Rhenium-Catalyzed Alkylarylation of Alkenes with $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}$ via Decarboxylation to Access Indolinones and Dihydroquinolinones

Lei Zhang, ${ }^{\text {a,b }}$ Yin Wang, ${ }^{\mathrm{b}, \mathrm{c}}$ Yunhui Yang, ${ }^{\mathrm{b}, \mathrm{c}}$ Ping Zhang, ${ }^{\text {a }}$ and Congyang Wang ${ }^{*, \mathrm{~b}, \mathrm{c}, \mathrm{d}}$
${ }^{\text {a }}$ National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
${ }^{\mathrm{b}}$ Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
${ }^{c}$ University of Chinese Academy of Sciences, Beijing 100049, China
${ }^{d}$ Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400, China

Email: wangcy@iccas.ac.cn

Table of contents

1. General Information S1
2. Substrate Preparation S2
2.1 Synthesis of N, N-disubstituted methacrylmamides S2
2.2 Synthesis of hypervalent iodine(III) reagents S3
2.3 Synthesis of N, N-disubstituted cinnamides S3
3. Re-Catalyzed Alkylarylation of Alkenes to Access Indolinones S6
3.1 Screening of Reaction Parameters S6
3.2 General Procedure to Access Indolinones S7
3.3 Characterization Data for Indolinones S7
4. Re-Catalyzed Alkylarylation of Alkenes to Access Dihydroquinolinones S21
4.1 Screening of Reaction Parameters S21
4.2 General Procedure to Access Dihydroquinolinones S23
4.3 Characterization Data for Dihydroquinolinones S23
5. Mechanism Studies S30
5.1 A Radical Trapping Experiment with TEMPO S30
5.2 Competition Experiments of Alkenes S32
6. References S34
7. Spectra of Products S36

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under a nitrogen atmosphere by using standard Schlenk techniques. Reaction temperatures are recorded on the temperature of the bath oil surrounding the Schlenk tubes. Anhydrous solvents were purified and dried by standard procedures. All commercially available reagents were used as received. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Flash column chromatography was performed on silica gel (200-300 mesh).
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker 300AV, Bruker 400AV and Bruker 500AV spectrometers. All chemical shifts are quoted in parts per million downfield from tetramethylsilane and are referenced to the residue protons of the deuterated solvents $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}{ }^{1} \mathrm{H}\right.$ and $\left.77.16 \mathrm{ppm}{ }^{13} \mathrm{C}\right)$. Abbreviations are used in the description of NMR data as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant $(\mathrm{J}, \mathrm{Hz})$. The mass spectra (MS) were recorded on a SHIMADZU QP-2010SE GC-MS spectrometer. The high resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS instrument or a High-Resolution LC-MS spectrometer Thermo Fisher Exactive. Melting points (M.p.) were determined in open capillaries without further correction.

2. Substrate Preparation

2.1 Synthesis of N, N-disubstituted methacrylmamides

All the substrates $\mathbf{1}$ were prepared according to the known literature, ${ }^{[1]}$ which are known compounds and their NMR spectral data are in agreement with the literature values. ${ }^{[2]}$

General procedure A for amides synthesis:

Methacryloyl chloride (1.2 equiv., 6.0 mmol) was added dropwise to a solution of aniline derivative (1.0 equiv, 5.0 mmol) and NEt_{3} (1.2 equiv, 6.0 mmol) in DCM $(10.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The temperature was allowed to rise to ambient temperature, and then the mixture was stirred at the same temperature overnight. Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added and the resultant reaction mixture was extracted with DCM. The combined organic phases were washed with 2 N HCl , water, brine, and dried over MgSO . Volatiles were removed in vacuo and the crude mixture purified by column chromatography. THF (10 mL) solution of amide $\mathbf{S} 1(5.0 \mathrm{mmol}, 1.0$ equiv.) was slowly added into the THF (10 mL) suspension of $\mathrm{NaH}(60 \%$ in mineral oil, 0.24 g , $6.0 \mathrm{mmol}, 1.2$ equiv.) at $0{ }^{\circ} \mathrm{C}$. After stirring for $15 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{I}(7.0 \mathrm{mmol}, 1.4$ equiv.) was added and the mixture was stirred until completion at RT (monitored by TLC). After distilled water was carefully added, the mixture was extracted with EtOAc. The combined organic layers were washed with brine and dried over MgSO4. Volatiles were removed in vacuo and the crude mixture purified by column chromatography.

General procedure B for amides synthesis:

The appropriate acid chloride (1.2 equiv., 6.0 mmol) was added dropwise to a solution of aniline derivative (1.0 equiv, 5.0 mmol) and $\mathrm{NEt}_{3}(1.2$ equiv, 6.0 mmol) in DCM (10.0 mL) at $0{ }^{\circ} \mathrm{C}$, then the mixture was stirred at r.t. overnight. Saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution was added and the resultant reaction mixture was extracted with DCM. The combined organic phases were washed with 2 M HCl , brine, water and dried over MgSO_{4}. Volatiles were removed in vacuo and the crude mixture purified by column chromatography.

2.2 Synthesis of hypervalent iodine(III) reagents

HIR 2a is commercially available and is used as received. Other HIRs 2 were prepared according to the known literature. ${ }^{[3,4]}$

In a typical procedure, $\operatorname{PhI}(\mathrm{OAc})_{2}(10 \mathrm{mmol}, 1.0$ eq. $)$ and indicated acid (22 $\mathrm{mmol}, 2.2$ eq.) were dissolved with xylene $(50 \mathrm{~mL}, 0.2 \mathrm{M})$ in a round-bottom flask, and then the flask was heated to $65^{\circ} \mathrm{C}$ with a rotary evaporator under reduced pressure (about 30-50 Torr.) using a diaphragm pump. When the xylene was removed, product 2 was obtained as a white solid or a viscous oil after wash with petroleum ether (PE), filtered and dried in vacuum, which then could be used directly in the following reaction.

2.3 Synthesis of N, N-disubstituted cinnamides

N-methyl- N-phenylcinnamamide 4a, N-methyl- N-(4-Methylphenyl)cinnamamide 4b, N-(4-Methoxyphenyl)- N-methylcinnamamide 4c, N-(4-trifluoromethylphenyl)-N-methylcinnamamide $\mathbf{4 d}, \quad N$-(4-Fluorophenyl)- N-methylcinnamamide $\quad \mathbf{4 e}$, N-(4-Chlorophenyl)- N-methylcinnamamide $\quad 4 f, \quad N$-(4-Bromophenyl)- N-methyl cinnamamide $\mathbf{4 g}$ and 3-(4-Chlorophenyl)- N-phenyl- N-methylacrylamide $\mathbf{4 j}$ were prepared from the corresponding acid chloride and aniline according to the known literatures, and all are known compounds and their NMR spectral data are in agreement with the literature values. ${ }^{[5]}$

Synthesis of acid chlorides: To a suspension of the indicated acid (1.0 equiv) in DCM $(0.3 \mathrm{M})$ was added a catalytic amount of DMF $(0.1 \mathrm{~mL} / \mathrm{mmol}$ acid $)$. At room temperature, oxalylchloride (1.5 equiv) was added dropwise over a period of 0.5 h , forming a homogenous solution. The resulting solution was kept at room temperature for 3 h . Then, the solvent was removed under reduced pressure and the crude product was directly used in the next step.

Preparation of amides from acid chloride: A solution of acid chloride (1.0 equiv.) in dry DCM $(0.50 \mathrm{M})$ was slowly added dropwise to the solution of the appropriate aniline derivative (1.0 equiv) and $\mathrm{Et}_{3} \mathrm{~N}$ (2.0 equiv) in $\mathrm{DCM}(0.25 \mathrm{M}$). The reaction mixture was stirred at room temperature and monitored by TLC. Upon completion, the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the combined organic phase was washed with $\mathrm{NH}_{4} \mathrm{Cl}$ and brine. Dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the solvent under reduced pressure and purified by flash column chromatography on silica gel (EA/PE) afforded the desired amides.

N-(4-iodophenyl)- N-methylcinnamamide (4h)

Physical state: white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H})$,
$7.69(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.01(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 166.06,143.60,142.48,138.92,135.16,129.81$, $129.30,128.86,128.04,118.43,92.54,37.60$.

HRMS (ESI-MS): calculated $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ONI}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 364.01928$, found: 364.01883 .

3-(4-chlorophenyl)- N-(4-methoxyphenyl)- N-methylacrylamide (4i)

Physical state: white solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.60(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.24(\mathrm{~s}, 4 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.92(\mathrm{~m}$,

2H), 6.32 (d, $J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 166.19,158.95,140.23,136.43,135.33,133.89$, 129.13, 129.01, 128.59, 119.42, 114.92, 55.65, 37.88.

HRMS (ESI-MS): calculated $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{NCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 302.09423, found: 302.09401 .

3. Re-Catalyzed Alkylarylation of Alkenes to Access Indolinones

3.1 Screening of Reaction Parameters ${ }^{a}$

entry	variations of standard conditions	yield of 3ag (\%) ${ }^{\text {b }}$
1	none	$92(82)^{\text {c }}$
2	MeCN instead of MTBE	61
3	Toluene instead of MTBE	86
4	THF instead of MTBE	88
5	DMF instead of MTBE	90
6	$\operatorname{ReBr}(\mathrm{CO})_{5}$ instead of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$	66
7	$\mathrm{ReCl}(\mathrm{CO})_{5}$ instead of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$	76
8	without $\mathrm{Re}_{2}(\mathrm{CO})_{10}$	0
9	2.5 instead of $5 \mathrm{~mol} \%$ of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$	82
10	8 h instead of 12 h	87
11	0.1 M instead of 0.2 M	88
12	0.4 M instead of 0.2 M	83
13	$80^{\circ} \mathrm{C}$ instead of $100{ }^{\circ} \mathrm{C}$	79
14	1.0 instead of 2.0 eq. of $\mathbf{2 g}$	71

${ }^{a}$ Reaction conditions: $1 \mathrm{a}(0.2 \mathrm{mmol}), \mathbf{2 g}(0.4 \mathrm{mmol}), \operatorname{Re}_{2}(\mathrm{CO})_{10}(5 \mathrm{~mol} \%), \operatorname{MTBE}(1.0 \mathrm{~mL}), 100^{\circ} \mathrm{C}$, $12 \mathrm{~h} .{ }^{b}{ }^{1} \mathrm{H}$ NMR yields with 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ Isolated yield on a 0.5 mmol scale.

In addition, indolinone $30 g$ was unambiguously confirmed by X-ray single-crystal diffraction analysis (Figure S1).

Figure S1. X-ray structure of indolinone 3og

3.2 General Procedure to Access Indolinones

A flame-dried Teflon-screw-capped tube was equipped with a magnetic stir bar. $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, N-methyl $-N$-phenylmethacrylamide 1a $(87.5 \mathrm{mg}$, $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE $(2.5 \mathrm{~mL})$ were added into the reaction vessel under nitrogen atmosphere. Then, the Teflon cap was screwed up and the reaction mixture was stirred in an oil bath $\left(100{ }^{\circ} \mathrm{C}\right)$ for 12 h . After completion of the reaction, the solvent was removed in vacuo. The residue was pre-absorbed on silica gel and purified by flash column chromatography affording product 3ag as colorless oil.

3.3 Characterization Data for Indolinones

3-ethyl-1,3-dimethylindolin-2-one ${ }^{[6]}$ (3aa)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}$, 0.025 mmol), N-methyl- N-phenylmethacrylamide 1a ($87.5 \mathrm{mg}, 0.5$ $\mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2}$ 2a ($322.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) and MTBE (2.5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3aa as colorless oil in 70\% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.85,143.58,134.04,127.71,122.60,122.50$, 107.92, 49.04, 31.56, 26.16, 23.41, 8.94.

1,3-dimethyl-3-propyloindolin-2-one ${ }^{[7]}$ (3ab)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol})$,

N-methyl- N-phenylmethacrylamide $\mathbf{1 a}(87.5 \mathrm{mg}, \quad 0.5 \mathrm{mmol})$, $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{2} \mathbf{2 b}(350.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\operatorname{MTBE}(2.5 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ab as colorless oil in 72% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.03-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.82(\mathrm{~m}, 1 \mathrm{H}), 0.77(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.96,143.44,134.42,127.67,122.58,122.49$, 107.92, 48.61, 40.89, 26.17, 23.84, 17.94, 14.24.

HRMS (ESI-MS): calculated $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$204.13829, found: 204.13827.

3-butyl-1,3-dimethylindolin-2-one ${ }^{[7]}$ (3ac)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ ($16.3 \mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N-phenylmethacrylamide 1a ($87.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{n} \operatorname{Pr}\right)_{2} \mathbf{2 c}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ac as colorless oil in 78% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.29-7.25 (m, 1H), 7.19-7.17 (m, 1H), 7.10-7.05 (m, $1 \mathrm{H}), 6.85(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H})$, $1.36(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.05-0.83(\mathrm{~m}, 2 \mathrm{H}), 0.78(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 180.97,143.43,134.42,127.66,122.55,122.50$, 107.94, 48.51, 38.41, 26.67, 26.18, 23.89, 22.91, 13.91.

3-hexadecyl-1,3-dimethylindolin-2-one ${ }^{[7]}$ (3ad)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N -phenylmethacrylamide 1a (87.5 $\mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CC}_{15} \mathrm{H}_{31}\right)_{2} \mathbf{2 d}(714.4 \mathrm{mg}, 1.0 \mathrm{mmol})$ and

MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ad as colorless oil in 85% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.14(\mathrm{~m}, 28 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 181.05,143.46,134.48,127.68,122.58,122.53$, 107.96, 48.59, 38.67, 32.06, 29.88, 29.82, 29.79, 29.73, 29.69, 29.68, 29.49, 29.44, 26.22, 24.58, 23.91, 22.82, 14.25 .

HRMS (ESI-MS): calculated $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{ONNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 408.32369$, found: 408.32344.

3-(4-chlorophenethyl)-1,3-dimethylindolin-2-one ${ }^{[8]}$ (3ae)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ ($16.3 \mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl $-N$-phenylmethacrylamide 1a ($87.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{R}=4$-Chlorobenzyl) 2e ($543.2 \mathrm{mg}, 1.0 \mathrm{mmol}$) and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ae as colorless oil in 72\% isolated yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.32-7.26(m, 1H), 7.22-7.07(m, 4H), $6.93(\mathrm{~d}, \mathrm{~J}=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.86$ (d, J = 7.8 Hz, 1H), 3.19 (s, 3H), 2.31-2.19 (m, 2H), 2.14-1.93(m, 2H), 1.38 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.29,143.49,139.86,133.63,131.66,129.76$, 128.39, 128.03, 122.75, 122.57, 108.18, 48.40, 40.09, 30.51, 26.24, 24.13.

HRMS (ESI-MS): calculated $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ONCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 300.11497$ found: 300.11478 .

1,3-dimethyl-3-(3-phenylpropyl)indolin-2-one ${ }^{[6,7]}$ (3af)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ ($16.3 \mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N-phenylmethacrylamide 1a ($87.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{R}=2$-Phenylethyl) $2 f$ $(502.5 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\operatorname{MTBE}(2.5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3af as colorless oil in 80% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.26-7.18 (m, 3H), 7.14-7.10 (m, 2H), 7.06-7.02 (m, $3 \mathrm{H}), 6.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.57-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.82-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.27(\mathrm{~m}, 4 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.72,143.38,141.97,134.08,128.42,128.31$, 127.74, 125.81, 122.53, 108.00, 48.40, 38.21, 36.04, 26.46, 26.19, 23.96.

3-isobutyl-1,3-dimethyl-indolin-2-one ${ }^{[6,9]}$ (3ag)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N-phenylmethacrylamide 1a (87.5 mg , $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\operatorname{MTBE}(2.5$ mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ag as colorless oil in 82% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76(\mathrm{dd}, J=14.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 181.11,143.25,134.26,127.63,122.85,122.38$, $108.00,48.12,46.80,26.22,26.19,25.58,24.17,22.89$.

3-(2-bromopropyl)-1,3-dimethylindolin-2-one (3ah)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}$, 0.025 mmol), N-methyl- N-phenylmethacrylamide 1a ($87.5 \mathrm{mg}, 0.5$ mmol), $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{R}=1$-bromoethyl) $2 \mathrm{~h}(507.9 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ah ($d r=1.0$) as colorless oil in 65% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 7.32-7.05 $(\mathrm{m}, 3 \mathrm{H}), ~ 6.89-6.86(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.69(\mathrm{~m}$, 1 H), [3.22 (s), 3.21 (s), 3H], 2.74-2.23 (m, 2H), [1.49 (d, $J=6.4 \mathrm{~Hz}$), 1.44 (d, $J=6.4$ $\mathrm{Hz}), 3 \mathrm{H}], 1.36(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 179.93,179.81,143.76,143.11,132.33,132.27$, $128.29,128.25,123.17,122.82,122.65,122.41,108.47,108.40,48.28,48.19,47.83$, 45.99, 45.73, 27.52, 26.58, 26.48, 26.38, 26.11, 25.81.

HRMS (ESI-MS): calculated $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ONBr}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$282.04880, found: 282.04870.

3-(cyclopropylmethyl)-1,3-dimethylindolin-2-one (3ai)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N-phenylmethacrylamide 1a (87.5 mg , $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{R}=$ Cyclopropyl) $2 \mathbf{i}(374.5 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ai as colorless oil in 63% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, J=13.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=13.8,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 0.33-0.24(\mathrm{~m}, 1 \mathrm{H}), 0.21-0.16(\mathrm{~m}, 2 \mathrm{H}), 0.10-0.05(\mathrm{~m}, 1 \mathrm{H}),[-0.08]-[-0.15]$ (m, 1H).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 181.04,143.57,134.55,127.67,122.84,122.33$, 107.86, 48.91, 43.35, 26.22, 23.31, 6.58, 3.94, 3.79.

HRMS (ESI-MS): calculated $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ON}^{+}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right): 216.13829$, found: 216.13829.

3-(cyclohexylmethyl)-1,3-dimethylindolin-2-one ${ }^{[6]}$ (3aj)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ ($16.3 \mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N-phenylmethacrylamide 1a ($87.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2}(\mathrm{R}=$ Cyclohexyl) 2 j (687.5 $\mathrm{mg}, 1.5 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3aj as colorless oil in 80% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.04$ $(\mathrm{m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73$ (dd, $J=14.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 1 \mathrm{H})$, $1.02-0.73(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 181.26,143.19,134.51,127.61,122.80,122.43$, $108.04,47.96,45.51,34.82,34.55,33.62,26.29,26.24,26.19$ (2C), 26.12.

1,3-dimethyl-3-neopentylindolin-2-one ${ }^{[6,10]}$ (3ak)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl $-N$-phenylmethacrylamide 1a (87.5 mg , $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{t} \mathrm{Bu}\right)_{2} \mathbf{2 k}(609.1 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}$ $(2.5 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ak as white solid in 82% isolated yield.
M.p.: $77-79^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.30-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31$ $(\mathrm{s}, 3 \mathrm{H}), 0.62(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 181.21,143.05,134.39,127.72,124.04,122.16$, 108.19, 50.98, 47.58, 31.95, 30.99 (3C), 28.46, 26.41.

3-isobutyl-1,3,5-trimethylindolin-2-one (3bg)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N -(4-methylphenyl)methacrylamide 1b ($94.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3bg as colorless oil in 85% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=13.8$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.25-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 181.16,140.95,134.36,131.88,127.88,123.76$, 107.75, 48.21, 46.82, 26.33, 26.30, 25.64, 24.28, 22.82, 21.27.

HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$232.16959, found: 232.16942.

3-isobutyl-5-methoxyl-1,3-dimethylindolin-2-one (3cg)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol})$,
 N-(4-methoxyphenyl)- N-methylmethacrylamide 1c (102.5 mg , $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE $(2.5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3cg as colorless oil in 87% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) $\delta 6.78-6.70(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}$, $J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.64-0.59$ (m, 6H).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.78,156.04,136.90,135.78,111.51,110.71$, 108.20, 55.87, 48.57, 46.79, 26.33, 25.61, 24.22, 22.82.

HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$248.16451, found: 248.16440 .

Ethyl 3-isobutyl-1,3-dimethyl-2-oxoindoline-5-carboxylate (3dg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ (16.3 mg, 0.025 mmol), ethyl 4-[methyl(2-methyl-1-oxoprop-2-enyl)amino]benzoate 1d $(123.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3dg as colorless oil in 81% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.01(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{dd}, J=13.8$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.27-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.62-0.58(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 181.45,166.67,147.37,134.23,130.46,124.77$, $124.13,107.53,60.97,48.03,46.68,26.48,26.17,25.64,24.19,22.79,14.51$.

HRMS (ESI-MS): calculated $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$290.17507, found: 290.17493 .

3-isobutyl-1,3-dimethyl-2-oxoindoline-5-carbonitrile (3eg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, \quad 0.025 \mathrm{mmol}), \quad N$-(4-cyanophenyl)-N,2-dimethyl-2propenamide $1 \mathbf{e}(100.3 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2$ $\mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3eg as white solid in 83% isolated yield.
M.p.: $103-105^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.59(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (s, 3H), 1.96 (dd, $J=14.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ $(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.28-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.60(\mathrm{~m}, 6 \mathrm{H})$.

[^0]HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ON}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$: 243.14919 , found: 243.14933 .

5-fluoro-3-isobutyl-1,3-dimethylindolin-2-one (3fg)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{N}$-(4-flourophenyl)- N -methylmethacrylamide if ($96.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded $\mathbf{3 f g}$ as colorless oil in 80% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) δ 6.98-6.89 (m, 2H), 6.76-6.72 (m, 1H), $3.19(\mathrm{~s}, 3 \mathrm{H})$, $1.93(\mathrm{dd}, J=14.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H})$, 1.27-1.18 (m, 4H), 0.65-0.59 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 180.77,159.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=238.7 \mathrm{~Hz}\right), 139.25,136.13(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 113.82\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23.3 \mathrm{~Hz}\right), 108.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right), 48.69\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7\right.$ $\mathrm{Hz}), 46.76,26.43,26.21,25.65,24.18,22.88$.
${ }^{19}$ F NMR (471 MHz, CDCl $_{3}$): - 121.03
HRMS (ESI-MS): calculated $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ONF}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 236.14452, found: 236.14423.

5-chloro-3-isobutyl-1,3-dimethylindolin-2-one (3gg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N -(4-chlorophenyl)- N -methylmethacrylamide $\mathbf{1 g}(105.0 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i}{ }^{\mathrm{Pr}}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3gg as colorless oil in 79\% isolated yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) $\delta 7.22(\mathrm{dd}, J=8.2 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (dd, $J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.61(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 180.61,141.88,136.09,127.87,127.63,123.43$,
108.98, 48.46, 46.69, 26.41, 26.23, 25.64, 24.23, 22.79.

HRMS (ESI-MS): calculated $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ONCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$252.11497, found: 252.11481.

5-bromo-3-isobutyl-1,3-dimethylindolin-2-one (3hg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, \quad 0.025 \mathrm{mmol}$), N-(4-bromophenyl)- N-methylmethacrylamide 1h ($127.1 \mathrm{mg}, 0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3hg as colorless oil in 81% isolated yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}$) $\delta 7.39(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (s, 3H), 1.94 (dd, $J=14.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (dd, $J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 180.50,142.35,136.47,130.53,126.17,115.19$, 109.52, 48.42, 46.68, 26.38, 26.24, 25.64, 24.24, 22.77.

HRMS (ESI-MS): calculated $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ONBr}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$296.06445, found: 296.06441.

5-iodo-3-isobutyl-1,3-dimethylindolin-2-one (3ig)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ (16.3 $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-(4-iodophenyl)- N-methylmethacrylamide $\mathbf{1 i}$ ($150.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ig as colorless oil in 82% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) $\delta 7.55(\mathrm{dd}, J=8.1 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{dd}, J=14.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ $(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.17(\mathrm{~m}, 4 \mathrm{H}), 0.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$.

[^1]HRMS (ESI-MS): calculated $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ONI}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 344.05058$, found: 344.05044 .

3-isobutyl-1,3,7-trimethylindolin-2-one (3jg)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N -(o-tolyl)methacrylamide $\mathbf{1 j}$ (94.5 mg , $0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3jg as colorless oil in 80% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) $\delta 7.00-6.90(\mathrm{~m}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{dd}$, $J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.15(\mathrm{~m}, 4 \mathrm{H}), 0.66(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 181.92,141.08,134.97,131.37,122.33,120.86$, 119.64, 47.47, 47.12, 29.62, 26.68, 25.58, 24.28, 22.96, 19.19.

HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$232.16959, found: 232.16945 .

3-isobutyl-1,3,4-trimethylindolin-2-one \& 3-isobutyl-1,3,6-trimethylindolin-2 -one ($\mathbf{3 k g} \& 3 \mathrm{~kg}$ ')

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol}), N$-methyl $-N-$ (m-tolyl)methacrylamide $\mathbf{1 k}$ ($94.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE $(2.5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded the mix compound ($3 \mathbf{k g} \&$ 3kg') as colorless oil in 66% isolated yield, mixture was determined by ${ }^{1} \mathrm{H}$ NMR, ratio $=1.2: 1$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.19-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.71(\mathrm{~m}$, $1 \mathrm{H}), 3.20$ (s, 3H), [2.39 (s), 2.35 (s), 3H], 2.03-1.70 (m, 2H), [1.38 (s), 1.30 (s), 3H], $1.23-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.58(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (100 MHz, $\mathbf{C D C l}_{3}$) $\delta 181.55,181.36,143.53,143.40,137.70,134.42$, $131.35,130.95,127.60,125.00,122.92,122.67,109.05,105.88,49.05,47.97,46.85$, 45.16, 26.41, 26.36, 26.27, 26.08, 25.67, 24.31, 24.08, 24.00, 22.92, 22.37, 21.91, 18.38.

HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$232.16959, found: 232.16949.

1-ethyl-3-isobutyl-3-methylindolin-2-one (3lg)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol})$,
 N-ethyl- N-phenylmethacrylamide $\quad \mathbf{1 l}\left(\begin{array}{lllll}94.5 & \mathrm{mg}, & 0.5 & \mathrm{mmol}),\end{array}\right.$ $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE $(2.5 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3lg as colorless oil in 69% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $(\mathrm{d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.64(\mathrm{~m}, 1 \mathrm{H})$, $1.95(\mathrm{dd}, J=14.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) 1.28-1.23$ $(\mathrm{m}, 4 \mathrm{H}), 0.67(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 180.70,142.37,134.58,127.57,123.08,122.16$, $108.19,48.04,46.74,34.57,26.40,25.65,24.15,23.01,12.57$.

HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$232.16959, found: 232.16956.

1-isopropyl-3-isobutyl-3-methylindolin-2-one (3mg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}$, 0.025 mmol), N-isopropyl- N-phenylmethacrylamide 1 m (101.5 mg , $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\operatorname{MTBE}(2.5$ mL) was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3mg as colorless oil in 72% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.27-7.15 (m, 2H), 7.05-7.00 (m, 2H), 4.68 (hept, $J=$
$6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=13.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{dd}, J=13.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 4 \mathrm{H}), 0.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.60(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 175.73,136.86,129.85,122.30,118.15,116.79$, 104.87, 42.75, 41.83, 38.43, 21.64, 20.62, 19.10, 17.95, 14.46, 14.25.

HRMS (ESI-MS): calculated $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 246.18524$, found: 246.18520.

1-acetyl-3-isobutyl-3-methylindolin-2-one (3ng)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol})$,
 N-acetyl- N-phenylmethacrylamide $\mathbf{1 n}(101.5 \mathrm{mg}, \quad 0.5 \mathrm{mmol})$, $\operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\operatorname{MTBE}(2.5 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3ng as colorless oil in 45% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.25(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 3 \mathrm{H}), 2.69(\mathrm{~s}$, $3 \mathrm{H}), 1.98(\mathrm{dd}, J=14.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{dd}, J=14.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$, 1.34-1.26 (m, 1H), 0.69-0.63 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 182.15,171.25,139.44,133.20,128.16,125.28$, 122.72, 116.76, 48.65, 47.76, 27.45, 26.89, 25.67, 24.17, 22.98.

HRMS (ESI-MS): calculated $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$246.14886, found: 246.14887 .

3-isobutyl-1-methyl-3-phenyl-indolin-2-one (3og)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N,2-diphenylacrylamide $\mathbf{1 0}$ (118.5 mg , $0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and MTBE (2.5 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 3og as colorless solid in 70\% isolated yield.
M.p.: $108-110^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{dd}, J=13.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (dd, $J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (hept, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.68$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 179.16,144.26,141.84,132.11,128.65,128.37$, 127.37, 126.94, 125.64, 122.60, 108.52, 56.47, 46.85, 26.68, 25.88, 24.57, 23.07.

HRMS (ESI-MS): calculated $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ON}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 280.16959$, found: 280.16958 .

4. Re-Catalyzed Alkylarylation of Alkenes to Access

Dihydroquinolinones

4.1 Screening of Reaction Parameters

Entry	Catalyst (mol\%)	$\begin{gathered} 2 \mathrm{~g} \\ \text { (eq.) } \end{gathered}$	solvent (M)	additive$\text { (} 0.5 \text { eq.) }$	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	(h)	Yield(\%) ${ }^{b}$ $5^{5}{ }^{c}$
1	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	59
2	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Br}$ (5)	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	60
3	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	$69(50)^{d}$
4	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{PhCl}(0.2)$	1	100	12	61
5	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	THF (0.2)	1	100	12	47
6	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	Dioxane (0.2)	1	100	12	57
7	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	Toluene (0.2)	1	100	12	56
8	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	PhOMe (0.2)	1	100	12	54
9	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	DMF (0.2)	1	100	12	63
10	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	DCE (0.2)	1	100	12	43
11	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	MTBE (0.2)	1	100	12	56
12	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CCl}_{4}(0.2)$	1	100	12	0
13	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(2.5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	65
14	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(10)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	61
15	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	1.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	54
16	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	3.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	63
17^{e}	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.1)$	1	100	12	68
18	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.4)$	1	100	12	56
19	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	80	12	59
20	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	150	12	57
21	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	MgBr_{2}	100	12	0
22	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	FeCl_{2}	100	12	25
23	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	ZnCl_{2}	100	12	20
24	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	LiCl	100	12	56
25^{e}	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	8	64
26^{e}	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	10	65
27	$\mathrm{Re}_{2}(\mathrm{CO})_{10}(5)$	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	24	62
28^{f}	1	2.0	$\mathrm{CH}_{3} \mathrm{CN}(0.2)$	1	100	12	0

${ }^{a}$ All reactions were carried out on 0.2 mmol scale (4a) unless otherwise noted. Small amounts of unisolable byproducts were detected in the reaction. ${ }^{b}$ The yields was determined by ${ }^{1} \mathrm{H}$ NMR in the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. ${ }^{c}$ The cis-isomer was not observed by ${ }^{1} \mathrm{H}$ NMR. ${ }^{d}$ Isolated yield of the pure product $5 \mathbf{a g}$ on 1.0 mmol scale. ${ }^{e} \mathbf{4 a}(0.1$ mmol scale). ${ }^{f}$ no catalyst.

In order to verify clearly the structure of dihydroquinolinones 5, the alkylarylation product 5gg was unambiguously confirmed by X-ray single-crystal diffraction analysis (Figure S2).

Figure S2. X-ray structure of Dihydroquinolinone 5gg

4.2 General Procedure to Access Dihydroquinolinones

A flame-dried Teflon-screw-capped tube was equipped with a magnetic stir bar. $\operatorname{Re}_{2}(\mathrm{CO})_{10}(32.5 \mathrm{mg}, 0.05 \mathrm{mmol}), N$-methyl- N-phenylcinnamamide $4 \mathrm{a}(237.2 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(756.3 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ were added into the reaction vessel under nitrogen atmosphere. Then, the Teflon cap was screwed up and the reaction mixture was stirred in an oil bath $\left(100^{\circ} \mathrm{C}\right)$ for 12 h . After completion of the reaction, the solvent was removed in vacuo. The residue was pre-absorbed on silica gel and purified by flash column chromatography affording product 5ag as colorless oil.

4.3 Characterization Data for Dihydroquinolinones

3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9,11,12]}$ (5ag)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(32.5$ $\mathrm{mg}, 0.05 \mathrm{mmol}$), N-methyl- N-phenylcinnamamide $\mathbf{4 a}(237.2 \mathrm{mg}$, $1.0 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(756.3 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0$ mL) stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5ag as colorless oil in 50% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{3 0 0 M H z}, \mathbf{C D C l}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.12(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.03(\mathrm{~m}$, 2H), $6.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 170.75,142.26,140.27,129.69,128.83,128.16$, $127.22,126.87,126.82,123.33,114.91,56.52,45.18,29.59,28.66,21.12,21.06$.

3-isopropyl-1,6-dimethyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9,11,12]}$ (5bg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-Methyl- N -(p-tolyl)cinnamamide $\mathbf{4 b}$ (125.5 $\mathrm{mg}, 0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5bg as colorless oil in 51% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 7.25-7.19 (m, 2H), 7.16-7.09 (m, 2H), 6.98-6.93 (m, $4 \mathrm{H}), 4.13(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=9.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 170.61,142.49,137.93,132.85,130.38,128.83$, $128.58,127.23,126.78,126.68,114.81,56.76,45.28,29.59,28.68,21.17,21.10$, 20.72 .

3-isopropyl-6-methoxy-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[11]}$ (5cg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(32.5$ $\mathrm{mg}, 0.05 \mathrm{mmol}$), N-(4-Methoxyphenyl)- N-methylcinnamamide 4c ($267.1 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(756.1 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5 cg as colorless oil in 54% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) $\delta 7.25-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.86-6.82$ (m, 1H), 6.75 (d, J = 2.7 Hz, 1H), 4.13 (s, 1H), 3.77 (s, 3H), 3.33 (s, 3H), 2.57 (dd, J $=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 170.30,155.74,142.07,133.94,128.84,128.30$, 127.22, 126.85, 115.87, 115.58, 112.66, 56.65, 55.59, 45.45, 29.73, 28.62, 21.17, 21.06.

HRMS (ESI-MS): calculated $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 310.18016$, found: 310.17989 .

3-isopropyl-1-methyl-4-phenyl-6-trifluoromethyl-3,4-dihydroquinolin-2(1H)-one [9,11] (5dg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ ($32.5 \mathrm{mg}, 0.05 \mathrm{mmol}$), N -(4-trifluoromethylphenyl)- N -methyl cinnamamide $\mathbf{4 d}$ ($305.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(756.6$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5dg as colorless oil in 47\% isolated yield.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.64$ (dd, $J=9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 170.59,143.11,141.28,129.03,127.32,127.19$, $127.05,126.53(\mathrm{q}, ~ J=3.6 \mathrm{~Hz}), 125.55(\mathrm{q}, ~ J=3.6 \mathrm{~Hz}), 125.26(\mathrm{q}, ~ J=32.7 \mathrm{~Hz}), 114.87$, 56.24, 45.07, 29.68, 28.73, 21.06, 21.01.
${ }^{19}$ F NMR (471 MHz, $\mathbf{C D C l}_{3}$): -61.84.

6-fluoro-3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9]}$ (5eg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ (32.5 mg, 0.05 mmol), $\quad N$-(4-Fluorophenyl)- N-methyl cinnamamide $4 \mathbf{e}(255.2 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(756.2$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12
h. After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded $5 \mathbf{e g}$ as colorless oil in 42% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 7.26-7.15 (m, 3H), 7.02-6.90 (m, 5H), $4.14(\mathrm{~s}, 1 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 170.31,158.83\left(J_{\mathrm{C}-\mathrm{F}}=241.9 \mathrm{~Hz}\right), 141.50,136.57$,
$128.95,127.14,127.08,116.54\left(J_{\mathrm{C}-\mathrm{F}}=22.7 \mathrm{~Hz}\right), 116.06\left(J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 114.47\left(J_{\mathrm{C}-\mathrm{F}}=\right.$ $22.3 \mathrm{~Hz}), 56.17,45.17,29.82,28.71,21.02$.
${ }^{19}$ F NMR ($564 \mathrm{MHz}, \mathbf{C D C l}_{3}$): -120.32.
HRMS (ESI-MS): calculated $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ONF}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 298.16017, found: 298.15982.

6-chloro-3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9,11,12]}$

 (5fg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ (32.5 mg, 0.05 mmol$), \quad N$-(4-Chlorophenyl)- N-methyl cinnamamide $\mathbf{4 f}(271.5 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(756.3$ $\mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded $\mathbf{5 f g}$ as colorless oil in 42% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\mathbf{C D C l}_{3}$) $\delta 7.30-7.14(\mathrm{~m}, 5 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 170.36,141.51,138.97,129.50,128.98,128.74$, $128.43,128.06,127.12,116.12,56.22,45.06,29.68,28.76,21.06,21.04$.

6-bromo-3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9]}$ (5gg)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ (16.3 mg, 0.025 mmol), $\quad N$-(4-Bromophenyl)- N-methyl cinnamamide $\mathbf{4 g}(157.5 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(378.0$ $\mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded $5 \mathbf{g g}$ as colorless solid in 45% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.42(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{dd}, \mathrm{J}=$ $9.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (75MHz, $\mathbf{C D C l}_{3}$) $\delta 170.37,141.52,139.49,132.36,131.05,129.12,129.01$,
127.13, 116.53, 115.98, 56.27, 45.04, 29.67, 28.78, 21.09, 21.06.

HRMS (ESI-MS): calculated $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ONBrNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 380.06205$, found: 380.06158 .

6-iodo-3-isopropyl-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one (5hg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N -(4-Iodophenyl)- N -methylcinnamamide $\mathbf{4 h}$ ($181.7 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} 2 \mathrm{~g}(378.2 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(2.5 \mathrm{~mL})$ were added into an oven-dried reaction vessel with Teflon screw cap under nitrogen atmosphere. After the reaction was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded $\mathbf{5 h g}$ as colorless oil in 51% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, CDCl ${ }_{3}$) $\delta 7.61(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.15 (m, 3H), 6.97-6.94 (m, 2H), 6.81 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (d, $J=1.2 \mathrm{~Hz}$, 1 H), 3.32 (s, 3H), 2.57 (dd, $J=9.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73-1.61 (m, 1H), $1.04(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96$ (d, J=6.6 Hz, 3H).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 170.36,141.54,140.18,138.10,137.06,129.34$, $129.00,127.12,116.95,86.38,56.34,44.86,29.58,28.74,21.11$.

HRMS (ESI-MS): calculated $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ONI}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 406.06623$, found: 406.06607.

4-(4-chlorophenyl)-3-isopropyl-6-methoxyl-1-methyl-3,4-dihydroquinolin-2(1H)one (5ig)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ (32.5 mg, 0.05 mmol), N-(4-methoxylphenyl)- N-methyl-(4-chloro)-cinnamamide $4 \mathrm{i}(301.5 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2}$ 2 g ($756.2 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5ig as colorless oil in 57% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$,
6.91 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{dd}, J=8.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ $(\mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{dd}, J=9.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H})$, $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 169.97,155.77,140.50,133.75,132.61,128.92$, $128.62,127.67,116.01,115.54,112.77,56.61,55.58,44.78,29.70,28.45,21.16$, 21.01.

HRMS (ESI-MS): calculated $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{NCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 344.14118, found: 344.14069.

4-(4-chlorophenyl)-3-isopropyl-1-methyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9,11]}$ (5jg)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(32.5$ $\mathrm{mg}, 0.05 \mathrm{mmol}$), N-phenyl- N -methyl-(4-chloro)-cinnamamide $\mathbf{4 j}$ $(271.3 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(756.2 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded $\mathbf{5 j g}$ as colorless oil in 52% isolated yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.33(\mathrm{td}, \mathrm{J}=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H})$, 7.08-7.03 (m, 2H), $6.90(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~s}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{dd}, J=$ $9.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 170.42,140.65,140.11,132.59$, 129.57, 128.91, $128.60,128.40,126.22,123.44,115.02,56.48,44.50,29.56,28.48,21.11,21.00$.

1,3-dimethyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[12,13]}$ (5aa)

According to the general procedure, a mixture of $\mathrm{Re}_{2}(\mathrm{CO})_{10}(32.5 \mathrm{mg}$, 0.05 mmol), N-methyl- N-phenylcinnamamide $4 \mathbf{4 a}(237.2 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{PhI}(\mathrm{OAc})_{2} \mathbf{1 a}(644.2 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ was stirred at $100{ }^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5aa (the major isomer was shown, $d r=8: 1$) as colorless oil in 40% isolated yield. The NMR data of
major isomer was shown.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) δ 7.34-7.30 (m, 2H), 7.27-7.20(m, 2H), 7.17-7.11 (m, $2 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 172.31,141.20,139.96,128.92,128.83,128.58$, 128.36, 127.89, 127.16, 123.01, 114.62, 49.01, 42.16, 29.94, 15.53.

3-(tert-butyl)-1-methyl-4-phenyl-3,4-dihydroquinolin-2(1H)-one ${ }^{[9,11,12]}$ (5ak)

According to the general procedure, a mixture of $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3$ $\mathrm{mg}, 0.025 \mathrm{mmol}$), N-methyl- N -phenylcinnamamide $4 \mathbf{4}(118.5 \mathrm{mg}$, $0.5 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{t} \mathrm{Bu}\right)_{2} \mathbf{2 k}(609.1 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CN}$ $(2.5 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ for 24 h . After completion of the reaction, removal of the solvent in vacuo, column chromatography afforded 5ak as colorless oil in 35% isolated yield.
${ }^{1} \mathbf{H}$ NMR (300MHz, $\left.\mathbf{C D C l}_{3}\right) \delta$ 7.32-7.10 (m, 5H), 7.05-6.94 (m, 4H), $4.30(\mathrm{~s}, 1 \mathrm{H})$, $3.40(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\mathbf{C D C l}_{3}$) $\delta 169.59,143.86,140.85,129.21,128.89,128.09$, 127.61, 127.06, 126.68, 123.52, 114.75, 59.41, 44.01, 34.67, 29.67, 29.01.

5. Mechanism Studies

5.1 A Radical Trapping Experiment with TEMPO

We further conducted mechanistic experiments to probe insights on this alkylarylation reaction. Firstly, upon the addition of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) as a radical scavenger to the reaction of N -acrylamide 1a and HIR 2g, the transformation was completely prohibited. Instead, 1-isopropoxy-2,2,6,6-tetramethylpiperidine 6 was obtained in 27% isolated yield (Scheme S1), which implied a radical decarboxylation pathway might operate in the reaction.

Scheme S1. A radical trapping experiment with TEMPO

Experimental Details: A flame-dried Teflon-screw-capped tube was equipped with a magnetic stir bar. $\operatorname{Re}_{2}(\mathrm{CO})_{10}(16.3 \mathrm{mg}, 0.025 \mathrm{mmol})$, alkene 1a ($87.5 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \mathrm{Pr}\right)_{2} \mathbf{2 g}(378.0 \mathrm{mg}, 1.0 \mathrm{mmol})$, TEMPO ($156.2 \mathrm{mg}, 1.0 \mathrm{mmol}$), and MTBE $(2.5 \mathrm{~mL})$ were added into the reaction vessel under nitrogen. Then, the Teflon cap was screwed up and the reaction mixture was stirred in an oil bath $\left(100^{\circ} \mathrm{C}\right)$ for 12 h . After completion of the reaction, the solvent was removed in vacuo. The crude reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR. As a result, the reaction of N -acrylamide 1a and HIR 2 g was completely prohibited. Instead, 1-isopropoxy-2,2,6,6-tetramethyl piperidine $\mathbf{6}$ was obtained in 27% isolated yield by column chromatography.

1-isopropoxy-2,2,6,6-tetramethylpiperidine ${ }^{[14]} 6$

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 3.98$ (hept, $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.45-1.12$ (m, $6 \times \mathrm{CH}_{3}$ and $3 \times \mathrm{CH}_{2}, 24 \mathrm{H}$).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 75.24,59.66,40.41,34.61,22.53$, 20.45, 17.52.

Figure S3. ${ }^{1}$ H NMR spectrum of 6

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of 6

$\begin{array}{lllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & & \mathrm{ppm}\end{array}$

5.2 Competition Experiments of Alkenes

Next, we examined competition experiments between alkenes 1c and 1d, bearing an electro-donating methoxy and electro-withdrawing ester group respectively, with HIR 2g (Scheme S2). It turned out that the yields of the corresponding indolinones 3cg and 3dg were 24% and 30%, respectively (Figure S5). This result implied that the intramolecular cyclization process might occur through a radical rather than cationic mechanism.

Scheme S2. Competition experiments of alkenes

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture.
Experimental Details: A flame-dried Teflon-screw-capped tube was equipped with a magnetic stir bar. $\operatorname{Re}_{2}(\mathrm{CO})_{10}(6.6 \mathrm{mg}, 0.01 \mathrm{mmol})$, alkenes 1c $(41.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathbf{1 d}(49.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \operatorname{PhI}\left(\mathrm{O}_{2} \mathrm{C}^{i} \operatorname{Pr}\right)_{2} \mathbf{2 g}(75.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1.0 mL MTBE were added into the reaction vessel under nitrogen. Then, the Teflon cap was screwed up and the reaction mixture was stirred in an oil bath $\left(100{ }^{\circ} \mathrm{C}\right)$ for 12 h . After completion of the reaction, the solvent was removed in vacuo. The crude reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR with 1,3,5-trimethoxybenzene as internal standard.

Figure S5. Crude ${ }^{1}$ H NMR spectrum of the reaction outlined in Scheme S2

6. References

[1] (a) Ackermann, L.; Lygin, A. V.; Hofmann, N. Org. Lett. 2011, 13, 3278-3281. (b) Mu, X.; Wu, T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2012, 134, 878-881. (c) Jiang, Y.-Y.; Dou, G.-Y.; Xu, K.; Zeng, C.-C. Org. Chem. Front. 2018, 5, 2573-2577. (d) Zhang, T.; Chen, B.; Wang, W.; Zhang, Q.; Wang, P.; Wan, W.; Deng, H.; Hao, J.; Jiang, H. Asian. J. Org. Chem. 2019, 8, 671-674.
[2] (a) Nishio, T.; Koyama, H.; Sasaki, D.; Sakamoto, M. Helv. Chim. Acta 2005, 88, 996-1003. (b) Fabry, D. C.; Stodulski, M.; Hoerner, S.; Gulder, T. Chem. Eur. J. 2012, 18, 10834-10838. (c) Lu, K.; Han, X.-W.; Yao, W.- W.; Luan, Y.-X.; Wang, Y.-X.; Chen, H.; Xu, X.-T.; Zhang, K.; Ye, M. ACS Catal. 2018, 8, 3913-3917. (d) Cao, Y.; Zhao, H.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Adv. Synth. Catal. 2016, 358, 3610-3615.
[3] Mocci, F.; Uccheddu, G.; Frongia, A.; Cerioni, G. J. Org. Chem. 2007, 72, 4163-4168.
[4] Y. Wang, L. Zhang, Y.-H.Yang, P. Zhang, Z.-T. Du, C. Wang, J. Am. Chem. Soc. 2013, 135, 18048-18051.
[5] (a) Ueda, S.; Okada, T.; Nagasawa, H. Chem. Commun. 2010, 46, 2462-2464. (b) Liu, L.; Lu, H.; Wang, H.; Yang, C.; Zhang, X.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Org. Lett. 2013, 15, 2906-2909. (c) Wang, H.; Sun, B.; Yang, J.; Wang, J.; Mao, P.; Yang, L.; Mai, W. J. Chem. Res. 2014, 38, 542-545. (d) Yang, H.; Guo, L.-N.; Duan, X.-H. RSC Adv. 2014, 4, 52986-52990.
[6] Xie, J.; Xu, P.; Li, H.; Xue, Q.; Jin, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 5672-5674.
[7] Pan, C.; Fu, Y.; Ni, Q.; Yu, J.-T. J. Org. Chem. 2017, 82, 5005-5010.
[8] Zhou, S.-L.; Guo, L.-N.; Wang, H.; Duan, X.-H. Chem. Eur. J. 2013, 19, 12970-12973.
[9] Gao, R.-X.; Luan, X.-Q.; Xie, Z.-Y.; Yang, L.; Pei, Y. Org. Biomol. Chem. 2019, 17, 5262-5268.
[10] Wu, T.; Zhang, H.; Liu, G. Tetrahedron, 2012, 68, 5229-5233.
[11] Xu, X.; Luo, Z.; Liu, C.-F.; Wang, X.; Deng, L.; Gao, J. Asian. J. Org. Chem. 2019, 8, 1903-1906.
[12] Mai, W.-P.; Wang, J.-T.; Yang, L.-R.; Yuan, J.-W.; Xiao, Y.-M.; Mao, P.; Qu, L.-B. Org. Lett. 2014, 16, 204-207.
[13] Kim, Y.; Shin, E.-K.; Beak, P.; Park, Y. S. Synthesis 2006, 3805-3808.
[14] (a) Anderson, J. E.; Casarini, D.; Corrie, J. E. T.; Lunazzi, L. J. Chem. Soc., Perkin Trans 2. 1993, 1299-1304. (b) Hammill, C. L.; Noble, B. B.; Norcott, P. L.; Ciampi, S.; Coote, M. L. J. Phys. Chem. C 2019, 123, 5273-5281.
7. Spectra of Products

3af

(

 (

[^0]: ${ }^{13} \mathbf{C}$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 180.74,147.20,135.40,133.21,126.25,119.46$, $108.50,105.59,48.04,46.65,26.53,26.09,25.67,24.19,22.86$.

[^1]: ${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 180.31,143.03,136.81,136.51,131.72,110.14,85.07$, 48.24, 46.66, 26.33, 26.24, 25.62, 24.25, 22.76.

