Electronic Supplementary Information (ESI)

Palladium-catalyzed tandem reaction of epoxynitriles with arylboronic acids in aqueous medium: divergent synthesis of furans and pyrroles

Shuling Yu,^{†a} Ling Dai,^{†a} Yinlin Shao,^a Renhao Li,^b Zhongyan Chen,^a Ningning Lv,^{a*} and Jiuxi Chen^{a*}

^aCollege of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China. *E-mail: jiuxichen@wzu.edu.cn; ningninglv@wzu.edu.cn*^bSchool of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325035, P. R. China.

Table of Contents

1. General information	
2. Experimental section	S2
3. Control experiments.	S5
4. Reference	
5. Analytical data for reactants	S7
6. Analytical data for all products	S10
7. NMR spectra for reactants	
8. NMR spectra for all products	S32

1. General information.

¹H NMR and ¹³C NMR spectra were measured on a 500 MHz Bruker spectrometer, using DMSO- d_6 or CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given δ relative to tetramethylsilane, and the coupling constants *J* are given in hertz. High-resolution mass spectra (HRMS) were recorded on an electrospray ionization (ESI) quadrupole time-of-flight mass spectrometer. Substrates of epoxide were synthesized according to the related literature.¹⁻² Unless otherwise noted, materials were obtained commercially and used without further purification. Flash column chromatography was performed over silica gel (300–400 mesh).

2. Experimental section.

2.1. General procedure for the synthesis of 2-(3-aryloxiran-2-yl)acetonitriles (1a-

Step-A¹: To a solution of the styrene (350 μ L, 3 mmol) in CH₃CN (10 ml) was added the 2-bromoacetonitrile (380 μ L, 6 mmol), 1,10-phenanthroline (108 mg, 0.6 mmol), CuI (57 mg, 0.3 mmol), and DBU (910 μ L, 6 mmol) under N₂ in a round-bottomed flask. The reaction mixture was stirred at 110 °C for 5 h. After the reaction finished, the reaction mixture was cooled to room temperature and quenched by water. The mixture was extracted with EtOAc (3.0 mL×3), the combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by column chromatography (petroleum ether /ethyl acetate = 40:1) to give the corresponding (*E*)-4-arylbut-3-enenitriles.

Step-B²: To a solution of *m*-CPBA (0.52 g, 3 mmol), in dichloromethane (2.0 mL) was added (*E*)-4-arylbut-3-enenitriles (2 mmol) at 0 °C. After being stirred at r.t. for

24 h, the mixture was poured into DCM, which was washed with saturated NaHSO₃ ($2 \times 10 \text{ mL}$) and saturated NaHCO₃ ($3 \times 10 \text{ mL}$) respectively. After the aqueous layer was extracted with DCM, the combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The residue was purified by column chromatography (petroleum ether /ethyl acetate = 7:1) to give the desired 2-(3-aryloxiran-2-yl)acetonitriles (**1a-e**).

2.2. Optimization of reaction conditions for the synthesis of furan^a

	Ph CN +	PhB(OH) ₂ - 2a	catalyst additive, solv	vent Ph O	Ph	
Entr	y Pd catalyst	Ligand	Additive	Solvent	Yield (%) ^b	
1	Pd(OAc) ₂	L1	TFA	dioxane	trace	
2	Pd(OAc) ₂	L1	TFA	dioxane/H ₂ O	23	
3	Pd(OAc) ₂	L1	TFA	THF/H ₂ O	12	
4	Pd(OAc) ₂	L1	TFA	DMF/H ₂ O	7	
5	Pd(OAc) ₂	L1	TFA	EtOH/H ₂ O	10	
6	Pd(OAc) ₂	L1	TFA	H ₂ O	51	
7	Pd(OAc) ₂	L1	TsOH•H ₂ O	H ₂ O	49	
8	Pd(OAc) ₂	L1	D-CSA	H ₂ O	54	
9	Pd(OAc) ₂	L1	TfOH	H ₂ O	58	
10	Pd(OAc) ₂	L1	MsOH	H ₂ O	69	
11	Pd(OAc) ₂	L1	AcOH	H ₂ O	0	
12	Pd(OAc) ₂	L1	HCI	H ₂ O	0	
13	Pd(OAc) ₂	L2	MsOH	H ₂ O	47	
14	Pd(OAc) ₂	L3	MsOH	H ₂ O	63	
15	Pd(OAc) ₂	L4	MsOH	H ₂ O	0	
16	Pd(OAc) ₂	L5	MsOH	H ₂ O	0	
17	Pd(OAc) ₂	L6	MsOH	H ₂ O	52	
18	PdCl ₂	L1	MsOH	H ₂ O	38	
19	Pd(MeCN) ₂ Cl ₂	L1	MsOH	H ₂ O	43	
20	Pd ₂ (dba) ₃	L1	MsOH	H ₂ O	55	
21	Pd(acac) ₂	L1	MsOH	H ₂ O	60	
22	Pd(CF ₃ CO ₂) ₂	L1	MsOH	H ₂ O	73	
23	Pd(CF ₃ CO ₂) ₂	L1	MsOH	H ₂ O	86 ^c	
24	Pd(CF ₃ CO ₂) ₂	L1	MsOH	H ₂ O	53 ^d	
25		L1	MsOH	H ₂ O	0	
26	$Pd(CF_3CO_2)_2$		MsOH	H ₂ O	0	
$ \begin{array}{c c} & & & \\ \hline \\ = N & N \\ L1 & L2 \\ L3 \\ L4 \\ L4 \\ L5 \\ L5 \\ L6 \end{array} \begin{array}{c c} Ph \\ Ph $						

Table S1. Optimization of the reaction conditions for the synthesis of $3a^{a}$

^aConditions: **1a** (0.3 mmol), **2a** (0.6 mmol), Pd catalyst (5 mol %), ligand (10 mol %), additive (3 mmol), solvent/H₂O (2 mL/2 mL) or solvent (4 mL), 80 °C, 36 h, air. ^bIsolated yield. ^cunder O₂ atmosphere. ^dunder N₂ atmosphere.

2.3. Optimization of reaction conditions for the synthesis of pyrrole^a

\wedge			catalyst, liga	and	
Ph	$\sqrt{CIN + AIE}$	3(UH)₂ mothylpho	additive, solve	ent/H ₂ O	N I
1a	Ai – 2,0-uli I	2b'	шу		4a
Entry	Pd catalyst	Ligand	Additive	Solvent	Yield (%) ^b
1	Pd(OAc) ₂	L1	TsOH•H ₂ O	MeOH/H ₂ O	54
2	Pd(OAc) ₂	L1	TsOH•H ₂ O	EtOH/H ₂ O	65
3	Pd(OAc) ₂	L1	TsOH•H ₂ O	ⁿ PrOH/H ₂ O	67
4	Pd(OAc) ₂	L1	TsOH•H ₂ O	HFIP/H ₂ O	33
5	Pd(OAc) ₂	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	78
6	Pd(OAc) ₂	L1	MsOH	ⁱ PrOH/H ₂ O	67
7	Pd(OAc) ₂	L1	TfOH	ⁱ PrOH/H ₂ O	52
8	Pd(OAc) ₂	L1	TFA	ⁱ PrOH/H ₂ O	55
9	Pd(OAc) ₂	L1	AcOH	ⁱ PrOH/H ₂ O	49
10	Pd(OAc) ₂	L1	D-CSA	ⁱ PrOH/H ₂ O	65
11	Pd(TFA) ₂	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	74
12	Pd(acac) ₂	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	66
13	PdCl ₂	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	45
14	Pd(MeCN) ₂ Cl ₂	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	trace
15	Pd ₂ (dba) ₃	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	51
16	Pd(PhP ₃) ₂ Cl ₂	L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	trace
17		L1	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	0
18	Pd(OAc) ₂	L2	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	59
19	Pd(OAc) ₂	L3	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	68
20	Pd(OAc) ₂	L4	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	35
21	Pd(OAc) ₂	L5	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	49
22	Pd(OAc) ₂	L6	TsOH•H ₂ O	ⁱ PrOH/H ₂ O	15
23	Pd(OAc) ₂		TsOH•H ₂ O	ⁱ PrOH/H ₂ O	0
24	Pd(OAc) ₂	L1		ⁱ PrOH/H ₂ O	0
		=N N L3	$-\bigvee_{N} \bigvee_{N} \bigvee_{$	Ph Ph	

Table S2. Optimization of the reaction conditions for the synthesis of $4a^a$

^aConditions: **1a** (0.3 mmol), **2a** (0.6 mmol), Pd catalyst (5 mol %), ligand (10 mol %), additive (2 equiv), solvent/H₂O (0.5: 2.5 mL), 100 $^{\circ}$ C, 24 h, N₂. ^bIsolated yield.

2.4. General procedure for the synthesis of furans.

2-(3-aryloxiran-2-yl)acetonitriles 1 (0.3 mmol, 1.0 equiv), arylboronic acid 2 (0.6

mmol, 2.0 equiv), Pd(TFA)₂ (0.015 mmol, 5 mol%), 2,2'-bipyridyl (L1) (0.03 mmol, 10 mol%), MsOH (3 mmol, 10 equiv) and H₂O (4.0 mL) were successively added into a Schlenk reaction tube under O₂ atmosphere. The reaction mixture was stirred vigorously at 80 °C in an oil bath for 36 h. After the reaction equilibrium, the mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2×10 mL) and then brine (10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with hexane to afford the desired furans **3**.

2.5. General procedure for the synthesis of pyrroles.

$$Ar^{1} \xrightarrow{O} CN + Ar^{2}B(OH)_{2} \xrightarrow{Pd(OAc)_{2}, bpy, TsOH \cdot H_{2}O}_{iPrOH/H_{2}O, 100 \ ^{\circ}C, 24 \text{ h}, N_{2}} Ar^{1} \xrightarrow{N}_{H} Ar^{2}$$

$$1 \qquad 2 \qquad 4$$

2-(3-aryloxiran-2-yl)acetonitriles 1 (0.3 mmol, 1.0 equiv.), arylboronic acid 2 (0.6 mmol, 2.0 equiv), Pd(OAc)₂ (0.015 mmol, 5 mol%) and 2,2'-bipyridyl (L1) (0.03 mmol, 10 mol%), TsOHH₂O (0.6 mmol, 2.0 equiv) and 'PrOH/H₂O (0.5 mL: 2.5 mL) were successively added into a Schlenk reaction tube under N₂ atmosphere. The reaction mixture was stirred vigorously at 100 °C in an oil bath for 24 h. After the reaction equilibrium, the mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2 × 10 mL) and then brine (10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with petroleum ether/ethyl acetate (16:1) to afford the desired products pyrroles **4**.

3. Control experiments.

Ph
$$CN$$
 $Pd(CF_3CO_2)_2, bpy$ No Reaction
CH₃SO₃H, H₂O No Reaction

2-(3-phenyloxiran-2-yl)acetonitrile 1a (0.3 mmol, 1.0 equiv), Pd(TFA)₂ (0.015 mmol,

5 mol%), 2,2'-bipyridyl (L1) (0.03 mmol,10 mol%), MsOH (3 mmol, 10 equiv) and H_2O (4 mL) were successively added into a Schlenk reaction tube under O_2 atmosphere. The reaction mixture was stirred vigorously at 80 °C in an oil bath for 36 h. After the reaction equilibrium, the solution was detected by TLC analysis, no target furan product was found.

2-(3-phenyloxiran-2-yl)acetonitrile **1a** (0.3 mmol, 1.0 equiv), phenylboronic acid **2a** (0.6 mmol, 2.0 equiv), Pd(TFA)₂ (0.015 mmol, 5 mol%), 2,2'-bipyridyl (L1) (0.03 mmol,10 mol%), MsOH (3 mmol, 10 equiv) and H₂O¹⁸ (20 equiv) were successively added into a Schlenk reaction tube under O₂ atmosphere. The reaction mixture was stirred vigorously at 80 °C in an oil bath for 36 h. After the reaction equilibrium, the mixture was poured into ethyl acetate, which was washed with saturated NaHCO₃ (2 × 10 mL) and then brine (10 mL). After the aqueous layer was extracted with ethyl acetate, the combined organic layers were dried over anhydrous Na₂SO₄ and evaporated under a vacuum. The residue was purified by flash column chromatography with hexane to afford furans **3a-¹⁸O** in 75% yield.

The ¹⁸O-labeled Furan Product Determined by GC-MS Analysis.

4. Reference.

[1] W. Pu, D. Sun, W. Fan, W. Pan, Q. Chai, X. Wang and Y. Lv. Cu-Catalyzed atom transfer radical addition reactions of alkenes with α -bromoacetonitrile. *Chem. Commun.*, 2019, **55**, 4821.

[2] H. Hori, S. Arai and A. Nishida. Olefin–Migrative Cleavage of Cyclopropane Rings through the Nickel–Catalyzed Hydrocyanation of Allenes and Alkenes. *Adv. Synth. Catal.*, 2017, **359**, 1170.

[3] S. Wen, W. Lv, D. Ba, J. Liu and G. Cheng. Ruthenium(II)-catalyzed chemoselective deacylative annulation of 1,3-diones with sulfoxonium ylides *via* C–C bond activation. *Chem. Sci.*, 2019, **10**, 9104.

[4] M. Zhang, H. Jiang, H. Neumann, M. Beller and P. H. Dixneuf. Sequential Synthesis of Furans from Alkynes: Successive Ruthenium(II)-and Copper(II) -Catalyzed Processes. *Angew. Chem., Int. Ed.*, 2009, 48, 1681.

[5] S. Undeela, J. P. Ramchandra and R. S. Menon. A sequential synthesis of substituted furans from aryl alkynes and ketones involving a cerium(IV) ammonium nitrate (CAN)-mediated oxidative cyclization. *Tetrahedron Lett.*, 2014, **55**, 5667.

[6] L. Chen, Y. Du, X. Zeng, T. Shi, F. Zhou and J. Zhou. Successively Recycle Waste as Catalyst: A One-Pot Wittig/1,4-Reduction/Paal–Knorr Sequence for Modular Synthesis of Substituted Furans. *Org. Lett.*, 2015, **17**, 1557.

5. Analytical data for reactants.

(*E*)-4-phenylbut-3-enenitrile (**1a'**): Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.46 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.28 (t, *J* = 7.5 Hz, 1H), 6.67 (d, *J* = 16.0 Hz, 1H), 6.28-6.24 (m, 1H), 3.54 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 135.8, 133.0, 128.7, 127.9, 126.3, 119.0, 118.5, 19.8. Spectroscopic data for the title compound were consistent with those reported in the literature.¹

2-(3-phenyloxiran-2-yl)acetonitrile (1a): Colorless oil. Petroleum ether/ethyl acetate = 7/1 as eluent for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 7.39-7.31 (m, 5H), 3.95 (s, 1H), 3.45 (d, J = 3.5 Hz, 1H), 3.25-3.21 (m, 1H), 3.05-3.00 (m, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 136.0, 128.5, 128.4, 126.0, 117.2, 57.0, 56.0, 20.2. HRMS calcd for C₁₀H₁₀NO⁺ [M+H]⁺: 160.0757, found: 160.0757.

(*E*)-4-(*p*-tolyl)but-3-enenitrile (**1b**'): Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 16.0 Hz, 1H), 6.02-5.97 (m, 1H), 3.26-3.25 (m, 2H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.2, 134.5, 133.0, 129.4, 126.4, 117.5, 115.7, 21.2, 20.7. Spectroscopic data for the title compound were consistent with those reported in the literature.¹

2-(3-(*p*-tolyl)oxiran-2-yl)acetonitrile (**1b**): Colorless oil. Petroleum ether/ethyl acetate = 7/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.19-7.15 (m, 4H), 3.85-3.84 (m, 1H), 3.25-3.22 (m, 1H), 2.90-2.78 (m, 2H), 2.36 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 132.2, 129.3, 125.7, 115.7, 57.8, 56.0, 21.2, 20.9. HRMS calcd for C₁₁H₁₂NO⁺ [M+H]⁺: 174.0914, found: 174.0913.

(*E*)-4-(4-fluorophenyl)but-3-enenitrile (1c'): Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.33-7.30 (m, 2H), 7.01 (t, *J* = 8.5 Hz, 2H), 6.67 (d, *J* = 16.0 Hz, 1H), 5.98-5.93 (m, 1H), 3.26 (d, *J* = 5.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 163.7, 161.7, 133.4,

132.0, 131.9, 128.2, 128.1, 117.3, 116.7, 116.6, 115.8, 115.6, 20.7. Spectroscopic data for the title compound were consistent with those reported in the literature.¹

2-(3-(4-fluorophenyl)oxiran-2-yl)acetonitrile (1c): Colorless oil. Petroleum ether/ethyl acetate = 7/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.17-7.14 (m, 2H), 6.98-6.94 (m, 2H), 3.79 (s, 1H), 3.13-3.12 (m, 1H), 2.79-2.78 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 162.2, 131.1 (2C), 127.6 (2C), 116.0, 115.8, 115.5, 57.4, 56.2, 21.1. HRMS calcd for C₁₀H₉FNO⁺ [M+H]⁺: 178.0663, found: 178.0662.

(*E*)-4-(4-chlorophenyl)but-3-enenitrile (**1d**'): Colorless oil. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. ¹**H** NMR (500 MHz, CDCl₃) δ 7.23-7.19 (m, 4H), 6.61 (d, *J* = 16.0 Hz, 1H), 5.98-5.92 (m, 1H), 3.21-3.20 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 134.2, 134.0, 133.4, 128.9, 127.7, 117.6, 117.2, 20.8. Spectroscopic data for the title compound were consistent with those reported in the literature.¹

2-(3-(4-chlorophenyl)oxiran-2-yl)acetonitrile (1d): Colorless oil. Petroleum ether/ethyl acetate = 7/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, *J* = 8.5 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 3.87 (s, 1H), 3.23-3.19 (m, 1H), 2.89-2.88 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 134.8, 133.8, 128.9, 127.1, 115.2, 57.2, 56.2, 21.0. HRMS calcd for C₁₀H₉ClNO⁺ [M+H]⁺: 194.0367, found: 194.0364.

(*E*)-4-(4-bromophenyl)but-3-enenitrile (1e'): White solid. Petroleum ether/ethyl acetate = 40/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.44 (m, 2H), 7.23-7.22 (m, 2H), 6.67 (d, *J* = 16.0 Hz, 1H), 6.07-6.02 (m, 1H), 3.28-3.27 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 134.7, 133.6, 132.0, 128.1, 122.3, 117.7, 117.1, 20.9. Spectroscopic data for the title compound were consistent with those reported in the literature.¹

2-(3-(4-bromophenyl)oxiran-2-yl)acetonitrile (1e): Colorless oil. Petroleum ether/ethyl acetate = 7/1 as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.5 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 2H), 3.86 (d, *J* = 1.5 Hz, 1H), 3.22-3.20 (m, 1H), 2.89-2.88 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 134.4, 131.8, 127.4, 122.7, 115.4, 57.2, 56.1, 20.9. HRMS calcd for C₁₀H₉BrNO⁺ [M+H]⁺: 237.9862, found: 237.9864.

6. Analytical data for all products.

2,5-diphenylfuran (**3a**): White solid (56.8 mg, 86%), Hexane as eluent for column chromatography. ¹**H** NMR (500 MHz, DMSO- d_6) δ 7.82 (d, J = 7.5 Hz, 4H), 7.45 (t, J = 7.5 Hz, 4H), 7.29 (t, J = 8.0 Hz, 2H), 7.00 (s, 2H); ¹³ C NMR (125 MHz, DMSO- d_6) δ 152.6, 130.1, 128.9, 127.5, 123.4, 108.1. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-phenyl-5-(*p*-tolyl)furan (**3b**): Pale yellow solid (59.7 mg, 85%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.81-7.79 (m, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.5 Hz, 2H), 7.06-7.05 (m, 1H), 7.00-6.99 (m, 1H), 2.33 (s, 3H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 152.8, 152.2, 137.0, 130.2, 129.4, 128.9, 127.5, 127.4, 123.4, 123.3, 108.1, 107.4, 20.8. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-phenyl-5-(*m*-tolyl)furan (**3c**): Pale yellow solid (59.0 mg, 84%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.82 (d, J = 7.5 Hz, 2H), 7.65 (s, 1H), 7.61 (d, J = 8.0 Hz, 1H), 7.45 (t, J = 7.5 Hz, 2H), 7.35-7.29 (m, 2H), 7.12 (d, J = 7.5 Hz, 1H), 7.07 (d, J = 3.5 Hz, 1H), 7.05 (d, J = 3.5 Hz, 1H), 2.37 (s, 3H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 152.8, 152.5, 138.1, 130.1, 130.0, 128.9, 128.8, 128.3, 127.5, 123.9, 123.4, 120.7, 108.1, 108.0, 21.0. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-phenyl-5-(*o*-tolyl)furan (**3d**): Yellow oil (56.9 mg, 81%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.81-7.79 (m, 3H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.32-7.29 (m, 3H), 7.25-7.22 (m, 1H), 7.08 (d, *J* = 3.5 Hz, 1H), 6.86 (d, *J* = 3.5 Hz, 1H), 2.52 (s, 3H); ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 152.4, 152.3, 133.8, 131.3, 130.1, 129.3, 128.9, 127.6, 127.5, 126.4, 126.2, 123.4, 111.2, 107.8, 21.7. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-(*tert*-butyl)phenyl)-5-phenylfuran (**3e**): White solid (53.9 mg, 65%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.80 (d, J = 7.0 Hz, 2H), 7.73 (d, J = 8.5 Hz, 2H), 7.47-7.44 (m, 4H), 7.30 (t, J = 7.5 Hz, 1H), 7.06 (d, J = 3.0 Hz, 1H), 7.00 (d, J = 3.0 Hz, 1H), 1.30 (s, 9H); ¹³C NMR (125 MHz, DMSO- d_6) δ 152.8, 152.3, 150.2, 130.2, 129.0, 127.5, 127.4, 125.6, 123.4, 123.3, 108.1, 107.5, 34.4, 31.0. Spectroscopic data for the title compound were consistent with

those reported in the literature.³

2-(4-phenoxyphenyl)-5-phenylfuran (**3f**): Yellowish solid (82.5 mg, 88%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.84-7.79 (m, 4H), 7.46-7.39 (m, 4H), 7.30 (t, J = 7.5 Hz, 1H), 7.17 (t, J = 8.0 Hz, 1H), 7.08-7.02 (m, 5H), 6.98 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 156.4, 156.1, 152.4, 152.3, 130.1, 130.0, 128.8, 127.3, 124.6, 124.3, 123.5, 123.0, 118.0, 117.7, 108.2, 107.5. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-fluorophenyl)-5-phenylfuran (**3g**): White solid (56.5 mg, 79%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.88-7.85 (m, 2H), 7.81 (d, *J* = 7.5 Hz, 2H), 7.41 (t, *J* = 8.0 Hz, 2H), 7.29-7.18 (m, 3H), 7.01-6.98 (m, 2H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 162.5, 160.6, 152.6, 151.8, 130.0, 128.9, 127.1, 126.1, 124.8, 124.1, 123.1, 116.0, 113.8, 108.1, 107.0. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(3-fluorophenyl)-5-phenylfuran (**3h**): White solid (35.0 mg, 49%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 7.5 Hz, 1H), 7.42-7.39 (m, 3H), 7.39-7.34 (m, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 6.98-6.95 (m, 1H), 6.77-6.75 (m, 2H); ¹³**C NMR** (125 MHz, CDCl₃) δ 164.2, 162.3, 153.9, 152.1, 132.9, 132.8, 130.4, 130.1, 129.5, 128.8, 126.5, 123.4, 119.5, 119.3, 114.2, 114.1, 109.7, 109.2, 108.8, 107.1. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(2-fluorophenyl)-5-phenylfuran (**3i**): Yellow oil (32.9 mg, 46%), Hexane as eluent for column chromatography. ¹H NMR (500 MHz, CDCl₃) δ 7.95-7.92 (m, 1H), 7.76-7.74 (m, 2H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.29-7.28 (m, 1H), 7.23-7.19 (m, 2H), 7.14-7.10 (m, 1H), 6.93 (t, *J* = 3.5 Hz, 1H), 6.77 (d, *J* = 3.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 157.8, 153.3, 147.6, 147.5, 130.6, 128.7, 128.2, 128.1, 126.5, 126.0, 124.6, 124.1, 123.5, 123.1, 119.1, 118.8, 116.0, 115.5, 113.5, 112.5, 106.6, 106.5. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-chlorophenyl)-5-phenylfuran (**3j**): White solid (51.2 mg, 67%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.81 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 8.5 Hz, 2H), 7.62 (d, *J* = 7.0 Hz, 2H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 3.0 Hz, 1H), 7.08 (d, *J* = 3.0 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 153.0, 151.5, 131.8, 129.9, 129.3, 129.0, 127.7, 125.4, 123.5, 120.4, 109.0, 108.3. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-bromophenyl)-5-phenylfuran (**3k**): White solid (47.6 mg, 53%), Hexane as eluent for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 7.84-7.81 (m, 4H), 7.50 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 3.5 Hz, 1H), 7.08 (d, J = 3.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 153.0, 151.5, 131.8, 129.9, 129.0, 128.9, 127.6, 125.0, 122.7, 107.3, 106.8. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-iodophenyl)-5-phenylfuran (**3**I): White solid (50.9 mg, 49%), Hexane as eluent for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 7.82-7.79 (m, 4H),

7.62 (d, J = 8.0 Hz, 2H), 7.45 (t, J = 7.5 Hz, 2H), 7.22 (t, J = 8.0 Hz, 1H), 7.12 (d, J = 3.0 Hz, 1H), 6.95 (d, J = 3.0 Hz, 1H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 153.0, 151.7, 137.6, 129.9, 129.6, 128.9, 127.6, 124.8, 123.8, 108.7, 108.2, 93.5. **HRMS** calcd for C₁₆H₁₂IO⁺ [M+H]⁺: 346.9928, found: 346.9925.

2-phenyl-5-(4-(trifluoromethyl)phenyl)furan (**3m**): Light yellow solid (31.1 mg, 36%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, J = 8.5 Hz, 2H), 7.77-7.76 (m, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.43 (t, J = 8.0 Hz, 2H), 7.31 (t, J = 8.0 Hz, 1H), 6.86 (d, J = 3.5 Hz, 1H), 6.78 (d, J = 3.5 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 154.5, 151.8, 133.9, 130.4, 129.0, 128.8, 127.9, 125.8, 125.7, 125.3, 124.0, 123.6, 123.1, 109.3, 107.4. Spectroscopic data for the title compound were consistent with those reported in the literature.³

1-(4-(5-phenylfuran-2-yl)phenyl)ethan-1-one (**3n**): Pale yellow solid (32.3 mg, 41%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.02 (d, *J* = 8.5 Hz , 2H), 7.95 (d, *J* = 8.5 Hz , 2H), 7.86 (d, *J* = 7.5 Hz, 2H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 3.5 Hz, 1H), 7.16 (d, *J* = 3.5 Hz, 1H), 7.26 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 197.0, 153.8, 151.6, 135.3, 133.9, 130.0, 129.0, 128.9, 128.0, 123.7, 123.3, 110.9, 108.6, 26.6. **HRMS** calcd for C₁₈H₁₅O₂⁺ [M+H]⁺: 263.1067, found: 263.1067.

2-(naphthalen-1-yl)-5-phenylfuran (**3o**): Yellow oil (53.5 mg, 66%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 8.50 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 2H), 7.66-7.57 (m, 3H), 7.47 (t, *J* = 8.0 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.19 (d, J = 3.5 Hz, 1H), 7.07 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO d_6) δ 153.1, 152.2, 133.7, 130.1, 129.3, 129.0, 128.7, 128.6, 127.6, 127.4, 127.1, 126.1, 125.8, 125.6, 124.9, 123.5, 112.0, 108.0. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-phenyl-5-(*p*-tolyl)furan (**3p**): Pale yellow solid (45.7 mg, 65%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.81-7.79 (m, 2H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.26 (d, *J* = 7.5 Hz, 2H), 7.06-7.05 (m, 1H), 7.00-6.99 (m, 1H), 2.33 (s, 3H); ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 152.8, 152.2, 137.0, 130.2, 129.4, 128.9, 127.5, 127.4, 123.4, 123.3, 108.1, 107.4, 20.8. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2,5-di-*p*-tolylfuran (**3q**): White solid (54.4 mg, 73%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.69 (d, *J* = 7.5 Hz, 4H), 7.25 (d, *J* = 7.5 Hz, 4H), 6.97 (s, 2H), 2.33 (s, 6H); ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 152.4, 136.8, 129.4, 127.6, 123.3, 107.3, 20.8. Spectroscopic data for the title compound were consistent with those reported in the literature.⁴

2-(4-fluorophenyl)-5-(*p*-tolyl)furan (**3r**): White solid (50.0 mg, 66%), Hexane as eluent for column chromatography. ¹**H** NMR (500 MHz, DMSO-*d*₆) δ 7.84 (t, *J* = 7.5 Hz, 2H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.30-7.25 (m, 4H), 7.03 (d, *J* = 3.0 Hz, 1H), 6.99 (d, *J* = 3.0 Hz, 1H), 2.33 (s, 3H); ¹³**C** NMR (125 MHz, DMSO-*d*₆) δ 152.9, 151.4, 137.0, 129.4, 127.4, 125.5, 125.4, 123.4, 116.0, 115.8, 107.9, 107.4, 20.8. Spectroscopic data for the title compound were consistent with those reported in the literature.⁵

2-(4-fluorophenyl)-5-phenylfuran (**3s**): White solid (60.8 mg, 85%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.88-7.85 (m, 2H), 7.81 (d, *J* = 7.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.33-7.28 (m, 3H), 7.08-7.06 (m, 2H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 162.5, 160.6, 152.6, 151.8, 130.0, 128.9, 127.5, 126.8, 125.6, 125.5, 123.4, 116.0, 115.8, 108.2, 108.0. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-fluorophenyl)-5-(*p*-tolyl)furan (**3t**): White solid (56.0 mg, 74%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 7.84 (t, *J* = 7.5 Hz, 2H), 7.70 (d, *J* = 7.5 Hz, 2H), 7.30-7.25 (m, 4H), 7.03 (d, *J* = 3.0 Hz, 1H), 6.99 (d, *J* = 3.0 Hz, 1H), 2.33 (s, 3H); ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 152.9, 151.4, 137.0, 129.4, 127.4, 125.5, 125.4, 123.4, 116.0, 115.8, 107.9, 107.4, 20.8. Spectroscopic data for the title compound were consistent with those reported in the literature.⁵

2-(4-chlorophenyl)-5-(4-fluorophenyl)furan (**3u**): White solid (61.4 mg, 75%), Hexane as eluent for column chromatography. ¹**H** NMR (500 MHz, DMSO- d_6) δ 7.88-7.82 (m, 4H), 7.50 (d, J = 8.5 Hz, 2H), 7.29 (t, J = 8.5 Hz, 2H), 7.13 (d, J = 3.5Hz, 1H), 7.07 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 162.6, 160.6, 152.1, 151.5, 131.9, 128.9, 128.8, 126.6, 125.7, 125.6, 125.1, 116.0, 115.8, 109.0, 108.1. Spectroscopic data for the title compound were consistent with those reported in the literature.⁶

2-(4-chlorophenyl)-5-phenylfuran (**3v**): White solid (54.3 mg, 71%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.81 (d, J = 8.0 Hz, 2H), 7.76 (d, J = 8.5 Hz, 2H), 7.63 (d, J = 8.5 Hz, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.32

(t, J = 7.5 Hz, 1H), 7.13 (d, J = 3.0 Hz, 1H), 7.08 (d, J = 3.0 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 153.0, 151.5, 131.8, 129.9, 129.3, 129.0, 127.7, 125.4, 123.5, 120.4, 109.0, 108.3. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-chlorophenyl)-5-(4-fluorophenyl)furan (**3w**): White solid (61.4 mg, 75%), Hexane as eluent for column chromatography. ¹**H** NMR (500 MHz, DMSO- d_6) δ 7.88-7.82 (m, 4H), 7.50 (d, J = 8.5 Hz, 2H), 7.29 (t, J = 8.5 Hz, 2H), 7.13 (d, J = 3.5Hz, 1H), 7.07 (d, J = 3.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 162.6, 160.6, 152.1, 151.5, 131.9, 128.9, 128.8, 126.6, 125.7, 125.6, 125.1, 116.0, 115.8, 109.0, 108.1. Spectroscopic data for the title compound were consistent with those reported in the literature.⁶

2,5-bis(4-chlorophenyl)furan (**3x**): White solid (59.0 mg, 68%), Hexane as eluent for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 7.84 (d, J = 8.5 Hz, 4H), 7.50 (d, J = 8.5 Hz, 4H), 7.15 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 151.8, 132.0, 128.9, 128.8, 125.2, 109.0. Spectroscopic data for the title compound were consistent with those reported in the literature.⁶

2-(4-bromophenyl)-5-phenylfuran (**3y**): White solid (35.9 mg, 40%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.84-7.81 (m, 4H), 7.50 (d, *J* = 8.5 Hz, 2H), 7.45 (t, *J* = 7.5 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 1H), 7.14 (d, *J* = 3.5 Hz, 1H), 7.05 (d, *J* = 3.5 Hz, 1H); ¹³**C NMR** (125 MHz, CDCl₃) δ 153.0, 151.5, 131.8, 129.9, 129.0, 128.9, 127.7, 125.1, 123.5, 108.9, 108.3. Spectroscopic data for the title compound were consistent with those reported in the literature.³

2-(4-bromophenyl)-5-(4-fluorophenyl)furan (**3z**): White solid (64.7 mg, 68%), Hexane as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 7.87 (t, J = 7.5 Hz, 2H), 7.77 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 7.5 Hz, 2H), 7.22 (t, J = 9.0Hz, 2H), 7.09 (d, J = 2.5 Hz, 1H), 7.01 (d, J = 2.5 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 162.6, 160.6, 152.2, 151.5, 131.8, 129.2, 126.6, 125.7, 125.6, 125.4, 120.4, 116.0, 115.8, 109.0, 108.1. **HRMS** calcd for C₁₆H₁₁BrFO⁺ [M+H]⁺: 316.9972, found: 316.9972.

2,5-bis(4-bromophenyl)furan (**3aa**): White solid (53.3 mg, 47%), Hexane as eluent for column chromatography. ¹H NMR (500 MHz, DMSO- d_6) δ 7.78 (d, J = 8.5 Hz, 4H), 7.64 (d, J = 8.5 Hz, 4H), 7.17 (s, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 151.9, 131.9, 129.1, 125.5, 120.6, 109.2. Spectroscopic data for the title compound were consistent with those reported in the literature.⁴

2-(2,6-dimethylphenyl)-5-phenyl-1*H*-pyrrole (**4a**): White solid (57.9 mg, 78%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 11.19 (s, 1H), 7.67 (d, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.19-7.16 (m, 1H), 7.11 (t, *J* = 7.0 Hz, 3H), 7.61-7.60 (m, 1H), 5.99-5.97 (m, 1H), 2.16 (s, 6H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 137.8, 133.8, 133.0, 130.8, 130.6, 128.6, 127.5, 127.1, 125.1, 123.1, 109.0, 106.0, 20.5. **HRMS** calcd for C₁₈H₁₈N⁺ [M+H]⁺: 248.1434, found: 248.1431.

2-(2,6-dimethylphenyl)-5-(4-fluorophenyl)-1*H*-pyrrole (**4b**): White solid (66.9 mg, 84%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (s, 1H), 7.52-7.49 (m, 2H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.16-7.11 (m, 2H), 6.65-6.64 (m, 1H), 6.24-6.22 (m, 1H), 2.34 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 162.4, 160.4, 138.7, 133.4, 131.0, 130.7, 129.5, 129.4, 128.2, 127.6, 125.2, 125.1, 116.0, 115.8, 110.3, 106.4, 20.8. **HRMS** calcd for C₁₈H₁₇FN⁺ [M+H]⁺: 266.134, found: 266.1341.

2-(4-chlorophenyl)-5-(2,6-dimethylphenyl)-1*H*-pyrrole (**4c**): White solid (68.5 mg, 81%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.26 (d, *J* = 8.5 Hz, 2H), 7.18-7.15 (m, 1H), 7.08 (d, *J* = 7.5 Hz, 2H), 6.56-6.54 (m, 1H), 6.10-6.09 (m, 1H), 2.19 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 138.6, 133.2, 131.5, 131.4, 131.3, 130.4, 129.1, 128.2, 127.5, 124.6, 110.5, 107.0, 20.8. **HRMS** calcd for C₁₈H₁₇ClN⁺ [M+H]⁺: 282.1044, found: 282.1042.

2-(4-bromophenyl)-5-(2,6-dimethylphenyl)-1*H*-pyrrole (**4d**): White solid (69.5 mg, 71%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.20 (s, 1H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.21-7.16 (m, 1H), 7.10 (d, *J* = 7.5 Hz, 2H), 6.58-6.57 (m, 1H), 6.11-6.10 (m, 1H), 2.20 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 138.6, 133.2, 132.0, 131.8, 131.4, 130.3, 128.2, 127.5, 124.9, 119.3, 110.4, 107.0, 20.8. **HRMS** calcd for C₁₈H₁₇BrN⁺ [M+H]⁺: 326.0539, found: 326.0536.

2-mesityl-5-phenyl-1*H*-pyrrole (**4e**): Yellow solid (51.8 mg, 66%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, DMSO- d_6) δ 11.12 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.11 (t, *J* = 7.0 Hz, 1H), 6.94 (s, 2H), 6.59 (s, 1H), 5.94 (s, 1H), 2.27 (s, 3H), 2.12 (s, 6H); ¹³**C NMR** (125 MHz, DMSO- d_6) δ 137.5, 136.5, 133.1, 130.9, 130.7, 130.6, 128.6, 127.7, 125.0, 123.1, 109.1, 105.9, 20.6, 20.4. **HRMS** calcd for C₁₉H₂₀N⁺ [M+H]⁺: 262.1590, found: 262.1588.

2-(4-fluorophenyl)-5-mesityl-1*H*-pyrrole (**4f**): White solid (46.9 mg, 56%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.22 (s, 1H), 7.50-7.47 (m, 2H), 7.14-7.10 (m, 2H), 7.05 (s, 2H), 6.62-6.61 (m, 1H), 6.20-6.19 (m, 1H), 2.43 (s, 3H), 2.29 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 162.3, 160.4, 138.5, 137.9, 131.0, 130.5, 130.4, 129.5, 129.4, 128.3, 125.1, 125.0, 116.0, 115.8, 110.4, 106.3, 21.2, 20.7. **HRMS** calcd for C₁₉H₁₉FN⁺ [M+H]⁺: 280.1496, found: 280.1496.

2-(4-chlorophenyl)-5-mesityl-1*H*-pyrrole (**4g**): Yellow solid (41.7 mg, 47%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.26 (s, 1H), 7.44 (d, *J*= 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 7.04 (s, 2H), 6.67-6.66 (m, 1H), 6.20-6.19 (m, 1H), 2.43 (s, 3H), 2.28 (m, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 138.5, 138.0, 131.5, 131.4, 131.3, 130.3, 130.2, 129.1, 128.3, 124.6, 110.6, 107.0, 21.2, 20.7. **HRMS** calcd for C₁₉H₁₉ClN⁺ [M+H]⁺: 296.1201, found: 296.1203.

2-(4-bromophenyl)-5-mesityl-1*H*-pyrrole (**4h**): White solid (38.9 mg, 38%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 7.00 (s, 2H), 6.63 (d, *J* = 2.0 Hz, 1H), 6.16 (d, *J* = 2.0 Hz, 1H), 2.38 (s, 3H), 2.23 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 138.4, 138.0, 132.0, 131.9, 131.4, 130.2, 130.1, 128.3, 124.9, 119.2, 110.5, 107.0, 21.1, 20.7. **HRMS** calcd for C₁₉H₁₉BrN⁺ [M+H]⁺: 340.0696, found: 340.0693.

2-phenyl-5-(2,4,6-triisopropylphenyl)-1*H*-pyrrole (**4i**): Yellow solid (43.5 mg, 42%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.72 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.37 (t, *J* = 7.5 Hz, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.11 (s, 2H), 6.64-6.62 (m, 1H), 6.16-6.15 (m, 1H), 3.02-2.95 (m, 1H), 2.93-2.85 (m, 2H), 1.33 (d, *J* = 8.5 Hz, 6H), 1.16 (s, 12H); ¹³**C NMR** (125 MHz, CDCl₃) δ 149.6, 149.4, 133.0, 131.0, 130.5, 128.9, 128.8, 125.7, 123.3, 120.6, 110.9, 106.1, 34.5, 30.7, 24.1. **HRMS** calcd for C₂₅H₃₂N⁺ [M+H]⁺: 346.2529, found: 346.2527.

2-(4-chlorophenyl)-5-(2,4,6-triisopropylphenyl)-1*H*-pyrrole (**4j**): Yellow solid (44.4 mg, 39%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. **¹H NMR** (500 MHz, CDCl₃) δ 8.23 (s, 1H), 7.39-7.36 (m, 2H), 7.31 (d, *J* = 8.5 Hz, 2H), 7.10 (s, 2H), 6.61-6.60(m, 1H), 6.17-6.16 (m, 1H), 3.00-2.94 (m, 1H), 2.87-2.82

(m, 2H), 1.33-1.31 (m, 6H), 1.18 (s, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 149.6, 149.5, 131.5, 131.2, 131.0, 130.0, 129.0, 128.3, 128.2, 124.5, 120.7, 111.2, 106.7, 34.5, 30.7, 24.1. **HRMS** calcd for C₂₅H₃₁ClN⁺ [M+H]⁺: 380.2140, found: 380.2140.

2-(4-bromophenyl)-5-(2,4,6-triisopropylphenyl)-1*H*-pyrrole (**4**k): Yellow solid (35.7 mg, 28%), Petroleum ether/ethyl acetate = 16/1 as eluent for column chromatography. ¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (s, 1H), 7.49 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 8.5 Hz, 2H), 7.10 (s, 2H), 6.62-6.61 (m, 1H), 6.18-6.16 (m, 1H), 3.01-2.93 (m, 1H), 2.90-2.80 (m, 2H), 1.33 (d, *J* = 7.0 Hz, 6H), 1.18 (d, *J* = 5.5 Hz, 12H); ¹³**C NMR** (125 MHz, CDCl₃) δ 149.6, 149.5, 132.0, 131.9, 131.1, 129.9, 128.2, 124.8, 120.7, 119.2, 111.3, 106.8, 34.5, 30.7, 24.5, 24.0. **HRMS** calcd for C₂₅H₃₁BrN⁺ [M+H]⁺: 424.1635, found: 424.1636.

7. NMR spectra for reactants.

¹H NMR (500 MHz, DMSO- d_6) of compound 1a'

8. NMR spectra for all products

¹H NMR (500 MHz, DMSO- d_6) of compound **3a**

¹H NMR (500 MHz, DMSO- d_6) of compound **3e**

¹H NMR (500 MHz, DMSO- d_6) of compound **3g**

¹H NMR (500 MHz, CDCl₃) of compound **3i**

¹H NMR (500 MHz, DMSO- d_6) of compound **3**j

¹H NMR (500 MHz, DMSO- d_6) of compound **3**k

¹H NMR (500 MHz, DMSO- d_6) of compound **30**

¹H NMR (500 MHz, DMSO- d_6) of compound **3s**

¹³C NMR (125 MHz, DMSO- d_6) of compound **3s**

¹H NMR (500 MHz, DMSO-*d*₆) of compound **3t**

¹H NMR (500 MHz, DMSO- d_6) of compound **3u**

¹³C NMR (125 MHz, DMSO- d_6) of compound **3v**

¹H NMR (500 MHz, DMSO- d_6) of compound **3w**

¹H NMR (500 MHz, DMSO- d_6) of compound **3**x

¹³C NMR (125 MHz, CDCl₃) of compound **3y**

¹H NMR (500 MHz, DMSO- d_6) of compound 3z

¹H NMR (500 MHz, DMSO-*d*₆) of compound **3aa**

¹³C NMR (125 MHz, DMSO-*d*₆) of compound **3aa**

¹³C NMR (125 MHz, DMSO- d_6) of compound 4a

¹³C NMR (125 MHz, DMSO-*d*₆) of compound **4e**

¹H NMR (500 MHz, CDCl₃) of compound 4g

