found: 402.1198.

4-chloro-2-(1-methyl-1H-imidazole-2-carbonyl)phenyl 2,6-dimethylbenzoate

66.5 mg, 60 % yield, $R_f 0.54$ (hexane/EtOAc = 1:1). white solid, m.p. 102.5-102.7 °C; ¹H NMR(400 MHz, CDCl₃) δ 2.32 (s, 6H), 3.96 (s, 3H), 6.95-6.97 (m, 2H), 7.00 (s, 1H), 7.11-7.15 (m, 2H), 7.22 (d, J = 8.7 Hz, 1H), 7.44 (dd, J = 8.7, 2.5 Hz, 1H), 7.71 (d, J = 2.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.1, 36.4, 124.4, 127.8, 128.0, 130.2, 130.5, 130.9, 131.1, 131.8, 132.0, 133.3, 136.2, 142.6, 147.1, 167.6, 182.3; IR (ATR) 3107 w, 3069 w, 3025 w, 2962 w, 2927 w, 1746 s, 1713 w, 1657 s, 1595 w, 1506 w, 1466 m, 1396 s, 1280 w, 1255 s, 1280 w, 1255 m, 1236 m, 1198 s, 1170 w, 1152 w, 1117 m, 1105 w, 1045 s, 948 w, 910 w, 875 w, 828 w, 808 w, 775 s, 718 w, 689 w, 654 w; MS *m/z* (relative intensity, %) 368 (2, M⁺), 134 (10) 133 (100), 105 (15); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₀H₁₇ClN₂O₃: 368.0928; Found: 368.0927.

4-chloro-2-(1-methyl-1*H*-imidazole-2-carbonyl)-1,3-phenylene

31.1 mg, 20% yield, $R_f 0.49$ (hexane/EtOAc = 1:1). white solid, m.p. 190.0-190.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.16 (s, 6H), 2.29 (s, 6H), 3.86 (s, 3H), 6.90-6.95 (m, 5H), 7.08-7.14 (m, 3H), 7.32 (d, *J* = 8.9 Hz, 1H), 7.57 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.8, 20.9, 36.0, 121.4, 125.3, 127.9, 127.9, 128.4, 128.9, 130.1, 130.6, 130.7, 131.2, 131.3, 132.1, 135.8, 137.6, 142.9, 145.0, 146.9, 165.4, 166.9, 181.3; IR (ATR) 3068 w, 2966 w, 2928 w, 1752 s, 1659 s, 1596 w, 1463 w, 1396 s, 1254 w, 1222 m, 1206 m, 1172 w, 1102 w, 1046 m, 973 w, 950 w, 903 w, 870 w, 777 w, 719 w, 659 w; MS *m*/*z* (relative intensity, %) 516 (3, M⁺), 134 (10), 133 (100), 105 (16); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₉H₂₅ClN₂O₅: 516.1452; Found: 516.1442.

2-(1-methyl-1H-imidazole-2-carbonyl)-4-(trifluoromethyl)phenyl 2,6-dimethylbenzoate

52.8 mg, 44 % yield, $R_f 0.62$ (hexane/EtOAc = 1:1). white solid, m.p. 115.5-115.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 6H), 4.06 (s, 3H), 7.04-7.06 (m, 2H), 7.10 (s, 1H), 7.21-7.25 (m, 2H), 7.50 (d, J = 8.6 Hz, 1H), 7.83 (dd, J = 8.6, 2.2 Hz, 1H), 8.06-8.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.14, 36.43, 123.61(q, J = 271.19 Hz), 123.76, 127.61 (q, J = 32.58 Hz), 127.88, 128.10, 128.38 (q, J = 3.84 Hz), 128.90 (q, J = 3.84 Hz), 130.36, 130.48, 131.67, 132.50, 136.30, 142.40, 151.04, 167.24, 182.27; IR (ATR) 3111 w, 3070 w, 2965 w, 2931 w, 1748 m, 1657 m, 1616 w, 1593 w, 1465 w, 1396 s, 1332 s, 1299 w, 1250 m, 1238 m, 1203 s, 1167 s, 1120 s, 1079 w, 1034 m, 952 w, 909 w, 878 w, 835 w, 776 w, 726 w, 685 w; MS *m/z* (relative intensity, %) 402 (0.4, M⁺), 213 (11), 133 (100), 132 (10) 105 (15); HRMS (EI) *m/z*: [M]⁺ Calcd for C₂₁H₁₇F₃N₂O₃: 402.1191; Found: 402.1194.

1-(1-methyl-1*H*-imidazole-2-carbonyl)naphthalen-2-yl 2,6-dimethylbenzoate

59.5 mg, 52% yield, $R_f 0.33$ (hexane/EtOAc = 1:1). white solid, m.p. 237.5-237.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 6H), 4.15 (s, 3H), 7.01-7.03 (m, 2H), 7.08-7.12 (m, 2H), 7.20 (t, J = 7.7 Hz, 1H), 7.43-7.53 (m, 3H), 7.62-7.65 (m, 1H), 7.91 (dd, J = 7.3, 2.1 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 36.4, 121.4, 125.1, 126.1, 127.4, 127.7, 127.8, 128.5, 128.6, 129.9, 131.0, 131.1, 131.5, 131.6, 132.7, 135.7, 143.9, 145.4, 167.9, 186.3; IR (ATR) 3108 w, 3065 w, 2959 w, 2925 w, 1745 s, 1655 s, 1604 w, 1509 w, 1463 w, 1432 w, 1400 w, 1400 s, 1333 w, 1293 w, 1258 w, 1222 m, 1205 m, 1168 w, 1137 w, 1101 w, 1073 w, 1050 m, 935 w, 899 w, 809 w, 772 w, 701 w; MS m/z (relative intensity, %) 384 (5, M⁺), 235 (24), 134 (10), 133 (100), 105 (20); HRMS (EI) m/z: [M]⁺ Calcd for C₂₄H₂₀N₂O₃: 384.1474; Found: 384.1471.

2-(1-methyl-1H-imidazole-2-carbonyl)thiophen-3-yl 2,6-dimethylbenzoate

63.4 mg, 62% yield, $R_f 0.60$ (hexane/EtOAc = 1:1). white solid, m.p. 156.4-156.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.57 (s, 6H), 4.02 (s, 3H), 7.05-7.11 (m, 4H), 7.19 (d, *J* = 0.8 Hz, 1H), 7.25 (t, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 5.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.5, 36.5, 122.8, 124.3, 127.4, 128.2, 129.0, 130.3, 131.9, 133.3, 136.8, 142.6, 151.9, 167.1, 174.0; IR (ATR) 3108 w, 3019 w, 2959 w, 2926 w, 1747 m, 1633 m, 1593 w, 1516 w, 1465 w, 1413 s, 1292 w, 1259 w, 1237 m, 1216 m, 1165 w, 1142 w, 1103 w, 1052 m, 988 w, 926 w, 887 m, 858 w, 833 w, 777 w, 728 w, 681 w, 665 w; MS *m*/*z* (relative intensity, %) 340 (4, M⁺), 213 (10), 133 (100), 105 (21); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₁₈H₁₆N₂O₃S: 340.0882; Found: 340.0887.

2-(1-methyl-1*H*-imidazole-2-carbonyl)benzo[b]thiophen-3-yl 2,6-dimethylbenzoate

65.4 mg, 56% yield, $R_f 0.65$ (hexane/EtOAc = 1:1). yellow solid, m.p. 171.2-171.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.69 (s, 6H), 4.02 (s, 3H), 7.06 (s, 1H), 7.16 (d, *J* = 7.7 Hz, 2H), 7.24 (d, *J* = 0.9 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.42-7.44 (m, 1H), 7.48-7.50 (m, 1H), 7.84-7.89 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.5, 36.5, 122.6, 123.0, 124.1, 125.1, 127.7, 128.2, 128.6, 129.2, 130.6, 131.2, 132.3, 137.8, 140.7, 142.8, 146.1, 166.4, 175.2; IR (ATR) 3467 w, 3114 w, 3019 w, 2968 w, 2361 m, 2338 w, 1742 s, 1640 m, 1596 w, 1563 w, 1501 w, 1463 w, 1401 m 1365 m, 1263 w, 1224 s, 1167 w, 1105 w, 1053 w, 1000 w, 972 w, 938 w, 900 w, 831 w, 767 w, 708 w, 658 w; MS *m*/*z* (relative intensity, %) 390 (14, M⁺), 134 (10), 133 (100), 105 (19); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₂H₁₈N₂O₃S: 390.1038; Found: 390.1040.

2-(1-methyl-1H-imidazole-2-carbonyl)benzofuran-3-yl 2,6-dimethylbenzoate

53.3 mg, 48% yield, $R_f 0.29$ (hexane/EtOAc = 1:1). yellow solid, m.p. 113.5-113.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.57 (s, 6H), 4.05 (s, 3H), 7.09 (s, 1H), 7.11-7.13 (m, 2H), 7.23 (d, *J* = 0.9 Hz, 1H), 7.28 (t, *J* = 7.5 Hz, 1H), 7.33-7.38, 1H), 7.50-7.54 (m, 1H), 7.69 (dd, *J* = 8.2, 0.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 36.2, 113.4, 120.8, 122.4, 124.1, 127.3, 128.3, 128.8, 130.3, 130.6, 131.3, 137.1, 138.7, 141.3, 142.5, 153.6, 165.7, 173.2; IR (ATR) 3108 w, 3067 w, 2967 w, 2928 w, 1756 m, 1639 s, 1593 w, 1563 w, 1449 w, 1415 m, 1366 w, 1345 w, 1283 w, 1260 w, 1230 s, 1189w, 1155 s, 1138 m, 1109 w, 1018 s, 993 m, 972 m, 916 w, 868 w, 868 m, 791 w, 772 w, 749 m, 698 w, 674 w; MS *m*/*z* (relative intensity, %) 374 (12, M⁺), 134 (10), 133 (100), 105 (15); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₂H₁₈N₂O₄: 374.1267; Found: 374.1263.

VI. Mechanistic Studies

(I) Experiment with TEMPO

To an oven-dried 5 mL screw-capped vial, (1-methyl-1H-imidazol-2-yl)(2-methylphenyl)methanone (**1a**, 60.1 mg, 0.3 mmol), [Ru(*p*-cymene)Cl₂]₂ (9.2 mg, 0.015mmol), 2,6-dimethylbenzoic acid (90.1mg, 0.6 mmol), Ag₂CO₃ (124.1 mg, 0.45 mmol), TEMPO (46.9 mg, 0.3 mmol), and PhCl (1.5 mL) were added. The mixture was stirred for 18 hours at 110 °C and then allowed to cool to room temperature. The resulting mixture was filtered through a celite pad and the filtrate concentrated in vacuo. The residue was purified by MPLC (rate: 36 mL/min., eluent: hexane/EtOAc = 3/1 to 1/1) to afford the acyloxylation product **3aa** (47 mg, 45%) as a white powder.

(II) **KIE Experiments**

Two parallel reactions using **1a** and **1a**- d_7 were carried out in two different oven-dried 5 mL screw-capped vial. In the vial, **1a** or **1a**- d_7 (0.3 mmol), [Ru(*p*-cymene)Cl₂]₂ (9.2 mg, 0.015 mmol), 2,6-dimethylbenzoic acid (90.1mg, 0.6 mmol), Ag₂CO₃ (124.1 mg, 0.45 mmol), and PhCl (1.5 mL) were added. The mixture was stirred for 2 hours at 110 °C and then allowed to cool to room temperature. The resulting mixture was filtered through a celite pad and the filtrate concentrated in vacuo. The residue was purified by MPLC (rate: 40 mL/min., eluent: hexane/EtOAc = 3/1 to 1/1) to afford the acyloxylation product **3aa** (24.4 mg, 23%) or **3aa**- d_6 (11.3 mg, 11%) as white powder. The KIE value was determined to be 2.11, suggesting that the C–H activation step is a rate limiting step.

(III) Deuterium Scrambling Experiments

2a 2 equiv [RuCl₂(*p*-cymene)]₂ 5 mol% Ag₂CO₃ 1.5 equiv PhCl 110 °C, 2 h

(IV) Competition Experiments

То an oven-dried 5 mL screw-capped vial, (1-methyl-1H-imidazol-2-yl)(2methylphenyl)methanone (1a, 60.1 mg, 0.3 mmol), (1-methyl-1H-imidazol-2-yl)(2-(trifluoromethyl)phenyl)methanone (1f, 76.3 mg, 0.3 mmol), [Ru(p-cymene)Cl₂]₂ (9.2 mg, 0.015mmol), 2,6-dimethylbenzoic acid (90.1mg, 0.6 mmol), Ag₂CO₃ (124.1 mg, 0.45 mmol), and PhCl (1.5 mL) were added. The mixture was stirred for 3 hours at 110 °C and then allowed to cool to room temperature. The resulting mixture was filtered through a celite pad and the filtrate concentrated in vacuo. The conversion of 1a and 1f and the yields of 3aa and 3fa were determined by ¹H NMR spectroscopy with respect to the internal standard (1,1,2,2)tetrachloroethane). The reaction gave 3aa and 3fa in 48% and 12% NMR yields, along with 1a (47%) and 1f (84%) recovered, respectively.

To an oven-dried 5 mL screw-capped vial, (1-methyl-1H-imidazol-2-yl)(2-methylphenyl)methanone (**1a**, 60.1 mg, 0.3 mmol), [Ru(*p*-cymene)Cl₂]₂ (9.2 mg, 0.015mmol), 4-methylbenzoic acid (**2a**, 93.9 mg, 0.6 mmol), 4-chlorobenzoic acid (**2f**, 81.7 mg, 0.6 mmol), Ag₂CO₃ (124.1 mg, 0.45 mmol), and PhCl (1.5 mL) were added. The mixture was stirred for 3 hours at 110 °C and then allowed to cool to room temperature. The resulting mixture was filtered through a celite pad and the filtrate concentrated in vacuo. The yields of **3ac** and **3af** were determined by ¹H NMR spectroscopy with respect to the internal standard (1,1,2,2-tetrachloroethane). The reaction gave **3ac** and **3af** in 34% and 40% NMR, respectively.

VII. Removal of a Directing Group

In a 25ml J-Young Schlenk, 4Å MS (200 mg; 100 mg/0.1 mmol) was heated under a vacuum for 30 minutes and was then allow to cool to room temperature under a nitrogen atmosphere. To the Schlenk tube, **3aa** (69.5 mg, 0.2 mmol) and anhydrous CH₃CN (2 mL) were added. The

resulting suspension was stirred for 3 h at room temperature under a nitrogen atmosphere. Methyl trifluoromethanesulfonate (34.8 mg, 0.22 mmol) was then slowly added at room temperature and the reaction mixture was stirred for 3 h. After stirring for 3 h, the reaction mixture was allowed to cool to 0 °C and ethanol (2 mL) and DBU (33.5 mg, 0.22 mmol) were added. The reaction was then stirred for an additional 2 h at 0 °C and the progress of the reaction was monitored by TLC (10% ethyl acetate -hexane). The crude product was washed with brine (25 mL) and EtOAc (3x25 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed by evaporation. The residue was purified by MPLC (rate: 40 mL/min., eluent: hexane/EtOAc = 10/1) to afford the ester **4n** (56.4 mg, 90%) as a white powder.

In a 25ml J-Young Schlenk, 4Å MS (400 mg; 100 mg/0.1 mmol) was heated under a vacuum for 30 minutes and was then allow to cool to room temperature under a nitrogen atmosphere. To the Schlenk tube, **3an** (148 mg, 0.4 mmol) and anhydrous CH₃CN (4 mL) were added. The resulting suspension was stirred for 3 h at room temperature under a nitrogen atmosphere. Methyl trifluoromethanesulfonate (72 mg, 0.44 mmol) was then slowly added at room temperature and the reaction mixture was stirred for 3 h. After stirring for 3 h, the reaction mixture was allowed to cool to 0 °C and ethanol (2 mL) and DBU (67 mg, 0.44 mmol) were added. The reaction was then stirred for an additional 2 h at 0 °C and the progress of the reaction was monitored by TLC (10% ethyl acetate -hexane). The crude product was washed with brine (50 mL) and EtOAc (3x50 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed by evaporation. The residue was purified by MPLC (rate: 40 mL/min., eluent: hexane/EtOAc = 10/1) to afford the ester **4n** (106.5 mg, 80%) as a white powder.

To an oven-dried 5 mL screw-capped vial, **4n** (37.5 mg, 0.1 mmol,), NaOMe (5.7 mg, 0.0105 mmol), THF (1 mL), and MeOH (0.02 ml) were added. The mixture was then stirred for overnight at room temperature. The resulting mixture was filtered through a celite pad and then concentrated in vacuo. The residue was purified by MPLC (rate: 40 mL/min., eluent: hexane/EtOAc = 10/1) to afford ethyl 2-hydroxy-6-methylbenzoate (**5**) (9.1 mg, 50%) as a white powder.

To an oven-dried 5 mL screw-capped vial, **3an** (37.5 mg, 0.1 mmol), 12 N HCI (1 mL) was added. The mixture was then stirred overnight at 80 °C. The crude product was washed with brine (20 mL) and extracted with EtOAc (3x20 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed by evaporation. The residue was purified by MPLC (rate: 40 mL/min., eluent: hexane/EtOAc = 2/1) to afford **6** (19.2 mg, 89%) as a white powder.

2-(ethoxycarbonyl)-3-methylphenyl 2,6-dimethylbenzoate

56.4 mg, 90% yield. $R_f 0.50$ (hexane/EtOAc = 5:1). white solid, m.p. 82.8-83.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.26-1.30 (m, 3H), 2.41 (s, 3H), 2.48 (s, 6H), 4.32 (q, *J* = 7.1 Hz, 2H), 7.08 (d, *J* = 7.7 Hz, 2H), 7.13-7.17 (m, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.38 (t, *J* = 7.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.2, 19.9, 20.3, 61.5, 120.2, 127.6, 128.1, 128.1, 130.2, 130.5, 132.4, 136.1, 137.6, 147.9, 166.8, 168.0; IR (ATR) 3069 w, 2980 w, 2931 w, 2359 w, 2337 w, 1730 s, 1661 w, 1608 w, 1582 w, 1464 m, 1426 w, 1384 w, 1366 w, 1333 w, 1267 s, 1240 m, 1219 s, 1167 w, 1105 m, 1076 m, 1047 s, 938 w, 900 w, 857 w, 775 w, 735 w, 714 w; MS *m/z* (relative intensity, %) 312 (1, M⁺), 134 (10), 133 (100), 105 (13); HRMS (EI) *m/z*: [M]⁺ Calcd for C₁₉H₂₀O₄: 312.1362; Found:312.1361.

2-(ethoxycarbonyl)-3-methylphenyl 2-naphthoate

106.5 mg, 80% yield. $R_f 0.44$ (hexane/EtOAc = 5:1). white solid, m.p. 61.0-61.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (t, *J* = 7.1 Hz, 3H), 2.46 (s, 3H), 4.20 (q, *J* = 7.1 Hz, 2H), 7.16 (t, J = 7.1 Hz, 2H), 7

= 7.4 Hz, 2H), 7.40 (t, J = 8.0 Hz, 1H), 7.56-7.65 (m, 2H), 7.90-8.00 (m, 3H), 8.17 (dd, J = 8.6, 1.7 Hz, 1H), 8.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 14.1, 20.1, 61.5, 120.7, 125.6, 126.6, 126.9, 127.0, 128.0, 128.4, 128.6, 128.8, 129.6, 130.8, 132.1, 132.6, 136.0, 138.4, 148.7, 165.1, 166.7; IR (ATR) 3460 w, 3062 w, 2981 w, 2932 w, 1737 s, 1630 w, 1607 w, 1462 w, 1395 w, 1365 w, 1272 s, 1247 m, 1220 s, 1188 s, 1082 w, 1063 w, 1017 w, 957 w, 868 w, 829 w, 774 w, 763 w; MS *m*/*z* (relative intensity, %) 334 (10, M⁺), 156 (12), 155 (100), 127 (28); HRMS (EI) *m*/*z*: [M]⁺ Calcd for C₂₁H₁₈O₄: 334.1205; Found: 334.1202.

(2-hydroxy-6-methylphenyl)(1-methyl-1H-imidazol-2-yl)methanone

19.2 mg, 89% yield. $R_f 0.35$ (hexane/EtOAc = 1:1). white solid, m.p. 151.8-152.2 °C; ¹H NMR (400 MHz, DMSO- d_0) δ 2.03 (s, 3H), 4.01 (s, 3H), 6.65-6.68 (m, 2H), 7.03 (d, J = 0.9 Hz, 1H), 7.10 (t, J = 7.8 Hz, 1H), 7.51 (s, 1H), 9.44 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.6, 36.4, 117.4, 123.6, 127.0, 127.5, 128.4, 132.5, 139.7, 144.7, 155.9, 186.9; IR (ATR) 3312 w, 3108 w, 3072 w, 3024 w, 2965 w, 2857 w, 1754 w, 1740 w, 1725 w, 1710 w, 1658 m, 1602 w, 1586 w, 1550 w, 1463 m, 1400 s, 1367 w, 1289 w, 1261 w, 1224 w, 1172 w, 1150 w, 1084 w, 1029 w, 938 w, 907 s, 873 w, 785 w, 731 w, 703 w, 662 w; HRMS (DART) m/z: [M+H]⁺ Calcd for C₁₂H₁₃N₂O₂ ([M+H]⁺): 217.09715. Found: 217.09975.

VIII. Copies of ¹H and ¹³C NMR Spectra

