Copper-Catalyzed Carbonylative Synthesis of Pyrrolidine-Containing Amides from $\boldsymbol{\gamma}, \boldsymbol{\delta}$ - Unsaturated Aromatic Oxime EstersYoucanZhang, Han-Jun Ai, Xiao-Feng Wu*Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
Xiao-Feng.Wu@catalysis.de
Contents

1. General conditions S2
2. General procedures S2
2.1 General methods to synthesis of oxime esters S2
2.2 General procedure for carbonylation reactions S4
3. Analytical data S5
4. Reference S29
5. ${ }^{1} \mathrm{H}-,{ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra copy of products. S30

1. General conditions

All solvents a nd commercially a vailable reagents were purchased from Sigma-Aldrich, Abcr, Acros, TCI or Alfa Aesar and used without further purification. Anhydrous solvents were purchased from Sigma-Aldrich and used as received. NMR spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. Chemical shifts (ppm) are given relative to solvent: references for CDCl_{3} were $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H} \mathrm{NMR}\right)$ a nd $77.00 \mathrm{ppm}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$. Multiplets were a ssigned as s (singlet), br.s (broad singlet), d (doublet), t (triplet), q (quartet), sept (septuplet), dd (doublet of doublet), dt (doublet of triplets), td (triplet of doublets) and m (multiplet). GC-y ields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise stated. Electron impact(EI) mass spectra were recorded on AMD402 mass spectrometer $(70 \mathrm{eV})$. High resolution mass spectra (HRMS) were recorded on Agilent 6210. The data are given as mass units per charge (m / z). Gas chromatography a nalysis was performed on an Agilent HP-7890A instrument with an FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, $30 \mathrm{~m}, 0.32 \mathrm{~mm}$ i.d. $0.25 \mu \mathrm{~m}$ film thickness) using argon as carrier gas. The products were isolated from the reaction mixture by column chromatography on silica gel 60, 0.063-0.2 mm, 70-230 mesh (Merck).

2. General procedures

2.1 General methods to synthesis of oxime esters. ${ }^{[1-5]}$

MethodA

Reagents and conditions: (a) Allyl bromide, $\mathrm{NaH}, \mathrm{THF}, 70^{\circ} \mathrm{C}$, overnight. (b) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, Pyridine, $\mathrm{EtOH}, 90^{\circ} \mathrm{C}$, overnight. (c) $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, rt, overnight.

Step 1

Under argon atmosphere, to a 100 mL bottomed flask was charged with ketone ($10 \mathrm{mmol}, 1.0$ equiv.), dry THF $(0.5 \mathrm{M})$ was added and the solution was cooled to $0^{\circ} \mathrm{C}$, then NaH (1.2 or 2.5 equiv. 60% dispersion in oil) was added into the solution in portions. After stirring for 0.5 hour at $0^{\circ} \mathrm{C}$, allyl bromide (1.1 or 2.2 equiv.) was added dropwise, then the solution was heated to $70^{\circ} \mathrm{C}$ and stirred for overnight. The reaction wa s quenched with $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the aqueous la yer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was filtered, concentrated to give the corresponding crude unsaturated ketones, which were used in the next step without further purification.

Step 2

A mixture of unsaturated ketone (1.0 equiv.), hydroxylamine hydrochloride (1.2 equiv.) and pyridine (2.0 equiv.) were dissolved in EtOH $(0.5 \mathrm{M})$. The mixture stirred at $90^{\circ} \mathrm{C}$ for overnight. Then EtOH was removed by concentration, a dded $\mathrm{H}_{2} \mathrm{O}$ and the aqueous la yer was extracted with ethyl acetate. The combined organic layers were washed with saturated NaHCO_{3} solution, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated to give the crude unsaturated ketoneoximes, which were used in the next step withoutfurther purification.

Step 3

To a mixture of unsaturated ketone oxime (1.0 equiv.), triethylamine (2.0 equiv.) and $\mathrm{DCM}(0.5 \mathrm{M}$) in a 100 mL three-necked flask was a dded benzoyl chloride (1.2 equiv) at room temperature. After addition, the reaction was allowed to continue for overnight. The reaction was quenched with a n aqueous solution of saturated NaHCO_{3}, and the aqueous layer was extracted with DCM. The combined organic la yers were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Then the solution was filtered, concentrated to give the crude oxime esters. Purification by column chromatography on silica gel (pentane/ethyl acetate 10:1), gave the corresponding products.

MethodB

Reagents and conditions: (a) Et NH, n-BuLi, THF; Allyl bromide, $0^{\circ} \mathrm{C}$ to rt , overnight. (b) Aryl Grignard reagent, $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, overnight. (c) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, Pyridine, $\mathrm{EtOH}, 90^{\circ} \mathrm{C}$, overnight. (d) $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, rt, overnight.

Step 1

Under a rgon a tmosphere, to a 100 mL three-necked flask was charged with $\mathrm{Et}_{2} \mathrm{NH}$ ($11 \mathrm{mmol}, 1.1$ equiv.), dry THF (0.5 M) was added a nd the solution was cooled to $0^{\circ} \mathrm{C}$, then $n-\operatorname{BuLi}(1.15$ equiv. 2.5 M solution in hexanes) was added dropwise. After stirring for 1 hour at $0^{\circ} \mathrm{C}$, the isobutyronitrile ($10 \mathrm{mmol}, 1.0$ equiv.) was added dropwise, and the solution was continued to stir for 1 hour at $0^{\circ} \mathrm{C}$. Next allyl bromide ($11 \mathrm{mmol}, 1.1$ equiv. in 5 mL dry THF) wa s added dropwise at $0^{\circ} \mathrm{C}$, a nd the mixture was warmed to room temperature for overnight. The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was filtered, concentrated purification by column chromatography on silica gel (pentane/ethyl a cetate 50:1) to give the corresponding product 2,2-dimethylpent-4enenitrile.

Step 2

To a 100 mL three-necked flask was charged with 2,2-dimethylpent-4-enenitrile (1.0 equiv.), the flask was evacuated and backfilled with nitrogen (3 times). Dry THF (0.5 M) was added, and the solution was cooled to $0{ }^{\circ} \mathrm{C}$, then aryl Grignard reagent (2.0 equiv.) was added dropwise. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for overnight. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ a nd quenched with a 3 Nhydrochloride solution, then wamed to room temperature a nd stirred for 3 hours. The aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Then the solution was filtered, concentrated to give the crude unsaturated ketones, which were used in the next step without further purification. (Note: The main procedure follows the Method A, step 2 and Method A, step 3.)

MethodC

Reagents and conditions: (a) Isopropyl or ethyl Grignard reagent, THF, $0^{\circ} \mathrm{C}$ to $\mathrm{rt}, 30 \mathrm{~h}$. (b) PCC, DCM, rt, 3 h . (c) Allyl bromide, NaH , THF, $70^{\circ} \mathrm{C}$, overnight. (d) $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$, Pyridine, $\mathrm{EtOH}, 90^{\circ} \mathrm{C}$, overnight. (e) $\mathrm{PhCOCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, rt, overnight.

Step 1

A 100 mL round bottomed flask charged with a solution of the aldehyde ($10 \mathrm{mmol}, 1.0$ equiv.) in dry THF (0.5 $\mathrm{M})$ was kept at $0^{\circ} \mathrm{C}$ with stirring. The isopropyl or ethyl Grignard reagent (1.5 equiv.) was slowly added to the
solution and the resulting su spension was stirred at rt for 30 hours, then the reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution at $0^{\circ} \mathrm{C}$, and the aqueous la yer was extracted with ethyl acetate. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, next filtered and concentrated in vacuo. The crude product alcohol was directly used in the next step without further purification.

Step 2

To a solution of the alcohol in DCM was stirred at $0^{\circ} \mathrm{C}$ added pyridinium chlorochromate ($\mathrm{PCC}, 2.0$ equiv.) slowly. The resulting mix ture was a llowed to warm to room temperature a nd stirred for 3 hours. The reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude ketone was purification by column chromatography on silica gel (pentane/ethyl acetate 50:1) to give the corresponding product ketone. (Note: The main procedure follows the Method A, step 1-3)
2.2 General procedure for carbonyla tion reactions

To each screw-cap vial (4 mL) equipped with a septum, a small ca nnula, and a stirring bar wa a dded oxime ester 1 (0.3 mmol), 2, $2^{\prime}-$ bipyridine $(3.1 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $\mathrm{Cu}(\mathrm{OAc})_{2}(1.8 \mathrm{mg}, 5 \mathrm{~mol} \%)$, then added $\mathrm{MeCN}(2 \mathrm{~mL})$, amine $2(0.2 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.6 \mathrm{mmol})$. These vials were placed on a n alloy plate and transferred into a 300 mL autoclave of the 4560 series from Parr instruments. After flushing the autoclave three times with CO, a pressure of 40 bar CO was set, and the reaction was performed for 20 hours at $100^{\circ} \mathrm{C}$ (aluminum block). Afterward, the autoclave was cooled to room temperature and the pressure was released carefully. The organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethylacetate $=5: 1$ to $0: 1$).

1 mmolscale : To a screw-cap vial $(12 \mathrm{~mL})$ equipped with a septum, a small ca nnula, and a stirring bar was added 2,2-dimethyl-1-phenylpent-4-en-1-one O-benzoyl oxime $1 \mathrm{a}(1.25 \mathrm{mmol}), 2,2^{\prime}$-bipyridine ($6.2 \mathrm{mg}, 4 \mathrm{~mol} \%$) and $\mathrm{Cu}(\mathrm{OAc})_{2}(3.6 \mathrm{mg}, 2 \mathrm{~mol} \%)$, then added $\mathrm{MeCN}(7 \mathrm{~mL})$, aniline $\mathbf{2 a}(1.0 \mathrm{mmol})$ andEt $_{3} \mathrm{~N}(3.0 \mathrm{mmol})$. These vials were placed on an alloy plate and transferred into a 300 mL autoclave of the 4560 series from Parr instruments. After flushing the a utoclave three times with CO , a pressure of 40 bar CO was set, and the reaction was performed for 20 hours at $100{ }^{\circ} \mathrm{C}$ (aluminum block). Afterward, the a utoclave was cooled to room temperature a nd the pressure was released carefully. The organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate $=5: 1$ to $2: 1$) to give the product 3a in 85% yield $(260.4 \mathrm{mg})$.
3. Analytical data

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (3a)

55.2 mg , yellow oil, yield: 90%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.27$ (br.s, 1 H$), 7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.6$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,170.1,138.6,133.8,130.1,128.8,128.4,127.9,123.6,119.7,64.1,50.0$, 48.5,44.2, 27.0, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 307.1810$; found: 307.1813; [M+Na] ${ }^{+}$: 329.1624; found: 329.1632.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(o-tolyl)acetamide (3b)

59.6 mg , yellow oil, yield: 93%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.05$ (br.s, 1 H), $8.08(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.23(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.33$ $(\mathrm{m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.5,170.2,136.7,133.7,130.2,130.0,128.4,128.2,127.9,126.4,124.1,122.3$, 64.3,50.0, 48.3, 44.2, 26.9, 25.6, 18.3.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1967$; found: 321.1965; [M+Na] ${ }^{+}: 343.1781$; found: 343.1785.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(2-methoxyphenyl)acetamide (3c)

63.2 mg , yellow oil, yield: 94%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.09$ (br.s, 1 H$), 8.48(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.37$ $(\mathrm{m}, 3 \mathrm{H}), 7.01(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.31$
$(\mathrm{m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=15.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.0,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.5,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.62(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,170.0,148.2,134.0,129.9,128.3,128.1,123.2,120.8,120.0,109.8,64.2$, 55.4,50.0, 48.5, 44.8, 27.1, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 337.1916$; found: 337.1914; [M+Na $]^{+}: 359.1730$; found: 359.1734.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(2-fluorophenyl)acetamide (3d)

51.9 mg , yellow oil, yield: 80%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.59(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.43(\mathrm{td}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.39$ $(\mathrm{m}, 3 \mathrm{H}), 7.14-6.99(\mathrm{~m}, 3 \mathrm{H}), 4.41-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=15.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.6,10.7 \mathrm{~Hz}$, $1 \mathrm{H}), \delta 2.21(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.7,170.3,152.6(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 133.4,130.2,128.3,128.1(\mathrm{~d}, J=1.7 \mathrm{~Hz})$, $127.1(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 123.6(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=1.6 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=19.2 \mathrm{~Hz})$, 63.8,50.0, 48.6, 44.4, 27.2, 25.6.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-129.2.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 325.1716$; found: 325.1716.
2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(2-(trifluoromethyl)phenyl)acetamide (3e)

48.7 mg , yellow oil, yield: 65%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.14$ (br.s, 1 H$), 8.08(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.50(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.7$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=12.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,170.7,135.5,133.7,132.4,130.0,128.1,128.0,126.2,123.6(\mathrm{q}, J=5.5 \mathrm{~Hz})$, $124.5,123.9(\mathrm{q}, J=273.2 \mathrm{~Hz}), 63.9,50.1,48.5,44.2,27.1,25.6$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.9$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 375.1684$; found: 375.1684; [M+Na] ${ }^{+}: 397.1498$; found: 397.1503.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(3-methoxyphenyl)acetamide (3f)

61.2 mg , yellow oil, yield: 91%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.27(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.85-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=8.0,2.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{ddd}, J=8.2,2.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.29(\mathrm{~m}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{dd}, J=15.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,170.1,160.1,139.8,133.8,130.2,129.5,128.4,127.9,111.9,109.6,105.3$, 64.1, 55.2, 50.0, 48.5, 44.2, 27.1, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 337.1916;found: 337.1916.
2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(3-phenoxyphenyl)acetamide (3g)

72.5 mg , yellow oil, y ield: 91%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.36$ (br.s, 1 H), $7.80-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{ddd}, J=7.9,2.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.27$ $(\mathrm{m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59$ (dd, $J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C ~ N M R ~}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,170.1,157.6,157.0,140.0,133.7,130.1,129.8,129.6,128.3,127.8,123.2$, $118.9,114.5,113.9,110.4,64.0,50.0,48.4,44.1,27.0,25.5$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 399.2072$; found: 399.2075; [M+Na] ${ }^{+}: 421.1886$; found: 421.1889.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(3-(trifluoromethyl)phenyl)acetamide (3h)

67.4 mg , yellow oil, yield: 90%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.63$ (br.s, 1 H), $7.92(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.34-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.4,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=$ $12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.9,170.3,139.1,133.5,131.2(\mathrm{q}, J=32.2 \mathrm{~Hz}), 130.3,129.3,128.4,127.9$, $123.9(\mathrm{q}, J=272.3 \mathrm{~Hz}), 122.6,120.1(\mathrm{q}, J=3.9 \mathrm{~Hz}), 116.3(\mathrm{q}, J=4.0 \mathrm{~Hz}), 64.0,50.2,48.1,43.9,27.0,25.6$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.7.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 375.1684$; found: 375.1687 ; $[\mathrm{M}+\mathrm{Na}]^{+}: 397.1498$; found: 397.1502.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(3-nitrophenyl)acetamide (3i)

52.7 mg , yellow oil, yield: 75%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.92($ br.s, 1 H$), 8.46(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.84-7.73(\mathrm{~m}, 2 \mathrm{H})$, $7.52-7.40(\mathrm{~m}, 4 \mathrm{H}), 4.42-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.8,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ $(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.6,170.6,148.5,139.7,133.6,130.4,129.6,128.5,127.8,125.3,118.2,114.4$, 63.8,50.1, 48.5,44.0,27.0,25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 352.1661$; found: 352.1664 ; [M+Na] ${ }^{+}: 374.1475$; found: 374.1483.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(4-methoxyphenyl)acetamide (3j)

57.2 mg , yellow oil, yield: 85%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.04$ (br.s, 1 H), $7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 3 \mathrm{H})$, $6.87-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.44-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{dd}, J=15.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.4,9.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.3,169.7,155.9,133.7,131.8,130.1,128.3,127.8,121.3,114.0,64.2,55.4$, 50.1,48.1,43.8,27.0, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 337.1916$;found: 337.1921.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(4-(methylthio)phenyl)acetamide (3k)

62.0 mg , yellow oil, y ield: 88%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.27$ (br.s, 1 H), $7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ $(\mathrm{s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.3,170.0,136.4,133.7,132.5,130.1,128.4,128.1,127.8,120.3,64.1,50.1$, 48.3, 44.0, 27.0, 25.6, 16.9.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 353.1687$; found: 353.1688 ; $[\mathrm{M}+\mathrm{Na}]^{+}: 375.1501$; found: 375.1508 .

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(4-phenox yphenyl)acetamide (31)

62.9 mg , yellow oil, yield: 79%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.27($ br.s, 1 H$), 7.82-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.95(\mathrm{~m}, 4 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.4,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.65(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.4,169.9,157.8,152.7,134.3,133.7,130.1,129.6,128.4,127.8,122.7,121.3$, 119.7, 118.1, 64.1, 50.1,48.2, 43.9, 27.0, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 399.2072$; found: 399.2065; [M+Na] $: 421.1886$; found: 421.1880.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(4-fluorophenyl)acetamide (3m)

53.8 mg , yellow oil, yield: 83%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.30$ (br.s, 1 H), $7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.03-6.93(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ $(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.5,170.0,158.9(\mathrm{~d}, J=242.4 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 133.7,130.2,128.4$, $127.8,121.3(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 64.1,50.1,48.2,43.9,27.0,25.6$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-119.0.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 325.1716$; found: 325.1716; [M+Na $]^{+}: 347.1530$; found: 347.1536.
N-(4-Bromophenyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)a cetamide (3n)

68.6 mg , yellow oil, yield: 89%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.42$ (br.s, 1 H), $7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H})$, $4.41-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.5,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.63$ (dd, $J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (s, 3H), 1.39 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.6,170.1,137.7,133.6,131.7,130.2,128.4,127.8,121.2,116.0,64.0,50.1$, 48.2, 44.0, 27.0, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 385.0916$; found: 385.0924 ; $[\mathrm{M}+\mathrm{Na}]^{+}: 407.0729$; found: 407.0739.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(4-iodophenyl)acetamide (30)

76.9 mg , yellow oil, yield: 89%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.44(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.39-7.32(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.26(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (dd, $J=12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.3,170.2,138.4,137.7,133.7,130.2,128.4,127.8,121.5,86.5,64.0,50.0,48.4$, 44.1,27.0, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{IN} \mathrm{N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 433.0777; found: 433.0782; [M+H] ${ }^{+}$: 455.0591; found: 455.0598.

Ethyl4-(2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamido)benzoate (3p)

65.9 mg , yellow oil, y ield: 87%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.62(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.02-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.47-7.40(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{dd}, J=15.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=$ $15.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=12.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.37$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.9,170.3,166.2,142.7,133.4,130.6,130.3,128.4,127.8,125.2,118.7,63.9$, 60.6,50.2, 47.8, 44.0, 26.9, 25.6, 14.3.

HR-MS (ESI-TOF) ca lcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 379.2021$; found: 379.2023 .
N -(4-acetylphenyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2 H -pyrrol-2-yl)a cetamide (3q)

64.8 mg , yellow oil, yield: 93%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.72(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.94-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.39(\mathrm{~m}, 3 \mathrm{H}), 4.41-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $(\mathrm{s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.9,180.5,170.4,143.0,133.6,132.2,130.2,129.6,128.4,127.8,118.8,63.9$, 50.1,48.2, 44.1, 26.9, 26.3, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 349.1916$; found: 349.1921; [M+Na] $: 371.1730$; found: 371.1740.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(4-(1-hydroxyethyl)phenyl)acetamide (3r)

58.9 mg , yellow oil, y ield: 84%. Eluent: pentane/ethyl acetate $=5 / 1$ to $0 / 1$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.13$ (br.s, 1 H$), 7.74(\mathrm{dt}, J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-$ $7.39(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J$ $=15.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.5,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,170.1,141.4,137.5,133.7,130.0,128.3,127.8,125.9,119.8,69.7,64.1$, 50.1,48.1, 43.8, 27.0, 25.5, 25.0.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 351.2072$; found: 351.2067; [M+H $]^{+}: 373.1886$; found: 373.1881.
N-(4-Cyano-3-methylphenyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide (3s)

47.0 mg , yellow oil, y ield: 68%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.60(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{dd}, J=8.4$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{dt}, J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.7,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 2.21(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.6,170.4,136.9,136.7,133.6,130.6,130.3,128.5,127.8,123.9,123.0,117.9$, $112.9,63.9,50.1,48.4,44.0,27.0,25.5,19.8$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 346.1919$; found: 346.1917 .
N-(2-Bromo-4-chlorophenyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide(3t)

69.7 mg , yellow oil, y ield: 83%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.26$ (br.s, 1 H$), 8.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{dd}, J=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=15.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ $(\mathrm{dd}, J=15.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.4,170.5,135.6,133.6,131.8,130.1,129.0,128.2,128.1,128.0,123.3,113.9$, 63.9,50.2, 48.4, 44.5, 27.0, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{BrClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 419.0526$; found: 419.0528.
2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(3-fluoro-4-morpholinophenyl)acetamide (3u)

77.0 mg , yellow oil, y ield: 94%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29$ (br.s, 1 H$), 7.83-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=14.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.36$ $(\mathrm{m}, 3 \mathrm{H}), 7.13(\mathrm{ddd}, J=8.6,2.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.78(\mathrm{~m}, 4 \mathrm{H})$, $3.08-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{dd}, J=15.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.58$ (dd, $J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.2,169.9,155.4(\mathrm{~d}, J=245.3 \mathrm{~Hz}), 135.8(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=10.7 \mathrm{~Hz})$, $133.7,130.1,128.4,127.8,118.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 108.7(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 66.9,64.0,51.1(\mathrm{~d}$, $J=2.9 \mathrm{~Hz}), 50.0,48.4,44.0,27.0,25.5$.
${ }^{19} \mathbf{F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-121.4$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{FN}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 410.2244$; found: 410.2244; [M+Na] ${ }^{+}$: 432.2057; found: 432.2060 .
N-(2,6-Diisopropylphenyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide (3v)

71.8 mg , yellow oil, yield: 92%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.52(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21$ $-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.19(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{dd}, J=15.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=15.6$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{t}, J$ $=6.5 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9,171.3,145.9,133.7,132.0,130.1,128.2,127.9,127.8,123.3,64.4,50.1$, 48.6,43.5, 28.8, 27.1, 25.7, 23.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 391.2749$; found: 391.2750; [M+Na] ${ }^{+}: 413.2563$; found: 413.2571 .

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(perfluorophenyl)acetamide (3w)

39.6 mg , yellow oil, y ield: 50%. Eluent: pentane/ethyl acetate $=5 / 1$ to $3 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.38(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.80-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 3 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 1 \mathrm{H})$, $2.84(\mathrm{dd}, J=15.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.8,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=$ $12.6,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.6,170.4,133.4,130.3,128.4,127.9,63.7,50.4,48.3,42.8,27.0,25.6$.
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-143.5--146.8(\mathrm{~m}),-158.4(\mathrm{t}, J=21.5 \mathrm{~Hz}),-161.9--163.5(\mathrm{~m})$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{~F}_{5} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 397.1339$; found: 397.1339; [M+Na] ${ }^{+}: 419.1153$; found: 419.1155.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(9H-fluoren-2-yl)acetamide (3x)

67.0 mg , yellow oil, yield: 85%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.38$ (br.s, 1 H), $8.02(\mathrm{~s}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.56-$ $7.45(\mathrm{~m}, 5 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.34(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $15.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=15.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=12.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=12.5,9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,170.0,144.2,143.1,141.4,137.5,137.4,133.7,130.1,128.3,127.9,126.6$, $126.0,124.8,119.9,119.3,118.4,116.6,64.2,50.0,48.3,44.1,37.0,27.0,25.5$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 395.2123$; found: 395.2126; [M+Na] ${ }^{+}$: 417.1937 ; found: 417.1943.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(naphthalen-1-yl)acetamide (3y)

68.4 mg , yellow oil, yield: 96%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.07(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.83(\mathrm{~m}$, $3 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=15.6$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=15.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48$ ($\mathrm{s}, 3 \mathrm{H}$), 1.47 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.9,170.5,133.9,133.8,133.7,130.2,129.8,128.4,128.3,128.0,125.9,125.6$, 125.6, 124.0, 121.4, 118.0, 64.3,50.1,48.2,44.4, 27.0, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 357.1967$; found: 357.1973; [M+Na] ${ }^{+}$: 379.1781 ; found: 379.1788.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -methyl- N -phenylacetamide ($\mathbf{3 z}$)

55.1 mg , yellow oil, yield: 86%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{dd}, J=7.4,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 4.51-$ $4.38(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{dd}, J=15.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dd}, J=12.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=15.6,9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 1.48(\mathrm{dd}, J=12.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.7,171.2,143.9,134.6,129.6,129.2,127.9,127.7,127.6,127.4,65.2,50.4$, 48.4,41.1, 37.2, 27.1,25.7.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1967$; found: 321.1958; $[\mathrm{M}+\mathrm{H}]^{+}: 343.1781$; found: 343.1785.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-1-(indolin-1-yl)ethan-1-one (3aa)

43.2 mg , yellow oil, y ield: 65%. Eluent: pentane/ethyl a cetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.15(\mathrm{~m}$, $2 \mathrm{H}), 7.01(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=15.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ $(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dd}, J=15.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=12.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=12.5,8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.38 ($\mathrm{s}, 3 \mathrm{H}$), 1.37 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.2,169.6,143.0,134.7,131.1,129.5,128.1,127.8,127.5,124.5,123.6,117.0$, 64.8, 50.7, 48.9, 48.1, 43.2, 28.0, 27.3, 25.7.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 333.1967$; found: 333.1973; [M+Na $]^{+}$: 355.1781 ; found: 355.1791.
N-(tert-Butyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide (3ab)

31.5 mg , yellow oil, yield: 55%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 1 \mathrm{H}), 2.50$ $(\mathrm{dd}, J=15.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=15.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=12.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.6,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.37$ (s, 3H), 1.37 (s, 3H), 1.35 (s, 9H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.5,170.9,133.9,129.9,128.2,127.8,64.6,50.7,50.1,48.0,44.0,28.8,27.1$, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 287.2123$; found: 287.2125; [M+Na $]^{+}: 309.1937$; found: 309.1945.

N-(4-(tert-Butyl)benzyl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide (3ac)

24.9 mg , yellow oil, yield: 33%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.19$ $-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=14.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $15.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=15.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=12.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=12.5,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.9,171.6,150.0,135.6,133.8,129.9,128.2,127.9,127.4,125.4,64.4,50.1$, 48.2,43.0, 34.4, 31.3,31.3, 27.1, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 377.2593$; found: 377.2585; [M+Na $]^{+}: 399.2407$; found: 399.2414.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(pyridin-2-yl)acetamide (3ad)

41.8 mg , yellow oil, y ield: 68%. Eluent: pentane/ethylacetate $=5 / 1$ to $1 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.23$ (br.s, 1 H$), 8.19-8.13(\mathrm{~m}, 2 \mathrm{H}), 7.75-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.57$ (ddd, $J=8.5,7.3$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.86(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.26(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=15.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59$ $(\mathrm{dd}, J=15.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=12.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,170.5,151.8,147.7,138.1,133.9,129.9,128.2,128.0,119.3,114.2,64.1$, 50.2, 48.4, 44.3, 27.0, 25.5 .

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 308.1763$; found: 308.1767.
N -(2-Chloro-4-methylpyridin-3-yl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide (3ae)

24.9 mg , yellow oil, yield: 35%. Eluent: pentane/ethyl acetate $=5 / 1$ to $1 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.18(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.36(\mathrm{~m}, 3 \mathrm{H})$, $7.12(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.38(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=15.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.6,10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,170.3,148.3,147.8,146.4,133.5,130.7,130.3,128.3,128.0,124.9,64.0$, 50.2,48.3, 43.2, 27.1, 25.6, 19.0.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 356.1530$; found: 356.1525 .
2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(quinolin-8-yl)acetamide(3af)

50.1 mg , yellow oil, yield: 70%. Eluent: pentane/ethyla cetate $=5 / 1$ to $1 / 5$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.21(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.88(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ $(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 4 \mathrm{H}), 4.57-4.45(\mathrm{~m}, 1 \mathrm{H}), 2.94$ $(\mathrm{dd}, J=14.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=14.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=12.6,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.43$ (s, 6H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.7,170.6,148.1,138.9,136.1,135.3,134.1,129.9,128.4,128.1,128.0,127.4$, $121.4,121.3,116.9,64.5,50.2,48.6,45.3,27.3,25.7$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 358.1919$; found: 358.1921; [M+Na $]^{+}: 380.1733$; found: 380.1738.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(isoquinolin-1-yl)acetamide (3ag)

60.8 mg , yellow oil, yield: 85%. Eluent: pentane/ethyl acetate $=5 / 1$ to $0 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.46-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.56-4.44(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=15.5,10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.8,170.8,149.9,140.8,137.5,133.9,130.2,130.0,128.2,128.0,127.0,126.9$, $124.2,121.9,117.9,64.2,50.2,48.4,44.6,27.0,25.5$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 358.1919$; found: 358.1920. [M+Na] ${ }^{+}: 380.1733$; found: 380.1736.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(pyrazin-2-yl)acetamide (3ah)

42.5 mg , yellow oil, yield: 69%. Eluent: pentane/ethyl acetate $=5 / 1$ to $1 / 5$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.77$ (br.s, 1 H), $9.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=2.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ (dd, $J=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.5,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.5,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$, 1.39 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.3,170.5,148.6,142.2,139.7,137.2,133.5,130.1,128.3,128.0,63.7,50.1$, 48.4,43.9, 27.0, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 309.1715$; found: 309.1712; [M+Na $]^{+}: 331.1529$; found: 331.1534.
N-(Benzo[d]thiazol-6-yl)-2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide (3ai)

66.9 mg , yellow oil, yield: 92%. Eluent: pentane/ethyl acetate $=5 / 1$ to $1 / 5$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.67(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.82-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.7$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=15.7,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 1.40 (s, 3H), 1.39 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,170.3,152.8,149.4,136.4,134.6,133.7,130.1,128.4,127.8,123.3,118.9$, 112.0, 64.0,50.0, 48.3, 44.0, 27.0, 25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 364.1483$; found: 364.1489; [M+Na $]^{+}: 386.1297$; found: 386.1308.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(5-methylisoxazol-3-yl)acetamide (3aj)

44.8 mg , yellow oil, yield: 72%. Eluent: pentane/ethyl acetate $=5 / 1$ to $1 / 5$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.84(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.81-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.39-$ $4.29(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, J=15.5,10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=$ $12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 180.3,170.1,169.5,158.1,133.5,130.1,128.3,128.0,96.6,63.7,50.2,48.3,43.6$, 27.1,25.5, 12.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 312.1712$; found: 312.1715 ; [M+Na] ${ }^{+}: 334.1526$; found: 334.1536.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -(1 H-indol-6-yl)acetamide (3ak)

61.5 mg , yellow oil, yield: 89%. Eluent: pentane/ethyl acetate $=3 / 1$ to $1 / 5$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88$ (br.s, 1 H$), 8.38$ (br.s, 1 H$), 7.85(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.25(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.4$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=12.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32$ ($\mathrm{s}, 3 \mathrm{H}$), 1.30 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,170.0,133.8,133.0,131.0,130.0,128.3,128.0,127.9,125.0,116.2,112.2$, $111.1,102.5,64.4,50.1,48.2,44.0,27.0,25.6$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 346.1919$; found: 346.1919; [M+H $]^{+}: 368.1733$; found: 368.1741.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-(4-(phenylamino)phenyl)acetamide (3al)

57.2 mg , yellow oil, yield: 72%. Eluent: pentane/ethyl acetate $=3 / 1$ to $0 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.01$ (br.s, 1 H$), 7.76-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 2 \mathrm{H})$, $6.98-6.87(\mathrm{~m}, 4 \mathrm{H}), 6.83-6.73(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.35-4.22(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=15.4,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53(\mathrm{dd}, J=15.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, 1.31 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,169.8,143.8,138.8,133.7,132.6,130.1,129.3,128.4,127.9,121.2,120.2$, $119.3,116.7,64.2,50.1,48.1,43.9,27.0,25.6$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 398.2232$; found: 398.2239; [M+Na $]^{+}: 420.2046$; found: 420.2058.
N, N^{\prime}-(1,4-Phenylene)bis(2-(4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)acetamide) (3am)

34.8 mg , yellow oil, yield: 65%. Eluent: pentane/ethylacetate $=3 / 1$ to $0 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.21$ (br.s, 2H), $7.84-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 6 \mathrm{H})$, $4.41-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{dd}, J=15.6,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=15.6,10.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.19(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.60(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.1,169.9,134.5,133.7,130.2,128.4,127.9,120.2,64.1,50.0,48.4,44.1,27.1$, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 535.3073$; found: 535.3068; [M+Na] ${ }^{+}$: 557.2887; found: 557.2892.

2-(4,4-Dimethyl-5-(p-tolyl)-3,4-dihydro-2H-pyrrol-2-yl)- N-phenylacetamide (4a)

59.6 mg , yellow oil, yield: 93%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.36$ (br.s, 1H), $7.75-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H})$, $7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.26(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.6$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{dd}, J=12.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7,170.1,140.3,138.6,130.9,129.0,128.8,127.8,123.5,119.6,63.9,49.9$, 48.5,44.2, 27.1, 25.5,21.3.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1967$; found: 321.1960; [M+Na] $]^{+}: 343.1781$; found: 343.1792.

2-(5-(4-(tert-Butyl)phenyl)-4,4-dimethyl-3,4-dihydro-2H-pyrrol-2-yl)- N-phenylacetamide (4b)

66.0 mg , yellow oil, yield: 91%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.40(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H})$, $7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 1 \mathrm{H}), 4.41-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.5$, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}$, 9H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.7,170.2,153.5,138.6,130.7,128.8,127.7,125.3,123.6,119.7,63.9,49.9$, 48.5,44.2, 34.8,31.1,27.2, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 363.2436$; found: 363.2438 ; $[\mathrm{M}+\mathrm{Na}]^{+}: 385.2250$; found: 385.2255 .

2-(5-(4-(Benzyloxy)phenyl)-4,4-dimethyl-3,4-dihydro-2 H -pyrrol-2-yl)- N -phenylacetamide (4c)

72.6 mg , yellow oil, yield: 88%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.42(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.90-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.28(\mathrm{~m}, 7 \mathrm{H})$, $7.14-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 4.41-4.25(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.6,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.19(\mathrm{dd}, J=12.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.9,170.2,160.3,138.6,136.4,129.6,128.8,128.6,128.1,127.4,126.3,123.6$, $119.7,114.6,70.0,63.7,49.7,48.7,44.2,27.2,25.6$.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 413.2229$; found: 413.2229; [M+Na $]^{+}: 435.2043$; found: 435.2049.

2-(4,4-Dimethyl-5-(4-phenox yphenyl)-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4d)

58.2 mg , yellow oil, yield: 73%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.29$ (br.s, 1 H), $7.89-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 4 \mathrm{H})$, $7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 5 \mathrm{H}), 4.41-4.27(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.6$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=12.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.0,170.1,159.4,156.1,138.6,129.9,129.7,128.9,128.1,124.1,123.7,119.7$, 117.8, 63.9, 49.8, 48.7, 44.2, 27.2, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 399.2072$; found: 399.2073; [M+Na] ${ }^{+}: 421.1886$; found: 421.1891.

2-(4,4-Dimethyl-5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrol-2-yl)-N-phenylacetamide (4e)

38.9 mg , yellow oil, yield: 52%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88($ br.s, 1 H$), 7.92-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.35$ $-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.34(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dd}, J=15.5,9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.4,169.8,138.4,137.4,131.86(\mathrm{q}, J=32.6 \mathrm{~Hz}), 128.9,128.2,125.4(\mathrm{q}, J=3.8$ $\mathrm{Hz}), 123.8(\mathrm{q}, J=272.7 \mathrm{~Hz}), 123.8,119.7,64.7,50.3,48.2,44.0,26.9,25.4$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.9.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 375.1684$; found: 375.1683; [M+Na] ${ }^{+}: 397.1498$; found: 397.1503.

2-(4,4-Dimethyl-5-(o-tolyl)-3,4-dihydro-2H-pyrrol-2-yl)- N-phenylacetamide (4f)

55.1 mg , yellow oil, yield: 86%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.17(\mathrm{~m}, 6 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 1 \mathrm{H}), 4.51$ $-4.34(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=15.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{dd}, J=12.7$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=12.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.2,170.0,138.4,136.2,134.4,130.7,128.8,128.5,127.3,125.0,123.7,119.8$, 65.4,52.3, 46.2, 44.3, 26.5, 25.0, 20.1.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1967$; found: 321.1963; [M+Na] ${ }^{+}$: 343.1781; found: 343.1785.

2-(4,4-Dimethyl-5-(m-tolyl)-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4g)

50.0 mg , yellow oil, yield: 78%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.24(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.65-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 1 \mathrm{H})$, $4.41-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{dd}, J=$ $12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.3,170.1,138.6,138.0,133.8,130.8,128.8,128.6,128.2,124.9,123.6,119.7$, 64.1, 50.1, 48.4, 44.2, 27.1, 25.6, 21.5 .

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1967$; found: 321.1960; [M+Na] $: 343.1781$; found: 343.1778.

2-(5-(Fura n-2-yl)-4,4-dimethyl-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4h)

53.3 mg , yellow oil, yield: 90%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.86(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.63-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.01$ $(\mathrm{dt}, J=3.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=3.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.36(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ $(\mathrm{dd}, J=15.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=12.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.7,169.8,148.6,144.5,138.5,128.8,123.6,119.7,113.6,111.6,65.3,49.9$, 46.6,44.1,27.1,25.5.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 297.1603$; found: 297.1598; [M+Na] $: 319.1417$; found: 319.1420 .

2-(4,4-Dimethyl-5-(thiophen-2-yl)-3,4-dihydro-2H-pyrrol-2-yl)-N-phenylacetamide(4i)

38.1 mg , yellow oil, yield: 61%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.24(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.71-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=5.1,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J$
$=15.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=12.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=12.7,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.1,169.9,138.6,137.4,129.4,128.8,128.5,127.8,123.6,119.6,64.4,50.0$, 47.9,44.2, 27.5, 25.8.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}: 313.1375$; found: 313.1366; [M+Na] ${ }^{+}: 335.1188$; found: 335.1189.

2-(4,4-Dimethyl-5-(naphthalen-1-yl)-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4j)

58.4 mg , yellow oil, yield: 82%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.66($ br.s, 1 H$), 7.94-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.25$ $-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.63-4.52(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=15.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.3,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=12.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, J=12.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.8,169.9,138.4,133.7,132.5,131.7,129.1,128.7,128.3,126.5,126.1,125.4$, 125.0, 124.5, 123.7, 119.8, 65.8,52.7,46.1, 44.2, 26.6, 25.0.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 357.1967$; found: 357.1972 ; $[\mathrm{M}+\mathrm{Na}]^{+}: 379.1781$; found: 379.1790 .

2-(4,4-Dimethyl-5-(naphthalen-2-yl)-3,4-dihydro-2 H -pyrrol-2-yl)- N -phenylacetamide ($\mathbf{4 k}$)

67.7 mg , yellow oil, yield: 95%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.23$ (br.s, 1 H), $8.16(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.28$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.93(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.25(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=15.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=15.6,10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 179.9,170.1,138.6,134.0,132.7,131.0,128.9,128.7,128.1,127.8,127.7,127.2$, 126.5, 125.3, 123.7, 119.7, 64.2,50.1,48.6, 44.2, 27.3, 25.7.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 357.1967$; found: 357.1969; [M+Na] ${ }^{+}: 379.1781$; found: 379.1786.

2-(5-(Benzo[d][1,3]dioxol-5-yl)-4,4-dimethyl-3,4-dihydro-2H-pyrrol-2-yl)-N-phenylacetamide (41)

65.2 mg , yellow oil, yield: 93%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.22(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}), 4.37-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=15.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.6,10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=12.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{dd}, J=12.5,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.9,170.1,149.3,147.8,138.5,128.8,127.7,123.6,122.4,119.7,108.2,107.9$, 101.4, 63.7,49.8, 48.8, 44.1, 27.2, 25.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 351.1709$; found: 351.1704 ; $[\mathrm{M}+\mathrm{Na}]^{+}: 373.1523$; found: 373.1521 .

2-(5-(3,4-Dimethoxyphenyl)-4,4-dimethyl-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4m)

63.0 mg , yellow oil, yield: 86%. Eluent: pentane/ethyl acetate $=5 / 1$ to $1 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.38$ (br.s, 1 H$), 7.63-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.4$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=15.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.5,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.60$ (dd, $J=12.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.9,170.1,150.9,148.8,138.6,128.8,126.1,123.6$, $121.1,119.5,111.0,110.3,63.6,55.9,55.8,49.8,48.7,44.1,27.4,25.7$.
HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 367.2021$; found: 367.2013 ; [M+Na $]^{+}: 389.1835$; found: 389.1832.

2-(5-(3,4-Dichlorophenyl)-4,4-dimethyl-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4n)

31.5 mg , yellow oil, yield: 42%. Eluent: pentane/ethylacetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.52$ $(\mathrm{m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.31(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=$ $15.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=15.5,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=12.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{dd}, J=12.7,9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.38(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.2,169.7,138.4,134.5,133.7,132.8,130.4,129.9,128.9,127.0,123.9,119.7$, 64.5,50.1, 48.3,44.0, 27.0, 25.4.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 375.1031$; found: 375.1029; [M+Na] ${ }^{+}: 397.0845$; found: 397.0851 .
(E)-2-(4,4-Dimethyl-5-(1-phenylprop-1-en-2-yl)-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4o)

35.3 mg , yellow oil, yield: 51%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.53($ br.s, 1 H$), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.16(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=15.5,10.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.24(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.14(\mathrm{dd}, J=12.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{dd}, J=12.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.41$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.4,170.2,138.7,136.7,134.4,132.0,129.3,128.9,128.3,127.6,123.5,119.5$, 63.2,49.6, 49.4, 44.2, 27.8, 26.1, 16.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 347.2123$; found: 347.2119; [M+Na]+: 369.1937; found: 369.1940.
N-Phenyl-2-(1-phenyl-2-azaspiro[4.5]dec-1-en-3-yl)acetamide (4p)

64.4 mg , yellow oil, yield: 93%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.12($ br.s, 1 H$), 7.72-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H}), 4.45-4.32(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.4$, $9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=12.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{td}, J=12.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.55-1.42(\mathrm{~m}$, $3 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.0,170.0,138.5,134.8,129.5,128.8,128.1,128.0,123.6,119.7,64.9,56.1$, 44.4,41.4, 35.6, 31.3, 25.4, 23.2,23.0.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 347.2123$; found: 347.2121; [M+Na] $: 369.1937$; found: 369.1937.

2-(4-Allyl-4-methyl-5-phenyl-3,4-dihy dro-2H-pyrrol-2-yl)- N -phenylacetamide (4q)

53.2 mg , yellow oil, $\mathrm{dr}=3: 1$, yield: 80%. Eluent: pentane $/$ ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.1$ (br.s, 1 H$), 7.87-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.35$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=$ $15.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=15.5,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=13.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.0,7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{dd}, J=13.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{dd}, J=13.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.8,170.0,138.5,133.9,133.4,130.1,128.8,128.4,128.0,127.8,123.7,119.7$, 65.0, 54.3, 44.5, 44.4, 43.4, 26.3.

HR-MS (ESI-TOF) ca lcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1967;found: 333.1964.

2-(4-Allyl-4-ethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-N-pheny lacetamide (4r)

47.1 mg , yellow oil, $\mathrm{dr}=10: 3$, yield: 68%. Eluent: pentane $/$ ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.24(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.88-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.43-4.23(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}$, $J=15.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dd}, J=14.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=13.2,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86$ $(\mathrm{dd}, J=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.63(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.0,170.0,138.6,134.4,133.5,130.2,128.8,128.5,127.8,123.6,119.7,118.6$, 65.2,59.4, 44.6, 43.5, 40.6, 30.9,9.1.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 347.2123$; found: 347.2128, $[\mathrm{M}+\mathrm{H}]^{+}: 369.1937$; found: 369.1945.

2-(4-Allyl-4,5-diphenyl-3,4-dihydro-2H-pyrrol-2-yl)- N-phenylacetamide (4s)

41.0 mg , yellow oil, $\mathrm{dr}=20: 9$, yield: 52%. Eluent: pentane $/$ ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.24$ (br.s, 1 H$), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.23(\mathrm{~m}, 10 \mathrm{H})$, $7.14-7.09(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.75-$ $2.63(\mathrm{~m}, 3 \mathrm{H}), 1.92(\mathrm{dd}, J=13.6,7.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 174.7,169.8,146.6,138.5,133.4,132.9,130.5,129.0,129.0,128.3,126.8,126.1$, 123.8, 119.7, 119.5, 66.8, 61.6, 49.0, 45.0, 40.6.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 395.2123$; found: 395.2122, $[\mathrm{M}+\mathrm{H}]^{+}: 417.1937$; found: 417.1947.

2-(4-Allyl-4-methyl-5-(m-tolyl)-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylacetamide (4t)

52.6 mg , yellow oil, dr=20:7, yield: 76%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 1 \mathrm{H}), 5.83$ $-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.24(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=15.5,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{dd}, J=13.0,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.8,170.0,138.6,138.1,134.0,133.6,130.9,128.8,128.7,128.3,125.0,123.6$, $119.7,118.7,64.9,54.3,44.6,44.5,43.4,26.3,21.5$.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 347.2123$; found: 347.2119 ; [M+Na] ${ }^{+}: 369.1937$; found: 369.1942.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)- N -phenylpropanamide (4u)

59.6 mg , yellow oil, $\mathrm{dr}=10: 3$, yield: 93%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.72$ (br.s, 1 H), $7.83-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.32-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=12.4,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.68(\mathrm{dd}, J=12.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41$ (s, 6H), $1.30(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 179.9,172.9,138.9,133.8,130.2,128.8,128.4,127.9,123.4,119.6,69.6,49.7$, 48.2,46.1, 26.8, 25.1,13.2.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 321.1967$; found: 321.1968; [M+Na] ${ }^{+}: 343.1781$; found: 343.1789.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-2-methyl- N -phenylpropanamide (4v)

28.1 mg , yellow oil, yield: 42%. Eluent: pentane/ethyl acetate $=5 / 1$ to $2 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.73(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.91-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 3 \mathrm{H})$, $7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.03(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=12.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}$, $J=12.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.2,176.1,139.1,133.8,130.2,128.8,128.4,127.8,123.3,119.6,72.3,49.8$, 45.3,43.9, 26.8, 25.4, 22.8, 20.7.

HR-MS (ESI-TOF) calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 335.2123$; found: 335.2120; [M+Na] ${ }^{+}$: 357.1937; found: 357.1942.

2-(4,4-Dimethyl-5-phenyl-3,4-dihydro-2H-pyrrol-2-yl)-2-methyl- N -phenylpropanamide ($\mathbf{(4 v} \mathbf{v}^{\text {'p }}{ }^{[6]}$

29.4 mg , yellow oil, y ield: 46%. Eluent: pentane/ethyl acetate $=5 / 1$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.34(\mathrm{~m}, 3 \mathrm{H}), 5.06-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.85(\mathrm{~m}, 1 \mathrm{H})$, $4.53(\mathrm{t}, J=8.1,1 \mathrm{H}), 2.14(\mathrm{dd}, J=12.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{dd}, J=12.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H})$, 1.35 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.6,146.9,134.6,129.4,128.0,127.9,110.0,72.2,50.3,47.2,27.0,25.8,19.8$.
4. Reference
[1] Liu, R.-H.; Wei, D.; Han, B.; Yu, W. ACS Catal. 2016, 6, 6525-6530.
[2] Wang, L.; Wang C. J. Org. Chem. 2019, 84, 6547-6556.
[3] Zhang, M.; Liu, S.; Li, H.; Guo, Y.; Li, N.; Guan, M.; Mehfooz, H.; Zhao, J.; Zhang, Q. Chem. Eur. J. 2019, 25, 12620-12627.
[4] Cai, S.-H.; Xie, J.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P.ACS Catal. 2016, 6, 5571-5574.
[5] Zhang, Y.; Yin, Y.; Wang H.; Wu, X.-F. Chem. Commun. 2020, 56, 7045-7048.
[6] Du, W.; Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2014, 50, 7437-7439.
5. ${ }^{1} \mathrm{H}$-, ${ }^{13} \mathrm{C}$ - and ${ }^{19} \mathrm{~F}$-NMR spectra copy of products
200415.f316.10.fid - Youcan Zhang YZhang-3-22 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200416 - 300.20MHz

200415.f316.11.fid - Youcan Zhang YZhang-3-22 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} 2004 16-75.49MHz

3b
 MN
ullus \qquad uld
\qquad $\begin{array}{llllllllllll}2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 \\ & & & & & & f 1(\mathrm{ppm})\end{array}$

 200414.423.11.fid - Youcan Zhang YZhang-3-48 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 200423 - 100.63MHz

$\stackrel{\text { ño }}{\text { ¢ }}$	N		$\underset{\sim}{\text { No융 }}$	¢	웅 M N	$\stackrel{\text { ơ o i }}{\substack{\text { in }}}$

3b

 200417.f331.11.fid — Youcan Zhang YZhang-3-50 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200431 - 75.49MHz

 200409.f352.11.fid - Youcan Zhang YZhang-3-27 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 52-75.49MHz
合

200409.f352.13.fid — Youcan Zhang YZhang-3-27 - 19F(H-entk) CDCl3 \{C: \Bruker\TopSpin3.6.0\} $200452-282.44 \mathrm{MHz}$

\qquad

[^0]200409.f353.10.fid — Youcan Zhang YZhang-3-28 — PROTON CDCl3 \{C: \Bruker\TopSpin3.6.0\} 200453 - 300.20MHz

200409.f353.11.fid - Youcan Zhang YZhang-3-28 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 53-75.49MHz
200409.f353.11.fid - Youcan Zhang YZhang-3-28 - C13CPD CDC13 \{C: \Bruker\TopSpin3.6.0\} 2004 53-75.49MHz

[^1]200409.f353.12.fid - Youcan Zhang YZhang-3-28 - F19 CDCl3 \{C:\Bruker\TopSpin3.6.0\} $200453-282.44 \mathrm{MHz}$ O.

 | 1 | |
| :--- |
| 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 | -200 |

Wlllue \qquad lille \qquad MU $\begin{array}{llllllllllllll}2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$ f1 (ppm)

200508.f357.11.fid - Youcan Zhang YZhang-3-140 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} $200557-75.49 \mathrm{MHz}$

200417.439.10.fid - Youcan Zhang YZhang-3-88 - Au1H CDCl3 \{C: \Bruker\TopSpin3.5pl6\} 200439 - 400.13MHz

 MU
$\begin{array}{llllllllllll} & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 \\ 1.7\end{array}$ f1 (ppm)

200417.439.11.fid - Youcan Zhang YZhang-3-88 - Au13C CDCI3 \{C:\Bruker\TopSpin3.5pl6\} $200439-100.63 \mathrm{MHz}$

200417.439.12.fid - Youcan Zhang YZhang-3-88 - F19 CDC13 \{C:\Bruker\TopSpin3.5pl6\} $200439-376.46 \mathrm{MHz}$

200420.f342.10.fid — Youcan Zhang YZhang-3-66 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200442 - 300.20MHz

$\begin{array}{lll} & \\ & 1 & 1\end{array}$
ullur \qquad lill \qquad MM

200420.f342.11.fid — Youcan Zhang YZhang-3-66 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200442-75.49 \mathrm{MHz}$

| 2.9 | 1.8 | 1.7 | 2.6 | 2.5 | 2.4 | 2.3 | 2.2 | 2.1 | 2.0 | 1.9 | 1.8 | 1.7 | 1.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | f1 (ppm)

200406.f350.11.fid — Youcan Zhang YZhang-3-45 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200450-75.49 \mathrm{MHz}$

200508.f358.11.fid - Youcan Zhang YZhang-3-144 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} 2005 58-75.49MHz

ullthe \qquad IIll \qquad NM
$\begin{array}{llllllllllllllll} \\ 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$
f1 (ppm)

200417.f329.11.fid — Youcan Zhang YZhang-3-47 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200429 - 75.49MHz
-家

ullu \qquad Illla \qquad ML
$\begin{array}{llllllllllllllll} & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$
f1 (ppm)

200409.f354.11.fid - Youcan Zhang YZhang-3-44 - C13CPD CDCI3 \{C: \Bruker\TopSpin3.6.0\} $200454-75.49 \mathrm{MHz}$
-这

200409.f354.13.fid - Youcan Zhang YZhang-3-44 - 19F(H-entk) CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200454 - 282.44MHz

200417.f332.11.fid - Youcan Zhang YZhang-3-51 — C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200432 - 75.49MHz

uthe \qquad Mald \qquad MM
$\begin{array}{llllllllllllll}2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$ f1 (ppm)

'00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
		180			150	140	130	120		f1 (ppm)										

200422.f328.11.fid - Youcan Zhang YZhang-3-102 — C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 28-75.49MHz

200415.f348.10.fid - Youcan Zhang YZhang-3-87 — PROTON CDC13 \{C:\Bruker\TopSpin3.6.0\} 200448 - 300.20MHz
$\begin{array}{lllllllllllllll}2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$
f1 (ppm)

Mn
\qquad Mal \qquad
\qquad

200415.f348.11.fid - Youcan Zhang YZhang-3-87 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 48-75.49MHz

200506.f350.10.fid - Youcan Zhang YZhang-3-90 - PROTON CDCl3 \{C: \Bruker\TopSpin3.6.0\} 2005 50 - 300.20MHz

200506.f350.11.fid - Youcan Zhang YZhang-3-90 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} $200550-75.49 \mathrm{MHz}$

200409.f355.11.fid - Youcan Zhang YZhang-3-43 - C13CPD CDCI3 \{C: \Bruker\TopSpin3.6.0\} 200455 - 75.49MHz
-

200423.f319.10.fid — Youcan Zhang YZhang-3-65 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200419-300.20 \mathrm{MHz}$

200423.f319.11.fid - Youcan Zhang YZhang-3-65 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 19-75.49MHz

$\stackrel{\text { +. }}{\stackrel{\rightharpoonup}{\dot{~}}}$	$\stackrel{\text { ñ }}{\stackrel{\circ}{\circ}}$		ल	No	¢		

200424.f365.10.fid — Youcan Zhang YZhang-3-109 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} 20045 - 300.20MHz

200424.f365.11.fid - Youcan Zhang YZhang-3-109 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 5-75.49MHz

$3 u$

00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

200427.f305.10.fid - Youcan Zhang YZhang-3-109 - 19F(H-entk) CDCl3 \{C: \Bruker\TopSpin3.6.0\} $20045-282.44 \mathrm{MHz}$

$3 u$

[^2]

200508.f356.11.fid - Youcan Zhang YZhang-3-139 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2005 56-75.49MHz

200527.f334.10.fid - Youcanzhang YZhang-3-207 — PROTON CDCI3 \{C: \Bruker\TopSpin3.6.0\} 200534 - 300.20MHz (\rightarrow 隹

μ

\qquad IVL

$\begin{array}{lllllllllllllllll}2.9 & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 \\ & & & & & & & & (\mathrm{ppm})\end{array}$

200527.f334.11.fid - Youcanzhang YZhang-3-207 — C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2005 34-75.49MHz
ハ

200527.f334.12.fid - Youcanzhang YZhang-3-207 - F19 CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200534 - 282.44MHz

200415．f344．10．fid－Youcan Zhang YZhang－3－5－2－PROTON CDCI3 \｛C：\Bruker\TopSpin3．6．0\} 200444-300.20MHz

，MOM \qquad μM \qquad $M M$
$\begin{array}{lllllllllllll} & 1.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 \\ & & & & & f(\mathrm{ppm})\end{array}$
f1（ppm）

200415．f344．11．fid－Youcan Zhang YZhang－3－5－2－C13CPD CDCI3 \｛C：\Bruker\TopSpin3．6．0\} 200444 －75．49MHz

$\stackrel{\text { m．}}{\stackrel{\text { ¢ }}{\mid}}$	$\stackrel{\circ}{-1}$	壬桨示	＜	ֻ		$\stackrel{\circ}{\text { i }}$	$\stackrel{\text { ® }}{\text { ¢ }}$

$3 y$

M
$\begin{array}{lllllllllllll}2.9 & 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7\end{array}$ f1 (ppm)

200424.f362.11.fid - Youcan Zhang YZhang-3-101 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 20042 - 75.49MHz

					150							80					1		
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

200423.f322.11.fid - Youcan Zhang YZhang-3-108 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200422-75.49 \mathrm{MHz}$
fid - Youcan Zhang YZhang-3-108 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} 2004 22-75.49MHz

200	19																1	1	
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$\begin{array}{lllllll}4.6 & 4.5 & 4.4 & \begin{array}{c}4.3 \\ \mathrm{f}(\mathrm{ppm})\end{array} & 4.2 & 4.1 & 4.0 \\ & & & & & \end{array}$

200423.f323.11.fid - Youcan Zhang YZhang-3-105 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 23-75.49MHz
(

200403.f332.11.fid - Youcan Zhang YZhang-3-23 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 $32-75.49 \mathrm{MHz}$

//1
/1 / /

200414.421.11.fid - Youcan Zhang YZhang-3-29 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 200421 - 100.63MHz

$\begin{array}{lllllllllllllll} & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 & 1.5\end{array}$
f1 (ppm)

200406.f348.11.fid — Youcan Zhang YZhang-3-36 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200448 - 75.49MHz

200423．f321．10．fid－Youcan Zhang YZhang－3－106－PROTON CDCI3 \｛C：\Bruker\TopSpin3．6．0\} 2004 21-300.20MHz

$3 a e$

all Hen \qquad will \qquad IMA $\begin{array}{llllllllllllllll}2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7\end{array}$ f1（ppm）

200423．f321．11．fid－Youcan Zhang YZhang－3－106－C13CPD CDCl3 \｛C：\Bruker\TopSpin3．6．0\} $200421-75.49 \mathrm{MHz}$

$\begin{aligned} & \text { M } \\ & \stackrel{\sim}{\infty} \\ & \hline ⿴ 囗 十 \end{aligned}$					¢		$\stackrel{\sim}{\text { ¢ }}$	合菅
｜	｜	V／						
1H？	V		11	－	$1 /$			

200423.f318.11.fid - Youcan Zhang YZhang-3-63 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 18-75.49MHz

200506.f349.11.fid - Youcan Zhang YZhang-3-60 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200549-75.49 \mathrm{MHz}$

200421.f344.10.fid — Youcan Zhang YZhang-3-62 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200444 - 300.20MHz

alabla \qquad ill. \qquad MM
$\begin{array}{llllllllllllll}2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$ f1 (ppm)

200421.f344.11.fid — Youcan Zhang YZhang-3-62 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2004 44-75.49MHz
ハ

200415.f347.10.fid - Youcan Zhang YZhang-3-86 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200447 - 300.20MHz

f1 (ppm)

200415.f347.11.fid — Youcan Zhang YZhang-3-86 — C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200447-75.49 \mathrm{MHz}$

\qquad
 200417.438.11.fid - Youcan Zhang YZhang-3-84 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 200438 - 100.63MHz

$\stackrel{\text { O. }}{\stackrel{\text { ® }}{-}}$		$\stackrel{\rightharpoonup}{0}$		寧	$\stackrel{m}{\wedge} \stackrel{0}{i} \hat{j}$	กิ่	กับ.	¢	$\stackrel{\text { Nin }}{\sim}$	$\stackrel{\sim}{\text { - }}$
1	V	\|								
V	\|	\checkmark	\|	11	\|	11				

200529.324.10.fid - Youcan Zhang YZhang-3-225 - Au1H CDCl3 \{C: \Bruker\TopSpin3.6.0\} 200524 - 300.13MHz

3ak

NMO \qquad M 10 \qquad M
$\begin{array}{llllllllllllll}2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 & 1.5 \\ & & & & & & (\mathrm{ppm})\end{array}$ f1 (ppm)

200529.324.11.fid - Youcan Zhang YZhang-3-225 - Au13C CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200524 - 75.48MHz

$\stackrel{\text { m }}{\substack{\text { a }}}$	-	 			犬	$\stackrel{+}{\text { ¢ }}$		슨
\|	\|	-	$1 \backslash$		V	\|	$1 / 1$	11

200526.316.11.fid - Youcan Zhang YZhang-3-208 - Au13C CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200516-75.48 \mathrm{MHz}$

[^3]
200529.325.11.fid - Youcan Zhang YZhang-3-226 - Au13C CDC13 \{C:\Bruker\TopSpin3.6.0\} 200525 - 75.48MHz

 MM wMhr la adu \qquad
 f1 (ppm)

200522.f318.11.fid - Youcan Zhang, 3-201 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} $200518-75.49 \mathrm{MHz}$

 ill 10

$\begin{array}{lllllllllllll}2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 \\ & & & & f 1(p p m)\end{array}$ f1 (ppm)

200522.f319.11.fid - Youcan Zhang, 3-202 - C13CPD CDC13 \{C:\Bruker\TopSpin3.6.0\} $200519-75.49 \mathrm{MHz}$

J, /1 1 , l

			ছু						な。	$\begin{aligned} & T \\ & \hline \end{aligned}$					$\begin{aligned} & \text { TO } \\ & \stackrel{-}{2} \end{aligned}$									
2.0	11.5	11.0	$\stackrel{1}{10.5}$	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	${ }^{1}$	0.0
								8.0		7.0		f1 (ppm)		5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

MMr \qquad M 4 \qquad ML

$$
\begin{array}{lllllllllllll}
2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6 \\
& & & & f 1(\mathrm{ppm})
\end{array}
$$

200618.326.11.fid - Youcan Zhang YZhang-3-242 - Au13C CDC13 \{C:\Bruker\TopSpin3.6.0\} 2006 26-75.48MHz

 $\iint \| / 1 /$
\qquad IMLIL \qquad UM

\qquad

200619.f327.11.fid - Youcan Zhang YZhang-3-240 - C13CPD CDCI3 \{C: \Bruker\TopSpin3.6.0\} $200627-75.49 \mathrm{MHz}$
(

$\bigcirc 00$	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

200619.f327.12.fid - Youcan Zhang YZhang-3-240 - F19 CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200627 - 282.44MHz

woblis \qquad lll \qquad MN
$\begin{array}{llllllllllllllll}1.8 & 2.7 & 1.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$ f1 (ppm)

200612.f333.11.fid - Zhang/ Y Zhang-3-233 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200633-75.49 \mathrm{MHz}$

$\stackrel{\sim}{\infty}$			「으웅 4	$\stackrel{\text { U }}{\text { i }}$	$\stackrel{\sim}{i}$		呙 11	$\stackrel{\square}{\text { i }}$

200623.f308.11.fid — Zhang/ Y Zhang-3-25-1 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} 20068 -75.49MHz

$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{1}}$	$\stackrel{\rightharpoonup}{\circ}$			$\stackrel{7}{\mathbf{j}}$		ํㅜ눈 $1 /$

4h

Wha Wh \qquad MU
$\begin{array}{llllllllllllllll}1.8 & 1 & 1 & 1 & 1 & 1 \\ 2.8 & 2.7 & 2.6 & 2.5 & 2.4 & 2.3 & 2.2 & 2.1 & 2.0 & 1.9 & 1.8 & 1.7 & 1.6\end{array}$ f1 (ppm)
200622.f342.11.fid - Youcan Zhang YZhang-3-245 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200642-75.49 \mathrm{MHz}$

200612．f332．11．fid－Zhang／Y Zhang－3－230－C13CPD CDCI3 \｛C：\Bruker\TopSpin3．6．0\} $200632-75.49 \mathrm{MHz}$

守守		$\checkmark \infty$ n ∞＠ 0 	犬̊ํㅜ웅	$\stackrel{\text { ¢ }}{\text { d }}$		$\stackrel{\sim}{\sim} \stackrel{\infty}{\sim}$
｜｜	$1 /$	\H｜	\checkmark	｜	1／1	11

	190												70					10		
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

wlllus

200612.f331.11.fid — Zhang/ Y Zhang-3-232 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2006 31 - 75.49MHz

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										f1 (ppm)									

200527.341.11.fid - Youcan Zhang YZhang-3-221 - Au13C CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200541 - 75.48MHz

$\stackrel{\square}{\square}$	$\stackrel{-1}{\stackrel{\rightharpoonup}{\circ}} \stackrel{1}{\square}$			N		$\stackrel{\sim}{1} \stackrel{n}{\sim}$

\qquad

200612.f330.11.fid - Zhang/ Y Zhang-3-229 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200630-75.49 \mathrm{MHz}$

200622.f341.10.fid - Youcan Zhang YZhang-3-238 — PROTON CDC13 \{C:\Bruker\TopSpin3.6.0\} 200641 - 300.20MHz

ल.

200622.f341.11.fid - Youcan Zhang YZhang-3-238 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200641-75.49 \mathrm{MHz}$

200619.f324.11.fid — Youcan Zhang YZhang-3-239 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200624-75.49 \mathrm{MHz}$

200622.f343.11.fid - Youcan Zhang YZhang-3-241 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} $200643-75.49 \mathrm{MHz}$

$\stackrel{\text { ¢ }}{\stackrel{\text { d }}{\sim}}$	N			ก	V'\%	N	$\stackrel{\infty}{\stackrel{\infty}{i}} \stackrel{1}{\circ}$

00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

200527.f333.10.fid - Youcanzhang YZhang-3-205 — PROTON CDCI3 \{C:\Bruker\TopSpin3.6.0\} 200533 - 300.20MHz

200527.f333.11.fid—Youcanzhang YZhang-3-205 - C13CPD CDCI3 \{C:\Bruker\TopSpin3.6.0\} 2005 33-75.49MHz

[^4]

Ph
N
N
N
$\mathbf{4 q}, \mathrm{dr}=3: 1$

200504.404.11.fid - Youcan Zhang YZhang-3-141 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 20054 - 100.63MHz

200522.f320.11.fid - Youcan Zhang, 3-203 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} $200520-75.49 \mathrm{MHz}$
号

$4 \mathbf{r}, \mathrm{dr}=10: 3$

200624.407.11.fid - Youcan Zhang YZhang-3-246 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 20067 - 100.63MHz

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
										f1 (ppm)										

$4 \mathbf{t}, \mathrm{dr}=20: 7$

200522.f321.11.fid - Youcan Zhang, 3-204 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} $200521-75.49 \mathrm{MHz}$
200522.f321.11.fid - Youcan Zhang, 3-204 - C13CPD CDCl3 \{C:\Bruker\TopSpin3.6.0\} 2005 21-75.49MHz

. 00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

$4 \mathbf{u}, \mathrm{dr}=10: 3$ \square

200603.406.10.fid - Youcan Zhang YZhang-3-224 - Au1H CDCI3 \{C:\Bruker\TopSpin3.5pl6\} 20066 - 400.13MHz

200603.406.11.fid - Youcan Zhang YZhang-3-224 - Au13C CDCl3 \{C:\Bruker\TopSpin3.5pl6\} 20066 - 100.63MHz

200617.310.10.fid — Youcan Zhang YZhang-3-235-2 — Au1H CDCl3 \{C:\Bruker\TopSpin3.6.0\} $200610-300.13 \mathrm{MHz}$

200617.310.11.fid - Youcan Zhang YZhang-3-235-2 - Au13C CDCl3 \{C:\Bruker\TopSpin3.6.0\} 200610 - 75.48MHz
$\overrightarrow{0} \quad \vec{\omega}$

200617.309.10.fid - Youcan Zhang YZhang-3-235-1 - Au1H CDCl3 \{C:\Bruker\TopSpin3.6.0\} 20069 - 300.13MHz

200617.309.11.fid - Youcan Zhang YZhang-3-235-1 - Au13C CDCl3 \{C:\Bruker\TopSpin3.6.0\} $20069-75.48 \mathrm{MHz}$

[^0]: $\begin{array}{lllllllllllllllllllllllllllllllllllll}0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -20\end{array}$

[^1]:

[^2]:

[^3]: | 00 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |
 | :--- |

[^4]:

