Supplementary Information

C-O/C-S Difunctionalized Benzene Derivatives via

Multicomponent Coupling from Tetraynes

Liangliang Yao, Qiong Hu, Yu Lei, Li Bao, and Yimin Hu*

School of Chemistry and Materials Science, Anhui Normal University,

Wuhu, Anhui 241002, China E-mail: viminhu@ahnu.edu.cn

Contents

1. General Experimental Procedures	S2
2. Characterization of Tetraynes 1	.S5
3. Characterization Data for the New Compounds	S9
4. X-Ray Structure for 4a and 4m	S23
5. ¹ H and ¹³ C NMR Spectra for New Compounds	S24

1. General experimental procedures

All the catalytic reactions were performed under an argon atmosphere using the oven-dried Schlenk flask. The chemicals were purchased from Aladdin and TCI Chemicals. All solvents and materials were predried, redistilled or recrystallized before use. ¹H NMR (300 MHz, 500 MHz) and ¹³C NMR (75 MHz, 125 MHz) spectra were recorded on a Bruker Avance 300 or 500 spectrometer with CDCl₃ as the solvent. Chemical shifts are reported in ppm by assigning TMS resonance in the ¹H NMR spectra as 0.00 ppm and CDCl₃ resonance in the ¹³C spectra as 77.2 ppm. All coupling constants (J values) were reported in Hertz (Hz). Column chromatography was performed on silica gel 300-400 mesh. Melting points were determined using a Gallenkamp melting point apparatus and are uncorrected. The FT-IR spectra were recorded from KBr pellets or thin film from CHCl₃ on the NaCl window in the 4000-400 cm⁻¹ ranges on a Nicolet 5DX spectrometer. High-resolution mass spectra were recorded on an Agilent model G6220 mass spectrometer(APCI). X-ray Crystallography diffraction data of 4a and 4m were collected at room temperature with a Bruker SMART Apex CCD diffractometer with Mo-K α radiation ($\lambda = 0.71073$ Å) with a graphite monochromator using the ω -scan mode. Data reductions and absorption corrections were performed with SAINT and SADABS software, respectively. The structure was solved by direct methods and refined on F^2 by full-matrix least squares using SHELXTL. All non-hydrogen atoms were treated anisotropically. The positions of hydrogen atoms were generated geometrically.

(1) General procedure for preparation of tetrayne 1:¹

Preparation of catalyst Pd(PPh₃)₂Cl₂

PdCl₂ + LiCl
$$\xrightarrow{1.CH_3OH}$$
 Pd(PPh₃)₂Cl₂ Pd(PPh₃)₂Cl₂

3.54 g PdCl₂ and 4 g LiCl were mixed in a 500 mL three-necked flask with 150-200 mL methanol as solvent, magnetically stirred and heated in oil bath at 50-60 °C. After the solid was dissolved, 25 mL of THF (removed water with sodium wire) containing 13.1 g PPh₃ were added in the above three-necked flask, and the color of the solution changed from brown to yellow, reflux reaction for 3 hours. After reaction solution cooled, filtered and washed with anhydrous ethanol, yellow solid Pd(PPh₃)₂Cl₂ catalyst was obtained finally.

Preparation of diyne substrates

 $\begin{array}{c} \text{ROOC} \\ \text{ROOC} \end{array} + \begin{array}{c} \text{Br} \\ \hline \end{array} \end{array} \xrightarrow{\text{NaH, CH}_3\text{CN}} \begin{array}{c} \text{ROOC} \\ \text{ROOC} \end{array} \xrightarrow{\text{ROOC}} \end{array}$ $R = \text{Me, Et, } \overset{\text{Pr}}{} \text{Pr}$

10 g NaH (60%) and 200-300 mL acetonitrile were added in 500 mL three-necked flask with magnetic stirring. 100 mmol malonate and 30 g 3-bromopropyne (98%) were added in the above 500 mL three-necked flask dropwise in turn by separatory funnel, magnetically stirred for 8-10 h under ice-water bath. The organic phase was extracted with ethyl acetate and dried with anhydrous MgSO₄. The solvent was evaporated in vacuo and diyne substrates as white solid were obtained finally.

Preparation of brominated alkynes

$$R \longrightarrow + \bigvee_{O}^{V} R \xrightarrow{AgNO_3, \text{ acetone}} R \longrightarrow R \xrightarrow{Br} Br$$

21.36 g 1-bromopyrrolidine-2,5-dione (NBS), 0.85 g AgNO₃, and 100 mmol phenylacetylene or substituted phenylacetylene or alkyl alkyne were added in 250 mL three-necked flask in turn, 150 mL acetone as a solvent, magnetically stirred at room temperature for 3 h. The organic phase was extracted with *n*-hexane and dried with anhydrous MgSO₄. The solvent was evaporated in vacuo and brominated alkynes compound as brown solid were obtained finally.

Preparation of tetrayne substrates

 $R^2 = H, p-Me, m-Me, p-Et, p-Cl, p-F$

 $0.6 \text{ g Pd}(\text{PPh}_3)_2\text{Cl}_2$, 0.5 g CuI and 40 mmol diyne substrate were added in 500 mL three-necked flask, protected with anhydrous anaerobic conditions under argon. After 0.5 h, 250-300 mL acetonitrile, 16.16 g Et₃N and 100 mmol brominated aryl alkyne were added in turn, magnetically stirred for 10-12 h under ice-water bath. The organic phase was extracted with ethyl acetate and dried with anhydrous MgSO₄. It was separated by column chromatography on silica gel to obtain tetrayne substrate as white solid finally.

(2) General procedure for preparation of cyclopropenone 2:²

Substituted cyclopropenones were prepared in three steps from substituted phenylacetic acid. (1) The 1,3diphenylpropan-2-one was prepared by adding substituted phenylacetic acid (1 equiv) to a stirring solution of DCC (1.05 equiv) and DMAP (0.3 equiv) in THF at room temperature. After 60 minutes, the reaction was filtered through Celite. The 1,3-diphenylpropan-2-one was purified by flash chromatography on silica gel (ethyl acetate/petroleum ether = 1/60); (2) The 1,3-diphenylpropan-2-one was then dissolved in acetic acid, and a solution of bromine (2.05 equiv) in acetic acid was added dropwise. After 3 hours, the reaction was poured into water and the product (1,3-dibromo-1,3-diphenylpropan-2-one) was collected by filtration; (3) The crude product (1,3-dibromo-1,3-diphenylpropan-2-one) was air dried for several hours, then dissolved in dry dichloromethane. This solution was added to a stirring solution of triethylamine (2.5 equiv) in dichloromethane, and stirred at room temperature for 1 hour. The reaction mixture was then washed with 1 M HCl, followedby brine, dried with sodium sulfate, and concentrated under reduced pressure. The product was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/5).

(3) General procedure for preparation of C-O/C-S difunctionalized benzene derivative 4:

Tetraynes (0.5 mmol), cycolpropenones (1.1 equiv) and H₂O (1.0 equiv) were added to sulfoxides (2 mL), the mixture was stirred at room temperature then heated at 120 °C for 8 hours in air. Then the reaction mixture was cooled to room temperature, quenched with saturated NaCl, and extracted with ethyl acetate ($3 \times 10 \text{ mL}$). The combined organic extracts were dried over anhydrous MgSO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (ethyl acetate/petroleum ether = 1/20) to afford C-O/C-S difunctionalized benzene derivatives.

References:

(*a*) J. Chen, V. Palani and T. R. Hoye, Reactions of HDDA-derived benzynes with sulfides: mechanism, modes, and three-component reactions, *J. Am. Chem. Soc.*, 2016, **138**, 4318–4321; (*b*) N.-K. Lee, S. Y. Yun, P. Mamidipalli, R. M. Salzman, D. Lee, T. Zhou and Y. Xia, Hydroarylation of arynes catalyzed by silver for biaryl synthesis, *J. Am. Chem. Soc.*, 2014, **136**, 4363–4368; (*c*) B. Liu, C. Mao, Q. Hu, L. Yao and Y. Hu, Direct methylation and carbonylation of *in situ* generated arynes *via* HDDA-Wittig coupling, *Org. Chem. Front.*, 2019, **6**, 2788–2791; (*d*) X. Zheng, B. Liu, F. Yang, Q. Hu, L. Yao, Y. Hu, Access to benzoxazepines and fully substituted indoles *via* HDDA coupling, *Org. Lett.*, 2020, **22**, 956–959.
(*a*) X. Li, C. Han, H. Yao and A. Lin, Organocatalyzed [3 + 2] annulation of cyclopropenones and β-

(b) C. M. Vanos and T. H. Lambert, Development of a catalytic platform for nucleophilic substitution: cyclopropenone-catalyzed chlorodehydration of alcohols, *Angew. Chem. Int. Ed.*, 2011, **50**, 12222–12226.

2. Characterization of Tetraynes 1

Dimethyl 2,2-bis(5-phenylpenta-2,4-diyn-1-yl)malonate (1a)

Yellow solid; 12.2 g (75 % yield); m. p. 96-97 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.46 (m, 4H), 7.33-7.25 (m, 6H), 3.81 (s, 6H), 3.21 (s, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 168.6, 132.6, 129.2, 128.4, 121.5, 77.6, 76.0, 73.7, 68.5, 56.6, 53.4, 52.9, 50.5, 24.2, 19.6 ppm; HRMS (APCI-TOF): *m/z* calcd for C₂₇H₂₀O₄ [M+H]⁺ 409.1434, found 409.1435.

Dimethyl 2,2-bis(5-(p-tolyl)penta-2,4-diyn-1-yl)malonate (1b)

Yellow solid, 13.6 g (78 % yield); m. p. 102-103 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.35 (m, 4H), 7.12-7.10 (m, 4H), 3.80 (s, 6H), 3.20 (s, 4H), 2.34 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.6, 139.5, 132.5, 129.1, 118.4, 77.5, 76.3, 73.2, 68.6, 56.7, 53.4, 24.2, 21.6 ppm; HRMS (APCI-TOF): *m/z* calcd for C₂₉H₂₄O₄ [M+H]⁺ 437.1747, found 437.1752.

Dimethyl 2,2-bis(5-(4-fluorophenyl)penta-2,4-diyn-1-yl)malonate (1c)

Yellow solid, 14.7 g (83 % yield); m. p. 116-117 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.52-7.47 (m, 4H), 7.07-7.01 (m, 4H), 3.84 (s, 6H), 3.24 (s, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 168.6, 164.6, 161.3, 134.7 (d, $J_{C-F} = 7.5$ Hz), 117.6 (d, $J_{C-F} = 7.5$ Hz), 115.9 (d, $J_{C-F} = 22.5$ Hz), 77.6 (d, $J_{C-F} = 7.5$ Hz), 76.9 (d, $J_{C-F} = 37.5$ Hz), 74.9, 73.6, 68.4, 56.7, 53.4, 24.2 ppm; HRMS (APCI-TOF): m/z calcd for C₂₇H₁₈F₂O₄ [M+H]⁺ 445.1246, found 445.1246.

Diethyl 2,2-bis(5-phenylpenta-2,4-diyn-1-yl)malonate (1d)

White solid; 13.6 g (78 % yield); m. p. 62-63 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.39-7.35 (m, 2H), 7.25 (s, 2H), 7.07-7.03 (m, 6H), 4.26 (q, *J* = 6.0 Hz, 4H), 3.31 (s, 4H), 1.28 (t, *J* = 6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 132.6, 129.1, 128.4, 121.5, 77.8, 75.9, 73.8, 68.4, 62.4, 56.6, 24.1, 14.0 ppm; HRMS (APCI-TOF): *m/z* calcd for C₂₉H₂₄O₄ [M+H]⁺ 437.1747, found 437.1746.

Diethyl 2,2-bis(5-(*p*-tolyl)penta-2,4-diyn-1-yl)malonate (1e)

Yellow solid, 14.7 g (79 % yield); m. p. 88-89 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.38-7.35 (m, 4H), 7.12-7.10 (m, 4H), 4.27 (q, J = 6.0 Hz, 4H), 3.19 (s, 4H), 2.35 (s, 6H), 1.29 (t, J = 6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 139.5, 132.5, 132.3, 129.2, 129.1, 118.4, 81.5, 77.5, 76.1, 73.3, 68.5, 62.3, 56.6, 24.1, 21.6, 14.0 ppm; HRMS (APCI-TOF): m/z calcd for C₃₁H₂₈O₄ [M+H]⁺ 465.2060, found 465.2058.

Diethyl 2,2-bis(5-(m-tolyl)penta-2,4-diyn-1-yl)malonate (1f)

Yellow solid, 13.9 g (75 % yield); m. p. 79-80 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.75-7.71 (m, 2H), 7.39-7.35 (m, 2H), 7.11-7.08 (m, 4H), 4.27 (q, J = 6.0 Hz, 4H), 3.19 (s, 4H), 2.34 (s, 6H), 1.29 (t, J = 6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 139.5, 132.5, 132.3, 129.2, 129.1, 118.4, 81.5, 77.6, 76.1, 73.3, 68.5, 62.3, 56.6, 24.1, 21.6, 14.1 ppm; HRMS (APCI-TOF): m/z calcd for C₃₁H₂₈O₄ [M+H]⁺ 465.2060, found 465.2055.

Diethyl 2,2-bis(5-(4-ethylphenyl)penta-2,4-diyn-1-yl)malonate (1g)

Yellow solid, 15.7 g (80 % yield); m. p. 74-75 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.38 (m, 4H), 7.15-7.12 (m, 4H), 4.27 (q, *J* = 6.0 Hz, 4H), 3.19 (s, 4H), 2.64 (q, *J* = 6.0 Hz, 4H), 1.32-1.19 (m, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 145.7, 132.6, 127.9, 118.6, 77.4, 76.1, 73.2, 68.5, 62.4, 56.6, 28.9, 24.1, 15.2, 14.0 ppm; HRMS (APCI-TOF): *m/z* calcd for C₃₃H₃₂O₄ [M+H]⁺ 493.2373, found 493.2374.

Diethyl 2,2-bis(5-(4-fluorophenyl)penta-2,4-diyn-1-yl)malonate (1h)

Yellow solid, 15.1 g (80 % yield); m. p. 64-65 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.51-7.47 (m, 4H), 7.07-7.01 (m, 4H), 4.31 (q, J = 6.0 Hz, 4H), 3.23 (s, 4H), 1.33 (t, J = 6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.2, 164.7, 161.3, 134.7 (d, $J_{C-F} = 7.5$ Hz), 134.6 (d, $J_{C-F} = 7.5$ Hz), 116.1 (d, $J_{C-F} = 7.5$ Hz),

115.7 (d, $J_{C-F} = 7.5$ Hz), 77.7 (d, $J_{C-F} = 30.0$ Hz), 76.8 (d, $J_{C-F} = 30.0$ Hz), 74.8, 68.3, 62.4, 56.6, 24.1, 14.0 ppm; **HRMS** (APCI-TOF): *m/z* calcd for C₂₉H₂₂F₂O₄ [M+H]⁺ 473.1559, found 473.1560.

Diethyl 2,2-bis(5-(4-chlorophenyl)penta-2,4-diyn-1-yl)malonate (1i)

Yellow solid, 16.3 g (81 % yield); m. p. 104-105 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.38 (m, 4H), 7.33-7.26 (m, 4H), 4.27 (q, *J* = 6.0 Hz, 4H), 3.19 (s, 4H), 1.29 (t, *J* = 6.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃): δ 168.1, 135.3, 133.7, 130.9, 129.3, 128.7, 120.0, 78.4, 74.6, 72.1, 68.1, 62.4, 56.4, 24.0, 23.7, 14.0 ppm; HRMS (APCI-TOF): *m/z* calcd for C₂₉H₂₂Cl₂O₄ [M+H]⁺ 505.0968, found 505.0966.

Diisopropyl 2,2-bis(5-phenylpenta-2,4-diyn-1-yl)malonate (1j)

White solid, 14.9 g (80 % yield); m. p. 130-131 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.46 (m, 4H), 7.32-7.26 (m, 6H), 5.14-5.10 (m, 2H), 3.17 (s, 4H), 1.27 (d, J = 6.0 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 167.8, 132,6, 129.1, 128.4, 121.6, 78.0, 75.8, 73.9, 70.0, 68.3, 56.5, 24.0, 21.5 ppm; HRMS (APCI-TOF): m/z calcd for C₃₁H₂₈O₄ [M+H]⁺ 465.2060, found:465.2056.

Diisopropyl 2,2-bis(5-(p-tolyl)penta-2,4-diyn-1-yl)malonate (1k)

Yellow solid, 14.6 g (74 % yield); m. p. 91-92 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.37-7.34 (m, 4H), 7.11-7.09 (m, 4H), 5.14-5.10 (m, 2H), 3.16 (s, 4H), 2.34 (s, 6H), 1.27 (d, *J* = 6.0 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 167.8, 139.4, 132.5, 132.3, 129.2, 129.1, 118.5, 77.6, 76.0, 73.3, 69.9, 68.4, 56.5, 24.0 21.6, 21.5 ppm; HRMS (APCI-TOF): *m/z* calcd for C₃₃H₃₂O₄ [M+H]⁺ 493.2373, found 493.2378.

Diisopropyl 2,2-bis(5-(m-tolyl)penta-2,4-diyn-1-yl)malonate (11)

Yellow solid, 13.6 g (69 % yield); m. p. 84-85 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.74-7.71 (m, 2H), 7.39-7.34 (m, 2H), 7.11-7.08 (m, 4H), 5.14-5.10 (m, 2H), 3.16 (s, 4H), 2.36 (s, 6H), 1.27 (d, *J* = 6.0 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 167.8, 139.5, 132.4, 132.3, 129.2, 129.1, 118.6, 77.6, 76.0, 73.2,

69.9, 68.4, 56.5, 24.0 21.6, 21.4 ppm; **HRMS** (APCI-TOF): *m/z* calcd for C₃₃H₃₂O₄ [M+H]⁺ 493.2373, found 493.2371.

Diisopropyl 2,2-bis(5-(4-ethylphenyl)penta-2,4-diyn-1-yl)malonate (1m)

Yellow solid, 15.2 g (73 % yield); m. p. 94-95 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.38 (m, 4H), 7.15-7.12 (m, 4H), 5.14-5.10 (m, 2H), 3.19 (s, 4H), 2.64 (q, *J* = 6.0 Hz, 4H) 1.32-1.19 (m, 18H); ¹³C NMR (75 MHz, CDCl₃): δ 167.4, 139.7, 132.8, 132.5, 129.2, 128.1, 118.6, 77.5, 76.2, 73.2, 69.9, 68.4, 56.6, 24.2 21.6, 21.4, 14.2 ppm; HRMS (APCI-TOF): *m*/*z* calcd for C₃₅H₃₆O₄ [M+H]⁺ 521.2673, found 521.2670.

Diisopropyl 2,2-bis(5-(4-fluorophenyl)penta-2,4-diyn-1-yl)malonate (1n)

Yellow solid, 15.2 g (76 % yield); m. p. 62-63 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.52-7.47 (m, 4H), 7.07-7.01 (m, 4H), 5.14-5.10 (m, 2H), 3.17 (s, 4H), 1.27 (d, J = 6.0 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 168.6, 164.6, 161.3, 134.8 (d, $J_{C-F} = 7.5$ Hz), 117.7 (d, $J_{C-F} = 7.5$ Hz), 115.4 (d, $J_{C-F} = 22.5$ Hz), 77.6 (d, $J_{C-F} = 7.5$ Hz), 76.9 (d, $J_{C-F} = 37.5$ Hz), 75.1, 73.6, 68.6, 56.7, 53.4, 24.4, 21.5 ppm; HRMS (APCI-TOF): m/z calcd for C₃₁H₂₆F₂O₄ [M+H]⁺ 501.1816, found 501.1819.

Diisopropyl 2,2-bis(5-(4-chlorophenyl)penta-2,4-diyn-1-yl)malonate (10)

Yellow solid, 16.8 g (79 % yield); m. p. 85-86 °C; ¹H NMR (300 MHz, CDCl₃): δ 7.40-7.38 (m, 4H), 7.29-7.25 (m, 4H), 5.14-5.10 (m, 2H), 3.16 (s, 4H), 1.27(d, J = 6.5 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃): δ 167.6, 135.2, 133.7, 128.7, 120.1, 78.6, 74.8, 74.6, 70.0, 68.1, 56.4, 24.0, 21.5 ppm; HRMS (APCI-TOF): m/z calcd for C₃₁H₂₆Cl₂O₄ [M+H]⁺ 534.1034, found 534.1039.

3. Characterization Data for the New Compounds

(*E*)-dimethyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-phenyl-7-(phenylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4a)

White solid; 278 mg (82 % yield); m. p. 175-176 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.14$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41-7.36 (m, 9H), 7.30-7.23 (m, 5H), 7.19-7.17 (m, 2H), 7.13-7.11 (m, 4H), 3.84 (s, 2H), 3.80 (s, 6H), 3.63 (s, 2H), 1.87 (s, 3H); ¹³C **NMR** (75 MHz, CDCl₃) δ 171.8, 165.5, 149.4, 149.0, 144.6, 142.9, 139.7, 135.6, 134.5, 132.7, 131.5, 131.1, 130.2, 130.0, 129.7, 129.0, 128.5, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 123.2, 118.4, 96.8, 86.5, 59.6, 53.4, 41.4, 38.8, 19.2. **FT-IR** (KBr): v = 3053, 3024, 2958, 2918, 2864, 2364, 1730, 1625, 1440, 1145 cm⁻¹; **HRMS** (APCI-TOF): m/z calcd for C₄₃H₃₄O₆S [M+H]⁺ 679.2149, found 679.2149.

(*E*)-dimethyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-(*p*-tolyl)-7-(*p*-tolylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4b)

White solid; 265 mg (75 % yield); m. p. 190-191 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.19$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41 (s, 5H), 7.25 (s, 5H), 7.19-7.17 (m, 2H), 7.13-7.11 (m, 2H), 7.04 (s, 4H), 3.83 (s, 2H), 3.79 (s, 6H), 3.62 (s, 2H), 2.43 (s, 3H), 2.31 (s, 3H), 1.87 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.8, 165.5, 149.3, 148.8, 144.5, 142.8, 138.5, 137.1, 136.8, 135.6, 134.5, 132.4, 131.5, 131.4, 131.1, 130.0, 129.7, 129.1, 128.9, 128.4, 128.3, 128.2, 128.0, 120.2, 118.7, 96.9, 86.1, 59.5, 53.4, 41.4, 38.8, 21.6, 21.5, 19.3. **FT-IR** (KBr): v = 3047, 3024, 2953, 2924, 2353, 1741, 1624, 1440, 1139, 817 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₅H₃₈O₆S [M+H]⁺ 707.2462, found 707.2457.

(*E*)-dimethyl 4-((2,3-diphenylacryloyl)oxy)-6-(4-fluorophenyl)-7-((4-fluorophenyl)ethynyl)-5-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (4c)

White solid; 247 mg (69 % yield); m. p. 163-164 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.12$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41 (s, 5H), 7.37-7.32 (m, 2H), 7.28-7.20 (m, 3H), 7.16-7.11 (m, 6H), 6.95 (t, J = 8.4 Hz, 2H), 3.82 (s, 2H), 3.79 (s, 6H), 3.63 (s, 2H), 1.86 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.7, 165.5, 163.5 (d, $J_{C-F} = 40$ Hz), 161.5 (d, $J_{C-F} = 36.3$ Hz), 149.1, 148.1, 144.7, 143.0, 135.6, 134.4, 133.4 (d, $J_{C-F} = 7.5$ Hz), 133.0, 131.9 (d, $J_{C-F} = 7.5$ Hz), 131.4, 131.1, 130.0, 129.8, 129.0, 128.5, 128.3, 119.1, 118.3, 115.7 (d, $J_{C-F} = 21.3$ Hz), 114.6 (d, $J_{C-F} = 21.3$ Hz), 95.8, 86.0, 59.5, 53.4, 41.4, 38.8, 19.1. **FT-IR** (KBr): v = 3059, 3030, 2953, 2924, 2358, 1730, 1625, 1435, 1143, 835 cm⁻¹; **HRMS** (APCI-TOF): m/z calcd for C₄₃H₃₂F₂O₆S [M+H]⁺ 715.1960, found 715.1953.

(*E*)-diethyl 4-((2,3-diphenylbut-2-enoyl)oxy)-5-(methylthio)-6-phenyl-7-(phenylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4d)

White solid; 306 mg (85 % yield); m. p. 147-148 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.27$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41-7.38 (m, 10H), 7.24-7.20 (m, 6H), 7.17-7.11 (m, 4H), 4.25 (q, *J* = 6.9 Hz, 4H), 3.83 (s, 2H), 3.62 (s, 2H), 1.87 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.3, 165.5, 149.4, 149.0, 144.8, 142.8, 139.8, 135.7, 134.5, 132.8, 131.5, 131.1, 130.2, 130.0, 129.7, 128.9, 128.4, 128.3, 128.2, 128.0, 127.6, 127.5, 123.2, 118.4, 96.7, 86.5, 62.2, 59.7, 41.3, 38.6, 19.2, 14.2. **FT-IR** (KBr): *v* = 3053, 3024, 2993, 2929, 2364, 1737, 1624, 1440, 1145, 758 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₅H₃₈O₆S [M+H]⁺ 707.2462, found 707.2458.

(*E*)-diethyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-(*p*-tolyl)-7-(*p*-tolylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4e)

White solid; 294 mg (80 % yield); m. p. 144-145 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.29$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.24-7.17 (m, 7H), 7.13-7.11 (m, 2H), 7.04 (s, 4H), 4.25 (q, *J* = 6.9 Hz, 4H), 3.81 (s, 2H), 3.60 (s, 2H), 2.43 (s, 3H), 2.31 (s, 3H), 1.87 (s, 3H), 1.28 (t, *J* = 7.2 Hz, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.4, 165.5, 149.2, 148.8, 144.6, 142.7, 138.4, 137.0, 136.8, 135.7, 134.5, 132.5, 131.6, 131.4, 131.1, 130.0, 129.9, 129.6, 129.0, 128.9, 128.4, 128.3, 128.2, 127.9, 120.3, 118.6, 96.8, 86.1, 62.2, 59.6, 41.3, 38.6, 21.6, 21.5, 19.3, 14.2. **FT-IR** (KBr): *v* = 3059, 3030, 2987, 2924, 2364, 1735, 1618, 1512, 1143, 813 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₇H₄₂O₆S [M+H]⁺ 735.2775, found 735.2773.

(*E*)-diethyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-(*m*-tolyl)-7-(*m*-tolylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4f)

White solid; 301 mg (82 % yield); m. p. 163-164 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.33$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.32 (t, J = 7.5 Hz, 1H), 7.25-7.19 (m, 6H), 7.14-7.04 (m, 4H), 6.95-6.92 (m, 2H), 4.25 (q, J = 6.9 Hz, 4H), 3.81 (s, 2H), 3.61 (s, 2H), 2.40 (s, 3H), 2.28 (s, 3H), 1.88 (s, 3H), 1.29 (t, J = 6.9 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 165.5, 149.5, 148.9, 144.7, 142.7, 139.7, 137.9, 137.0, 135.7, 134.5, 132.6, 132.2, 131.6, 131.1, 130.9, 130.0, 129.7, 129.2, 128.9, 128.5, 128.4, 128.2, 127.9, 127.5, 127.2, 123.1, 118.4, 96.9, 86.4, 62.2, 59.7, 41.3, 38.6, 21.7, 21.3, 19.3, 14.2. FT-IR (KBr): v = 3053, 3030, 2981, 2924, 2364, 1737, 1620, 1400, 1145, 792 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₄₇H₄₂O₆S [M+H]⁺ 735.2775, found 735.2770.

(*E*)-diethyl 4-((2,3-diphenylacryloyl)oxy)-6-(4-ethylphenyl)-7-((4-ethylphenyl)ethynyl)-5-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (4g)

White solid; 317 mg (83 % yield); m. p. 131-132 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.27$; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41 (s, 5H;), 7.27-7.23 (m, 5H), 7.22-7.17 (m, 2H), 7.14-7.11 (m, 2H), 7.04-7.01 (m, 4H), 4.25 (q, *J* = 7.2 Hz, 4H), 3.81 (s, 2H), 3.60 (s, 2H), 2.74 (q, *J* = 7.5 Hz, 2H), 2.60 (q, *J* = 7.5 Hz, 2H), 1.87 (s, 3H), 1.34-1.17 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 165.5, 149.5, 148.8, 144.8, 144.5, 143.4, 142.7, 137.2, 135.7, 134.5, 132.5, 131.6, 131.5, 131.1, 130.1, 130.0, 129.6, 128.9, 128.4, 128.2, 127.9, 127.8, 127.1, 120.5, 118.8, 96.9, 86.2, 62.2, 59.7, 41.3, 38.6, 29.0, 28.9, 19.3, 15.9, 15.5, 14.2. FT-IR (KBr): ν = 3053, 3030, 2987, 2924, 2364, 1732, 1620, 1508, 1153, 831 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₄₉H₄₆O₆S [M+H]⁺ 763.2775, found 763.2773.

(*E*)-diethyl 4-((2,3-diphenylacryloyl)oxy)-6-(4-fluorophenyl)-7-((4-fluorophenyl)ethynyl)-5-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (4h)

White solid; 267 mg (72 % yield); m. p. 133-134 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.29$; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41 (s, 5H), 7.34 (dd, J = 6.0, 1.8 Hz, 2H), 7.25-7.20 (m, 3H), 7.17-7.13 (m, 3H), 7.13-7.11 (m, 3H), 6.95 (t, J = 8.4 Hz, 2H), 4.25 (q, J = 7.2 Hz, 4H), 3.80 (s, 2H), 3.61 (s, 2H), 1.86 (s, 3H), 1.29 (t, J = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 171.3, 165.5, 163.3 (d, $J_{C-F} = 40$ Hz), 161.5 (d, $J_{C-F} = 36.3$ Hz), 149.2, 148.2, 144.9, 142.9, 135.7, 134.5, 133.4 (d, $J_{C-F} = 8.8$ Hz), 133.1, 132.0 (d, $J_{C-F} = 8.8$ Hz), 131.5, 131.1, 130.0, 129.7, 129.0, 128.5, 128.3, 119.2, 118.3, 115.7 (d, $J_{C-F} = 21.3$ Hz), 114.6 (d, $J_{C-F} = 21.3$ Hz), 95.8, 86.1, 62.2, 59.7, 41.3, 38.7, 19.1, 14.2. **FT-IR** (KBr): v = 3035, 2993, 2929, 2382, 2347, 1732, 1625, 1400, 1145, 817 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₄₅H₃₆F₂O₆S [M+H]⁺ 743.2273, found 743.2277.

(*E*)-diethyl 5-(4-chlorophenyl)-4-((4-chlorophenyl)ethynyl)-7-((2,3-diphenylacryloyl)oxy)-6-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (4i)

White solid; 271 mg (70 % yield); m. p. 138-139 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.29$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.43-7.41 (m, 7H), 7.32-7.29 (m, 2H), 7.25-7.18 (m, 5H), 7.13-7.11 (m, 2H), 7.08-7.05 (m, 2H), 4.25 (q, *J* = 6.9 Hz, 4H), 3.79 (s, 2H), 3.61 (s, 2H), 1.86 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.2, 165.4, 149.3, 148.0, 145.1, 143.0, 138.1, 135.6, 134.6, 134.4, 133.6, 133.3, 132.7, 131.7, 131.4, 131.1, 130.0, 129.8, 129.0, 128.8, 128.5, 128.3, 128.1, 127.9, 121.5, 118.0, 95.8, 87.2, 62.3, 59.6, 41.2, 38.6, 19.2, 14.2. **FT-IR** (KBr): *v* = 3059, 3030, 2993, 2924, 2364, 1732, 1620, 1490, 1139, 758 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₅H₃₆Cl₂O₆S [M+H]⁺ 775.1682, found 775.1680.

(*E*)-diisopropyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-phenyl-7-(phenylethynyl)-1*H*indene-2,2(3*H*)-dicarboxylate (4j)

White solid; 327 mg (89 % yield); m. p. 159-160 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.35$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.42-7.41 (m, 7H), 7.38-7.36 (m, 3H), 7.25-7.24 (m, 3H), 7.22-7.17 (m, 3H), 7.14-7.11 (m, 4H), 5.13-5.04 (m, 2H), 3.78 (s, 2H), 3.58 (s, 2H), 1.86 (s, 3H), 1.27 (d, J = 6.0 Hz, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 165.5, 149.4, 149.0, 144.9, 142.7, 139.8, 135.7, 134.5, 132.8, 131.6, 131.5, 131.1, 130.2, 130.0, 129.7, 128.9, 128.4, 128.3, 128.2, 127.9, 127.6, 127.5, 123.3, 118.4, 96.6, 86.6, 69.7, 59.7, 41.2, 38.5, 21.7, 19.2. FT-IR (KBr): v = 3059, 3030, 2993, 2924, 2364, 1732, 1620, 1490, 1139, 758 cm⁻¹; HRMS (APCI-TOF): m/z calcd for C₄₇H₄₂O₆S [M+H]⁺ 735.2775, found 735.2770.

(*E*)-diisopropyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-(*p*-tolyl)-7-(*p*-tolylethynyl)-1*H*indene-2,2(3*H*)-dicarboxylate (4k)

White solid; 313 mg (82 % yield); m. p. 152-153 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.40$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.24-7.22 (m, 5H), 7.19-7.17 (m, 2H), 7.14-7.11 (m, 2H), 7.04 (s, 4H), 5.12-5.04 (m, 2H), 3.76 (s, 2H), 3.57 (s, 2H), 2.43 (s, 3H), 2.31 (s, 3H), 1.86 (s, 3H), 1.27 (d, *J* = 6.3 Hz, 12H); ¹³C **NMR** (125 MHz, CDCl₃) δ 170.9, 165.5, 149.2, 148.8, 144.8, 142.6, 138.4, 137.0, 136.9, 135.7, 134.5, 132.6, 131.6, 131.4, 131.1, 130.1, 130.0, 129.6, 129.0, 128.9, 128.4, 128.3, 128.2, 127.8, 120.3, 118.6, 96.7, 86.1, 69.6, 59.7, 41.2, 38.5, 21.7, 21.6, 21.5, 19.3. **FT-IR** (KBr): *v* = 3059, 3035, 2987, 2924, 2370, 1730, 1620, 1400, 1139, 813 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₉H₄₆O₆S [M+H]⁺ 763.3088, found 763.3084.

(*E*)-diisopropyl 4-((2,3-diphenylacryloyl)oxy)-5-(methylthio)-6-(*m*-tolyl)-7-(*m*-tolylethynyl)-1*H*indene-2,2(3*H*)-dicarboxylate (4l)

White solid; 305 mg (80 % yield); m. p. 158-159 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.38$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.35-7.22 (m, 4H), 7.20-7.17 (m, 3H), 7.14-7.10 (m, 3H), 7.07-7.04 (m, 1H), 6.94-6.92 (m, 2H), 5.12-5.04 (m, 2H), 3.77 (s, 2H), 3.57 (s, 2H), 2.40 (s, 3H), 2.28 (s, 3H), 1.87 (s, 3H), 1.27 (d, *J* = 6.3 Hz, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 165.5, 149.5, 148.9, 144.8, 142.7, 139.7, 137.9, 137.0, 135.7, 134.5, 132.7, 132.2, 131.6, 131.1, 130.9, 130.0, 129.7, 129.2, 128.9, 128.5, 128.4, 128.2, 127.8, 127.5, 127.2, 123.2, 118.4, 96.8, 86.4, 69.7, 59.7, 41.2, 38.5, 21.7, 21.3, 19.3. FT-IR (KBr): v = 3053, 2981, 2924, 2358, 1730, 1618, 1598, 1400, 1145, 790 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₄₉H₄₆O₆S [M+H]⁺ 763.3088, found 763.3085.

(*E*)-diisopropyl 4-((2,3-diphenylacryloyl)oxy)-6-(4-ethylphenyl)-7-((4-ethylphenyl)ethynyl)-5-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (4m)

White solid; 328 mg (83 % yield); m. p. 139-140 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.40$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.26-7.22 (m, 6H), 7.19-7.11 (m, 3H), 7.07-7.00 (m, 4H), 5.12-5.04 (m, 2H), 3.76 (s, 2H), 3.57 (s, 2H), 2.73 (q, J = 7.5 Hz, 2H), 2.60 (q, J = 7.8 Hz, 2H), 1.87 (s, 3H), 1.34-1.17 (m, 18H); ¹³C **NMR** (125 MHz, CDCl₃) δ 170.9, 165.5, 149.5, 148.8, 144.7, 144.6, 143.3, 142.6, 137.2, 135.8, 134.6, 132.6, 131.7, 131.5, 131.1, 130.2, 130.0, 129.6, 128.9, 128.4, 128.2, 127.8, 127.1, 120.6, 118.8, 96.8, 86.3, 69.6, 59.8, 41.2, 38.6, 28.9, 21.7, 19.3, 15.9, 15.5. **FT-IR** (KBr): v = 3059, 3030, 2987, 2958, 2364, 1730, 1620, 1508, 1153, 831 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₅₁H₅₀O₆S [M+H]⁺ 791.3401, found 791.3403.

(*E*)-diisopropyl 4-((2,3-diphenylacryloyl)oxy)-6-(4-fluorophenyl)-7-((4-fluorophenyl)ethynyl)-5-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (4n)

White solid; 301 mg (78 % yield); m. p. 139-140 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.36$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.41 (s, 5H), 7.37-7.32 (m, 2H), 7.24-7.20 (m, 3H), 7.17-7.10 (m, 6H), 6.95 (t, J = 8.7 Hz, 2H), 5.12-5.04 (m, 2H), 3.76 (s, 2H), 3.58 (s, 2H), 1.85 (s, 3H), 1.27 (d, J = 6.0 Hz, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 165.4, 163.5 (d, $J_{C-F} = 38.8$ Hz), 161.5 (d, $J_{C-F} = 35$ Hz), 149.1, 148.1, 145.0, 142.8, 135.7, 134.4, 133.3 (d, $J_{C-F} = 7.5$ Hz), 133.2, 132.0 (d, $J_{C-F} = 7.5$ Hz), 131.1, 130.0, 129.7, 128.9, 128.5, 128.2, 128.1, 119.2, 118.3, 115.7 (d, $J_{C-F} = 22.5$ Hz), 114.6 (d, $J_{C-F} = 21.3$ Hz), 95.7, 86.1, 69.7, 59.7, 41.1, 38.6, 21.7, 19.1. FT-IR (KBr): v = 3053, 3035, 2981, 2924, 2364, 1730, 1618, 1506, 1139, 835 cm⁻¹; HRMS (APCI-TOF): m/z calcd for C₄₇H₄₀F₂O₆S [M+H]⁺ 771.2586, found 771.2585.

(*E*)-diisopropyl 5-(4-chlorophenyl)-4-((4-chlorophenyl)ethynyl)-7-((2,3-diphenylacryloyl)oxy)-6-(methylthio)-1*H*-indene-2,2(3*H*)-dicarboxylate (40)

White solid; 301 mg (75 % yield); m. p. 151-152 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.40$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.07 (s, 1H), 7.40 (s, 6H), 7.31-7.25 (m, 4H), 7.23-7.18 (m, 4H), 7.14-7.11 (m, 2H), 7.07-7.05 (m, 2H), 5.12-5.04 (m, 2H), 3.75 (s, 2H), 3.57 (s, 2H), 1.85 (s, 3H), 1.27 (d, *J* = 6.0 Hz, 12H); ¹³C **NMR** (125 MHz, CDCl₃) δ 170.7, 165.4, 149.3, 148.0, 145.2, 142.9, 138.1, 135.6, 134.5, 134.4, 133.5, 133.4, 132.6, 131.7, 131.4, 131.1, 129.9, 129.7, 128.9, 128.8, 128.5, 128.2, 128.0, 127.9, 121.5, 117.9, 95.7, 87.2, 69.8, 59.7, 41.1, 38.5, 21.7, 19.2. **FT-IR** (KBr): *v* = 3035,2987, 2935, 1726, 1624, 1490, 1400, 1149, 825, 705 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₇H₄₀Cl₂O₆S [M+H]⁺ 803.1995, found 803.1992.

(*E*)-diisopropyl 4-((2,3-di-p-tolylacryloyl)oxy)-5-(methylthio)-6-phenyl-7-(phenylethynyl)-1*H*indene-2,2(3*H*)-dicarboxylate (4p)

White solid; 324 mg (85 % yield); m. p. 150-151 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.33$; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.44-7.36 (m, 5H), 7.30-7.28 (m, 2H), 7.23-7.20 (m, 5H), 7.12-7.10 (m, 2H), 7.03 (dd, J = 8.0, 19.0 Hz, 4H), 5.10-5.05 (m, 2H), 3.77 (s, 2H), 3.57 (s, 2H), 2.39 (s, 3H), 2.29 (s, 3H), 1.88 (s, 3H), 1.27 (d, J = 6.0 Hz, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 165.8, 149.3, 149.2, 144.9, 142.5, 140.0, 139.9, 137.8, 132.9, 131.9, 131.5, 131.1, 130.6, 130.2, 129.8, 129.6, 129.2, 128.3, 128.0, 127.6, 127.5, 123.3, 118.3, 96.6, 86.7, 69.6, 59.8, 41.2, 38.6, 21.7, 21.5, 19.2. FT-IR (KBr): v = 3057, 3035, 2980, 2925, 1727, 1603, 1493, 1273, 1142, 751 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₄₉H₄₆O₆S [M+H]⁺ 763.2775, found 763.2780.

(*E*)-diisopropyl 4-((2,3-bis(4-fluorophenyl)acryloyl)oxy)-5-(methylthio)-6-phenyl-7-(phenylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4q)

White solid; 285 mg (74 % yield); m. p. 141-142 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.35$; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 1H), 7.45-7.40 (m, 3H), 7.39-7.36 (m, 4H), 7.25-7.21 (m, 3H), 7.13-7.10 (m, 6H), 6.92 (t, *J* = 9.0 Hz, 2H), 5.11-5.06 (m, 2H), 3.78 (s, 2H), 3.56 (s, 2H), 1.86 (s, 3H), 1.27 (d, *J* = 2.0 Hz, 6H), 1.26 (d, *J* = 2.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 165.2, 164.1 (d, *J*_{C-F} = 72.5 Hz), 162.1 (d, *J*_{C-F} = 68.8 Hz), 149.5, 148.9, 145.1, 141.8, 139.7, 133.0 (d, *J*_{C-F} = 8.8 Hz), 132.8, 131.9 (d, *J*_{C-F} = 8.8 Hz), 131.5, 131.4, 130.5, 130.2, 128.3, 127.8, 127.7, 127.6, 123.3, 118.6, 116.2 (d, *J*_{C-F} = 21.3 Hz), 115.8 (d, *J*_{C-F} = 21.3 Hz), 96.8, 86.5, 69.7, 59.8, 41.2, 38.6, 21.7, 19.2. **FT-IR** (KBr): *v* = 3057, 2963, 2933, 1729, 1598, 1506, 1417, 1263, 1098, 804 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₇H₄₀F₂O₆S [M+H]⁺ 771.2586, found 771.2583.

(*E*)-dimethyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-phenyl-7-(phenylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4r)

White solid; 285 mg (79 % yield); m. p. 108-109 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.19$; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.42-7.38 (m, 10H), 7.25-7.24 (m, 3H), 7.22-7.19 (m, 3H), 7.17-7.11 (m, 4H), 3.85 (s, 2H), 3.80 (s, 6H), 3.64 (s, 2H), 2.23 (t, J = 7.2 Hz, 2H), 1.20-1.13 (m, 2H), 1.10-1.01 (m, 2H), 0.69 (t, J = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.8, 165.4, 149.7, 149.2, 144.5, 142.8, 139.8, 135.7, 134.6, 132.6, 131.5, 131.1, 130.4, 130.1, 129.7, 128.9, 128.5, 128.3, 128.2, 127.6, 127.5, 126.9, 123.3, 118.3, 96.8, 86.6, 59.6, 53.4, 41.5, 38.9, 35.4, 31.5, 21.8, 13.6. FT-IR (KBr): v = 3088, 3059, 3030, 2953, 2929, 2870, 2353, 1732, 1490, 758 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₄₆H₄₀O₆S [M+H]⁺ 721.2618, found 721.2620.

(*E*)-diethyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-phenyl-7-(phenylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4s)

White solid; 300 mg (80 % yield); m. p. 111-112 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.28$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.42-7.38 (m, 10H), 7.25-7.17 (m, 6H), 7.13-7.12 (m, 4H), 4.25 (q, *J* = 6.9 Hz, 4H), 3.83 (s, 2H), 3.62 (s, 2H), 2.23 (t, *J* = 6.9 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 6H), 1.20-1.12 (m, 2H), 1.10-1.03 (m, 2H), 0.69 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.4, 165.3, 149.7, 149.2, 144.7, 142.7, 139.8, 135.7, 134.6, 132.7, 131.7, 131.5, 131.0, 130.4, 130.1, 129.6, 128.9, 128.4, 128.3, 128.2, 127.5, 127.4, 126.8, 123.3, 118.3, 96.7, 86.7, 62.2, 59.7, 41.3, 38.7, 35.4, 31.5, 21.8, 14.2, 13.6. **FT-IR** (KBr): *v* = 3088, 3053, 3024, 2987, 2870, 2358, 1726, 1620, 1490, 756 cm⁻¹; **HRMS** (APCI-TOF): *m/z* calcd for C₄₈H₄₄O₆S [M+H]⁺ 749.2931, found 749.2928.

(*E*)-diethyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-(*p*-tolyl)-7-(*p*-tolylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4t)

White solid; 287 mg (74 % yield); m. p. 104-105 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.30$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.25-7.22 (m, 5H), 7.19-7.17 (m, 2H), 7.13-7.11 (m, 2H), 7.04 (s, 4H), 4.24 (q, *J* = 6.9 Hz, 4H), 3.81 (s, 2H), 3.61 (s, 2H), 2.42 (s, 3H), 2.31 (s, 3H), 2.22 (t, *J* = 6.9 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 6H), 1.19-1.12 (m, 2H), 1.10-1.03 (m, 2H), 0.69 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 165.3, 149.5, 149.0, 144.6, 142.6, 138.4, 136.9, 135.7, 134.6, 132.5, 131.7, 131.4, 131.0, 130.3, 130.1, 129.6, 129.1, 128.9, 128.4, 128.2, 126.7, 120.4, 118.6, 96.8, 86.2, 62.2, 59.7, 41.3, 38.7, 35.4, 31.5, 21.9, 21.6, 21.5, 14.2, 13.7. FT-IR (KBr): v = 3088, 3059, 3030, 2981, 2870, 2358, 1732, 1620, 1139, 813 cm⁻¹; HRMS (APCI-TOF): *m*/*z* calcd for C₅₀H₄₈O₆S [M+H]⁺ 777.3244, found 777.3241.

(*E*)-diethyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-(*m*-tolyl)-7-(*m*-tolylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4u)

White solid; 295 mg (76 % yield); m. p. 95-96 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.34$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.33-7.22 (m, 4H), 7.19-7.17 (m, 3H), 7.13-7.04 (m, 4H), 6.95-6.92 (m, 2H), 4.25 (q, *J* = 6.9 Hz, 4H), 3.82 (s, 2H), 3.61 (s, 2H), 2.39 (s, 3H), 2.28 (s, 3H), 2.24 (t, *J* = 7.2 Hz, 2H), 1.29 (t, *J* = 6.9 Hz, 6H), 1.20-1.13 (m, 2H), 1.11-1.04 (m, 2H), 0.70 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.4, 165.3, 149.8, 149.1, 144.6, 142.6, 139.7, 137.9, 136.9, 135.7, 134.6, 132.6, 132.2, 131.7, 131.0, 130.1, 129.6, 129.2, 128.9, 128.5, 128.4, 128.2, 128.1, 127.5, 127.4, 126.7, 123.2, 118.3, 96.9, 86.5, 62.2, 59.7, 41.3, 38.7, 35.4, 31.5, 21.8, 21.7, 21.3, 14.2, 13.7. FT-IR (KBr): v = 3088, 3059, 3030, 2964, 2929, 2358, 1730, 1614, 1139, 781 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₅₀H₄₈O₆S [M+H]⁺ 777.3244, found 777.3250.

(E)-diethyl5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-(4-fluorophenyl)-7-((4-fluorophenyl)ethynyl)-1H-indene-2,2(3H)-dicarboxylate (4v)

White solid; 267 mg (68 % yield); m. p. 118-119 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.27$; ¹H **NMR** (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.36-7.31 (m, 2H), 7.24-7.18 (m, 3H), 7.13-7.09 (m, 6H), 6.95 (t, J = 8.4 Hz, 2H), 4.25 (q, J = 6.9 Hz, 4H), 3.80 (s, 2H), 3.61 (s, 2H), 2.21 (t, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 6H), 1.19-1.13 (m, 2H), 1.11-1.04 (m, 2H), 0.70 (t, J = 6.9 Hz, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 171.3, 165.3, 163.5 (d, $J_{C-F} = 43.8$ Hz), 161.5 (d, $J_{C-F} = 38.8$ Hz), 149.3, 148.4, 144.8, 142.8, 135.6, 134.5, 133.4 (d, $J_{C-F} = 7.5$ Hz), 133.0, 132.2 (d, $J_{C-F} = 8.8$ Hz), 131.5, 131.1, 130.0, 129.7, 128.9, 128.5, 128.2, 127.0, 119.2, 118.2, 115.5 (d, $J_{C-F} = 22.5$ Hz), 114.5 (d, $J_{C-F} = 21.3$ Hz), 95.7, 86.1, 62.2, 59.6, 41.3, 38.7, 35.4, 31.5, 21.8, 14.2, 13.6. **FT-IR** (KBr): v = 3059,3024,2958, 2929, 2870, 2353,

1732, 1620, 1508, 835 cm⁻¹; **HRMS** (APCI-TOF): m/z calcd for C₄₈H₄₂F₂O₆S [M+H]⁺ 785.2743, found 785.2746.

(*E*)-diisopropyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-phenyl-7-(phenylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4w)

White solid; 319 mg (82 % yield); m. p. 148-149 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.36$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40-7.37 (m, 10H), 7.25-7.24 (m, 2H), 7.23-7.17 (m, 4H), 7.13-7.11 (m, 4H), 5.12-5.04 (m, 2H), 3.78 (s, 2H), 3.59 (s, 2H), 2.22 (t, *J* = 7.2 Hz, 2H), 1.27 (d, *J* = 6.0 Hz, 12H), 1.19-1.12 (m, 2H), 1.10-1.02 (m, 2H), 0.69 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 165.3, 149.6, 149.2, 144.9, 142.6, 139.9, 135.7, 134.6, 132.8, 131.7, 131.5, 131.0, 130.4, 130.0, 129.6, 128.9, 128.4, 128.3, 128.2, 127.5, 127.4, 126.6, 123.4, 118.3, 96.6, 86.7, 69.7, 59.8, 41.2, 38.6, 35.4, 31.5, 21.8, 21.7, 13.6. FT-IR (KBr): v = 3082, 3059, 3030, 2981, 2935, 2353, 1730, 1624, 1512, 817 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₅₀H₄₈O₆S [M+H]⁺ 777.3244, found 777.3239.

(*E*)-diisopropyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-(*p*-tolyl)-7-(*p*-tolylethynyl)-1*H*-indene-2,2(3*H*)-dicarboxylate (4x)

White solid; 322 mg (80 % yield); m. p. 170-171 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.37$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.39 (s, 5H), 7.25-7.22 (m, 5H), 7.19-7.17 (m, 2H), 7.13-7.09 (m, 2H), 7.04 (s, 4H), 5.12-5.03 (m, 2H), 3.77 (s, 2H), 3.57 (s, 2H), 2.41 (s, 3H), 2.31 (s, 3H), 2.22 (t, *J* = 7.2 Hz, 2H), 1.26 (d, *J* = 6.3 Hz, 12H), 1.18-1.12 (m, 2H), 1.10-1.03 (m, 2H), 0.69 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 165.3, 149.5, 149.0, 144.7, 142.5, 138.4, 136.9, 136.8, 135.7, 134.6, 131.7, 131.4, 131.0, 130.3, 130.0, 129.6, 129.0, 128.8, 128.4, 128.2, 128.1, 126.6, 120.4, 118.5, 96.7, 86.3, 69.6, 59.8, 41.2, 38.6, 35.3, 31.5, 21.9, 21.7, 21.6, 21.5, 13.7. FT-IR (KBr): *v* = 3088, 3059, 3030, 2981,

2929, 2358, 1730, 1624, 1512, 817 cm⁻¹; **HRMS** (APCI-TOF): m/z calcd for C₅₂H₅₂O₆S [M+H]⁺ 805.3557, found 805.3555.

(*E*)-diisopropyl 5-(butylthio)-4-((2,3-diphenylacryloyl)oxy)-6-(*m*-tolyl)-7-(*m*-tolylethynyl)-1*H*indene-2,2(3*H*)-dicarboxylate (4y)

White solid; 318 mg (79 % yield); m. p. 155-156 °C; TLC (petroleum ether/EtOAc = 8:1): $R_f = 0.39$; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (s, 5H), 7.33-7.22 (m, 3H), 7.19-7.17 (m, 4H), 7.14-7.04 (m, 4H), 6.95-6.92 (m, 2H), 5.12-5.04 (m, 2H), 3.78 (s, 2H), 3.58 (s, 2H), 2.39 (s, 3H), 2.28 (s, 3H), 2.23 (t, *J* = 7.2 Hz, 2H), 1.27 (d, *J* = 5.7 Hz, 12H), 1.20-1.12 (m, 2H), 1.10-1.03 (m, 2H), 0.70 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.9, 165.3, 149.7, 149.1, 144.7, 142.6, 139.7, 137.9, 136.8, 135.7, 134.5, 132.6, 132.2, 131.7, 131.1, 131.0, 130.0, 129.6, 129.1, 128.9, 128.5, 128.4, 128.2, 128.0, 127.5, 127.4, 126.5, 123.2, 118.3, 96.8, 86.5, 69.6, 59.8, 41.2, 38.6, 35.4, 31.5, 21.8, 21.7, 21.3, 13.7. FT-IR (KBr): v = 3082, 3059, 3030, 2976, 2929, 2364, 1730, 1620, 1508, 817 cm⁻¹; HRMS (APCI-TOF): *m/z* calcd for C₅₂H₅₂O₆S [M+H]+ 805.3557, found 805.3560.

(*d*-4d)

¹**H** NMR (300 MHz, CDCl₃) δ 8.09 (s, 1H), 7.41-7.38 (m, 10H), 7.25-7.17 (m, 6H), 7.13-7.11 (m, 4H), 4.25 (q, *J* = 6.9 Hz, 4H), 3.82 (s, 2H), 3.62 (s, 2H), 1.29 (t, *J* = 7.2 Hz, 6H).

(*d*-4d')

¹**H NMR** (300 MHz, CDCl₃) *δ* 7.41-7.38 (m, 10H), 7.24-7.18 (m, 6H), 7.14-7.12 (m, 4H), 4.25 (q, *J* = 7.2 Hz, 4H), 3.82 (s, 2H), 3.62 (s, 2H), 1.29 (t, *J* = 7.2 Hz, 6H).

4. X-Ray Structure for 4a and 4m

4a

4m

5. ¹H NMR & ¹³C NMR Spectra for New Compounds

