Supporting Information

Organocatalytic synthesis of chiral CF₃-containing oxazolidines and 1,2-amino alcohols: asymmetric *oxa*-1,3-dipolar cycloaddition of trifluoroethylamine-derived azomethine ylide

Wen-Run Zhu,^{a,b} Qiong Su,^a Ning Lin,^{*,b} Qing Chen,^{*,b} Zhen-Wei Zhang,^b Jiang Weng,^a and Gui Lu^{*,a}

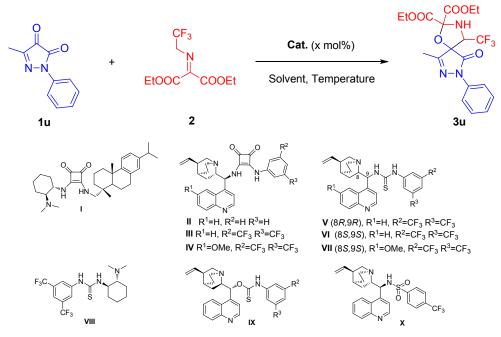
^a Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.

^b College of Pharmacy, Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, P. R. China.

E-mail for N.L.: <u>linninginnanning@163.com.</u> E-mail for Q.C.: <u>qing0082@163.com.</u> E-mail for G.L.: <u>lugui@mail.sysu.edu.cn.</u>

Table of Contents

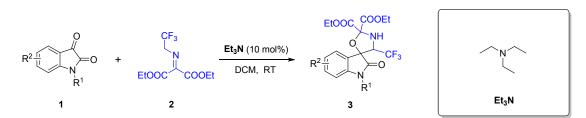
1.	General Information			
2.	Screening of Catalysts and Condition Optimization	S4		
3.	Experimental Procedure and Characterization of Products	S5		
	a. General Procedure to Prepare Racemic Products 3a-3t, 3aa	S5		
	b. General Procedure to Prepare Chiral Products 3a-3t, 3aa	S5		
	c. Analytical Data for Products 3a-3t, 3aa	S5		
	d. General Procedure to Prepare Racemic Products 3u-3z	S14		
	e. General Procedure to Prepare Chiral Products 3u-3z	S14		
	f. Analytical Data for Products 3u-3z	S14		
	g. Transformation of 3a to 4a	S17		
	h. Transformation of 3y to 4y	S17		
	i. Application of oxa-1,3-DC in desymmetrization	S18		
4.	Proposed Reaction Mechanism	S19		
5.	References	S19		
6.	Data for X-ray Crystal Structure of 3a	S20		
7.	NMR Spectra S			
8.	HPLC Traces S			


1. General Information

All reactions were carried out in oven-dried reaction vessel unless otherwise noted and solvents were dried according to established procedures. Reactions were monitored by thin layer chromatography (TLC). Purification of reaction product was carried out by flash chromatography using Qing Dao Sea Chemical Reagent silica gel (200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker 400 MHz or 500 MHz spectrometer in CDCl₃ unless otherwise noted. Chemical shifts in ¹H NMR spectra are reported in parts per million (ppm, δ) downfield from the internal standard Me₄Si (TMS, δ = 0 ppm). Chemical shifts in ¹³C NMR spectra are reported relative to the central line of the chloroform signal (δ = 77.0 ppm). Data are presented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constant in Hertz (Hz). HPLC analyses were conducted on an Agilent instrument using a Daicel Chiralpak IA, IB, IC and AD-H column. High resolution mass spectra were obtained with a Shimadzu LCMS-IT-TOF mass spectrometer. The single crystal X-ray diffraction studies were carried out on a Xcalibur Onyx Nova diffractometer equipped with CuK/ α radiation.

Substrates 2,^{1a} 5,^{1b} and 7^{1b} were synthesized according to the literature method.

2. Screening of Catalysts and Condition Optimization


Table S1. Screening of catalysts and optimization of reaction conditions^[a]

Entry	Catalyst	Solvent	Temperature	Time	Yield ^[b]	<i>dr</i> ^[c]	ee ^[d]	
	(x mol%) (x mL)		[°C]		[%]			
1	I (10)	DCM (1)	35	1h	99	>20:1	15	
2	II (10)	DCM (1)	35	<5min	96	>20:1	5	
3	III (10)	DCM (1)	35	1.5h	96	>20:1	18	
4	IV (10)	DCM (1)	35	2h	96	>20:1	19	
5	V (10)	DCM (1)	35	<30min	96	>20:1	82	
6	VI (10)	DCM (1)	35	40min	96	>20:1	-75	
7	VII (10)	DCM (1)	35	<30min	96	>20:1	-55	
8	VIII (10)	DCM (1)	35	40min	92	>20:1	60	
9	IX (10)	DCM (1)	35	2h	96	>20:1	76	
10	X (10)	DCM (1)	35	24h	90	>20:1	84	
11	V (10)	DCE (1)	35	<30min	96	>20:1	72	
12	V (10)	CHCl ₃ (1)	35	<30min	96	>20:1	70	
13	V (10)	THF (1)	35	<30min	96	>20:1	78	
14	V (10)	Toluene (1)	35	<30min	96	>20:1	45	
15	V (10)	MeOH (1)	35	<30min	90	1:8	0	
16	V (10)	MeCN (1)	35	<30min	90	>20:1	70	
17	V (10)	MTBE (1)	35	<30min	96	>20:1	75	
18	V (10)	DCM (1)	-20	72h	68	>20:1	63	
19	V (10)	DCM (1)	0	72h	82	>20:1	81	
20	V (10)	DCM (1)	10	36h	92	>20:1	82	
21	V (10)	DCM (1)	25	30min	98	>20:1	84	
22	V (5)	DCM (1)	25	30min	98	>20:1	68	
23	V (20)	DCM (1)	25	<30min	98	>20:1	82	
24	V (10)	DCM (3)	25	1h	98	>20:1	88	
25	V (10)	DCM (5)	25	1h	98	>20:1	90	
26 ^[e]	V (10)	DCM (5)	25	4h	98	>20:1	46	

^aUnless otherwise specified, all reactions were carried out with catalyst (x mol%), **1u** (0.10 mmol) and **2** (0.15 mmol) in the indicated solvent (x mL) at 35 °C. [b] Isolated yield of **3u**. [c] Determined by ¹H NMR analysis of the crude product. [d] Determined by chiral-phase HPLC analysis. [e] 50 mg 4Å was used.


3. Experimental Procedure and Characterization of Products

a. General Procedure to Prepare Racemic Products 3a-3t, 3aa

To a solution of diethyl 2-((2,2,2-trifluoroethyl)imino)malonate **2** (0.15 mmol, 1.5 equiv.), and catalyst Et_3N (0.01 mmol, 10 mol%) in DCM (1 mL) was added isatin **1** (0.10 mmol, 1.0 equiv.). The mixture was stirred at room temperature until the reaction was completed (monitored by TLC analysis). The crude product was purified directly by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 8:1~3:1) to give the desired racemic products **3a-3t**, **3aa**.

b. General Procedure to Prepare Chiral Products 3a-3t, 3aa

To a solution of diethyl 2-((2,2,2-trifluoroethyl)imino)malonate **2** (0.15 mmol, 1.5 equiv.) and catalyst **V** (0.01 mmol, 10 mol%) in DCE (1 mL) was added isatin **1** (0.10 mmol, 1.0 equiv.). The mixture was stirred at - 20 °C until the reaction was completed (monitored by TLC analysis). The crude product was purified directly by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = $8:1\sim3:1$) to give the desired chiral products **3a-3t**, **3aa**.

c. Analytical Data for Products 3a-3t, 3aa

(3*S*,4'*R*)-diethyl 1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3a**): petroleum ether/ ethyl acetate = 3:1, Rf=0.6.

White solid, 95% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +40.12 (c = 0.42, MeOH).

¹**H NMR** (400 MHz, $CDCl_3$) δ : 7.60 (dd, J = 7.4, 0.6 Hz, 1H), 7.38 (td, J = 7.8, 1.2 Hz, 1H), 7.14 (t, J = 7.2 Hz, 1H), 6.82 (d, J = 7.8 Hz, 1H), 4.67 (d, J = 13.6 Hz, 1H), 4.51-4.38 (m, 2H), 4.37-4.26 (m, 3H), 3.15 (s, 3H), 1.34 (dt, J = 8.8, 7.1 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ: 172.82, 167.43, 165.26, 144.64, 131.33, 124.84, 123.70, 123.68, 122.51 (q, J = 279.6 Hz), 108.87, 94.32, 81.25, 67.66 (q, J = 31.3 Hz), 63.28, 63.07, 26.43, 14.07, 14.04;
¹⁹F NMR (376 MHz, CDCl₃) δ: -69.09.

HRMS (ESI): m/z calcd. for $C_{18}H_{20}N_2O_6F_3$ [M+H]⁺: 417.1268; found: 417.1264.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 90/10, flow rate 1.0 mL·min⁻¹, λ = 254 nm): t_{major} = 6.4 min, t_{minor} = 7.5 min.

(*3S*,*4'R*)-diethyl 5-fluoro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3b**): petroleum ether/ ethyl acetate = 3:1, Rf=0.6.

Light yellow oil, 97% yield, >20:1 *dr*, 94% *ee*, $[a]_D^{20}$ = +52.38 (c = 0.37, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.40 (dd, *J* = 7.4, 2.6 Hz, 1H), 7.08 (td, *J* = 8.8, 2.6 Hz, 1H), 6.76 (dd, *J* = 8.5, 3.9 Hz, 1H), 4.66 (d, *J* = 13.7 Hz, 1H), 4.51-4.37 (m, 2H), 4.36-4.24 (m, 3H), 3.14 (s, 3H), 1.34 (dt, *J* = 9.8, 7.1 Hz, 6H);

¹³**C NMR** (101 MHz, CDCl₃) δ : 172.61, 167.28, 165.01, 159.70 (d, *J* = 243.0 Hz), 140.57 (d, *J* = 2.1 Hz), 125.46 (d, *J* = 8.2 Hz), 122.40 (q, *J* = 279.5 Hz), 117.63 (d, *J* = 23.7 Hz), 113.18 (d, *J* = 25.5 Hz), 109.61 (d, *J* = 7.9 Hz), 94.51, 81.09, 67.91 (q, *J* = 31.6 Hz), 63.38, 63.20, 26.59, 14.06, 14.04;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.09, -118.71.

HRMS (ESI): m/z calcd. for $C_{18}H_{19}N_2O_6F_4$ [M+H]⁺: 435.1174; found: 435.1169.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 8.2 min, t_{minor} = 10.9 min.

(*3S*,*4'R*)-diethyl 5-chloro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3c**): petroleum ether/ ethyl acetate = 3:1, Rf=0.6.

Colorless oil, 92% yield, >20:1 *dr*, 95% *ee*, $[a]_D^{20}$ = +70.02 (c = 0.40, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.61 (d, *J* = 2.1 Hz, 1H), 7.35 (dd, *J* = 8.3, 2.1 Hz, 1H), 6.76 (d, *J* = 8.3 Hz, 1H), 4.65 (d, *J* = 13.7 Hz, 1H), 4.50-4.37 (m, 2H), 4.36-4.24 (m, 3H), 3.13 (s, 3H), 1.34 (dt, *J* = 13.9, 7.1 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ: 172.42, 167.23, 164.98, 143.16, 131.24, 129.15, 125.51, 125.43, 122.38 (q, *J* = 279.6 Hz), 109.91, 94.50, 80.91, 67.87 (q, *J* = 31.6 Hz), 63.38, 63.23, 26.57, 14.05, 14.02;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.04.

HRMS (ESI): m/z calcd. for $C_{18}H_{19}CIN_2O_6F_3$ [M+H]⁺: 451.0878; found: 451.0873.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 8.4 min, t_{minor} = 10.3 min.

(*3S*, *4'R*)-diethyl 5-bromo-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3d**): petroleum ether/ ethyl acetate = 3:1, Rf=0.6.

EtOOC. COOEt

Yellow solid, 95% yield, >20:1 *dr*, 95% ee, $[a]_D^{20}$ = +77.26 (c = 0.28, MeOH). **1H NMR** (500 MHz, CDCl₃) δ: 7.75 (s, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 6.71 (d, *J* = 8.1 Hz, 1H), 4.65 (d, *J* = 13.6 Hz, 1H), 4.50-4.38 (m, 2H), 4.37-4.25 (m, 3H), 3.14 (s, 3H), 1.40-1.29 (m, 6H);

¹³C NMR (126 MHz, CDCl₃) δ: 172.33, 167.24, 164.99, 143.70, 134.17, 128.19, 125.86, 122.40 (q, J = 279.6 Hz), 116.30, 110.35, 94.53, 80.88, 67.92 (q, J = 31.5 Hz), 63.39, 63.24, 26.57, 14.08, 14.04;
¹⁹F NMR (471 MHz, CDCl₃) δ: -69.01.

HRMS (ESI): *m*/z calcd. for C₁₈H₁₉BrN₂O₆F₃ [M+H]⁺: 495.0373; found: 495.0363.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 90/10, 0.8 mL·min⁻¹, λ = 254 nm): t_{major} = 8.1 min, t_{minor} = 9.3 min.

(*3S*, *4'R*)-diethyl 1-methyl-2-oxo-5-(trifluoromethoxy)-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'dicarboxylate (**3e**): petroleum ether/ ethyl acetate = 3:1, Rf=0.3.

colourless foam, 98% yield, >20:1 *dr*, 93% *ee*, $[a]_D^{20}$ = +44.49 (c = 0.45, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.53 (d, J = 1.7 Hz, 1H), 7.26 (dd, J = 8.5, 1.5 Hz, 1H), 6.83 (d, J = 8.5 Hz, 1H), 4.66 (d, J = 13.7 Hz, 1H), 4.52-4.37 (m, 2H), 4.32 (tdd, J = 10.2, 6.9, 3.3 Hz, 3H), 3.16 (s, 3H), 1.34 (dt, J = 9.4, 7.1 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ: 172.69, 167.17, 165.01, 145.45, 143.24, 125.47, 124.38, 122.37 (q, *J* = 279.4 Hz), 120.59 (q, *J* = 257.1 Hz), 118.98, 109.52, 94.59, 80.94, 67.98 (q, *J* = 31.7 Hz), 63.45, 63.26, 26.64, 14.04; ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -58.35, -69.10.

HRMS (ESI): *m*/z calcd. for C₁₉H₁₉N₂O₇F₆ [M+H]⁺: 501.1092; found: 501.1096.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 7.0 min, t_{minor} = 13.8 min.

(*3S*, *4'R*)-diethyl 5-methoxy-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'dicarboxylate (**3f**): petroleum ether/ ethyl acetate = 8:1, Rf=0.3.

EtOOC COOEt MeO

colourless foam, 92% yield, >20:1 *dr*, 97% *ee*, $[a]_D^{20}$ = +75.65 (c = 0.37, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.23 (d, J = 2.6 Hz, 1H), 6.89 (dd, J = 8.5, 2.6 Hz, 1H), 6.73 (d, J = 8.5 Hz, 1H), 4.67 (d, J = 13.7 Hz, 1H), 4.51-4.38 (m, 2H), 4.35-4.23 (m, 3H), 3.81 (s, 3H), 3.12 (s, 3H), 1.34 (dt, J = 10.1, 7.1 Hz, 6H);

¹³**C NMR** (101 MHz, CDCl₃) δ: 172.59, 167.41, 165.21, 156.76, 137.92, 124.89, 122.50 (q, *J* = 279.5 Hz), 115.95, 111.70, 109.46, 94.38, 81.47, 67.84 (q, *J* = 31.4 Hz), 63.27, 63.06, 55.97, 26.51, 14.09, 14.04; ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.08.

HRMS (ESI): *m*/z calcd. for C₁₉H₂₂N₂O₇F₃ [M+H]⁺: 447.1374; found: 447.1368.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 11.2 min, t_{minor} = 21.0 min.

(3S, 4'R)-diethyl 1,5-dimethyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3g**): petroleum ether/ ethyl acetate = 3:1, Rf=0.5.

colourless foam, 90% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +67.31 (c = 0.35, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.40 (s, 1H), 7.16 (d, *J* = 8.6 Hz, 1H), 6.70 (d, *J* = 7.9 Hz, 1H), 4.68 (d, *J* = 13.7 Hz, 1H), 4.49-4.38 (m, 2H), 4.37-4.24 (m, 3H), 3.12 (s, 3H), 2.35 (s, 3H), 1.33 (dt, *J* = 14.1, 7.1 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ: 172.77, 167.53, 165.25, 142.26, 133.41, 131.56, 125.49, 123.59, 122.53 (q, *J* = 279.6 Hz), 108.65, 94.25, 81.36, 67.61 (q, *J* = 31.3 Hz), 63.22, 63.05, 26.43, 21.16, 14.06, 14.03; ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.07.

HRMS (ESI): m/z calcd. for $C_{19}H_{22}N_2O_6F_3$ [M+H]⁺: 431.1424; found: 431.1423.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 90/10, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 5.7 min, t_{minor} = 6.6 min.

(*3S*, *4'R*)-diethyl 4-fluoro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3h**): petroleum ether/ ethyl acetate = 8:1, Rf=0.5.

EtOOC. COOEt

colourless foam, 95% yield, >20:1 *dr*, 95% *ee*, $[a]_D^{20}$ = +56.36 (c = 0.28, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.37 (td, *J* = 8.2, 5.5 Hz, 1H), 6.79 (t, *J* = 8.8 Hz, 1H), 6.64 (d, *J* = 7.8 Hz, 1H), 4.74-4.62 (m, 2H), 4.47-4.39 (m, 1H), 4.38-4.26 (m, 3H), 3.13 (s, 3H), 1.33 (td, *J* = 7.1, 2.4 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ : 171.95, 166.78, 165.54, 159.80 (d, J = 253.7 Hz), 146.65 (d, J = 7.6 Hz), 133.64 (d, J = 9.0 Hz), 122.46 (q, J = 279.5 Hz), 111.47 (d, J = 20.3 Hz), 108.45 (d, J = 18.2 Hz), 105.16 (d, J = 3.2 Hz), 94.66, 80.77, 64.50 (qd, J = 31.5, 1.1 Hz), 63.26, 63.03, 26.79, 14.02, 13.94;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.13, -116.81.

HRMS (ESI): m/z calcd. for $C_{18}H_{19}N_2O_6F_4$ [M+H]⁺: 435.1174; found: 435.1180.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 11.8 min, t_{minor} = 22.3 min.

(*3S*, *4'R*)-diethyl 4-chloro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3i**): petroleum ether/ ethyl acetate = 8:1, Rf=0.6.

EtOOC COOEt

colourless foam, 88% yield, >20:1 *dr*, 95% *ee*, $[a]_D^{20}$ = +40.36 (c = 0.45, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.31 (t, J = 8.1 Hz, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 5.00 (dq, J = 13.8, 6.9 Hz, 1H), 4.60 (d, J = 12.9 Hz, 1H), 4.45-4.27 (m, 4H), 3.13 (s, 3H), 1.32 (td, J = 7.1, 5.1 Hz, 6H);

¹³**C NM**R (101 MHz, CDCl₃) δ: 171.90, 166.36, 165.74, 146.60, 132.66, 132.24, 124.86, 122.46 (q, *J* = 279.5 Hz), 118.66, 107.54, 94.88, 81.79, 63.22, 63.01, 63.00 (q, *J* = 31.5 Hz), 26.60, 14.07;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.16.

HRMS (ESI): *m*/z calcd. for C₁₈H₁₉ClN₂O₆F₃ [M+H]⁺: 451.0878; found: 451.0870.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 99/1, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 28.4 min, t_{minor} = 55.2 min.

(*3S*, *4'R*)-diethyl 6-chloro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3j**): petroleum ether/ ethyl acetate = 3:1, Rf=0.4.

EtOOC, COOEt

colourless foam, 93% yield, >20:1 *dr*, 95% *ee*, $[a]_D^{20}$ = +43.76 (c = 0.38, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.54 (d, J = 8.0 Hz, 1H), 7.11 (dd, J = 8.0, 1.7 Hz, 1H), 6.83 (d, J = 1.7 Hz, 1H), 4.64 (d, J = 13.7 Hz, 1H), 4.51-4.37 (m, 2H), 4.36-4.23 (m, 3H), 3.13 (s, 3H), 1.33 (dd, J = 13.5, 7.1 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ: 172.77, 167.31, 165.05, 145.79, 137.32, 125.93, 123.58, 122.42 (q, J = 279.4 Hz), 122.21, 109.75, 94.39, 80.81, 67.71 (q, J = 31.5 Hz), 63.37, 63.15, 26.57, 14.06, 14.04; ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.06.

HRMS (ESI): *m*/z calcd. for C₁₈H₁₉ClN₂O₆F₃ [M+H]⁺: 451.0878; found: 451.0873.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 99/1, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 15.0 min, t_{minor} = 43.8 min.

(*3S*,*4'R*)-diethyl 6-bromo-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3k**): petroleum ether/ ethyl acetate = 3:1, Rf=0.5.

EtOOC, COOEt

colourless oil, 98% yield, >20:1 *dr*, 94% *ee*, $[a]_D^{20}$ = +32.65 (c = 0.37, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.48 (d, *J* = 7.9 Hz, 1H), 7.28 (dd, *J* = 7.9, 1.6 Hz, 1H), 6.98 (d, *J* = 1.6 Hz, 1H), 4.65 (d, *J* = 13.7 Hz, 1H), 4.51-4.37 (m, 2H), 4.37-4.23 (m, 3H), 3.13 (s, 3H), 1.34 (dd, *J* = 13.2, 7.1 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ: 172.67, 167.32, 165.05, 145.85, 126.57, 126.22, 125.25, 122.79, 122.43 (q, *J* = 281.0 Hz), 112.54, 94.42, 80.87, 67.70 (q, *J* = 31.4 Hz), 63.39, 63.18, 26.59, 14.07, 14.06;

 $^{19}\textbf{F}$ NMR (376 MHz, CDCl_3) $\delta:$ -69.04.

HRMS (ESI): m/z calcd. for $C_{18}H_{19}BrN_2O_6F_3$ [M+H]⁺: 495.0373; found: 495.0366.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 280 nm): t_{major} = 9.5 min, t_{minor} = 20.5 min.

(*3S*,*4'R*)-diethyl 7-fluoro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3I**): petroleum ether/ ethyl acetate = 8:1, Rf=0.3.

EtOOC, COOEt

colourless oil, 93% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +49.03 (c = 0.32, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43 (dd, *J* = 6.9, 1.4 Hz, 1H), 7.15-7.04 (m, 2H), 4.67 (d, *J* = 13.7 Hz, 1H), 4.51-4.38 (m, 2H), 4.38-4.24 (m, 3H), 3.36 (d, *J* = 2.6 Hz, 3H), 1.34 (dd, *J* = 13.5, 7.0 Hz, 6H);

¹³**C NMR** (101 MHz, CDCl₃) δ: 172.54, 167.32, 165.09, 147.78 (d, J = 244.9 Hz), 131.12 (d, J = 9.1 Hz), 126.62 (d, J = 3.2 Hz), 124.42 (d, J = 6.3 Hz), 122.42 (q, J = 280.5 Hz), 120.82 (d, J = 3.2 Hz), 119.40 (d, J = 3.2 Hz), 124.42 (d, J = 6.3 Hz), 122.42 (q, J = 280.5 Hz), 120.82 (d, J = 3.2 Hz), 119.40 (d, J = 3.2 Hz), 124.42 (d, J = 6.3 Hz), 122.42 (q, J = 280.5 Hz), 120.82 (d, J = 3.2 Hz), 124.42 (d, J = 6.3 Hz), 122.42 (q, J = 280.5 Hz), 120.82 (d, J = 3.2 Hz), 119.40 (d, J = 3.2 Hz), 120.82 (d, J = 3.2 Hz), 119.40 (d, J = 3.2 Hz), 120.82 (d, J = 3.2 Hz), 120.82 (d, J = 3.2 Hz), 119.40 (d, J = 3.2 Hz), 120.82 (d, J = 3.2 Hz),

19.2 Hz), 94.46, 81.00, 68.03 (q, J = 31.6 Hz), 63.37, 63.15, 29.03 (d, J = 5.5 Hz), 14.07;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.08, -135.67.

HRMS (ESI): m/z calcd. for $C_{18}H_{19}N_2O_6F_4$ [M+H]⁺ : 435.1174; found: 435.1172.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 220 nm): t_{major} = 6.2 min, t_{minor} = 11.1 min.

(3S, 4'R)-diethyl 1,7-dimethyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3m**): petroleum ether/ ethyl acetate = 8:1, Rf=0.3.

colourless foam, 98% yield, >20:1 *dr*, 95% *ee*, $[a]_D^{20}$ = +37.33 (c = 0.15, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.44 (d, *J* = 7.2 Hz, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.01 (t, *J* = 7.5 Hz, 1H), 4.68 (d, *J* = 13.6 Hz, 1H), 4.49-4.36 (m, 2H), 4.36-4.21 (m, 3H), 3.40 (s, 3H), 2.52 (s, 3H), 1.33 (dd, *J* = 15.4, 7.2 Hz, 6H);

¹³C NMR (126 MHz, CDCl₃) δ: 173.60, 167.48, 165.36, 142.24, 135.03, 124.28, 123.60, 122.74, 122.53 (q, J = 279.6 Hz), 120.56, 94.16, 80.81, 67.85 (q, J = 31.3 Hz), 63.20, 63.00, 29.79, 18.88, 14.05, 14.03;
¹⁹F NMR (376 MHz, CDCl₃) δ: -69.11.

HRMS (ESI): *m/z* calcd. for C₁₉H₂₂N₂O₆F₃ [M+H]⁺: 431.1424; found: 431.1422.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{maior} = 9.4 min, t_{minor} = 20.7 min.

(3S, 4'R)-diethyl 4,6-difluoro-1-methyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3n**): petroleum ether/ ethyl acetate = 3:1, Rf=0.5.

colourless oil, 93% yield, >20:1 *dr*, 93% *ee*, $[a]_D^{20}$ = +30.94 (c = 0.35, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 6.53 (td, *J* = 9.5, 2.0 Hz, 1H), 6.42 (dd, *J* = 8.1, 1.8 Hz, 1H), 4.67-4.60 (m, 2H), 4.47-4.40 (m, 1H), 4.36-4.25 (m, 3H), 3.12 (s, 3H), 1.33 (t, *J* = 7.1 Hz, 6H);

¹³**C NMR** (101 MHz, CDCl₃) δ: 172.18, 166.70, 165.73 (dd, *J* = 252.4, 12.8 Hz), 165.46, 160.06 (dd, *J* = 255.4, 14.6 Hz), 147.72 (dd, *J* = 14.0, 10.0 Hz), 122.41 (q, *J* = 279.3 Hz), 104.18 (dd, *J* = 18.4, 3.6 Hz), 99.20 (dd, *J* = 26.0, 24.8 Hz), 94.67 (dd, *J* = 27.8, 3.6 Hz), 94.59, 80.46, 64.47 (q, *J* = 31.5 Hz), 63.37, 63.11, 26.92, 14.04, 13.96;

¹⁹F NMR (376 MHz, CDCl₃) δ: -69.11, -102.27 (d, *J* = 9.9 Hz), -112.76 (d, *J* = 9.9 Hz).

HRMS (ESI): m/z calcd. for $C_{18}H_{18}N_2O_6F_5$ [M+H]⁺: 453.1080; found: 453.1083.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 8.8 min, t_{minor} = 16.9 min.

(3S, 4'R)-diethyl 5-chloro-1,7-dimethyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3o**): petroleum ether/ ethyl acetate = 3:1, Rf=0.4.

colourless oil, 97% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +56.19 (c = 0.37, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.46 (d, *J* = 2.1 Hz, 1H), 7.10 (d, *J* = 1.8 Hz, 1H), 4.66 (d, *J* = 13.7 Hz, 1H), 4.49-4.38 (m, 2H), 4.36-4.20 (m, 3H), 3.39 (s, 3H), 2.50 (s, 3H), 1.34 (dt, *J* = 13.5, 7.1 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ: 173.27, 167.29, 165.11, 140.88, 134.51, 128.74, 126.09, 123.11, 122.39 (q, J = 279.6 Hz), 122.21, 94.33, 80.52, 68.05 (q, J = 31.4 Hz), 63.33, 63.20, 29.81, 18.70, 14.06, 14.03;
¹⁹F NMR (376 MHz, CDCl₃) δ: -69.05.

HRMS (ESI): *m*/z calcd. for C₁₉H₂₁ClN₂O₆F₃ [M+H]⁺: 465.1035; found: 465.1039.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 8.3 min, t_{minor} = 20.9 min.

(*3S*,*4'R*)-diethyl 1,5,7-trimethyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3p**): petroleum ether/ ethyl acetate = 8:1, Rf=0.3.

EtOOC, COOEt

colourless oil, 91% yield, >20:1 *dr*, 98% *ee*, $[a]_D^{20}$ = +49.82 (c = 0.38, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.24 (s, 1H), 6.90 (s, 1H), 4.68 (d, *J* = 13.7 Hz, 1H), 4.52-4.40 (m, 2H), 4.34-4.21 (m, 3H), 3.38 (s, 3H), 2.47 (s, 3H), 2.29 (s, 3H), 1.36-1.29 (m, 6H);

¹³C NMR (101 MHz, CDCl₃) δ: 173.56, 167.59, 165.37, 139.80, 135.47, 133.25, 124.23, 123.29, 122.55 (q, J = 279.6 Hz), 120.28, 94.09, 80.95, 67.80 (q, J = 31.2 Hz), 63.17, 63.02, 29.74, 20.85, 18.73, 14.06, 14.03;
¹⁹F NMR (376 MHz, CDCl₃) δ: -69.07.

HRMS (ESI): m/z calcd. for $C_{20}H_{24}N_2O_6F_3$ [M+H]⁺: 445.1581; found: 445.1576.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 7.4 min, t_{minor} = 13.9 min.

(*3S*,*4'R*)-diethyl 2-oxo-1-propyl-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3q**): petroleum ether/ ethyl acetate = 8:1, Rf=0.3.

EtOOC, COOEt

colourless oil, 98% yield, >20:1 *dr*, 97% *ee*, $[a]_D^{20}$ = +54.91 (c = 0.11, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.59 (d, *J* = 7.4 Hz, 1H), 7.35 (td, *J* = 7.8, 1.0 Hz, 1H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.83 (d, *J* = 7.9 Hz, 1H), 4.68 (d, *J* = 13.7 Hz, 1H), 4.50-4.38 (m, 2H), 4.38-4.24 (m, 3H), 3.73 (dt, *J* = 14.4, 7.4 Hz, 1H), 3.43 (dt, *J* = 14.1, 7.1 Hz, 1H), 1.71-1.60 (m, 2H), 1.33 (dt, *J* = 11.6, 7.1 Hz, 6H), 0.93 (t, *J* = 7.4 Hz, 3H);

¹³**C NMR** (101 MHz, CDCl₃) δ: 172.82, 167.45, 165.31, 144.27, 131.24, 124.95, 123.78, 123.41, 122.55 (q, J = 279.5 Hz), 109.10, 94.28, 81.18, 67.67 (q, J = 31.3 Hz), 63.24, 63.05, 41.97, 20.70, 14.07, 14.04, 11.28; ¹⁹**F NMR** (376 MHz, CDCl₃) δ: -68.99.

HRMS (ESI): *m*/z calcd. for C₂₀H₂₄N₂O₆F₃ [M+H]⁺: 445.1581; found: 445.1578.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{maior} = 6.2 min, t_{minor} = 9.2 min.

(3*S*,4'*R*)-diethyl 1-benzyl-2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3r**): petroleum ether/ ethyl acetate = 8:1, Rf=0.4.

colourless foam, 92% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +41.71 (c = 0.43, MeOH).

¹**H NMR** (500 MHz, $CDCI_3$) δ : 7.61 (d, J = 6.8 Hz, 1H), 7.30 (d, J = 6.0 Hz, 2H), 7.26 (s, 4H), 7.10 (t, J = 6.6 Hz, 1H), 6.68 (d, J = 7.3 Hz, 1H), 5.05 (d, J = 15.7 Hz, 1H), 4.73 (d, J = 13.6 Hz, 1H), 4.61 (d, J = 15.6 Hz, 1H), 4.52-4.28 (m, 5H), 1.35 (dd, J = 14.5, 7.1 Hz, 6H);

¹³C NMR (126 MHz, CDCl₃) δ: 172.99, 167.43, 165.30, 143.90, 135.10, 131.26, 128.93, 127.92, 127.37, 124.92, 123.71, 122.40 (q, J = 330.4 Hz), 110.02, 94.38, 81.28, 67.69 (q, J = 31.4 Hz), 63.31, 63.10, 44.23, 14.09, 14.07;

¹⁹**F NMR** (471 MHz, CDCl₃) δ: -68.75.

HRMS (ESI): m/z calcd. for $C_{24}H_{24}N_2O_6F_3$ [M+H]⁺: 493.1581; found: 493.1572.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 220 nm): t_{major} = 8.6 min, t_{minor} = 10.5 min.

(3*S*,4'*R*)-diethyl 2-oxo-1-phenyl-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3s**): petroleum ether/ ethyl acetate = 8:1, Rf=0.3.

EtOOC, COOEt

colourless foam, 90% yield, >20:1 *dr*, 94% *ee*, $[a]_D^{20}$ = +22.52 (c = 0.16, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.70 (d, J = 7.4 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.35 (d, J = 7.2 Hz, 2H), 7.31 (dd, J = 7.8, 1.2 Hz, 1H), 7.18 (t, J = 7.2 Hz, 1H), 6.82 (d, J = 7.9 Hz, 1H), 4.73 (d, J = 13.7 Hz, 1H), 4.50-4.37 (m, 3H), 4.36-4.28 (m, 2H), 1.35 (dt, J = 19.8, 7.1 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ: 172.30, 167.44, 165.13, 144.56, 133.53, 131.23, 129.84, 128.59, 126.28, 125.19, 124.18, 123.57, 122.67 (q, *J* = 279.4 Hz), 110.21, 94.54, 81.46, 68.32 (q, *J* = 31.3 Hz), 63.35, 63.14, 14.11, 14.06;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -68.77.

HRMS (ESI): m/z calcd. for $C_{23}H_{22}N_2O_6F_3$ [M+H]⁺: 479.1424; found: 479.1422.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 99/1, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 16.0 min, t_{minor} = 32.5 min.

(3*S*,4'*R*)-diethyl 2-oxo-4'-(trifluoromethyl)spiro[indoline-3,5'-oxazolidine]-2',2'-dicarboxylate (**3t**): petroleum ether/ ethyl acetate = 3:1, Rf=0.4.

Yellow oil, 58% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +22.37 (c = 0.35, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 8.14 (s, 1H), 7.59 (d, J = 7.4 Hz, 1H), 7.32 (td, J = 7.8, 1.2 Hz, 1H), 7.12 (td, J = 7.7, 0.7 Hz, 1H), 6.87 (d, J = 7.8 Hz, 1H), 4.64 (d, J = 13.7 Hz, 1H), 4.49-4.39 (m, 2H), 4.38-4.26 (m, 3H), 1.34 (dt, J = 14.5, 7.1 Hz, 6H);

¹³C NMR (101 MHz, CDCl₃) δ: 174.85, 167.39, 165.34, 141.68, 131.36, 125.27, 124.14, 123.76, 122.52 (q, J = 279.6 Hz), 110.80, 94.38, 81.52, 67.88 (q, J = 31.4 Hz), 63.34, 63.15, 14.10, 14.06;

 $^{19}\textbf{F}$ NMR (376 MHz, CDCl_3) δ : -69.12.

HRMS (ESI): m/z calcd. for $C_{17}H_{18}N_2O_6F_3$ [M+H]⁺: 403.1111; found: 403.1105.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IB column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 220 nm): t_{major} = 9.1 min, t_{minor} = 14.8 min.

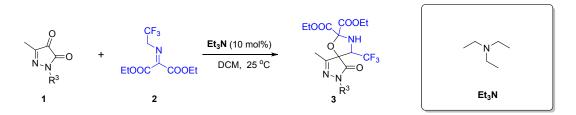
(4R,5S)-triethyl 4,5-bis(trifluoromethyl)oxazolidine-2,2,5-tricarboxylate (**3aa**): petroleum ether/ ethyl acetate = 8:1, Rf=0.6.

EtOOC_/ COOEt F₃C^{*} COOEt

Colorless oil, 86% yield, >20:1 *dr*, 80% *ee*, $[a]_D^{20}$ = +16.32 (c = 0.28, MeOH).

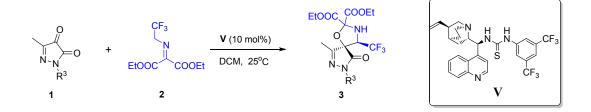
¹H NMR (400 MHz, CDCl₃) δ: 4.51 – 4.19 (m, 8H), 1.37 – 1.29 (m, 9H);

¹³**C NMR** (101 MHz, CDCl₃) δ : 165.94, 165.41, 163.07, 122.26 (q, *J* = 280.1 Hz), 122.03 (q, *J* = 284.8 Hz),


95.86, 84.00 (q, J = 31.1 Hz), 64.43 (q, J = 33.2 Hz), 63.77, 63.46, 63.41, 14.03, 13.93, 13.71;

¹⁹F NMR (376 MHz, CDCl₃) δ: -70.09 (dq, *J* = 7.8, 3.9 Hz), -73.87 (q, *J* = 3.9 Hz).

HRMS (ESI): *m*/z calcd. for C₁₄H₁₈NO₇F₆ [M+H]⁺: 426.0982; found: 426.0984.


HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IA column (hexane/*i*-PrOH = 98/2, 1 mL·min⁻¹, λ = 220 nm): t_{major} = 7.2 min, t_{minor} = 22.8 min.

d. General Procedure to Prepare Racemic Products 3u-3z

To a solution of diethyl 2-((2,2,2-trifluoroethyl)imino)malonate **2** (0.15 mmol, 1.5 equiv.), and catalyst Et_3N (0.01 mmol, 10 mol%) in DCM (1 mL) was added pyrazolone **1** (0.10 mmol, 1.0 equiv.). The mixture was stirred at room temperature until the reaction was completed (monitored by TLC analysis). The crude product was purified directly by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 20:1~10:1) to give the desired racemic products **3u-3z**.

e. General Procedure to Prepare Chiral Products 3u-3z

To a solution of diethyl 2-((2,2,2-trifluoroethyl)imino)malonate **2** (0.15 mmol, 1.5 equiv.) and catalyst **V** (0.01 mmol, 10 mol%) in DCE (1 mL) was added pyrazolone **1** (0.10 mmol, 1.0 equiv.). The mixture was stirred at 25 °C until the reaction was completed (monitored by TLC analysis). The crude product was purified directly by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = $20:1\sim10:1$) to give the desired chiral products **3u-3z**.

f. Analytical Data for Products 3u-3z

(4R,5R)-diethyl-6-methyl-9-oxo-8-phenyl-4-(trifluoromethyl)-1-oxa-3,7,8-triazaspiro[4.4]non-6-ene-2,2dicarboxylate (**3u**): petroleum ether/ ethyl acetate = 10:1, Rf=0.5.

Colorless oil, 98% yield, >20:1 *dr*, 90% *ee*, $[a]_D^{20}$ = +28.31 (c = 0.38, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.77 (d, J = 7.7 Hz, 2H), 7.39 (t, J = 8.0 Hz, 2H), 7.20 (t, J = 7.4 Hz, 1H), 4.68 (d, J = 13.6 Hz, 1H), 4.51 – 4.43 (m, 1H), 4.42 – 4.33 (m, 2H), 4.33 – 4.21 (m, 2H), 2.32 (s, 3H), 1.34 (td, J = 7.1, 4.1 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ: 168.22, 166.64, 164.73, 155.72, 137.29, 129.06, 125.83, 122.05 (q, *J* = 279.2 Hz), 118.88, 95.05, 82.32, 65.05 (q, *J* = 32.6 Hz), 63.68, 63.32, 14.04, 13.05;

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -68.94.

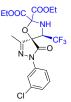
HRMS (ESI): *m*/z calcd. for C₁₉H₂₁N₃O₆F₃ [M+H]⁺: 444.1377; found: 444.1375.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak AD-H column (hexane/i-

PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 7.9 min, t_{minor} = 7.3 min.

(4R,5R)-diethyl-8-(2-chlorophenyl)-6-methyl-9-oxo-4-(trifluoromethyl)-1-oxa-3,7,8-triazaspiro[4.4]non-6-ene-2,2-dicarboxylate (**3v**): petroleum ether/ ethyl acetate = 10:1, Rf=0.5.

Colorless oil, 96% yield, >20:1 *dr*, 85% *ee*, $[a]_D^{20}$ = +22.33 (c = 0.30, MeOH).


¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.45 (m, 1H), 7.39 – 7.27 (m, 3H), 4.63 (d, *J* = 13.6 Hz, 1H), 4.49 – 4.41 (m, 1H), 4.41 – 4.33 (m, 2H), 4.32 – 4.21 (m, 2H), 2.30 (s, 3H), 1.34 (t, *J* = 7.1 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ: 168.91, 166.62, 164.57, 155.65, 133.83, 131.67, 130.76, 130.11, 128.13, 127.56, 122.05 (q, J = 279.4 Hz), 95.07, 81.23, 64.91 (q, J = 32.7 Hz), 63.67, 63.34, 14.03, 13.08; ¹⁹**F NMR** (376 MHz, CDCl₃)δ -68.72.

HRMS (ESI): *m/z* calcd. for C₁₉H₂₀N₃O₆F₃Cl [M+H]⁺: 478.0987; found: 478.0989.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IC column (hexane/*i*-PrOH = 95/5, 0.8 mL·min⁻¹, λ = 254 nm): t_{major} = 9.5 min, t_{minor} = 8.5 min.

(4R,5R)-diethyl-8-(3-chlorophenyl)-6-methyl-9-oxo-4-(trifluoromethyl)-1-oxa-3,7,8-triazaspiro[4.4]non-6-ene-2,2-dicarboxylate (**3w**): petroleum ether/ ethyl acetate = 10:1, Rf=0.4.

Colorless oil, 96% yield, >20:1 *dr*, 80% *ee*, $[a]_D^{20}$ = +6.40 (c = 0.25, MeOH).

¹**H NMR** (400 MHz, $CDCl_3$) δ : 7.85 (t, J = 2.0 Hz, 1H), 7.79 – 7.66 (m, 1H), 7.30 (t, J = 8.2 Hz, 1H), 7.17 (dd, J = 8.4, 1.5 Hz, 1H), 4.66 (d, J = 13.6 Hz, 1H), 4.53 – 4.43 (m, 1H), 4.42 – 4.33 (m, 2H), 4.31 – 4.21 (m, 2H), 2.32 (s, 3H), 1.38 – 1.32 (m, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ: 168.16, 166.42, 164.55, 156.10, 138.20, 134.76, 130.02, 125.61, 121.87 (q, *J* = 279.4 Hz), 118.56, 116.39, 94.98, 82.22, 65.01 (q, *J* = 32.6 Hz), 63.63, 63.25, 13.92, 12.95;

¹⁹F NMR (376 MHz, CDCl₃) δ: -68.91

HRMS (ESI): *m*/z calcd. for C₁₉H₂₀N₃O₆F₃Cl [M+H]⁺: 478.0987; found: 478.0988.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IC column (hexane/*i*-PrOH = 95/5, 0.8 mL·min⁻¹, λ = 254 nm): t_{major} = 6.1 min, t_{minor} = 7.8 min.

(4R,5R)-diethyl-8-(4-bromophenyl)-6-methyl-9-oxo-4-(trifluoromethyl)-1-oxa-3,7,8-triazaspiro[4.4]non-6-ene-2,2-dicarboxylate (**3x**): petroleum ether/ ethyl acetate = 10:1, Rf=0.4.

EtOOC, COOEt

Colorless oil, 98% yield, >20:1 *dr*, 77% *ee*, $[a]_D^{20}$ = +14.33 (c = 0.31, MeOH).

1**H NMR** (400 MHz, CDCl₃) δ: 7.70 (d, *J* = 9.0 Hz, 2H), 7.49 (d, *J* = 9.0 Hz, 2H), 4.65 (d, *J* = 13.6 Hz, 1H), 4.52

- 4.42 (m, 1H), 4.41 - 4.32 (m, 2H), 4.31 - 4.19 (m, 2H), 2.32 (s, 3H), 1.34 (td, J = 7.1, 3.7 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ : 168.18, 166.57, 164.68, 156.18, 136.39, 132.10, 122.00 (q, J = 279.4 Hz), 120.19, 118.74, 95.10, 82.32, 65.13 (q, J = 32.5 Hz), 63.75, 63.38, 14.06, 13.09; ¹⁹**F NMR** (376 MHz, CDCl₃) δ : 68.93.

HRMS (ESI): *m*/z calcd. for C₁₉H₂₀N₃O₆F₃Br [M+H]⁺: 522.0482; found: 522.0483.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IC column (hexane/*i*-PrOH = 95/5, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 5.0 min, t_{minor} = 6.5 min.

(4R,5R)-diethyl-8-(tert-butyl)-6-methyl-9-oxo-4-(trifluoromethyl)-1-oxa-3,7,8-triazaspiro[4.4]non-6-ene-2,2dicarboxylate (**3y**): petroleum ether/ ethyl acetate = 10:1, Rf=0.3.

Colorless oil, 98% yield, >20:1 *dr*, 82% *ee*, $[a]_D^{20}$ = +39.67 (c = 0.30, MeOH).

¹**H NMR** (500 MHz, CDCl₃) δ: 4.54 (d, *J* = 13.6 Hz, 1H), 4.50 – 4.41 (m, 1H), 4.40 – 4.31 (m, 2H), 4.29 – 4.21 (m, 1H), 4.08 (dq, *J* = 13.5, 6.7 Hz, 1H), 2.14 (s, 3H), 1.42 (s, 9H), 1.35 – 1.29 (m, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ: 169.93, 166.82, 164.87, 152.95, 122.15 (q, *J* = 279.3 Hz), 94.80, 82.50, 64.57 (q, *J* = 32.2 Hz), 63.52, 63.15, 58.01, 27.90, 14.03, 12.87;

¹⁹**F NMR** (471 MHz, CDCl₃) δ: -69.19.

HRMS (ESI): m/z calcd. for $C_{17}H_{25}N_3O_6F_3$ [M+H]⁺: 424.1690; found: 424.1688.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IC column (hexane/*i*-PrOH = 98/2, 1 mL·min⁻¹, λ = 254 nm): t_{major} = 8.4 min, t_{minor} = 7.7 min.

(4R,5R)-diethyl 6,8-dimethyl-9-oxo-4-(trifluoromethyl)-1-oxa-3,7,8-triazaspiro[4.4]non-6-ene-2,2-dicarboxylate (**3z**): petroleum ether/ ethyl acetate = 10:1, Rf=0.3.

Colorless oil, 98% yield, >20:1 *dr*, 83% *ee*, $[a]_D^{20}$ = +46.67 (c = 0.24, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: 4.56 (d, *J* = 13.5 Hz, 1H), 4.50 – 4.41 (m, 1H), 4.39 – 4.29 (m, 2H), 4.28 – 4.21 (m, 1H), 4.14 (td, *J* = 13.4, 6.6 Hz, 1H), 3.22 (s, 3H), 2.18 (s, 3H), 1.32 (dt, *J* = 9.6, 7.1 Hz, 6H);

¹³**C NMR** (126 MHz, CDCl₃) δ: 169.91, 166.69, 164.71, 154.72, 122.02 (q, *J* = 279.3 Hz), 94.87, 81.17, 64.59 (q, *J* = 32.5 Hz), 63.59, 63.24, 31.61, 14.02, 12.86.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -69.24.

HRMS (ESI): m/z calcd. for $C_{14}H_{19}N_3O_6F_3$ [M+H]⁺: 382.1220; found: 382.1202.

HPLC analysis: The enantiomeric excess was determined by HPLC with Chiralpak IC column (hexane/*i*-PrOH = 95/5, 0.8 mL·min⁻¹, λ = 254 nm): t_{major} = 10.3 min, t_{minor} = 17.1 min.

g. Transformation of 3a to 4a

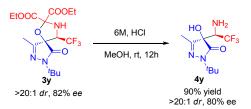
To a solution of spirooxindole-oxazoline **3a** (0.30 mmol) in MeOH (5 mL) was added 6M HCl (3 mL). The mixture was stirred at room temperature until the reaction was completed (monitored by TLC analysis). Remove the solvent under vacuum. Then 5 mL water was added and extract three times with 10 mL of DCM. The water phase uses ammonia to adjust pH to alkaline. Then extract with DCM (10 mL x 3). The organic phase was dried with Na_2SO_4 and the solution was removed to obtain the desired product **4a** as a colourless oil.

(S)-3-((R)-1-amino-2,2,2-trifluoroethyl)-3-hydroxy-1-methylindolin-2-one (**4a**): petroleum ether/ ethyl acetate = 3:1, Rf=0.2.

$$\bigcup_{N}^{HO} \bigvee_{N}^{NH_2} CF_3$$

colourless oil, 68% yield, >20:1 *dr*, 96% *ee*, $[a]_D^{20}$ = +42.17 (c=0.29, MeOH).

¹**H NMR** (400 MHz, CDCl₃) δ: ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 8.2 Hz, 1H), 4.85 (s, 1H), 3.78 – 3.61 (m, 1H), 3.18 (s, 3H), 2.11 (s, 2H).


¹³**C NMR** (101 MHz, CDCl₃) δ: 175.77, 144.24, 130.61, 126.44, 124.84 (q, *J* = 284.5 Hz), 124.45, 123.22, 108.68, 72.61, 59.98 (q, *J* = 28.5 Hz), 26.15.

¹⁹F NMR (376 MHz, CDCl₃) δ: -71.94.

HRMS (ESI): *m*/*z* [M+H]⁺ calcd. for [C₁₁H₁₂N₂F₃O₂]⁺: 261.0846, found: 261.0853;

HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak AD-H column (hexane/*i*-PrOH = 95/5, 1.0 mL·min⁻¹, λ = 245 nm): t_{major} = 57.5 min, t_{minor} = 39.0 min.

h. Transformation of 3y to 4y

To a solution of spiropyrazolones-oxazolidine 3y (0.30 mmol) in MeOH (5 mL) was added 6M HCI (3 mL). The mixture was stirred at room temperature until the reaction was completed (monitored by TLC analysis). Remove the solvent under vacuum. Then 5 mL water was added and extract three times with 10 mL of DCM. The water phase uses ammonia to adjust pH to alkaline. Then extract with DCM (10 mL x 3). The organic phase was dried with Na₂SO₄ and the solution was removed to obtain the desired product 4y as a colourless oil.

(R)-4-((R)-1-amino-2,2,2-trifluoroethyl)-1-(tert-butyl)-4-hydroxy-3-methyl-1H-pyrazol-5(4H)-one (**4y**): petroleum ether/ ethyl acetate = 3:1, Rf=0.4.

colourless oil, 90% yield, >20:1 *dr*, 80% *ee*, $[a]_D^{20}$ = +21.16 (c=0.23, MeOH).

¹H NMR (400 MHz, CDCl₃) δ: ¹H NMR (400 MHz, CDCl₃) δ 3.41 (q, *J* = 7.4 Hz, 1H), 2.03 (s, 3H), 1.46 (s, 9H).
¹³C NMR (126 MHz, CDCl₃) δ: 172.58, 156.26, 124.52 (q, *J* = 282.4 Hz), 74.25, 58.31 (q, *J* = 29.6 Hz), 57.83, 27.98, 12.99.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -73.28.

HRMS (ESI): m/z [M+H]⁺ calcd. for [C₁₀H₁₇N₃F₃O₂]⁺: 268.1267, found: 268.1262;

HPLC analysis: The enantiomeric excess was determined by HPLC with a Chiralpak IA column (hexane/*i*-PrOH = 90/10, 1.0 mL·min⁻¹, λ = 254 nm): t_{major} = 6.4 min, t_{minor} = 7.3 min.

i. Application of oxa-1,3-DC in desymmetrization

To a solution of diethyl 2-((2,2,2-trifluoroethyl)imino)malonate **2** (0.15 mmol, 1.5 equiv.) and catalyst **V** (0.01 mmol, 10 mol%) in DCE (1 mL) was added phenanthrenequinone **1ab** (0.10 mmol, 1.0 equiv.). The mixture was stirred at 25 °C until the reaction was completed (monitored by TLC analysis). The crude product was purified directly by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = $20:1 \sim 10:1$) to give the desired chiral products **3ab**.

Diethyl 10'-oxo-4-(trifluoromethyl)-10'H-spiro[oxazolidine-5,9'-phenanthrene]-2,2-dicarboxylate (**3ab**): petroleum ether/ ethyl acetate = 20:1, Rf=0.4.

EtOOC H CF3

colourless oil, 98% yield, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ: ¹H NMR (400 MHz, CDCl₃) δ: 8.69 (d, *J* = 8.0 Hz, 2H), 7.94 (d, *J* = 8.6 Hz, 2H), 7.70 – 7.54 (m, 4H), 4.49 (d, *J* = 8.0 Hz, 1H), 4.38 (d, *J* = 8.0 Hz, 1H), 4.25 – 4.15 (m, 2H), 4.14 – 4.05 (m, 2H), 1.09 (t, *J* = 7.1 Hz, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ: 167.43, 137.14, 127.69, 127.42, 125.61, 123.55, 120.35, 120.30, 120.03 (q, *J* = 288.1 Hz), 116.45 (q, *J* = 35.7 Hz), 62.68, 56.59, 13.84.

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -85.37.

HRMS (ESI): m/z [M+H]⁺ calcd. for [C₂₃H₂₁NF₃O₆]⁺: 464.1315, found: 464.1313;

4. Proposed Reaction Mechanism

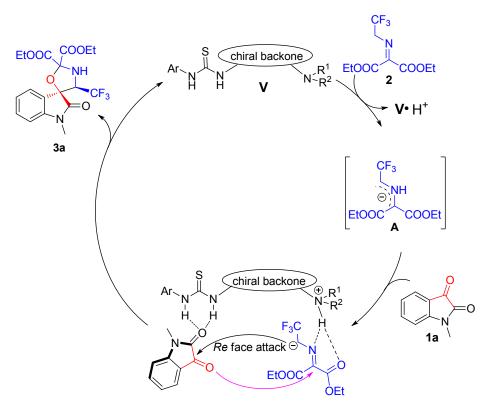


Figure S1. Proposed reaction mechanism

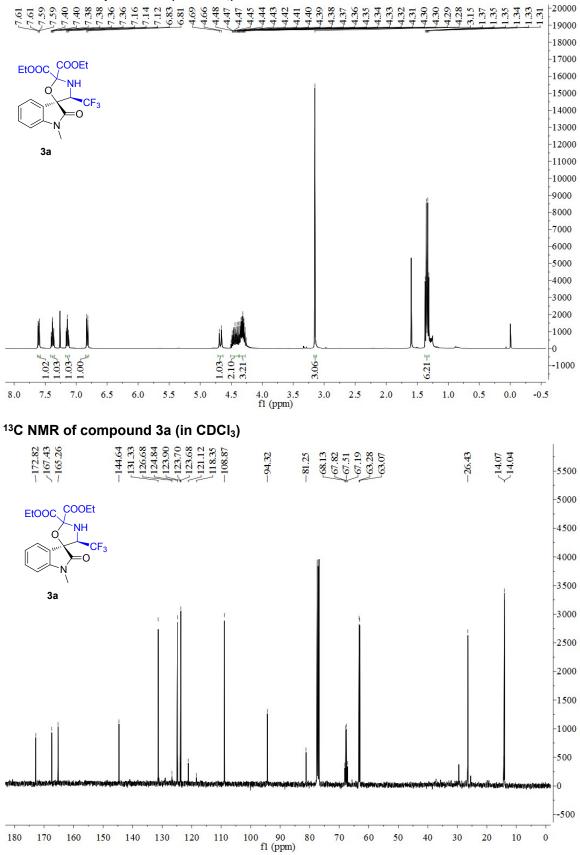
According to the absolute configuration of **3a** and literature reports,^{1a,2} we proposed a possible reaction mechanism for the catalytic asymmetric *oxa*-1,3-dipolar cycloaddition as shown in **Figure S1**. Catalyst **V** initially promoted the formation of an intermediate **A** through the deprotonation of the precursor **2**. Both the intermediate **A** and **1a** are simultaneously activated *via* hydrogen-bonding interactions. The thiourea moiety of catalyst **V** formed two hydrogen bonds with the carbonyl group of the isatin **1a**. The tertiary amine moiety deprotonated and activated the diethyl 2-(2,2,2-trifluoroethylimino)malonate **2** *via* double hydrogen bonds. In this *oxa*-1,3-dipolar cycloaddition step, the trifluoromethyl ortho carbon position of activated diethyl 2-(2,2,2-trifluoroethylimino)malonate **2** attacks the 3-position of isatin **1a** (*Re*-face), Subsequently, an intramolecular cycloaddition generates the product **3a** (Figure S1).

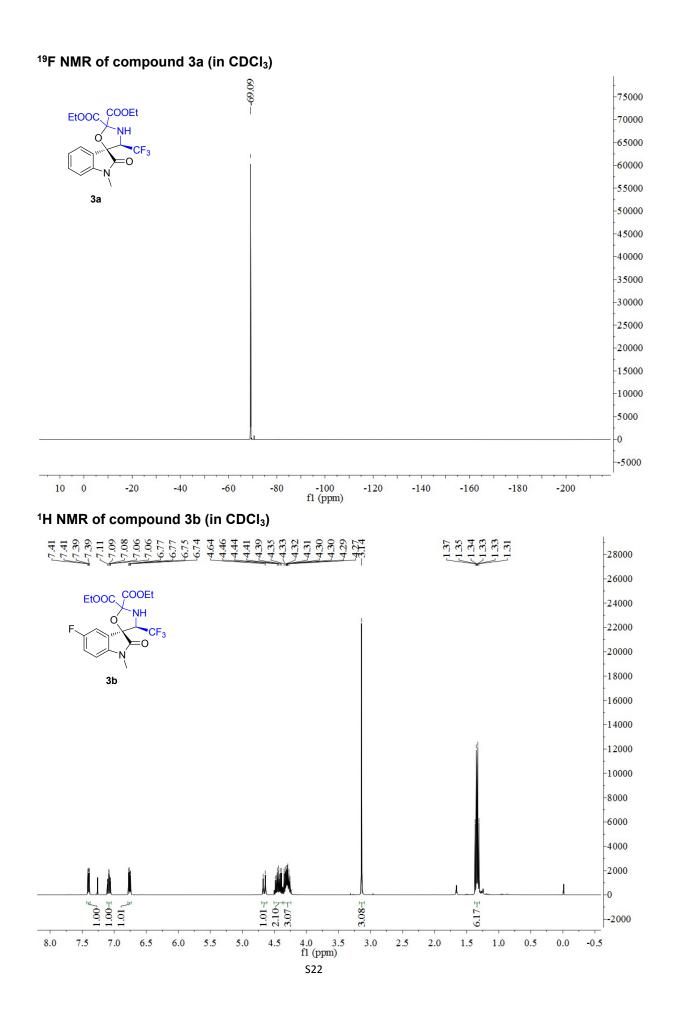
5. References

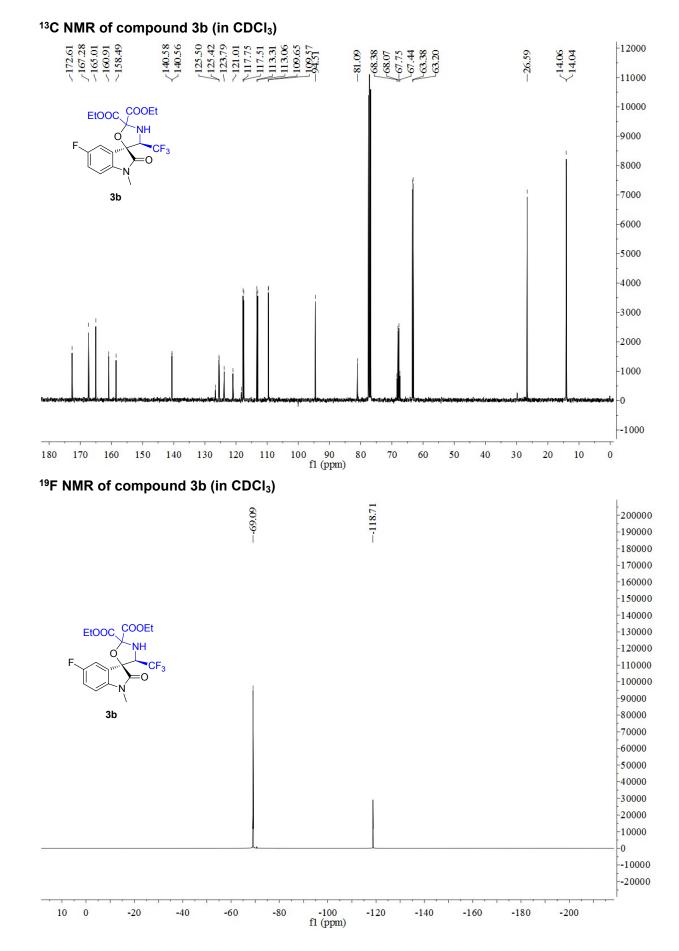
- [1] a) Su, J.; Ma, Z.; Li, X.; Lin, L.; Shen, Z.; Yang, P.; Li, Y.; Wang, H.; Yan, W.; Wang, K.; Wang, R. Adv. Synth. Catal. 2016, 358, 3777. b) Ponce, A.; Alonso, I.; Adrio, J.; Carretero, J. C. Chem. Eur. J. 2016, 22, 4952.
- [2] a) Huang, W. J.; Chen, Q.; Lin, N.; Long, X. W.; Pan, W. G.; Xiong, Y. S.; Weng, J.; Lu, G. Org. Chem. Front. 2017, 4, 472. b) N. Lin, X. W. Long, Q. Chen, W. R. Zhu, B. C. Wang, K. B. Chen, C. W. Jiang, J. Weng, G. Lu, Tetrahedron 2018, 74, 3734; c) W. R. Zhu, Q. Chen, N. Lin, K. B. Chen, Z. W. Zhang, G. Fang, J. Weng, G. Lu, Org. Chem. Front. 2018, 5, 1375; d) Zhu, W. R.; Zhang, Z. W.; Huang, W. H.; Lin, N.; Chen, Q.; Chen, K. B.; Wang, B. C.; Weng, J.; Lu, G. Synthesis 2019, 51, 1969.

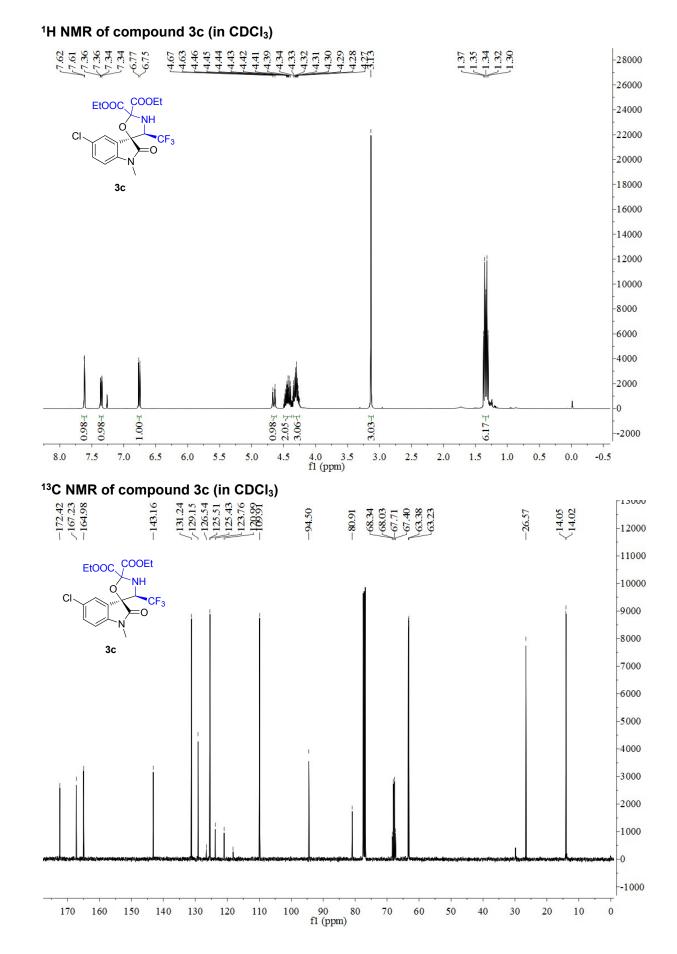
6. Data for X-Ray Crystal Structure of 3a

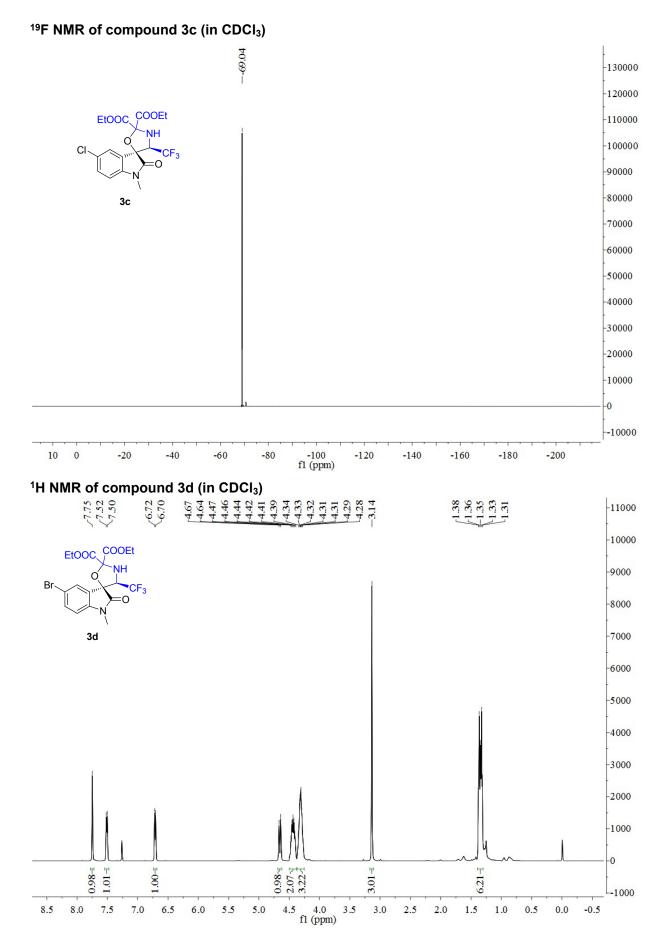
Procedure for the recrystallization of 3a: To a 10 mL vial containing **3a** (35 mg), was added a 1:9 mixture of isopropanol and n-hexane until it formed a clear solution. The mixture was kept aside 3 days at room temperature to obtain crystals by slow evaporation. These crystals were subjected for single crystal XRD to determine the absolute configuration of **3a**.

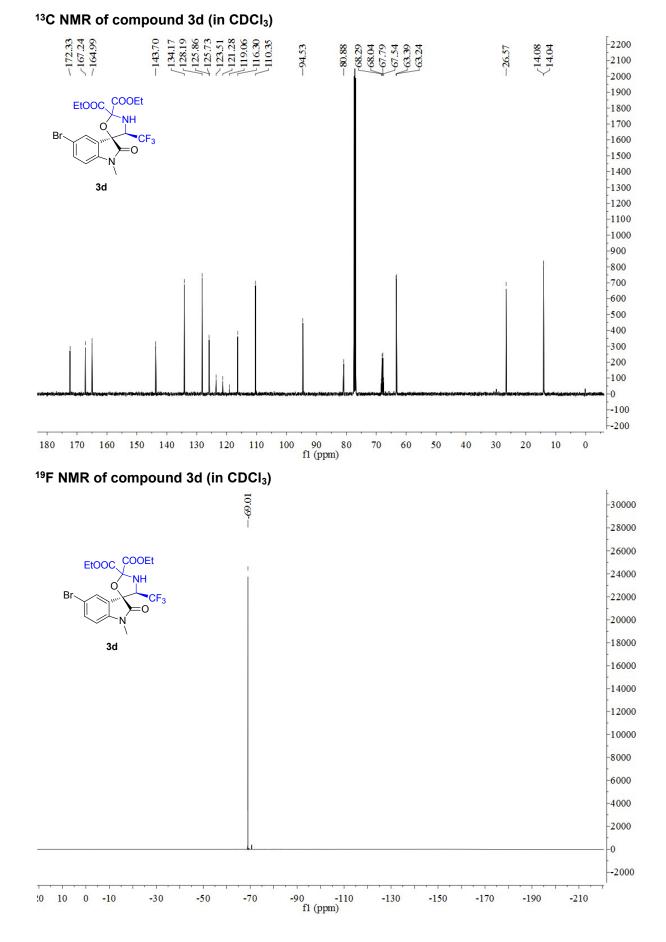

Compound Compound a_{B} CF ₃ a_{B} CF	

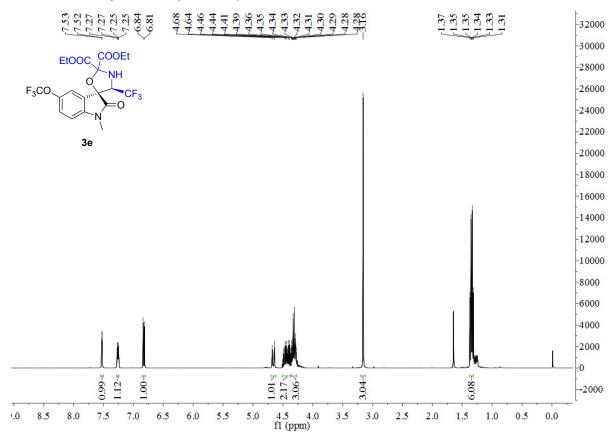

Table 1 (Crystal	data a	and sta	ructure	refinement
-----------	---------	--------	---------	---------	------------

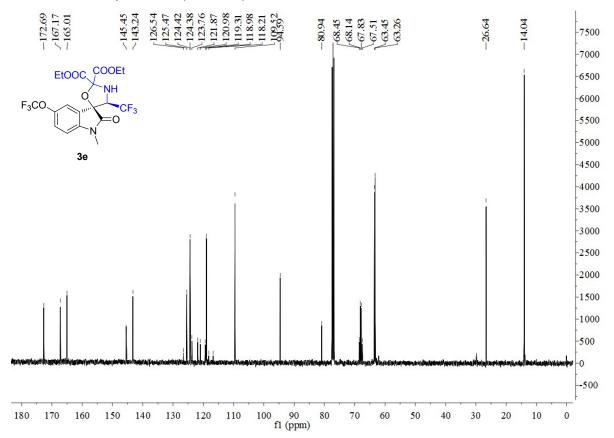

	l.
Empirical formula	$C_{18}H_{19}F_3N_2O_6$
Formula weight	416.35
Temperature/K	100.0
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	8.80560(10)
b/Å	8.83160(10)
c/Å	24.7208(3)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1922.48(4)
Z	4
$\rho_{calc}g/cm^3$	1.438
µ/mm ⁻¹	1.102
F(000)	864.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2O range for data collection/°	14.202 to 151.914
Index ranges	$-10 \le h \le 10$,
Reflections collected	19227
Independent reflections	3936 [Rint = 0.0335,
Data/restraints/parameters	3936/8/317
Goodness-of-fit on F ²	1.082
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0401$, $wR_2 = 0.1109$
Final R indexes [all data]	$R_1 = 0.0404$, $wR_2 = 0.1114$
Largest diff. peak/hole/e Å-3	0.42/-0.43

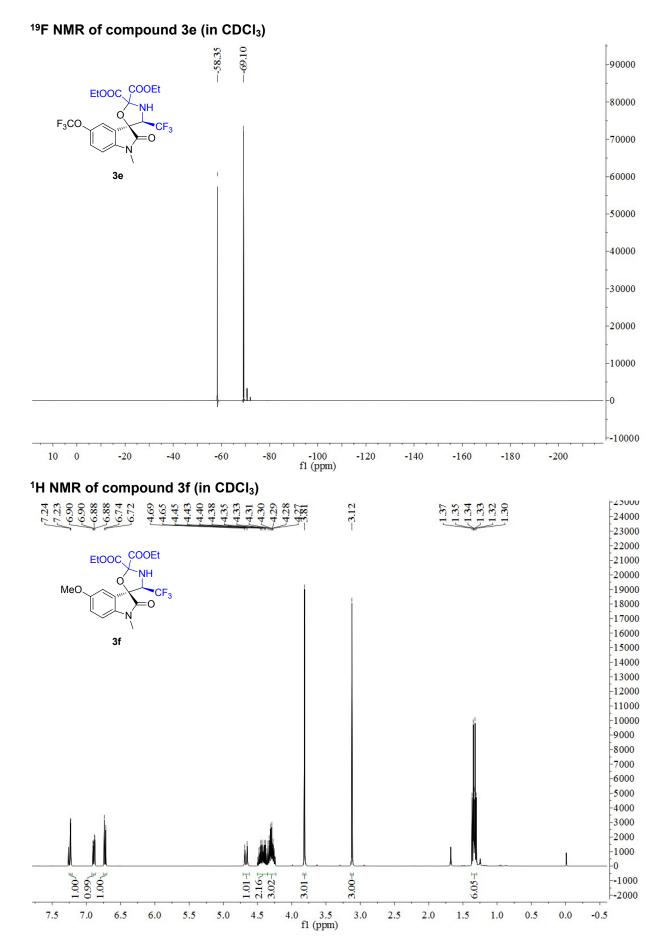

7. Copies of NMR Spectra of Compounds


¹H NMR of compound 3a (in CDCl₃)

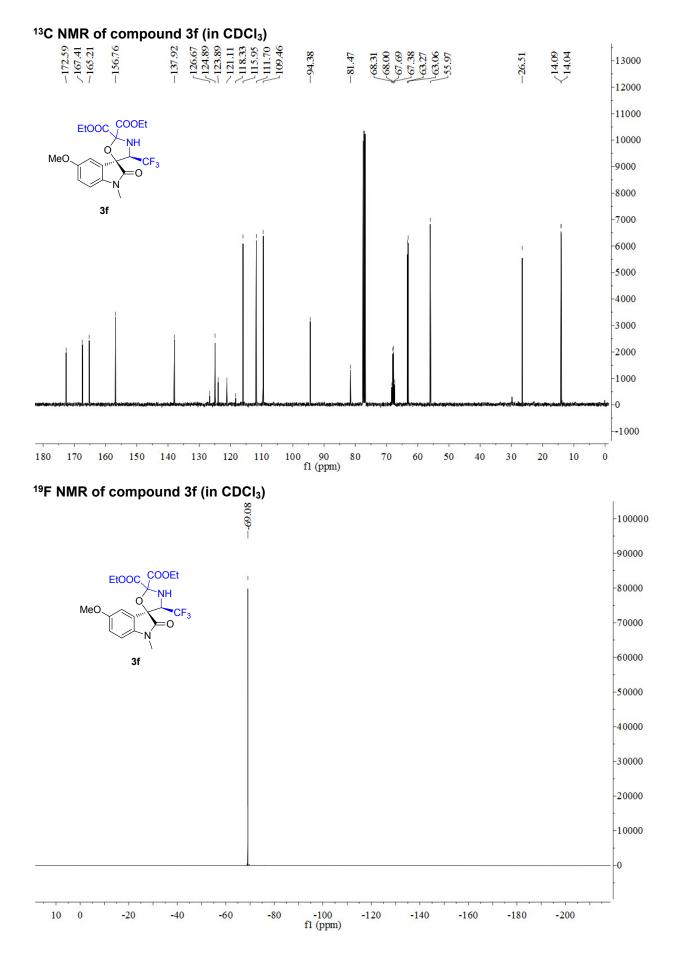


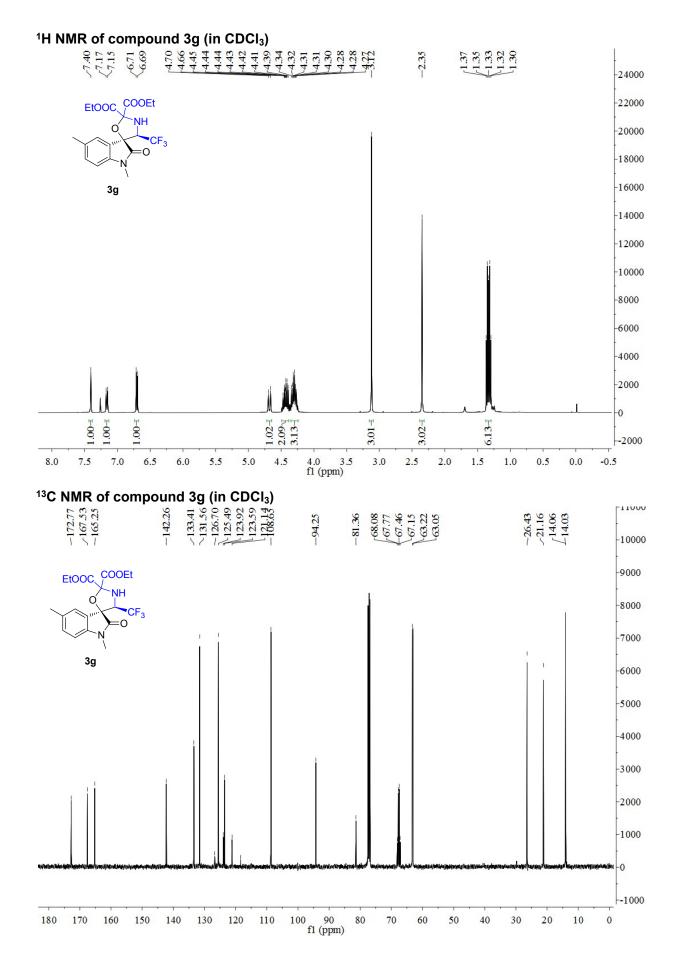


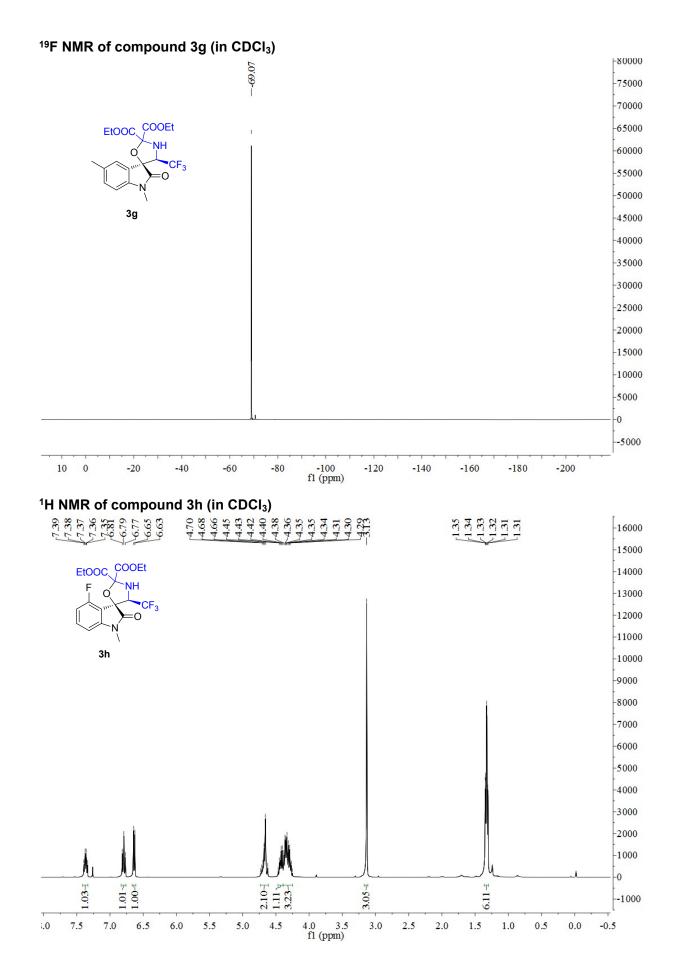


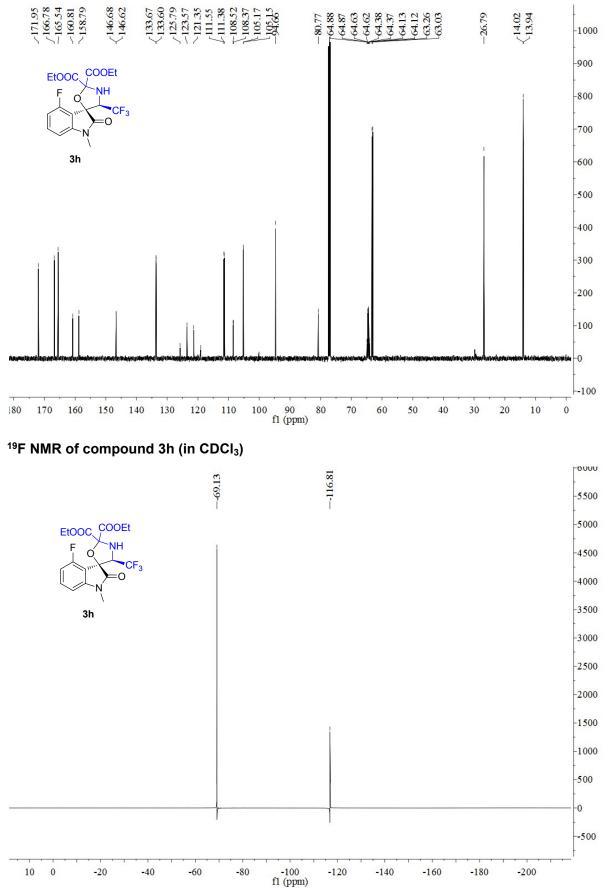


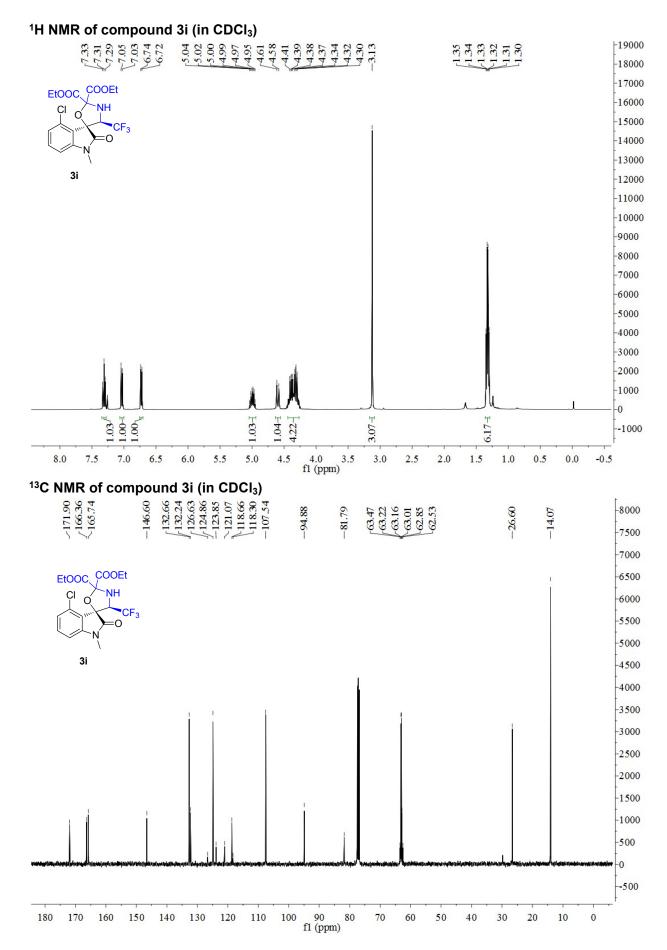
¹H NMR of compound 3e (in CDCl₃)

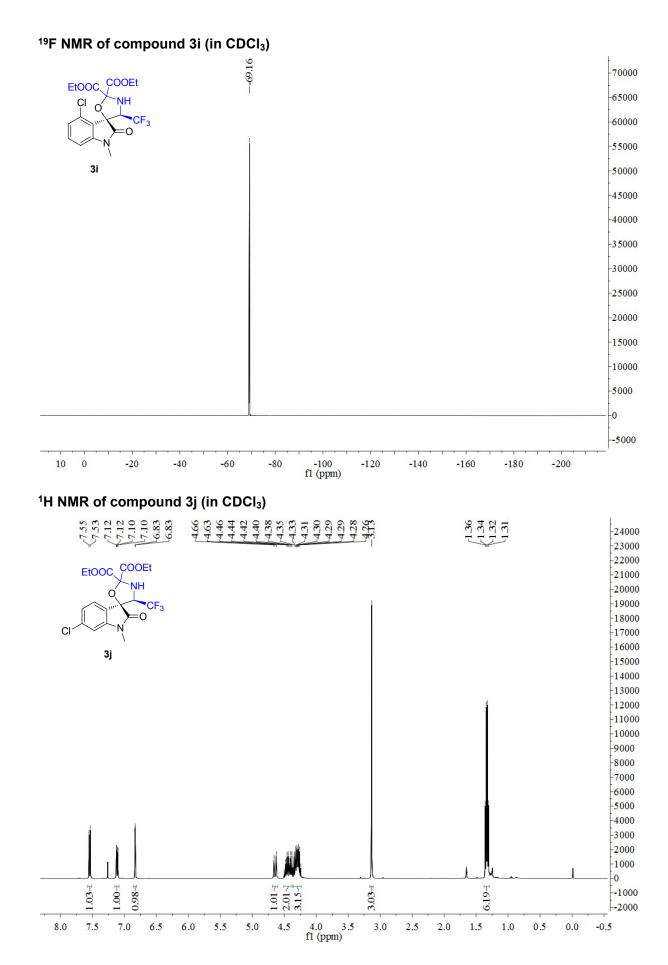


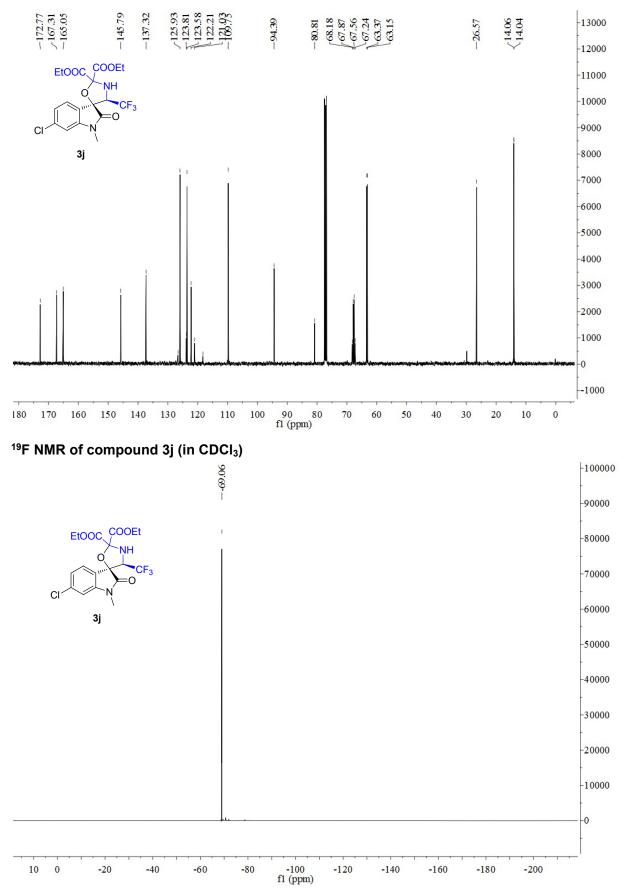

¹³C NMR of compound 3e (in CDCI₃)

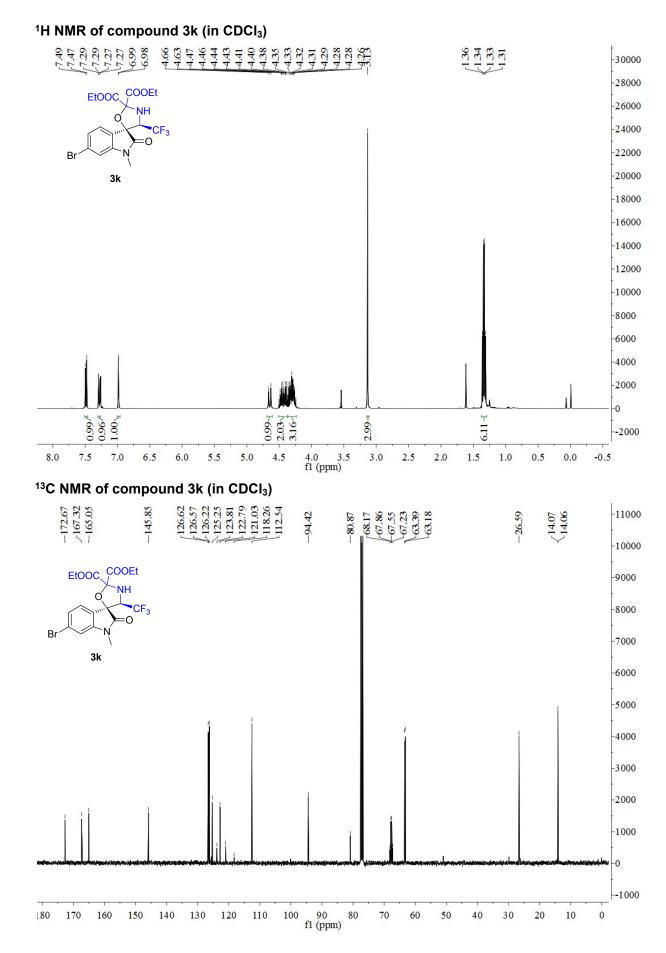


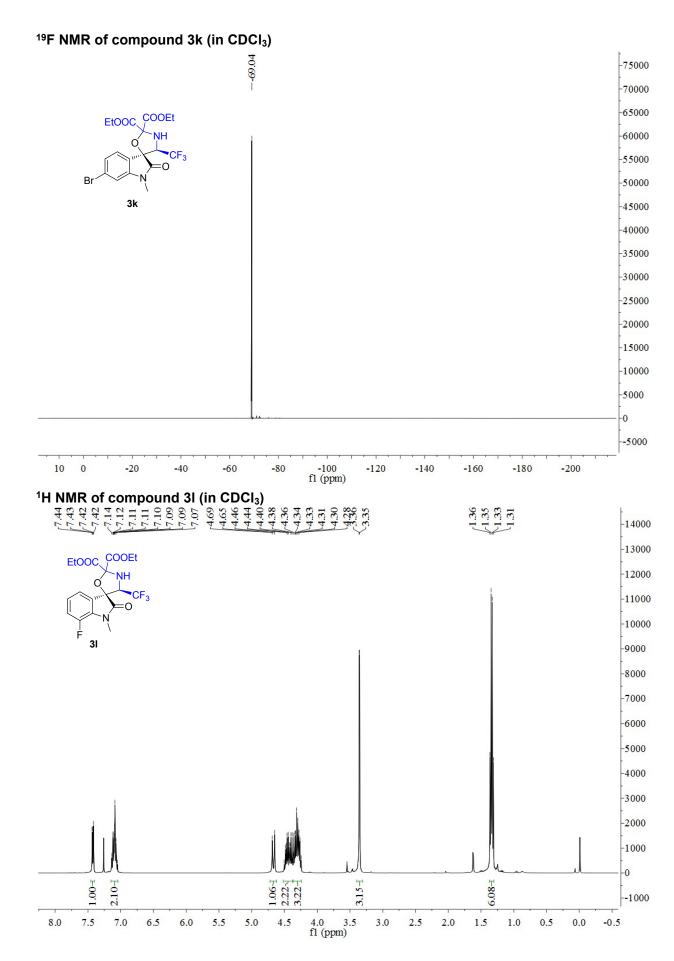

28

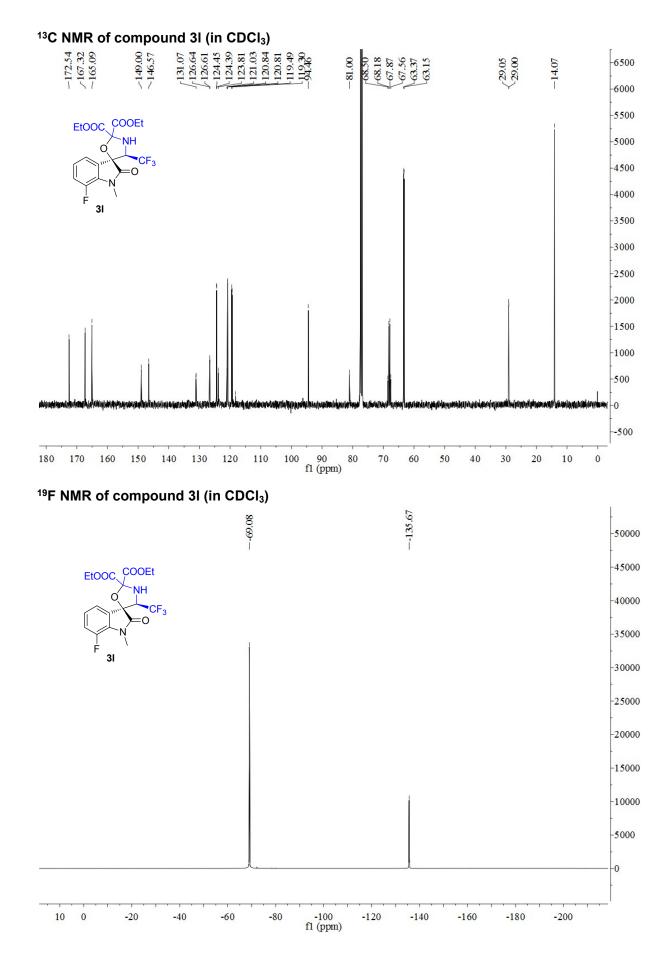


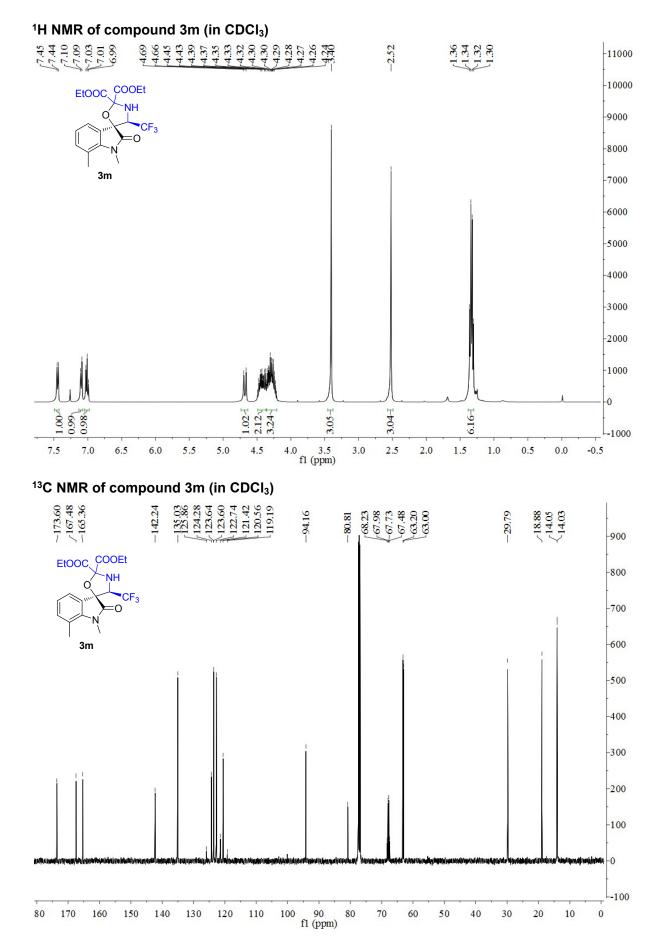


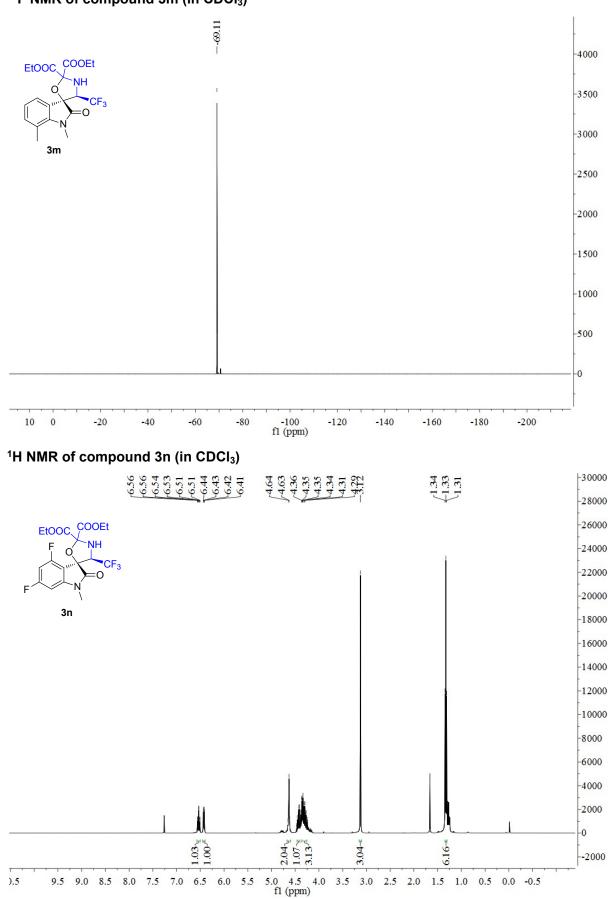


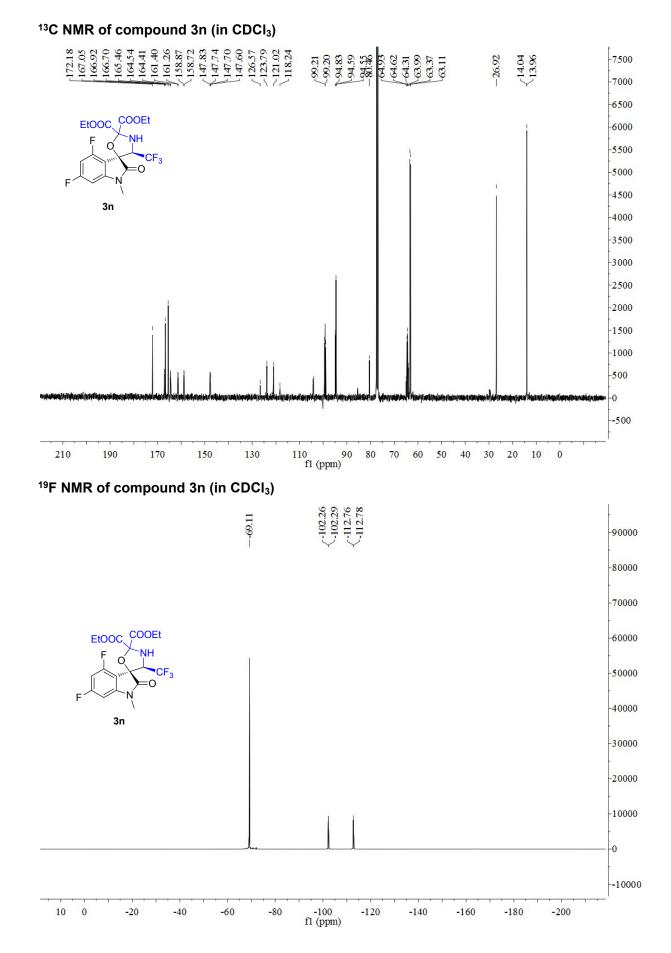


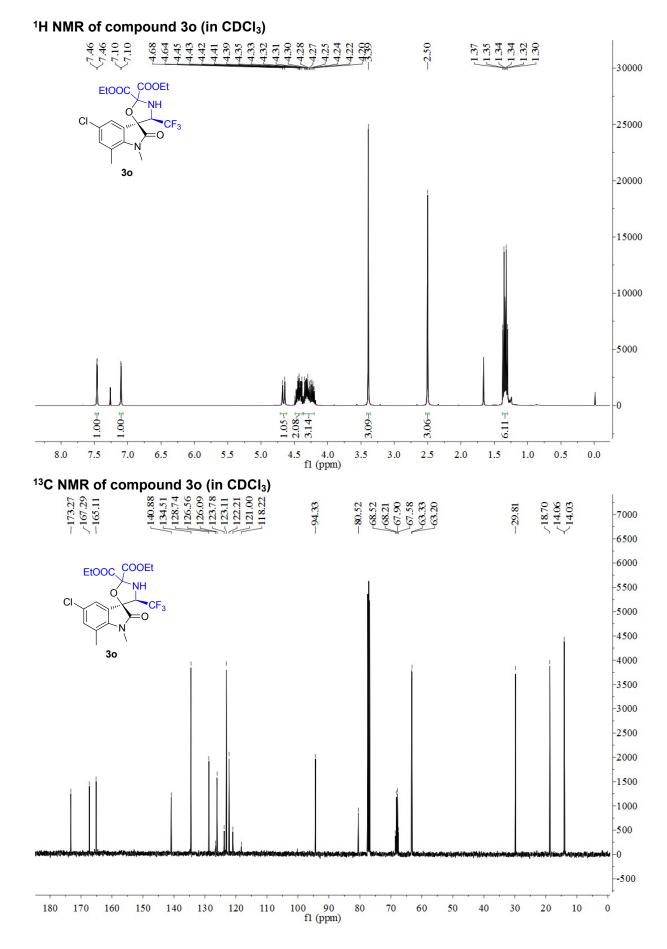


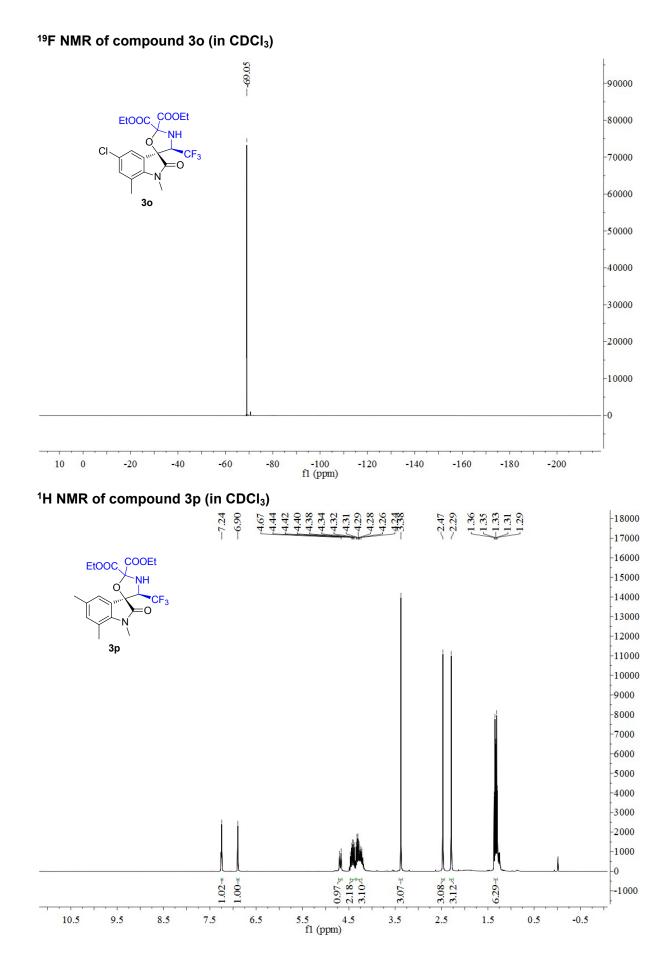


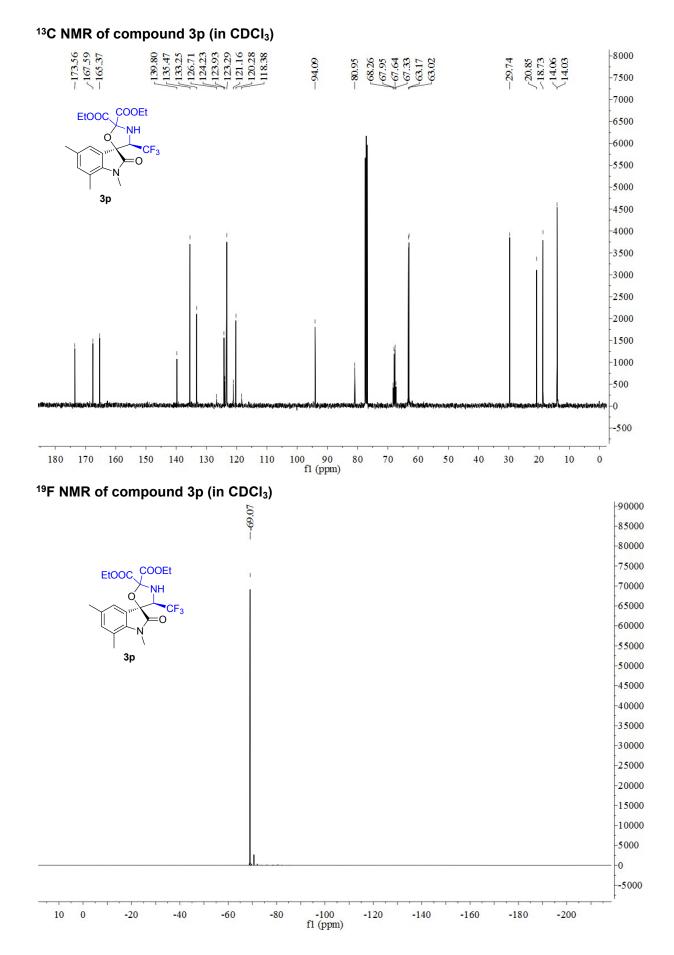




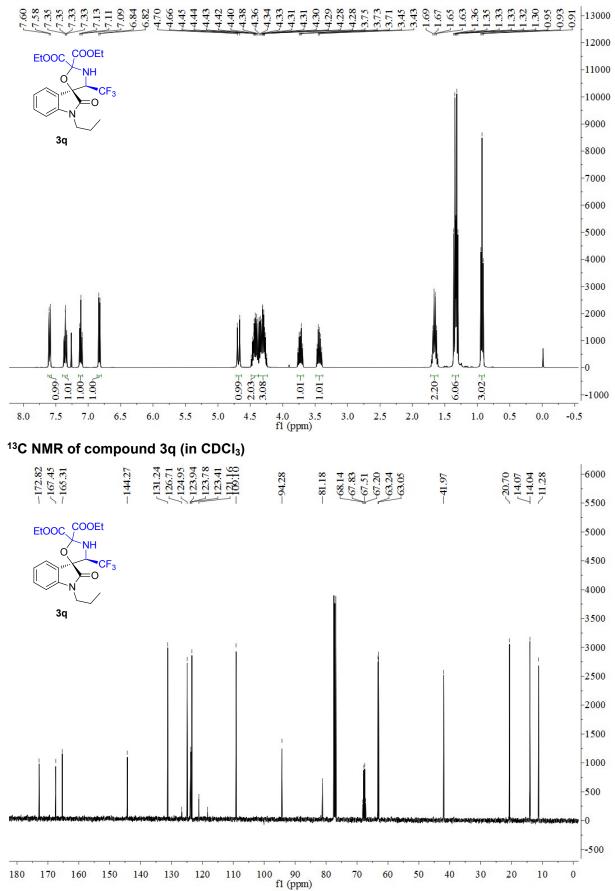


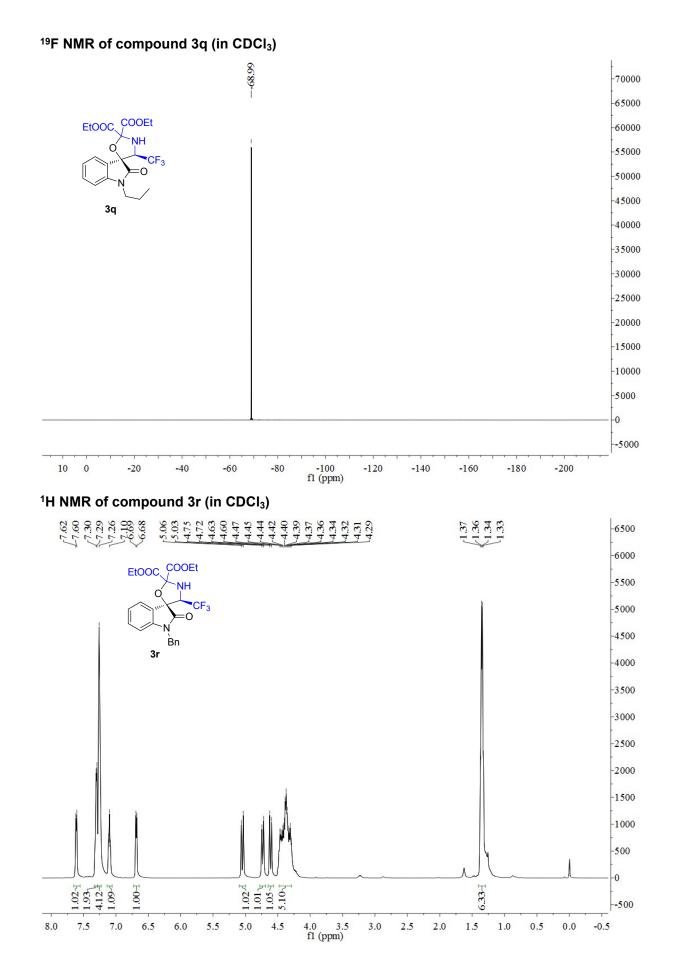


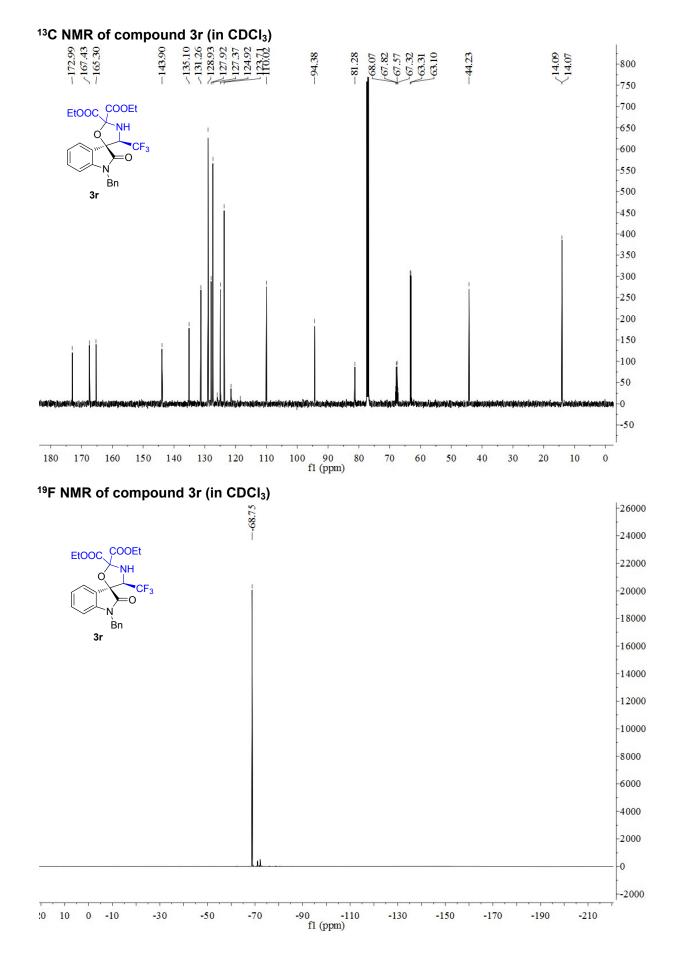


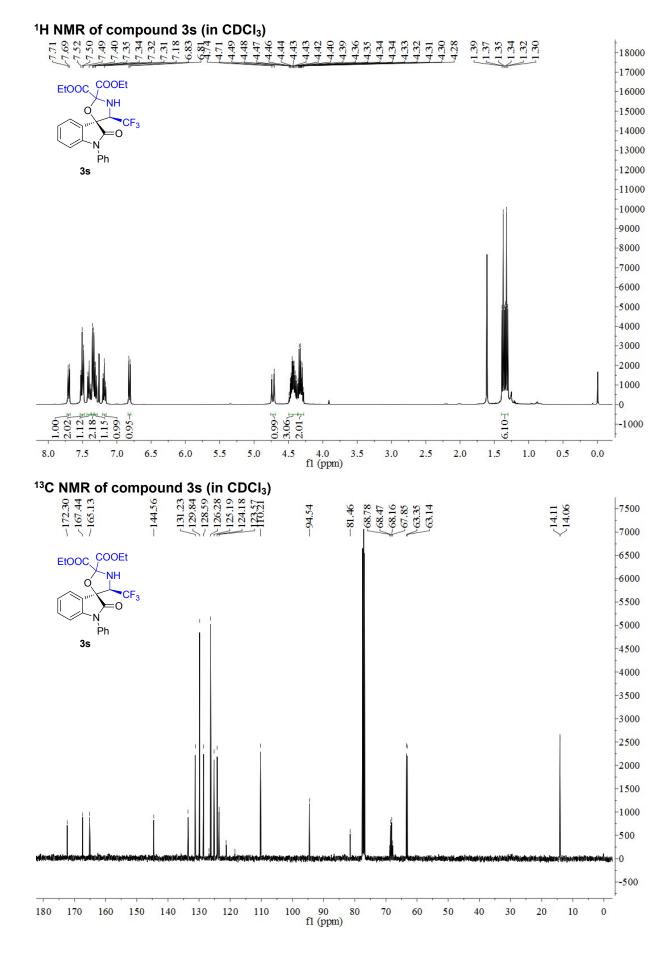


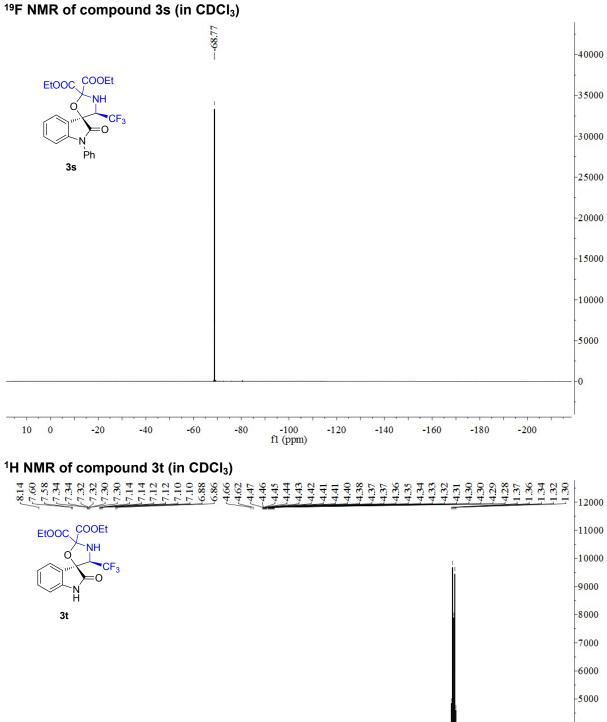
¹⁹F NMR of compound 3m (in CDCI₃)

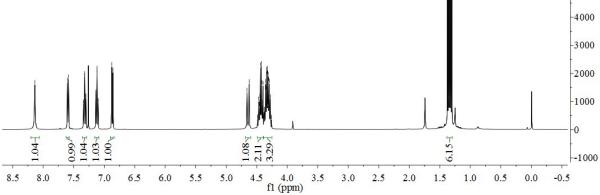


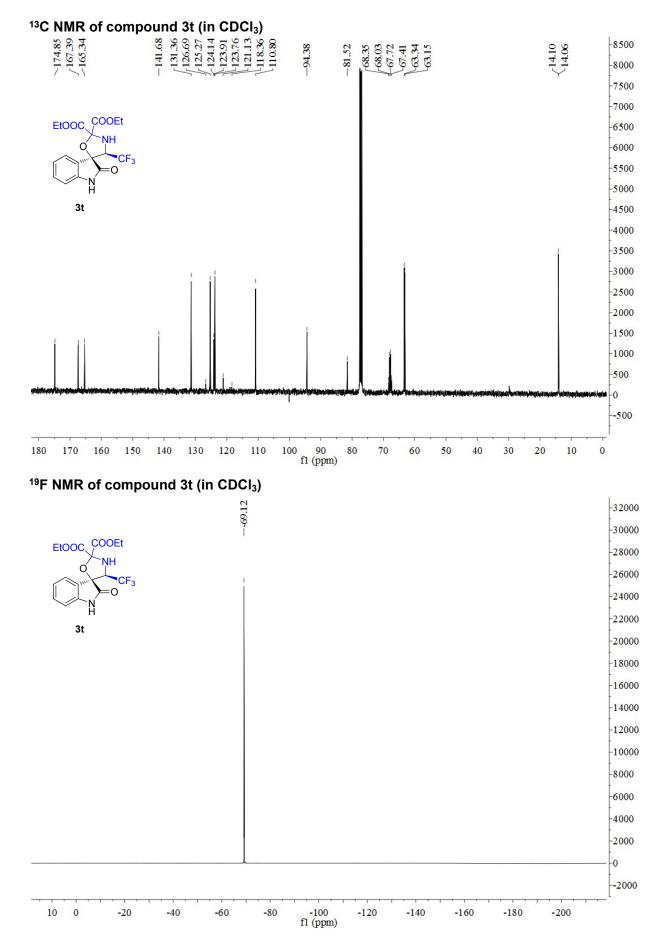


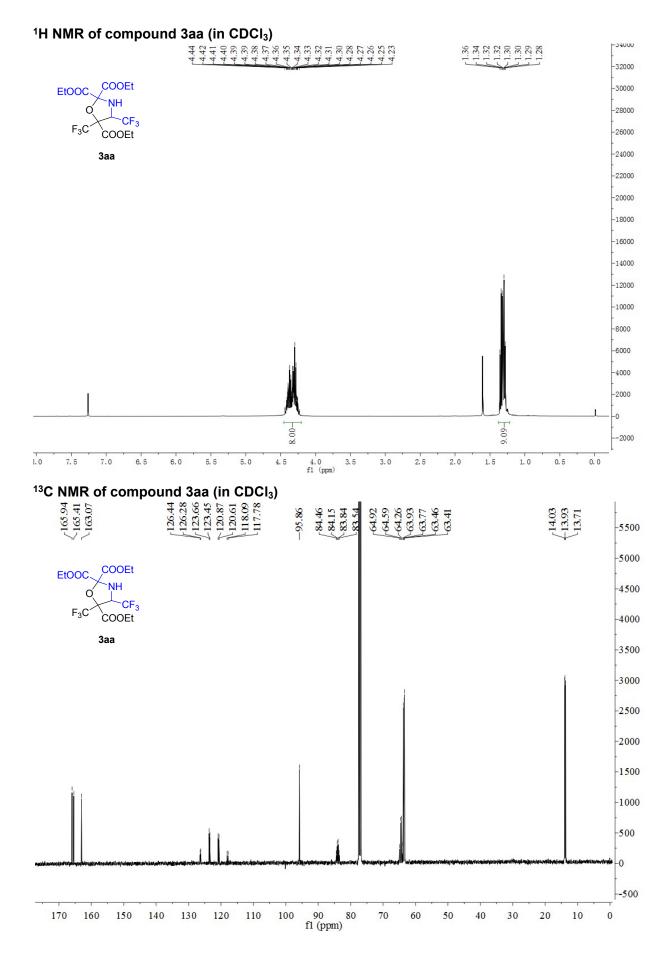


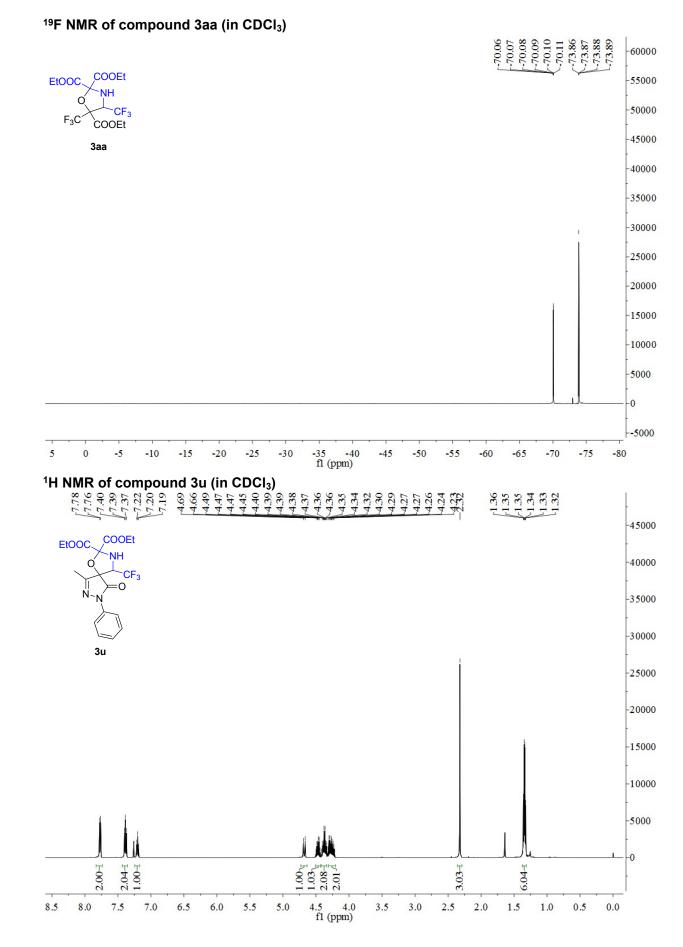


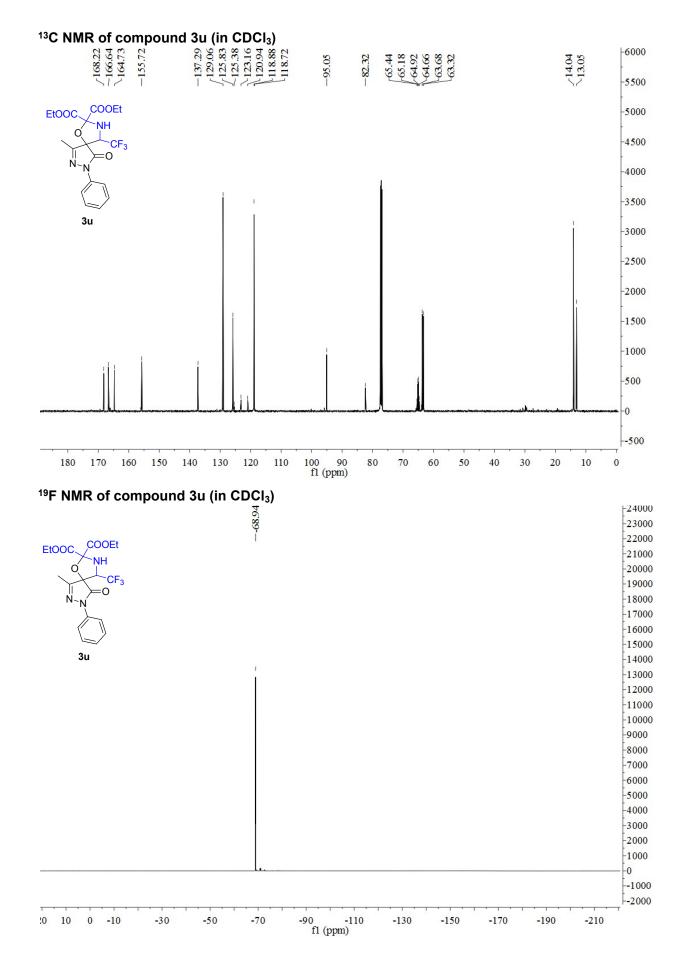


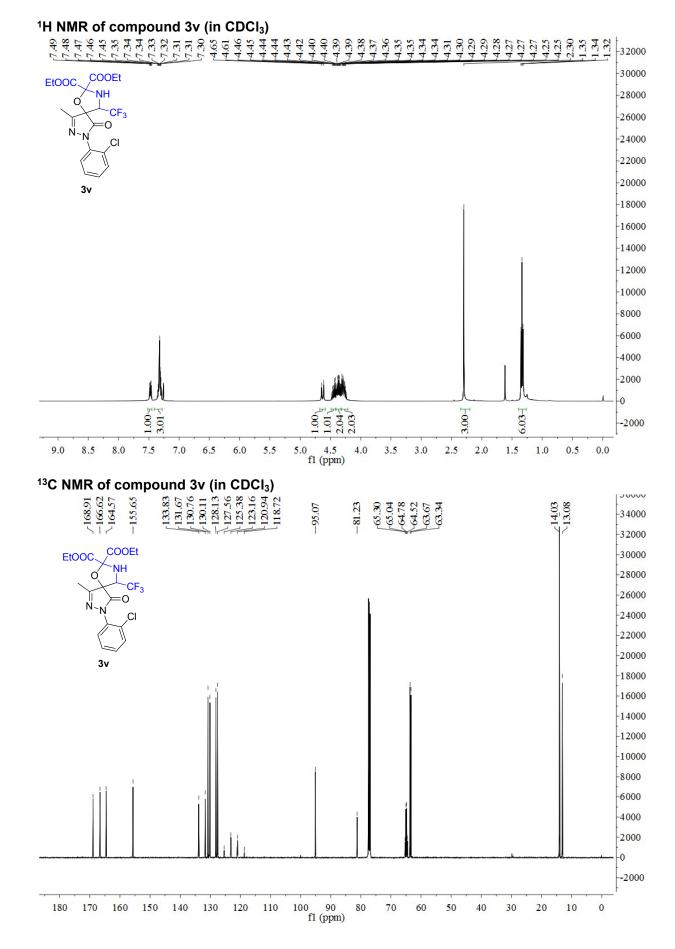


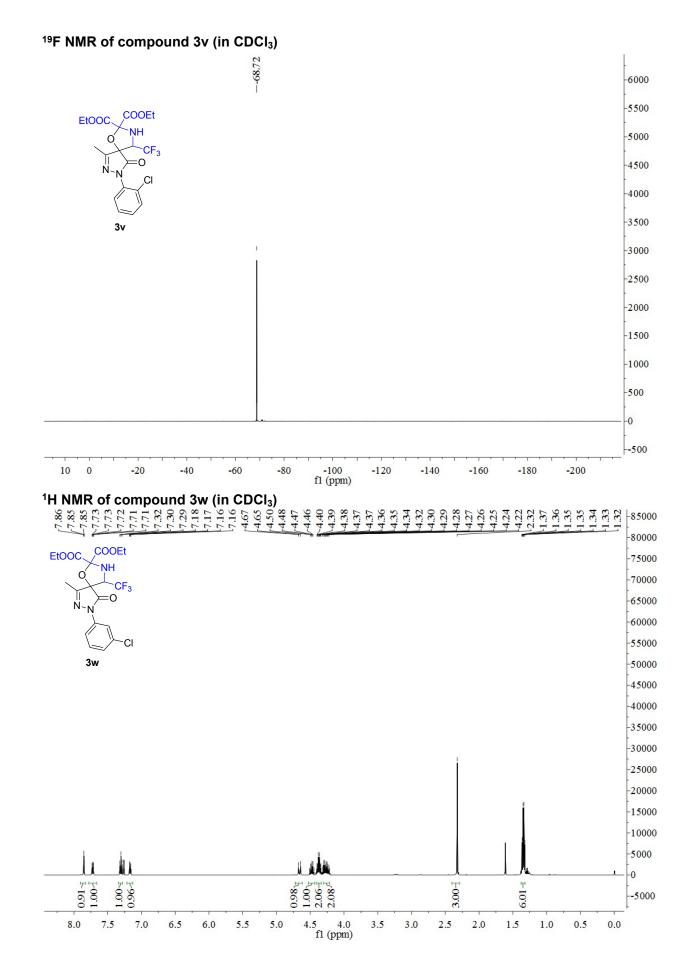


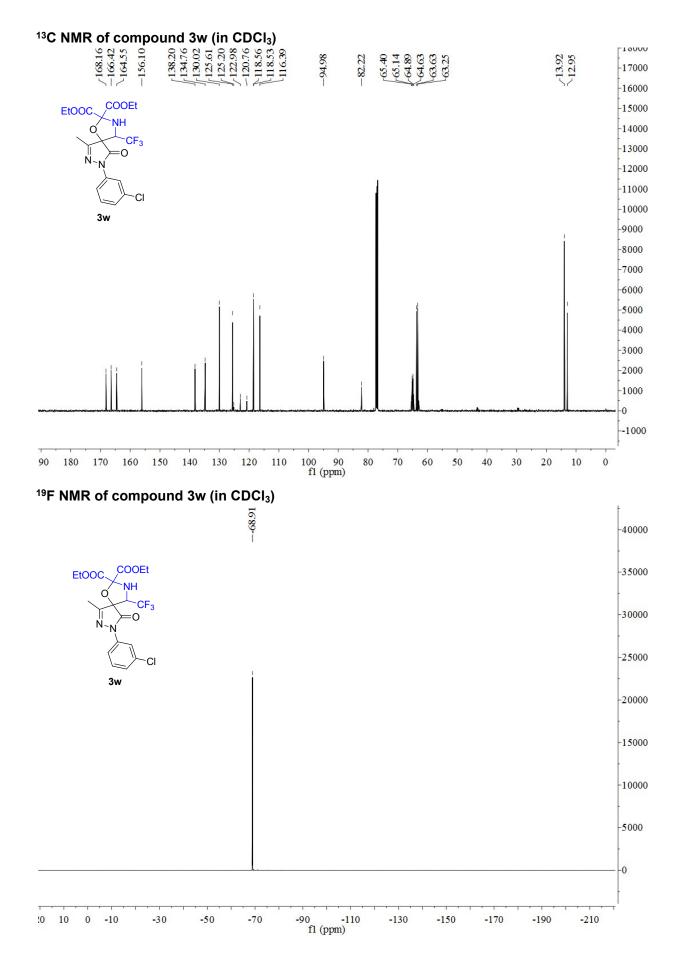


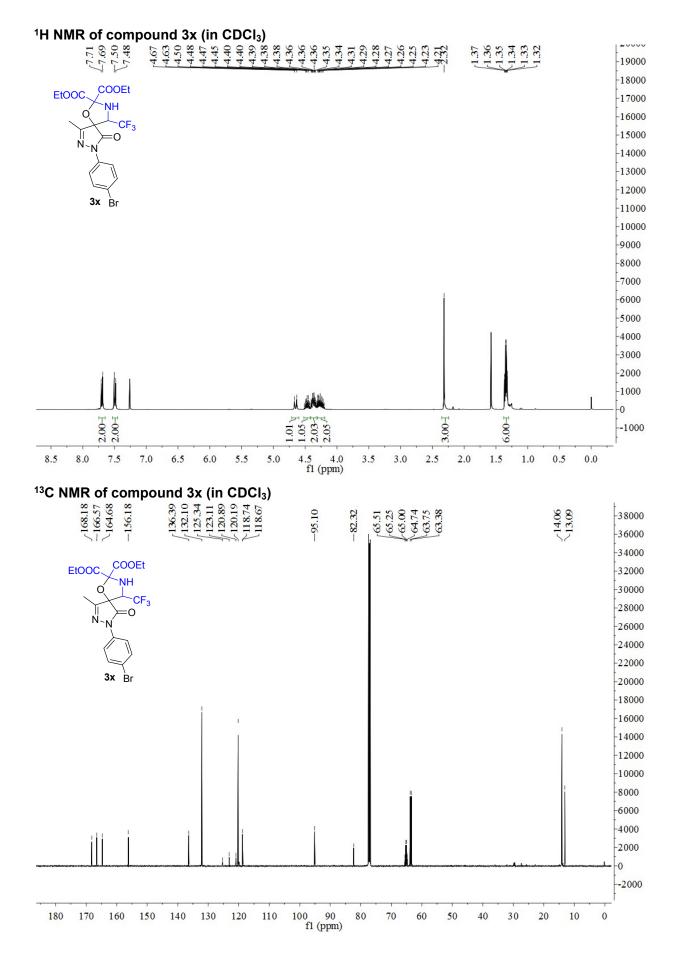


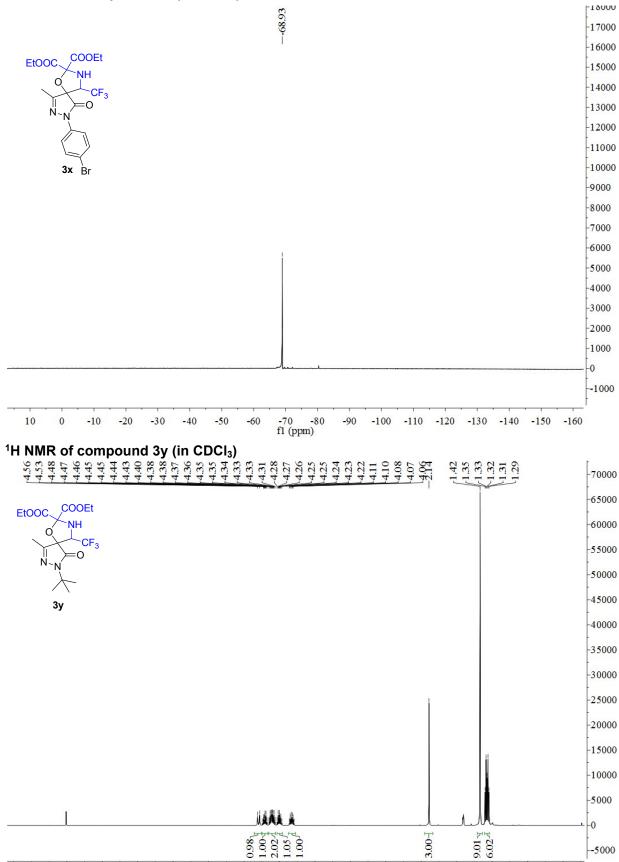












4.5

8.0

7.5

7.0

6.5

6.0

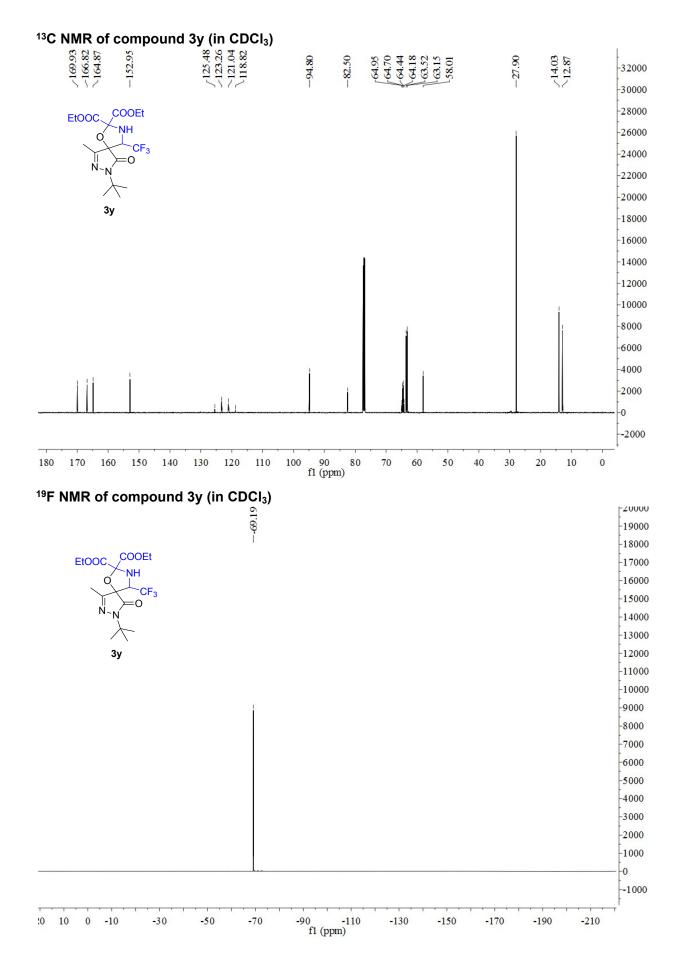
5.5

5.0

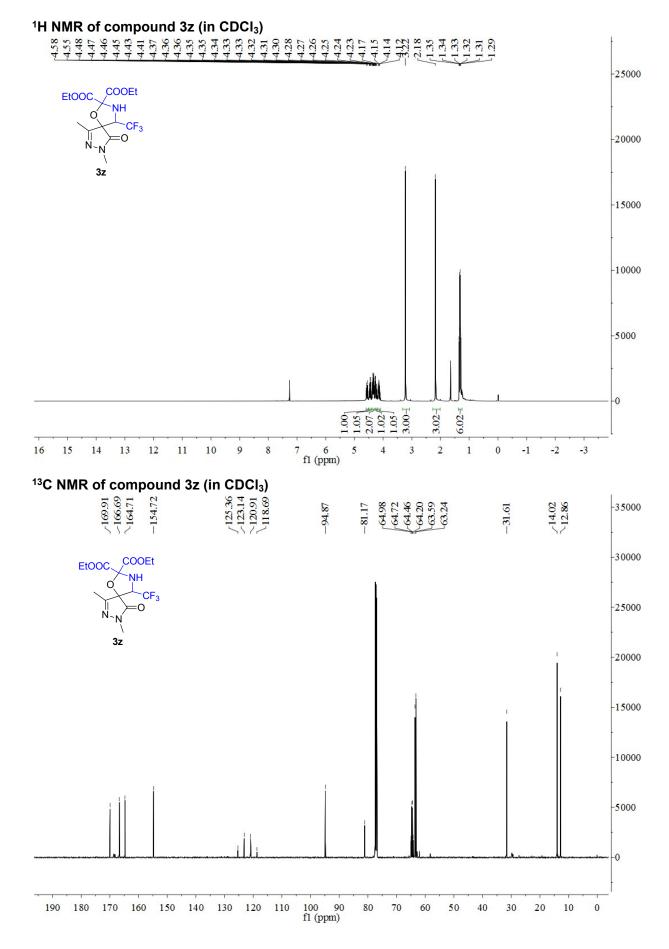
4.0 f1 (ppm) 3.5

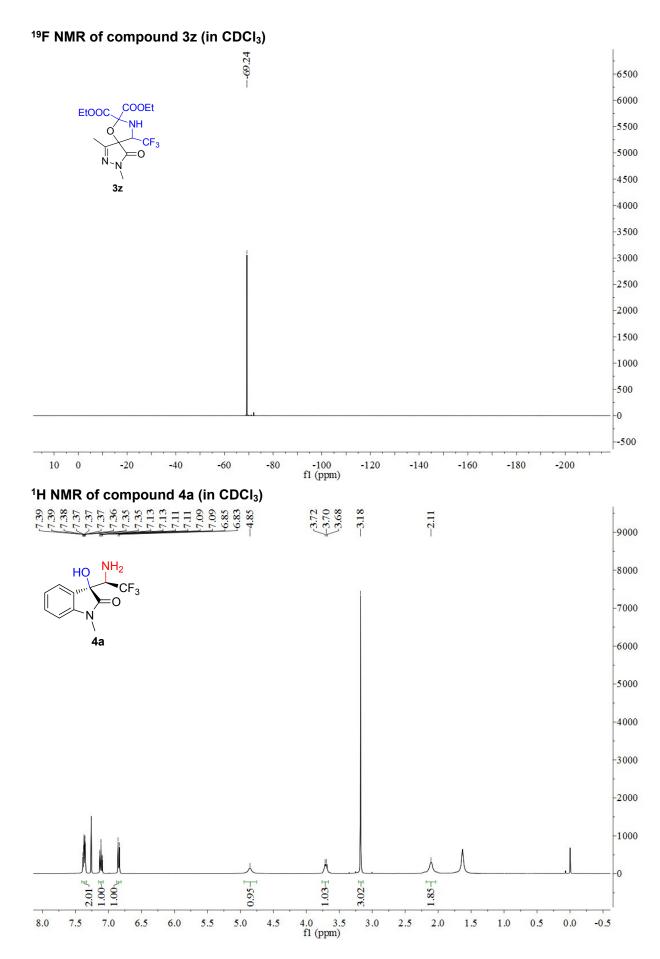
3.0

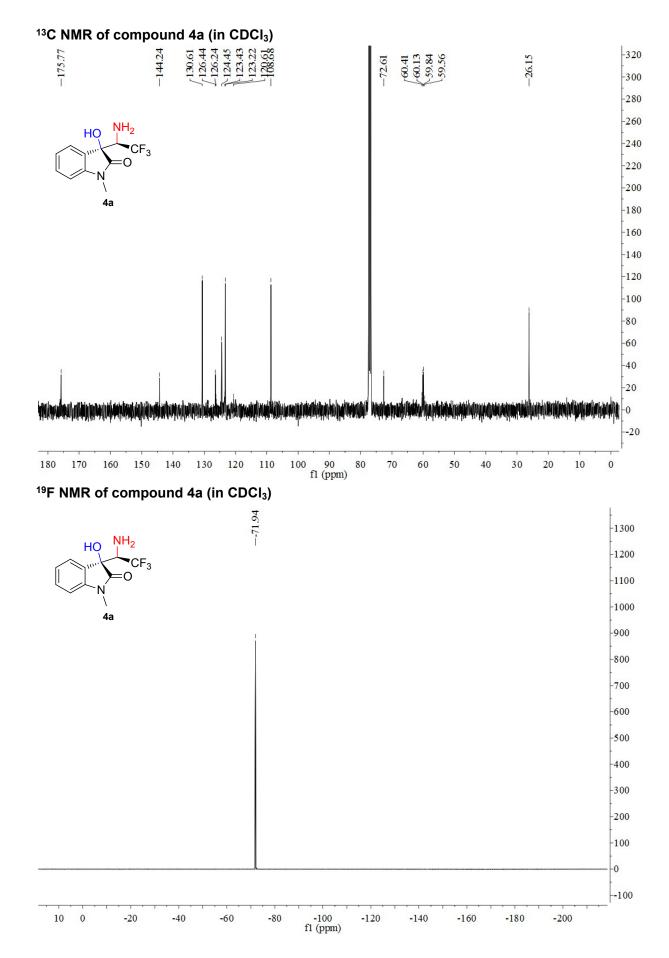
2.5

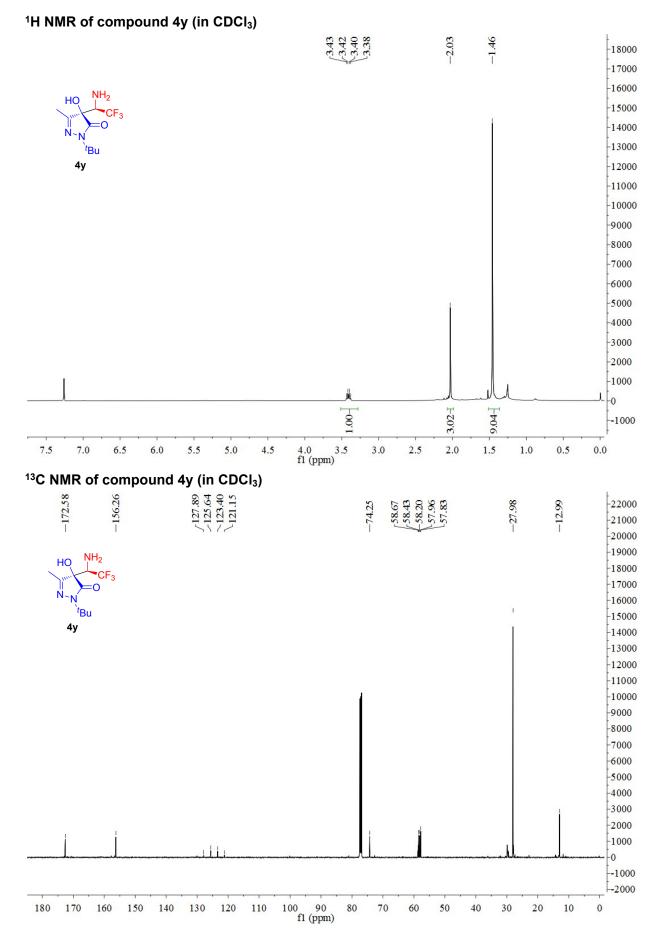

2.0

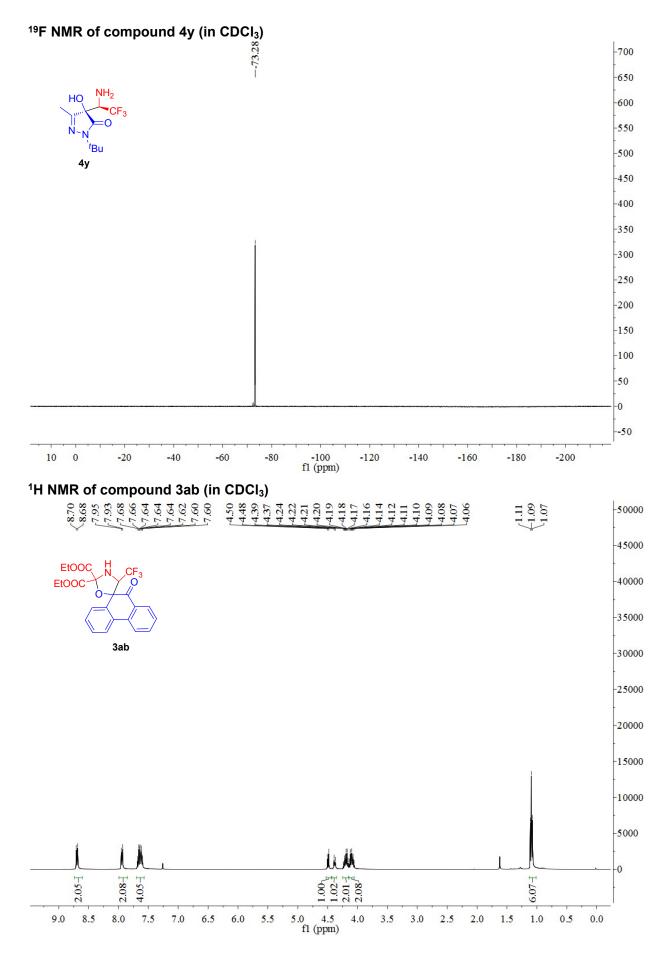
1.5

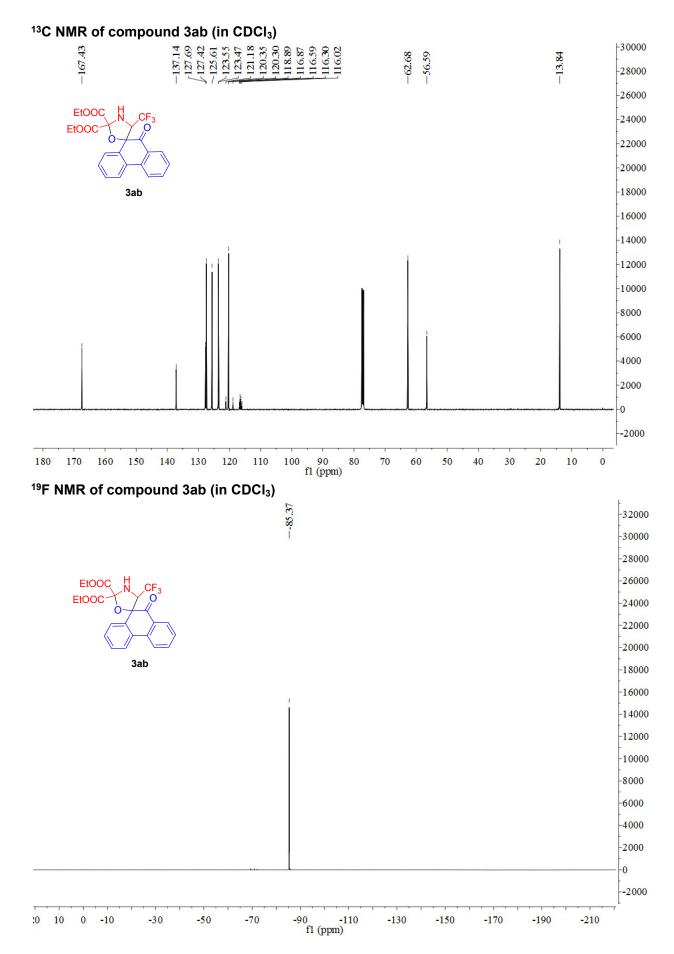

1.0

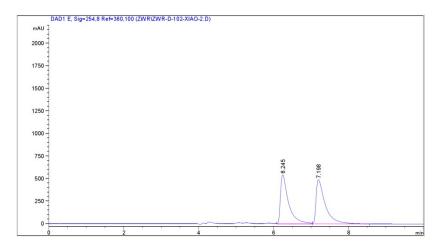

0.5


0.0

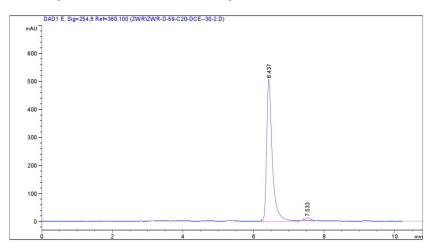




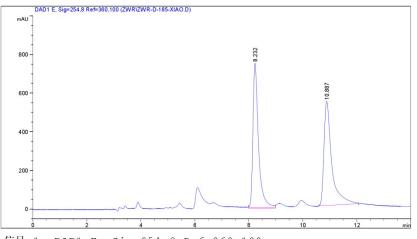



S64

8. Copies of HPLC Spectra of Compounds

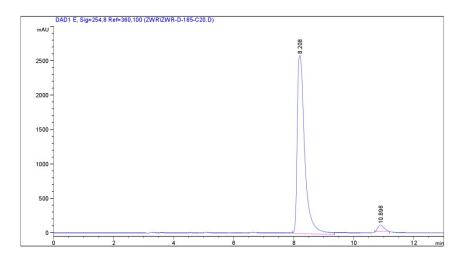

HPLC spectrum of the racemate

信号 1: DAD1 E, Sig=254,8 Ref=360,100

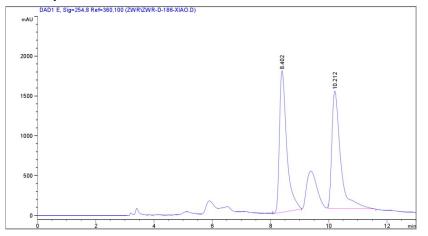

峰 保留时间	类型 峰宽	峰面积	峰高 嵴	全面积
# [min]	[m	in] [mAU*s	s] [mAU]	00
	-			
1 6.24	5 VV 0.	2154 8071.95	508 542.94	879 49.4232
2 7.19	8 VB 0.	2424 8260.35	254 490.63	5766 50.5768

HPLC spectrum of the chiral compound

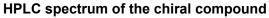
峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	00
	-		- -			-		
	1 6.43	57 MM	R	0.1851	5626.017	58	506.70685	98.4868
4	2 7.53	3 MM	R	0.1602	86.441	45	8.99090	1.5132

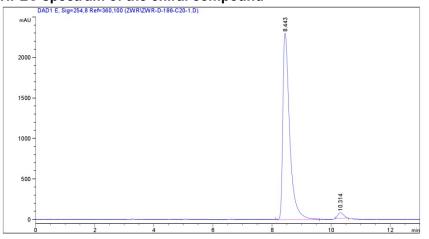


信号 1: DAD1 E, Sig=254,8 Ref=360,100

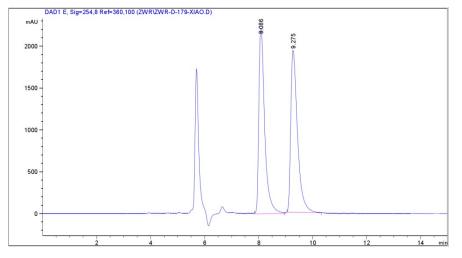

	峰	保留时间	类	型	峰宽	。 峰	面积	峰高	峰面积	
	#	[mir	1]			[min]	[mAU*s]		[mAU]	olo
-		-								I
		1 8.2	232	MM	R	0.2386	1.07375e	4 7	49.95599	49.7674
		2 10.8	887	MM	R	0.3350	1.08379e	4 5	539.11768	50.2326

HPLC spectrum of the chiral compound

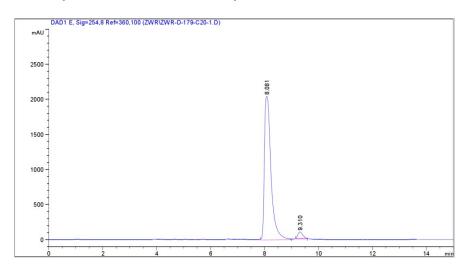

峰(呆留时间 彡	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
		-				-		
1	8.20	B MM	R	0.2897	4.50090e4	1 2	589.83960	97.1046
2	10.89	б ММ	R	0.2357	1342.0664	11	94.91537	2.8954



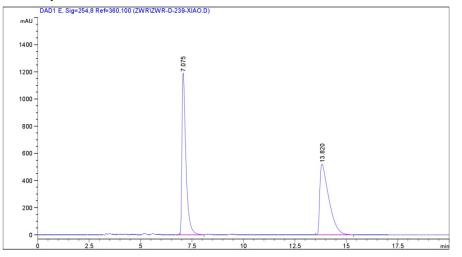
信号 1: DAD1 E, Sig=254,8 Ref=360,100


峰保	留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	00
]								
1	8.402	MM	R	0.2893	3.08358e	4 17	776.74500	50.2900
2	10.212	MM	R	0.3444	3.04802e	4 14	175.09961	49.7100

峰 保留时间 类型	峰宽	峰面积 峰高	高 峰面积	
# [min]	[min]	[mAU*s]	[mAU]	90 10
-		-		
1 8.443 N	1M R 0.2680	5 3.71184e4	2303.38599	97.5124
2 10.314 N	MM R 0.2216	5 946.91833	71.20676	2.4876

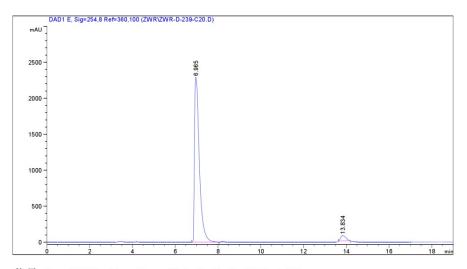


信号 1: DAD1 E, Sig=254,8 Ref=360,100

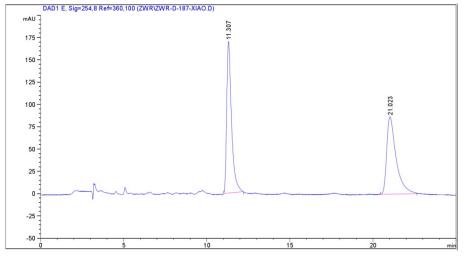

峰 保留	留时间 类型	峰宽	峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]	[m	AU]	00
-		-					
1	8.086 MM	R	0.2521	3.35187e4	2216	.31592	49.9384
2	9.275 MM	R	0.2892	3.36014e4	1936	.74280	50.0616

HPLC spectrum of the chiral compound

峰	保留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]		[mAU]	olo
	-		-					I
1	L 8.081	MM	r C	.2821	3.46698e4	4 2	048.64160	96.5048
2	9.310	MM	r C	.2188	1255.6529	95	95.63361	3.4952

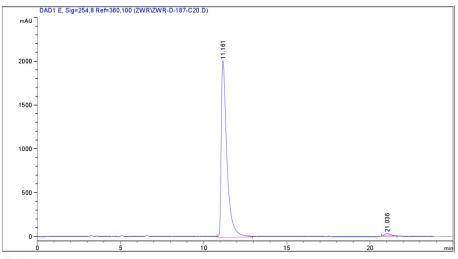



信号 1: DAD1 E, Sig=254,8 Ref=360,100

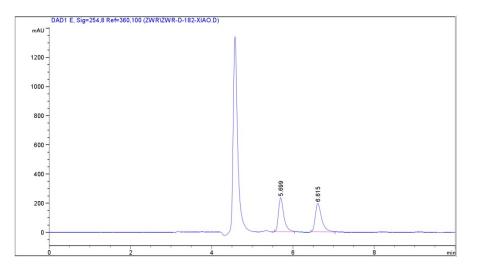

峰 保留时间 类型	峰宽 峰	全面积 峰	锋高 峰面积	
# [min]	[min]	[mAU*s]	[mAU]	00
-			-	
1 7.075 B	V 0.1985	1.59620e4	1190.16321	49.9877
2 13.820 B	B 0.4449	1.59698e4	521.99591	50.0123

HPLC spectrum of the chiral compound

信号 1: DAD1 E, Sig=254,8 Ref=360,100

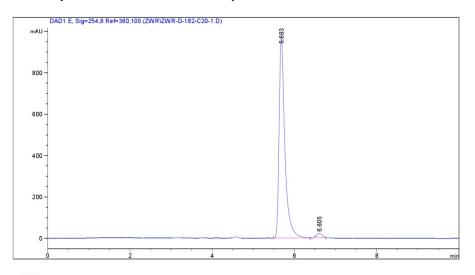


信号 1: DAD1 E, Sig=254,8 Ref=360,100

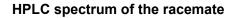

峰 保留时	间 类型	峰宽 嵴	面积 。	峰高 峰面积	
# [m.	_n]	[min]	[mAU*s]	[mAU]	010
]		-		-	
1 11.	307 MM	R 0.3362	3433.1709	0 170.20604	50.1833
2 21.	023 BB	0.5698	3408.08813	3 86.85492	49.8167

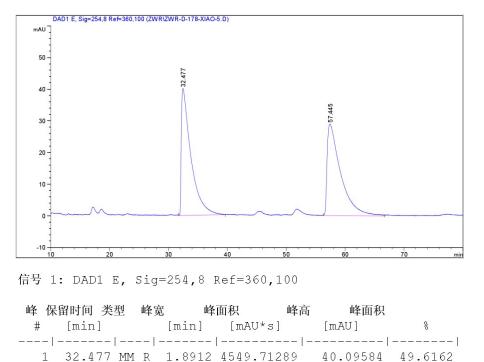
HPLC spectrum of the chiral compound

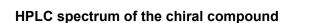
峰保	留时间 类	型	峰宽	峰	面积 1	峰高	峰面积	
#	[min]			[min]	[mAU*s]	[r	nAU]	010
			- -			-		
1	11.161	MM	R	0.3966	4.79681e4	2015	5.66321	98.5663
2	21.036	MM	R	0.4639	697.7368	8 25	5.06953	1.4337



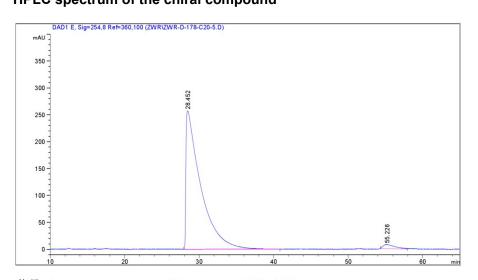
信号 1: DAD1 E, Sig=254,8 Ref=360,100

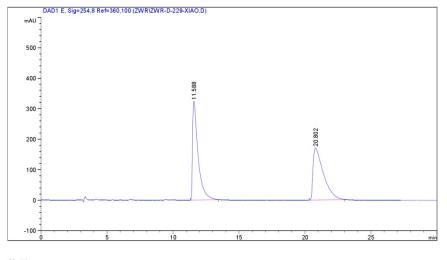

峰 保留	留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	8
						-		
1	5.699	MM	R	0.1526	2133.523	19	233.02663	50.4447
2	6.615	MM	R	0.1800	2095.903	56	194.08434	49.5553


HPLC spectrum of the chiral compound



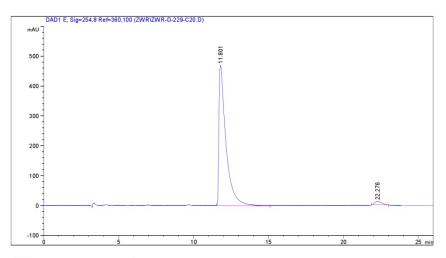
峰保	留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
			- -			-		
1	5.683	MM	R	0.1622	9418.526	37	967.80298	98.1174
2	6.605	MM	R	0.1475	180.714	45	20.42197	1.8826



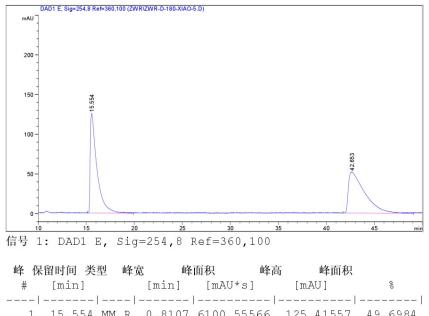

2 57.445 MM R 2.6625 4620.09131

28.92040 50.3838

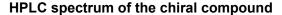
峰係	、留时间 类型	峰宽	Ĕ 峰	面积	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	00
	-	-				
1	28.452 M	IM R	2.2854	3.53003e4	1 257.43811	97.5789
2	55.226 M	IM R	1.9014	875.8712	22 7.67730	2.4211

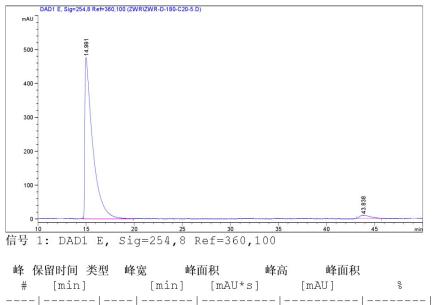


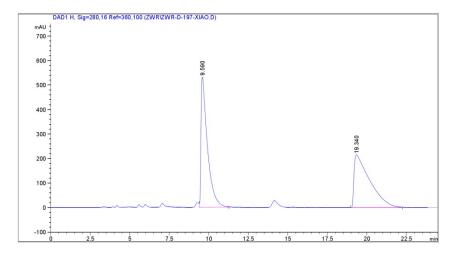
信号 1: DAD1 E, Sig=254,8 Ref=360,100

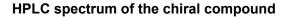

峰 保留时间 类型	峰宽 峰面积	峰高	峰面积
# [min]	[min] [1	mAU*s] [m	AU] %
	-	[
1 11.588 BB	0.4209 94	65.59375 323	.95599 50.3167
2 20.802 BB	0.7903 934	46.42480 170	.82303 49.6833

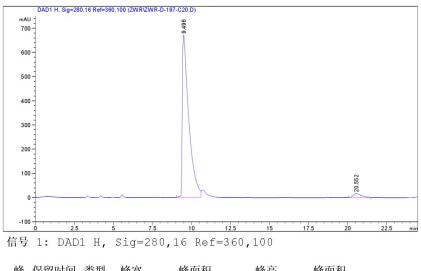
HPLC spectrum of the chiral compound



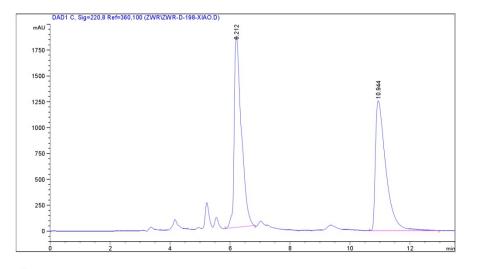

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	qlo
	-		- -					
	1 11.80)1 MM	R	0.5435	1.53492e	4 4	170.71323	97.6325
-	2 22.27	76 MM	R	0.5403	372.206	27	11.48090	2.3675



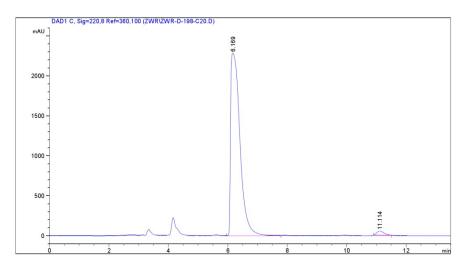

			-				
1	14.991	MM	R	0.9488	2.71094e4	476.22778	97.5234
2	43.838	MM	R	1.2126	688.44714	9.46276	2.4766



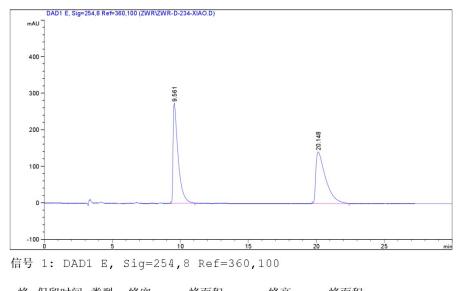
信号 1: DAD1 H, Sig=280,16 Ref=360,100


峰 保留时间 类型	峰宽 峰	面积 峰高	峰面积	
# [min]	[min]	[mAU*s]	[mAU]	010
		-		
1 9.590 VB	0.3968	1.49935e4	532.07349	50.3271
2 19.340 BE	0.9614	1.47986e4	214.89743	49.6729

峰	保留时间	类型 崰	昏宽 峰	面枳	峰局 峰面枳	
#	[min]		[min]	[mAU*s]	[mAU]	olo
	-	-	·			
	1 9.49	6 BV	0.4057	1.94314e4	671.24786	97.0382
	2 20.55	2 BB	0.5411	593.0771	5 16.58925	2.9618



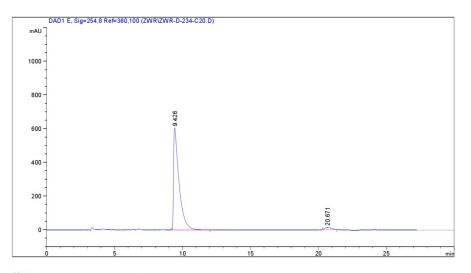
信号 1: DAD1 C, Sig=220,8 Ref=360,100


峰伐	R留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
			- -					
1	6.212	MM	R	0.2769	3.07272e	4 1	849.41077	50.2942
2	10.944	VB		0.3597	3.03678e	4 1	257.90369	49.7058

HPLC spectrum of the chiral compound

峰	保留时间 类	型	峰宽	峰面	ī积	峰高	峰面积	
#	[min]		[mi	.n]	[mAU*s]	[r	nAU]	olo
			-	· [-				
1	6.169	MM	R 0.3	627 4	.97712e	1 2287	7.07739	98.3224
2	11.114	MM	R 0.2	2766	849.2175	53 51	L.16344	1.6776

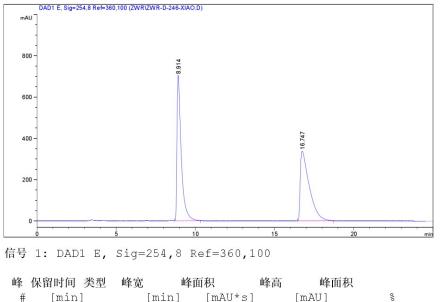
 峰 保留时间 类型
 峰宽
 峰面积
 峰高
 峰面积


 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

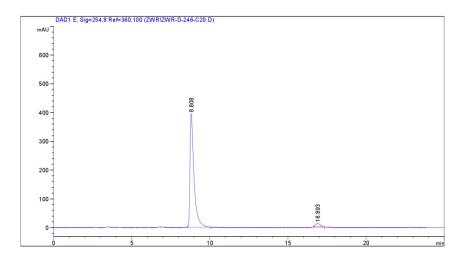
 ----|-----|

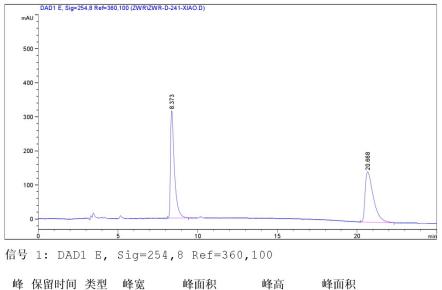
 -----|
 49.7717

 1
 9.561
 BB
 0.3661
 7005.50391
 274.20383
 49.7717

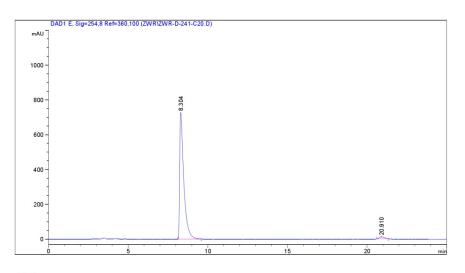

 2
 20.148
 BB
 0.7218
 7069.77979
 141.28125
 50.2283

HPLC spectrum of the chiral compound

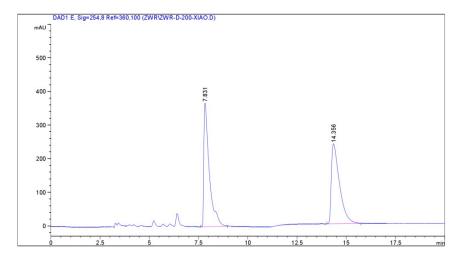

信号 1: DAD1 E, Sig=254,8 Ref=360,100


-+ NEH!	四 八王 平外			-+ m	
# [m	in]	[min]	[mAU*s]	[mAU]	00
1 8	.914 VB	0.2735	1.32555e	4 704.56580	49.9670
2 16	.747 BB	0.5641	1.32730e	4 338.02145	50.0330

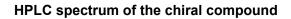
HPLC spectrum of the chiral compound

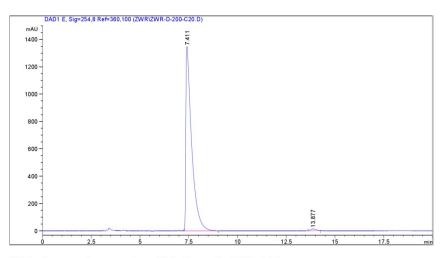


峰	保留时间 类	型	峰宽	峰面积	峰高	峰面积	
#	[min]		[min]	[mAU*s] [m	AU]	010
			-				
1	8.808	BB	0.259	93 7024.94	336 395	.31964	96.5529
2	16.893	MM	R 0.351	L6 250.80	075 11	.88923	3.4471

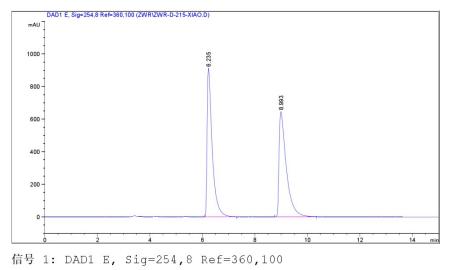


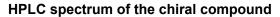
HPLC spectrum of the chiral compound

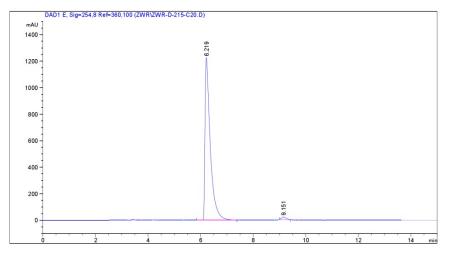

峰	保留时间 类	吃型 邮	鋒宽 峰	面积	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	00
	-		-			
	1 8.304	BB	0.2587	1.30323e	4 728.46429	98.0617
	2 20.910	MM F	0.3743	257.593	69 11.47105	1.9383

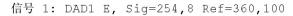


信号 1: DAD1 E, Sig=254,8 Ref=360,100

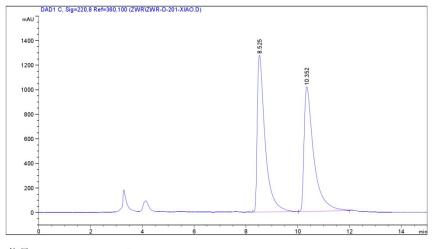

峰 保留时间 类型	峰宽 峰	面积 峰高	峰面积	
# [min]	[min]	[mAU*s]	[mAU]	010
-	[-		
1 7.831 E	BB 0.2756	7113.29248	367.81454	50.9964
2 14.356 E	BB 0.4229	6835.33350	238.09776	49.0036



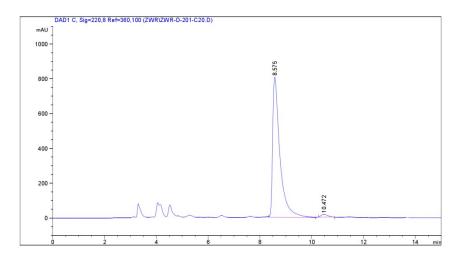

峰(呆留时间 类	型 峰宽	[峰	面积	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	010
		-				
1	7.411	VB	0.2934	2.81178e4	1 1347.86340	99.1188
2	13.877	MM R	0.3172	249.9751	L3 13.13626	0.8812



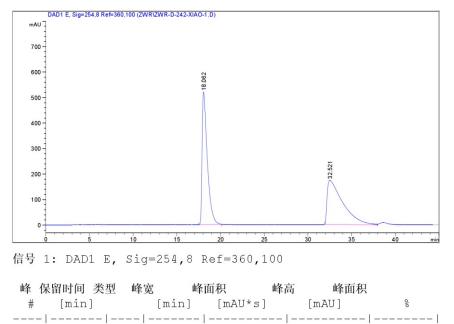
峰 保留时间 类型 峰宽 峰面积 峰高 峰面积	
# [min] [min] [mAU*s] [mAU]	00
1 6.235 BB 0.1954 1.23049e4 912.26514 49.3	8460
2 8.993 BB 0.2798 1.23810e4 645.49097 50.	1540



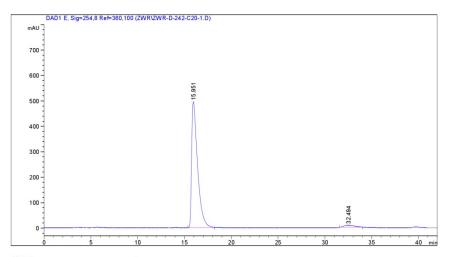
峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]]		[min]	[mAU*s]		[mAU]	00
	-					-		
2	1 6.23	19 BB		0.1995	1.69634e	4 1	225.15601	98.5500
2	2 9.1	51 MM	R	0.2155	249.596	05	19.30588	1.4500

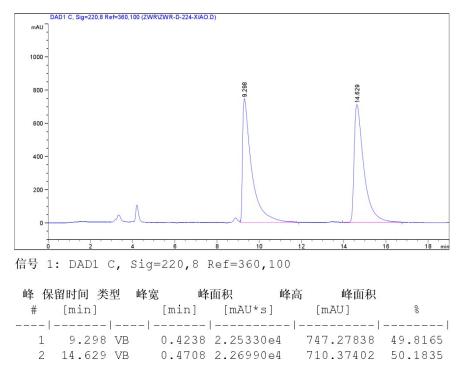


信号 1: DAD1 C, Sig=220,8 Ref=360,100

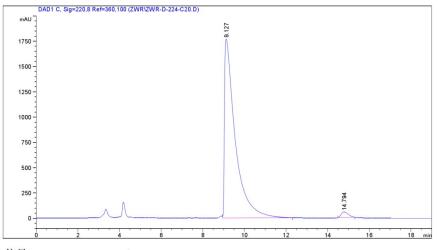

	峰	保留时间 类	型 峰宽	峰	面积	峰高	峰面积	
	#	[min]		[min]	[mAU*s]	[1	mAU]	010
-			-					
	1	8.525	BV	0.3074	2.68487e	4 127	6.58691	50.4776
	2	10.352	VB	0.3768	2.63406e	4 101	4.90851	49.5224

HPLC spectrum of the chiral compound

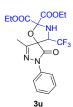

峰	保留时间 类	型 峰宽	員 峰	面积	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	8
	-	-				
i	1 8.575	MM R	0.3258	1.57537e	4 805.85107	98.3383
4	2 10.472	MM R	0.2899	266.204	59 15.30641	1.6617

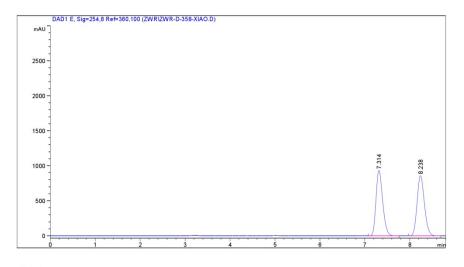

1 18.062 BB 0.6081 2.16007e4 520.61768 49.8783 2 32.521 MM R 2.0904 2.17062e4 173.06105 50.1217

HPLC spectrum of the chiral compound



峰 保留时间	类型 峰宽	f 峰	面积	峰高 峰面积	
# [min]]	[min]	[mAU*s]	[mAU]	010
1 15.95	51 BB	0.6499	2.17413e4	495.51501	97.2864
2 32.4	94 MM R	1.3283	606.4357	73 7.60925	2.7136



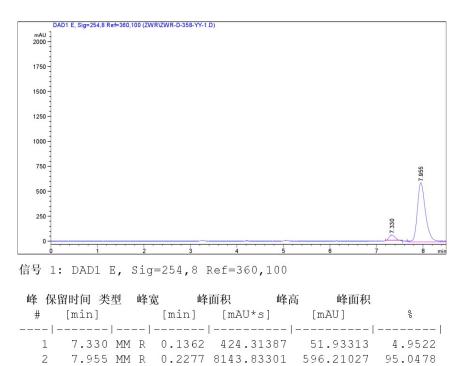

HPLC spectrum of the chiral compound

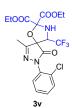
信号 1: DAD1 C, Sig=220,8 Ref=360,100

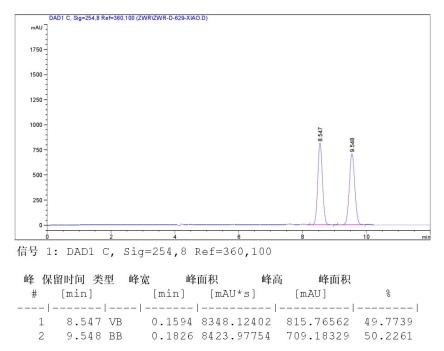
峰	保留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	olo
			- -					
1	9.127	VB		0.5066	6.32087e	4 17	770.06873	98.0464
2	14.794	MM	R	0.3839	1259.434	94	54.67139	1.9536

信号 1: DAD1 E, Sig=254,8 Ref=360,100

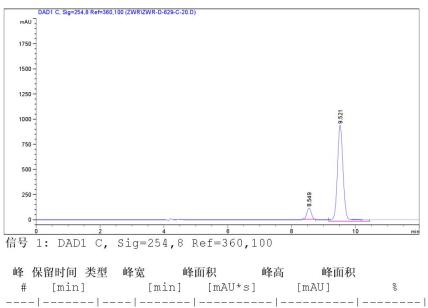
 峰
 保留时间
 类型
 峰宽
 峰面积
 峰高
 峰面积

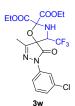

 #
 [min]
 [min]
 [mAU*s]
 [mAU]
 %

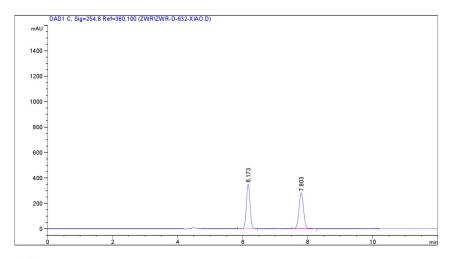

 ---- ---- ---- ---- ---- ----


 1
 7.314
 BB
 0.1605
 9657.23828
 935.30853
 49.8554

 2
 8.238
 BB
 0.1740
 9713.27539
 858.48425
 50.1446

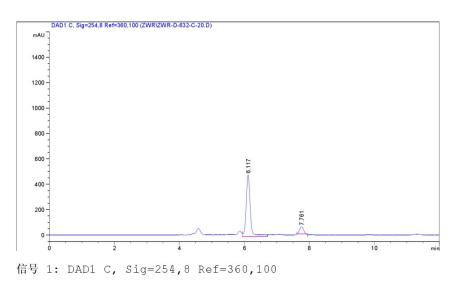

HPLC spectrum of the chiral compound

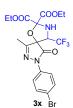


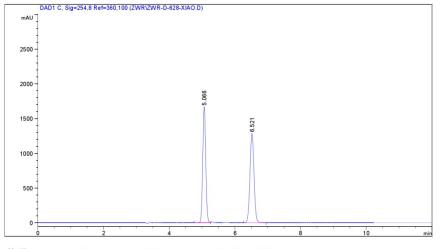


HPLC spectrum of the chiral compound

#	[min]			[min]	[mAU*s]	[mAU]	olo
1	8.549	MM	R	0.1558	1026.55884	109.82549	7.6213
2	9.521	MM	R	0.2168	1.24431e4	956.64935	92.3787

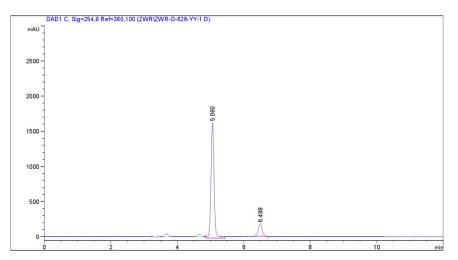



信号 1: DAD1 C, Sig=254,8 Ref=360,100

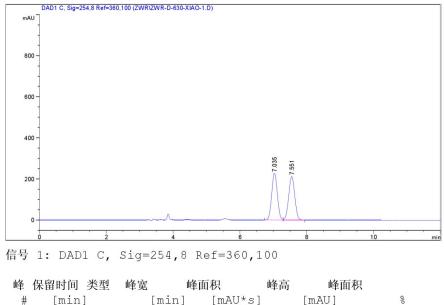

峰 保留时间 类	型 峰宽	峰面积	峰高 峰面积	Ĺ
# [min]	[mir	n] [mAU*s] [mAU]	olo
1 6.173	BB 0.12	213 2748.66	260 351.37128	49.7521
2 7.803	BB 0.15	526 2776.05	127 282.67242	50.2479

HPLC spectrum of the chiral compound

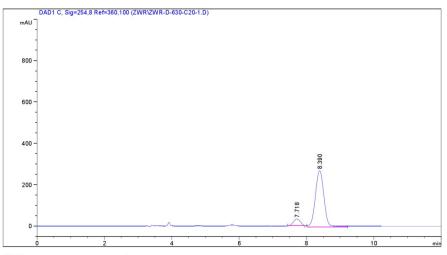
峰	保留时间 类	型 峰	金 峰	面积 1	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	00
	-				-	
1	6.117	MM R	0.1524	4474.4887	7 489.22321	90.0975
2	2 7.761	MM R	0.1424	491.7862	2 57.54036	9.9025

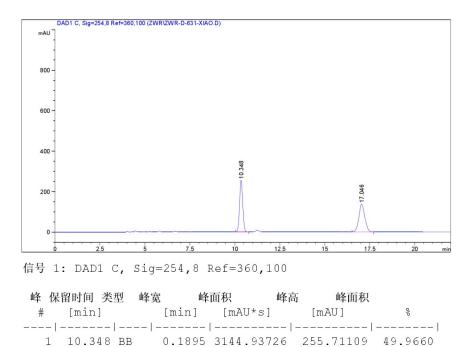


信号 1: DAD1 C, Sig=254,8 Ref=360,100

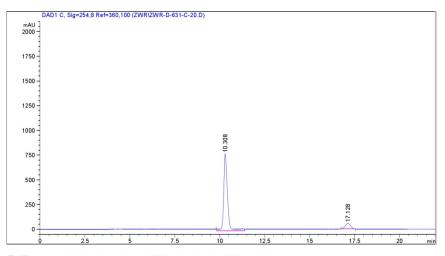

峰	保留时间 类型	峰宽 屿	峰面积	峰高 峰面积	
#	[min]	[min]	[mAU*s]	[mAU]	8
	-		·		
1	. 5.066 VV	0.1010	1.07297e	4 1669.82471	49.3265
2	2 6.521 VB	0.1341	1.10227e	4 1284.40063	50.6735

HPLC spectrum of the chiral compound

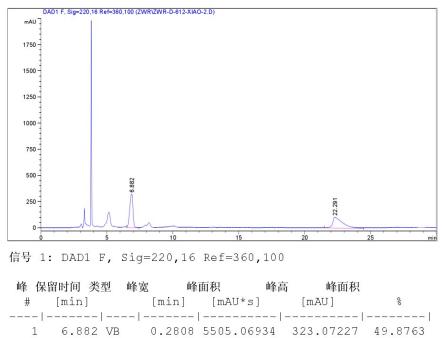

峰(呆留时间 类	型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	olo
			- -					
1	5.060	MM	R	0.1081	1.06276e4	16	38.56396	88.5926
2	6.498	MM	R	0.1295	1368.4356	57 1	76.05740	11.4074


- V		+ 70 +	μη <i>ν</i> ν +		
#	[min]	[min]	[mAU*s]	[mAU]	010
1	7.035 BV	0.1851	2673.10693	227.48076	49.9695
2	7.551 VB	0.1991	2676.37085	212.26019	50.0305

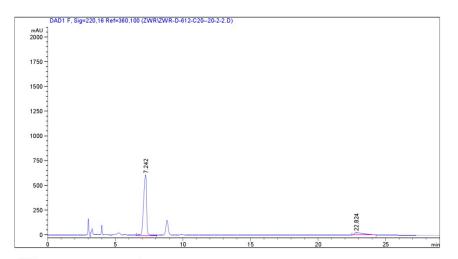
HPLC spectrum of the chiral compound


峰	保留时间 类	型峰	隆宽 峰	全面积 山	峰高 峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	00
					-	
1	7.718	MM F	0.2390	468.7696.	2 32.68374	8.8518
2	8.390	MM F	0.2959	4826.9790	0 271.85806	91.1482

HPLC spectrum of the chiral compound

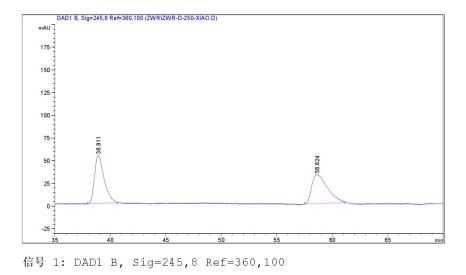

2 17.046 BB

0.3476 3149.22119 137.30154 50.0340


峰	保留时间 彡	た型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	010
	-	-	- -					
0	L 10.308	B MM	R	0.2476	1.15707e	4 '	778.83331	91.6262
1	2 17.128	B MM	R	0.3338	1057.452	15	52.79362	8.3738

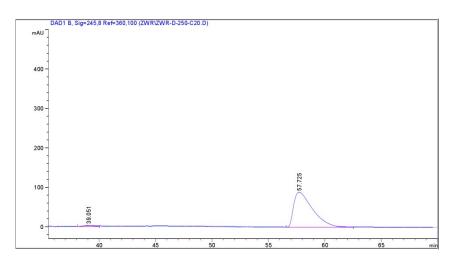
2 22.291 MM R 0.8889 5532.37598 103.73302 50.1237

HPLC spectrum of the chiral compound

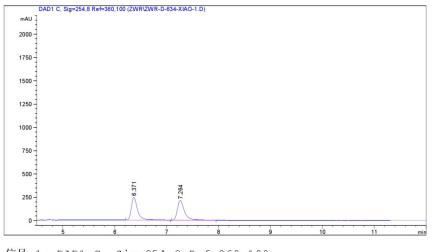


信号 1: DAD1 F, Sig=220,16 Ref=360,100

峰	保留时间 孝	き型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	olo
	-	-]	- -		[-		
-	1 7.242	2 MM	R	0.2558	9466.181	64	616.73773	90.0572
2	2 22.824	MM	R	0.7582	1045.119	38	22.97465	9.9428

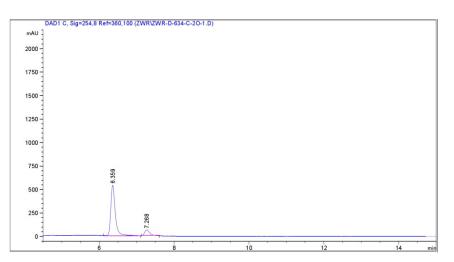


HPLC spectrum of the racemate


峰	保留时间 类	型 峰宽	峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]	[r	nAU]	010
	-						
	1 38.911	BB (0.8958	3177.139	89 52	2.81759	50.2385
	2 58.624	BB 1	L.3358	3146.973	88 31	1.87579	49.7615

HPLC spectrum of the chiral compound

峰	保留时间 乡	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]			[min]	[mAU*s]		[mAU]	olo
	-	-	-					
-	L 39.05:	1 MM	R :	1.0838	183.218	25	2.81752	1.7304
2	2 57.725	5 MM	R :	1.9515	1.04049e	4	88.86322	98.2696



信号 1: DAD1 C, Sig=254,8 Ref=360,100

峰 保留时间 类型	峰宽 峰面	积 峰高	峰面积	
# [min]	[min]	[mAU*s]	[mAU]	010
	-		-	
1 6.371 BB	0.1248 2	023.93164 2	43.85034	50.4573
2 7.264 BB	0.1417 1	987.24854 2	11.37042	49.5427

HPLC spectrum of the chiral compound

峰	保留时间	类型	峰宽	峰	面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]		[mAU]	010
	-					-		
	1 6.3	59 MM	I R	0.1412	4592.785	16	542.20740	90.1742
1	2 7.2	68 MM	ÍR	0.1411	500.448	73	59.10970	9.8258