Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Contents

1. General conditions	2
2. General procedures	2
2.1 General procedure for aminoborylation reactions	2
2.2 General procedure of 3a transform into compound 4	3
2.3 General procedure of 3a transform into compound 5	3
2.4 General procedure of 3a transform into compound 6	4
3. Analytical data	4
4. Reference	13
5. ¹ H-, ¹³ C-, ¹¹ B- and ¹⁹ F-NMR spectra copy of products	14

1. General conditions

All solvents and commercially available reagents were purchased from Sigma-Aldrich, Abcr, Acros, TCI or Alfa Aesar and used without further purification. Anhydrous solvents were purchased from Sigma-Aldrich and used as received. NMR spectra were recorded on Bruker Avance 300 and Bruker ARX 400 spectrometers. Chemical shifts (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.00 ppm (¹³C NMR). Multiplets were assigned as s (singlet), br.s (broad singlet), d (doublet), t (triplet), q (quartet), sept (septuplet), dd (doublet of doublet), dt (doublet of triplets), td (triplet of doublets) and m (multiplet). GC-yields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise stated. Electron impact (EI) mass spectra were recorded on AMD 402 massspectrometer (70 eV). High resolution mass spectra (HRMS) were recorded on Agilent 6210. The data are given as mass units per charge (m/z). Gas chromatography analysis was performed on an Agilent HP-7890A instrument with an FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30m, 0.32 mm i.d. 0.25 µm film thickness) using argon as carrier gas. The products were isolated from the reaction mixture by column chromatography on silca gel 60, 0.063-0.2 mm, 70-230 mesh (Merck). γ , δ -Unsaturated aromatic oxime esters were readily accessible from the corresponding ketones, aldehydes, and nitriles.^[1-5] In the ¹³C NMR, the signal of the borylated carbon was not clearly observed due to the quadrupolar relaxation.

2. General procedures

2.1 General procedure for aminoborylation reactions

To each screw-cap vial (8 ml) equipped with a septum, a small cannula, and a stirring bar was added oxime ester **1a-u** (0.2 mmol), CuCl (2.0 mg, 10 mol%), XantPhos (11.6 mg, 10 mol%), B₂pin₂ (76 mg, 0.3 mmol) and LiOMe (19 mg, 0.5 mmol). The vials then were purged with argon three times before added dry THF (2 mL). These vials were placed on an alloy plate and the reaction was performed for 20 hours at 50 °C (a luminum block). Afterward, the vials were cooled to room temperature, then the organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 5:1 to 2:1).

1 mmol scale: To each screw-cap vial (8 ml) equipped with a septum, a small cannula, and a stirring bar was added oxime ester **1a** (1.0 mmol), CuCl (5.0 mg, 5 mol%), XantPhos (29 mg, 5 mol%), B₂pin₂ (318 mg, 1.25 mmol) and LiOMe (95 mg, 2.25 mmol). The vials then were purged with argon three times before added dry THF (5 mL). These vials were placed on an alloy plate and the reaction was performed for 20 hours at 50 °C (a luminum block). Afterward, the vials were cooled to room temperature, then the organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl a cetate = 5:1 to 2:1) to give the product **3a** in 85% yield (266.2 mg).

To each screw-cap vial (8 ml) equipped with a septum, a small cannula, and a stirring bar was added oxime ester 1v (0.2 mmol), CuCl (2.0 mg, 10 mol%), XantPhos (11.6 mg, 10 mol%), B₂pin₂ (76 mg, 0.3 mmol) and LiOMe (19 mg, 0.5 mmol). The vials then were purged with argon three times before added dry DMF (2 mL). These viak were placed on an alloy plate and the reaction was performed for 20 hours at 50 °C (aluminum block). Afterward, the vials were cooled to room temperature, then the organic phase was removed under reduced pressure and the crude products were purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 10:1) to give the product 3v in 86% yield (40.1 mg).

2.2 General procedure of 3a transform into compound 4

The reaction was performed according to an adapted version of a literature procedure.^[5] To a screw-cap vial equipped with a magnetic stirring bar were added **3a** (31.3 mg, 0.1 mmol, 1.0 equiv.), N-hydroxybenzimidoyl chloride (0.15 mmol, 23.4 mg, 1.5 equiv.), Et₃N (0.2 mmol, 20.2 mg, 2.0 equiv.) and CH₂Cl₂ (2.0 mL). The mixture was stirred at rt for 3 h. The solvent was removed in vacuo, and the crude products were purified by columnchromatography on silica gel (eluent: pentane/ethylacetate = 5:1 to 1:1) to give the product **4** in 88% yield (38.1 mg).

The reaction was performed according to an adapted version of a literature procedure.^[6] To a screw-cap vial equipped with a magnetic stirring bar were added **3a** (47 mg, 0.15 mmol, 1.0 equiv.), NaBO₃·4H₂O (0.9 mmol, 138.5 mg, 6.0 equiv.) and THF/H₂O = 1:1 (2.0 mL). The mixture was stirred at rt for 5 h. The solvent was removed in vacuo, and the crude products were purified by columnchromatography on silica gel (eluent: pentane/ethyl acetate = 2:1 to 0:1) to give the product **5** in 70% yield (21.3 mg).

2.4 General procedure of 3a transform into compound 6

The reaction was performed according to an adapted version of a literature procedure.^[6] To a screw-cap vial equipped with a magnetic stirring bar were was charged with $Pd_2(dba)_3$ (2.70 mg, 2.0 mol %), RuPhos (2.8 mg, 4.0 mol%), NaOtBu (72.1 mg, 0.75 mmol, 5.0 equiv), and **3a** (47 mg, 0.15 mmol, 1.0 equiv.). The vial was purged with argon three times before added Toluene/H₂O = 10:1 (0.55 mL), and 4-bromoanisole (28 mL, 0.23 mmol, 1.5 equiv). Then the reaction was stirred at 80 °C for 24 h. After reaction, the reaction allowed to cool to room temperature and was diluted with ethyl acetate (5 mL) and washed with water (10 mL). The aqueous layer was washed with ethyl acetate and the combined organic phase were dried over Na₂SO₄ and concentrated. The residue was purified by flash chromatography (eluent: pentane/ethyl acetate = 10:1 to 5:1) to give **6** in 40% yield (17,6 mg).

3. Analytical data

4,4-Dimethyl-5-phenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole~(3a)

56.3 mg, colorless oil, yield: 90%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.74 – 7.62 (m, 2H), 7.38 – 7.29 (m, 3H), 4.25 – 4.13 (m, 1H), 2.15 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.54 (dd, *J* = 15.4, 5.2 Hz, 1H), 1.52 (dd, *J* = 12.4, 8.8 Hz, 1H), 1.33 (s, 3H), 1.32 (s, 3H), 1.26 (s, 12H), 1.08 (dd, *J* = 15.4, 9.8 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃)δ 178.1, 135.0, 129.1, 127.9, 127.9, 83.0, 64.7, 50.7, 49.9, 27.3, 26.0, 24.9, 24.7. ¹¹B NMR (96 MHz, CDCl₃)δ 33.7.

HR-MS (ESI-TOF) calcd. for $C_{19}H_{28}BNO_2 [M+H]^+$: 313.2328; found: 313.2333.

 $4,4-Dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(o-tolyl)-3,4-dihydro-2H-pyrrole~(\mathbf{3b})$

53.7 mg, colorless oil, yield: 82%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.24 – 7.17 (m, 2H), 7.17 – 7.10 (m, 2H), 4.25 (m, 1H), 2.29 (s, 3H), 2.17 (dd, J = 12.5, 6.9 Hz, 1H), 1.64 (dd, J = 15.5, 4.8 Hz, 1H), 1.50 (dd, J = 12.5, 8.5 Hz, 1H), 1.26 (s, 12H), 1.17 (s, 3H), 1.14 (s, 3H), 1.07 (dd, J = 15.5, 10.3 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃)δ 179.8, 136.3, 135.3, 130.3, 127.9, 127.5, 124.7, 83.1, 65.7, 52.9, 47.8, 26.8, 25.5, 24.9, 24.7, 19.9. ¹¹B NMR (96 MHz, CDCl₃)δ 33.5.

HR-MS (ESI-TOF) calcd. for $C_{20}H_{30}BNO_2 [M+H]^+: 327.2484$; found: 327.2485.

 $4,4-Dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(m-tolyl)-3,4-dihydro-2H-pyrrole~(\mathbf{3c})-2H-pyrrole~(\mathbf$

54.3 mg, colorless oil, yield: 83%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.54 – 7.49 (m, 1H), 7.48 – 7.42 (m, 1H), 7.25 – 7.19 (m, 1H), 7.19 – 7.13 (m, 1H), 4.23 – 4.11 (m, 1H), 2.34 (s, 3H), 2.14 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.55 (dd, *J* = 15.4, 5.0 Hz, 1H), 1.51 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.55 (dd, *J* = 15.4, 5.0 Hz, 1H), 1.51 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.55 (dd, *J* = 15.4, 5.0 Hz, 1H), 1.51 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.55 (dd, *J* = 15.4, 5.0 Hz, 1H), 1.51 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.55 (dd, *J* = 15.4, 5.0 Hz, 1H), 1.51 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.55 (dd, *J* = 15.4, 5.0 Hz, 1H), 1.51 (dd, J =

J = 12.4, 8.8 Hz, 1H), 1.32(s, 3H), 1.31(s, 3H), 1.26(s, 12H), 1.07(dd, *J* = 15.4, 9.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) & 178.3, 137.6, 134.9, 129.8, 128.7, 127.7, 124.7, 83.0, 64.6, 50.7, 49.9, 27.3, 26.0,

24.9, 24.6, 21.4.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.5.

HR-MS (ESI-TOF) calcd. for $C_{20}H_{30}BNO_2 [M+H]^+: 327.2484$; found: 327.2478.

5-(3-Fluorophenyl)-4,4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (**3d**)

54.3 mg, colorless oil, yield: 82%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) ¹H NMR (300 MHz, Chloroform-*d*)δ7.48 – 7.36 (m, 2H), 7.34 – 7.25 (m, 1H), 7.09 – 6.98 (m, 1H), 4.24 – 4.11 (m, 1H), 2.15 (dd, *J* = 12.5, 6.7 Hz, 1H), 1.52 (dd, *J* = 12.5, 8.7 Hz, 1H), 1.48 (dd, *J* = 15.4, 5.5 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H), 1.25 (s, 12H), 1.08 (dd, *J* = 15.4, 9.5 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃)δ 176.9 (d, *J* = 2.2 Hz), 162.4 (d, *J* = 245.4 Hz), 137.2 (d, *J* = 7.5 Hz), 129.5 (d, *J* = 8.1 Hz), 123.5 (d, *J* = 3.0 Hz), 116.0 (d, *J* = 21.2 Hz), 115.0 (d, *J* = 22.5 Hz), 83.0, 64.8, 50.7, 49.9, 27.2, 25.9, 24.9, 24.7.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.7.

¹⁹**F** NMR (282 MHz, CDCl₃)δ-113.2.

HR-MS (ESI-TOF) calcd. for C₁₉H₂₇BFNO₂ [M+H]⁺: 331.2233; found: 331.2233.

4,4-Dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(p-tolyl)-3,4-dihydro-2H-pyrrole (3e)

49.7 mg, colorless oil, yield: 76%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.64 – 7.58 (m, 2H), 7.18 – 7.12 (m, 2H), 4.23 – 4.11 (m, 1H), 2.35 (s, 3H), 2.13 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.53 (dd, *J* = 15.4, 5.2 Hz, 1H), 1.51 (dd, *J* = 12.4, 8.8 Hz, 1H), 1.33 (s, 3H), 1.33 (s, 3H), 1.26 (s, 12H), 1.07 (dd, *J* = 15.4, 9.8 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃)δ 177.9, 139.1, 132.1, 128.7, 127.9, 83.0, 64.5, 50.6, 50.1, 27.4, 26.0, 24.9, 24.7, 21.3.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.0.

HR-MS (ESI-TOF) calcd. for $C_{20}H_{30}BNO_2 [M+H]^+: 327.2484$; found: 327.2487.

5-(4-(tert-Butyl)phenyl)-4,4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (**3f**)

t-Bu

57.6 mg, colorless oil, yield: 78%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.69 – 7.63 (m, 2H), 7.38 – 7.32 (m, 2H), 4.23 – 4.10 (m, 1H), 2.14 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.53 (dd, *J* = 15.3, 5.5 Hz, 1H), 1.51 (dd, *J* = 12.4, 8.8 Hz, 1H), 1.35 (s, 3H), 1.33 (s, 3H), 1.31 (s, 9H), 1.27 (s, 6H), 1.26 (s, 6H), 1.06 (dd, *J* = 15.3, 9.8 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃)δ 177.7, 152.2, 132.0, 127.7, 124.9, 83.0, 64.5, 50.6, 50.1, 34.6, 31.2, 27.4, 26.1, 24.9, 24.7.

¹¹**B** NMR (96 MHz, CDCl₃)δ34.0.

HR-MS (ESI-TOF) calcd. for $C_{23}H_{36}BNO_2 [M+H]^+$: 369.2953; found: 369.2956.

5-(4-(Benzyloxy)phenyl)-4,4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (**3g**)

BnO

36.1 mg, colorless oil, yield: 43%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 – 7.68 (m, 2H), 7.44 – 7.32 (m, 5H), 6.97 – 6.92 (m, 2H), 5.08 (s, 2H), 4.20 – 4.11 (m, 1H), 2.14 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.53 (dd, *J* = 15.4, 5.2 Hz, 1H), 1.51 (dd, *J* = 12.4, 8.7 Hz, 1H), 1.35 (s, 3H), 1.34 (s, 3H), 1.27 (s, 6H), 1.26 (s, 6H), 1.06 (dd, *J* = 15.4, 9.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃)δ177.2, 159.7, 136.7, 129.5, 128.6, 128.0, 127.5, 114.3, 83.0, 69.9, 64.3, 50.5, 50.3, 27.5, 26.1, 24.9, 24.7.

¹¹**B** NMR (128 MHz, CDCl₃)δ33.4.

HR-MS (ESITOF) calcd. for $C_{26}H_{34}BNO_3 [M+H]^+$: 419.2746; found: 419.2746.

4,4-Dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2H-pyrrole (**3h**)

53.4 mg, colorless oil, yield: 70%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.83 - 7.72 (m, 2H), 7.63 - 7.56 (m, 2H), 4.28 - 4.16 (m, 1H), 2.17 (dd, *J* = 12.5, 6.7 Hz, 1H), 1.55 (dd, *J* = 12.5, 8.7 Hz, 1H), 1.50 (dd, *J* = 15.4, 5.6 Hz, 1H), 1.32 (s, 3H), 1.31 (s, 3H), 1.26 (s, 12H), 1.11 (dd, *J* = 15.4, 9.4 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 177.2, 138.6, 131.0 (q, *J* = 32.6 Hz), 128.3, 124.9 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 272.0 Hz), 83.1, 65.1, 50.8, 49.8, 27.1, 25.9, 24.9, 24.7.

¹¹**B** NMR (96 MHz, CDCl₃)δ32.7.

¹⁹**F** NMR (282 MHz, CDCl₃)δ-62.8.

 $\textbf{HR-MS} \ (ESI-TOF) \ calcd. \ for \ C_{20}H_{27}BF_{3}NO_{2} \ [M+H]^{+}: 381.2201; found: 381.2202.$

5-(4-Bromophenyl)-4,4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (3i)

Br

CE

69.8 mg, colorless oil, yield: 89%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.58 - 7.52 (m, 2H), 7.47 - 7.41 (m, 2H), 4.21 - 4.09 (m, 1H), 2.12 (dd, *J* = 12.5, 6.8 Hz, 1H), 1.50 (dd, *J* = 12.5, 8.8 Hz, 1H), 1.46 (dd, *J* = 15.4, 5.3 Hz, 1H), 1.29 (s, 3H), 1.28 (s, 3H), 1.23 (s, 12H), 1.06 (dd, *J* = 15.4, 9.5 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) ¹³C NMR (75 MHz, CDCl₃) δ 177.0, 133.8, 131.1, 129.5, 123.5, 83.0, 64.7, 50.6, 49.9, 27.2, 25.9, 24.8, 24.6.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.2.

HR-MS (ESI-TOF) calcd. for $C_{19}H_{27}BBrNO_2 [M+H]^+$: 391.1433; found: 391.1437.

5-(3,4-Dichlorophenyl)-4,4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (**3j**)

47.4 mg, colorless oil, yield: 62%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.86 – 7.70 (m, 1H), 7.53 (dd, J = 8.3, 2.0 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 4.23 – 4.12 (m, 1H), 2.15 (dd, J = 12.5, 6.8 Hz, 1H), 1.52 (dd, J = 12.5, 8.3 Hz, 1H), 1.46 (dd, J = 15.4, 5.1 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H), 1.25 (s, 12H), 1.09 (dd, J = 15.4, 9.3 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃)δ 175.9, 134.9, 133.4, 132.3, 130.0, 130.0, 127.1, 83.1, 64.9, 50.6, 50.0, 27.2, 25.9, 24.9, 24.7.

¹¹**B** NMR (96 MHz, CDCl₃) δ 33.5.

 $\textbf{HR-MS} \ (ESI-TOF) \ calcd. \ for \ C_{19}H_{26}BCl_2NO_2 \ [M+H]^+: 381.1548; found: \ 381.1548.$

5-(Benzo[d][1,3]dioxol-5-yl)-4,4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (**3k**)

37.9 mg, colorless oil, yield: 53%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.26 (d, J = 1.8 Hz, 1H), 7.23 (dd, J = 8.0, 1.8 Hz, 1H), 6.77 (d, J = 8.1 Hz, 1H), 5.95 (s, 2H), 4.20 – 4.07 (m, 1H), 2.12 (dd, J = 12.4, 6.7 Hz, 1H), 1.50 (dd, J = 12.4, 8.8 Hz, 1H) 1.48 (dd, J = 15.4, 5.4 Hz, 1H), 1.32 (s, 3H), 1.31 (s, 3H), 1.25 (s, 12H), 1.05 (dd, J = 15.4, 9.6 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃)δ 177.1, 148.4, 147.4, 129.0, 122.1, 108.6, 107.7, 101.1, 83.0, 64.2, 50.5, 50.3, 27.4, 26.1, 24.9, 24.7.

¹¹**B NMR** (96 MHz, CDCl₃)δ33.7.

HR-MS (ESI-TOF) calcd. for $C_{20}H_{28}BNO_4 [M+H]^+$: 357.2226; found: 357.2225.

4,4-Dimethyl-5-(naphthalen-1-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (3l)

62.5 mg, colorless oil, yield: 86%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 8.02 – 7.93 (m, 1H), 7.85 – 7.79 (m, 2H), 7.49 – 7.41 (m, 3H), 7.35 (dd, *J* = 7.1, 1.3 Hz, 1H), 4.47 – 4.34 (m, 1H), 2.28 (dd, *J* = 12.5, 6.9 Hz, 1H), 1.73 (dd, *J* = 15.6, 4.7 Hz, 1H), 1.67 (dd, *J* = 12.5, 8.6 Hz, 1H), 1.29 (s, 12H), 1.23 (s, 3H), 1.15 (s, 3H), 1.17 (dd, *J* = 15.6, 10.0 Hz, 1H).

¹³**C NMR** (75 MHz, CDCl₃) δ 179.1, 133.5, 133.4, 132.0, 128.3, 128.0, 126.0, 126.0, 125.7, 125.0, 124.4, 83.1, 66.0, 53.1, 47.9, 26.9, 25.5, 24.9, 24.7.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.7.

HR-MS (ESI-TOF) calcd. for $C_{23}H_{30}BNO_2 [M+H]^+$: 363.2484; found: 363.2484.

4,4-Dimethyl-5-(naphthalen-2-yl)-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2H-pyrrole (3m)

67.6 mg, colorless oil, yield: 93%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 8.17 (s, 1H), 7.92 – 7.79 (m, 4H), 7.53 – 7.43 (m, 2H), 4.33 – 4.19 (m, 1H), 2.21 (dd, *J* = 12.4, 6.7 Hz, 1H), 1.59 (dd, *J* = 12.4, 8.9 Hz, 1H), 1.58 (dd, *J* = 15.4, 5.2 Hz, 1H), 1.44 (s, 3H), 1.42 (s, 3H), 1.28 (s, 12H), 1.15 (dd, *J* = 15.4, 9.7 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 177.9, 133.6, 132.8, 132.4, 128.5, 127.6, 127.5, 127.4, 126.5, 126.1, 125.8, 83.0, 64.8, 50.8, 50.2, 27.5, 26.2, 24.9, 24.7.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.7.

HR-MS (ESI-TOF) calcd. for $C_{23}H_{30}BNO_2 [M+H]^+: 363.2484$; found: 363.2477.

5-(Furan-2-yl)-4, 4-dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3, 4-dihydro-2H-pyrrole (3n)

30.9 mg, colorless oil, yield: 51%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.48 (d, *J* = 1.4 Hz, 1H), 6.87 (d, *J* = 3.5 Hz, 1H), 6.44 (dd, *J* = 3.5, 1.8 Hz, 1H), 4.27 - 4.15 (m, 1H), 2.14 (dd, *J* = 12.6, 7.0 Hz, 1H), 1.64 (dd, *J* = 15.4, 4.7 Hz, 1H), 1.46 (dd, *J* = 12.6, 8.4 Hz, 1H), 1.41 (s, 3H), 1.29 (s, 3H), 1.26 (s, 6H), 1.25 (s, 6H), 1.01 (dd, *J* = 15.4, 10.7 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) ¹³C NMR (75 MHz, CDCl₃) δ168.7, 149.3, 143.7, 112.2, 111.2, 83.1, 65.8, 50.3, 48.8, 27.5, 25.9, 24.9, 24.6.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.2.

HR-MS (ESI-TOF) calcd. for $C_{17}H_{26}BNO_3 [M+H]^+$: 303.2120; found: 303.2122.

4,4-Dimethyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(thiophen-2-yl)-3,4-dihydro-2*H*-pyrrole (**30**)

56.8 mg, colorless oil, yield: 89%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.41 (dd, *J* = 3.8, 1.0 Hz, 1H), 7.30 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.00 (dd, *J* = 5.1, 3.7 Hz, 1H), 4.23 – 4.11 (m, 1H), 2.15 (dd, *J* = 12.6, 7.1 Hz, 1H), 1.53 (dd, *J* = 12.6, 8.3 Hz, 1H), 1.45 (dd, *J* = 15.3, 5.7 Hz, 1H), 1.43 (s, 3H), 1.32 (s, 3H), 1.24 (s, 6H), 1.23 (s, 6H), 1.06 (dd, *J* = 15.3, 9.5 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 171.8, 138.6, 128.0, 127.2, 127.1, 82.9, 65.1, 50.5, 49.8, 27.7, 26.1, 24.8, 24.6. ¹¹B NMR (96 MHz, CDCl₃) δ 33.6.

HR-MS (ESI-TOF) calcd. for $C_{17}H_{26}BNO_2S[M+H]^+$: 319.1892; found: 319.1898.

1-Phenyl-3-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-2-azaspiro[4.5]dec-1-ene (3p)

65.0 mg, colorless oil, yield: 92%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H** NMR (300 MHz, CDCl₃) δ 7.55 – 7.48 (m, 2H), 7.36 – 7.27 (m, 3H), 4.24 – 4.12 (m, 1H), 2.41 (dd, *J* = 12.7, 7.1 Hz, 1H), 1.81 – 1.43 (m, 9H), 1.34 (dd, *J* = 12.7, 8.4 Hz, 1H), 1.25 (s, 12H), 1.19 – 1.13 (m, 2H), 1.07 (dd, *J* = 15.4, 9.9 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 179.0, 136.0, 128.5, 128.0, 127.7, 83.0, 65.3, 56.7, 42.8, 35.7, 31.8, 25.6, 24.9, 24.6, 24.5, 23.3, 23.1.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.9.

HR-MS (ESI-TOF) calcd. for $C_{22}H_{32}BNO_2 [M+H]^+$: 353.2641; found: 353.2631.

4-Ally l-4-methy l-5-pheny l-2-((4,4,5,5-tetramethy l-1,3,2-dioxaborolan-2-yl) methy l)-3,4-dihydro-2H-pyrrole (3q)

48.8 mg, colorless oil, dr = 1:1, yield: 72%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.73 – 7.63 (m, 4H), 7.39 – 7.30 (m, 6H), 5.82 – 5.53 (m, 2H), 5.11 – 4.90 (m, 4H), 4.27 – 4.08 (m, 2H), 2.47 – 2.24 (m, 5H), 1.96 (dd, *J* = 12.5, 6.7 Hz, 1H), 1.67 (dd, *J* = 12.6, 8.9 Hz, 1H), 1.56 – 1.39 (m, 3H), 1.36 (s, 3H), 1.33 (s, 3H), 1.27 – 1.23 (m, 24H), 1.09 (m, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 177.2, 176.8, 135.2, 134.5, 134.3, 129.2, 129.1, 128.0, 128.0, 127.8, 118.0, 117.9, 83.0, 65.4, 64.8, 54.8, 54.3, 46.0, 45.8, 43.5, 43.3, 26.2, 24.9, 24.7, 24.7, 24.2.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.1.

HR-MS (ESI-TOF) calcd. for $C_{21}H_{30}BNO_2 [M+H]^+$: 339.2484; found: 339.2489.

4-Allyl-4-methyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(o-tolyl)-3,4-dihydro-2H-pyrrole (3r)

49.5 mg, colorless oil, dr = 1:1, yield: 70%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H** NMR (300 MHz, CDCl₃) δ 7.22 - 7.17 (m, 4H), 7.17 - 7.10 (m, 4H), 5.86 - 5.58 (m, 2H), 5.12 - 4.92 (m, 4H), 4.31 - 4.15 (m, 2H), 2.38 - 2.29 (m, 7H), 2.24 - 1.98 (m, 4H), 1.65 - 1.53 (m, 3H), 1.35 (dd, *J* = 12.8, 8.1 Hz, 2H), 1.26 (s, 12H), 1.25 (s, 12H), 1.17 (s, 3H), 1.11 - 1.02 (m, 5H).

¹³C NMR (75 MHz, CDCl₃)δ 178.7, 178.4, 136.5, 136.5, 135.4, 135.4, 134.4, 134.3, 130.5, 130.4, 127.9, 127.9, 127.4, 127.4, 124.8, 124.8, 118.1, 117.7, 83.0, 66.3, 65.9, 56.4, 56.0, 44.9, 43.9, 43.4, 42.0, 24.8, 24.7, 24.7, 24.6, 22.6, 20.1, 20.0.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.9.

HR-MS (ESI-TOF) calcd. for $C_{22}H_{32}BNO_2 [M+H]^+$: 353.2641; found: 353.2635.

 $\label{eq:alpha} 4-Allyl-4-methyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5-(\textit{m-tolyl})-3,4-dihydro-2\textit{H-pyrrole}~~(\mathbf{3s})$

55.1 mg, colorless oil, dr = 1:1, yield: 78%. Eluent: pentane/ethyl acetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.53 – 7.40 (m, 4H), 7.25 – 7.14 (m, 4H), 5.82 – 5.53 (m, 2H), 5.12 – 4.91 (m, 4H), 4.26 – 4.06 (m, 2H), 2.44 – 2.25 (m, 11H), 1.95 (dd, *J* = 12.5, 6.7 Hz, 1H), 1.65 (dd, *J* = 13.0, 9.1 Hz, 1H), 1.56 – 1.37 (m, 3H), 1.35 (s, 3H), 1.32 (s, 3H), 1.26 (s, 12H), 1.25 (s, 12H), 1.13 – 1.03 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 177.2, 176.8, 137.7, 137.6, 135.2, 134.6, 134.4, 129.9, 129.8, 128.9, 128.7, 127.8, 127.8, 124.8, 124.6, 117.9, 117.8, 83.0, 83.0, 65.4, 64.8, 54.8, 54.3, 46.0, 45.7, 43.6, 43.3, 26.2, 24.9, 24.9, 24.7, 24.6, 24.2, 21.4.

¹¹**B** NMR (96 MHz, CDCl₃)δ32.9.

HR-MS (ESI-TOF) calcd. for $C_{22}H_{32}BNO_2 [M+H]^+$: 353.2641; found: 353.2639.

4-Ally l-4-ethy l-5-pheny l-2-((4,4,5,5-tetramethy l-1,3,2-dioxaborolan-2-y l) methy l)-3,4-dihydro-2H-pyrrole (3t)

45.2 mg, colorless oil, dr = 5:3, yield: 64%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.76 – 7.66 (m, 3.2H), 7.39 – 7.29 (m, 4.8H), 5.82 – 5.67 (m, 1H), 5.67 – 5.53 (m, 0.6H), 5.12 – 4.91 (m, 3.2H), 4.24 – 4.06 (m, 1.6H), 2.54 – 2.42 (m, 1.6H), 2.42 – 2.26 (m, 1.6H), 2.21 – 2.07 (m, 1.6H), 1.85 – 1.43 (m, 6.4H), 1.27 (s, 12H), 1.26 (s, 7.2H), 1.10 – 1.00 (m, 1.6H), 0.91 (t, *J* = 7.5 Hz, 1.8H), 0.81 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 174.9, 174.8, 135.6, 134.8, 134.4, 129.2, 128.1, 128.1, 127.9, 117.9, 117.8, 83.0, 66.3, 65.7, 59.8, 59.7, 43.4, 43.3, 42.4, 42.0, 31.8, 30.7, 24.9, 24.7, 9.3.

¹¹**B** NMR (96 MHz, CDCl₃)δ33.6.

HR-MS (ESI-TOF) calcd. for $C_{22}H_{32}BNO_2 [M+H]^+$: 353.2641; found: 353.2639.

4-Allyl-4,5-diphenyl-2-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-3,4-dihydro-2*H*-pyrrole (**3u**)

36.9 mg, colorless oil, dr = 5:1, yield: 46%. Eluent: pentane/ethyl a cetate = 5/1 to 2/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.51 – 7.43 (m, 2H), 7.37 – 7.28 (m, 4H), 7.26 – 7.20 (m, 2H), 7.19 – 7.11 (m, 2H), 5.79 – 5.62 (m, 1H), 5.12 – 5.01 (m, 2H), 4.33 – 4.20 (m, 1H), 2.91 (dt, *J* = 7.4, 1.2 Hz, 2H), 2.67 (dd, *J* = 13.4, 7.9 Hz, 1H), 1.85 (dd, *J* = 13.4, 7.6 Hz, 1H), 1.59 (dd, *J* = 15.4, 5.5 Hz, 1H), 1.26 (s, 6H), 1.25 (s, 6H), 1.17 (dd, *J* = 15.4, 9.8 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 172.3, 147.4, 133.7, 133.5, 129.4, 128.9, 128.6, 127.8, 126.5, 126.2, 118.6, 83.1, 67.4, 62.2, 50.7, 40.6, 24.9, 24.7.
¹¹B NMR (96 MHz, CDCl₃) δ 34.3.
HR-MS (ESI-TOF) calcd. for C₂₆H₃₂BNO₂ [M+H]⁺: 401.2641; found: 401.2632.

3-Allyl-2-phenyl-1*H*-indole $(3v)^7$

40.1 mg, colorless solid, yield: 86%. Eluent: pentane/ethyl a cetate = 10/1.

¹**H NMR** (300 MHz, CDCl₃) δ 7.99 (br.s, 1H), 7.55 – 7.51 (m, 1H), 7.50 – 7.47 (m, 2H), 7.41 – 7.36 (m, 2H), 7.32 – 7.27 (m, 2H), 7.16 – 7.10 (m, 1H), 7.08 – 7.02 (m, 1H), 6.15 – 5.94 (m, 1H), 5.04 (dq, J = 6.5, 1.8 Hz, 1H), 4.99 (t, J = 1.8 Hz, 1H), 3.56 (dt, J = 5.6, 1.8 Hz, 2H).

¹³**C NMR** (75 MHz, CDCl₃) δ 137.4, 135.9, 134.8, 133.0, 129.4, 128.8, 127.8, 127.6, 122.3, 119.6, 119.4, 115.2, 110.8, 110.5, 28.9.

GC-MS (EI, 70eV):m/z(%)=233 (M⁺,100), 218 (27), 206 (100), 191 (9), 178 (15), 156 (11), 128 (17), 108 (18), 77 (15).

HR-MS (ESI-TOF) calcd. for $C_{17}H_{15}N[M+H]^+$: 234.1283; found: 234.1287.

7,7-Dimethyl-3,7a-diphenyl-5-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-5,6,7,7a-tetrahydropyrrolo [1,2-d] [1,2,4] oxadiazole (4)

38.1 mg, colorless solid, dr = 2:1, yield: 88%. Eluent: pentane/ethyl a cetate = 5/1 to 1/1.

¹**H NMR** (300 MHz, CDCl₃) *Data for the major diastereomer*:δ7.83–7.75 (m, 2H), 7.72–7.66 (m, 2H), 7.43–7.23 (m, 6H), 3.77–3.66 (m, 1H), 2.24 (dd, *J* = 12.8, 7.7 Hz, 1H), 1.69 (dd, *J* = 12.8, 5.7 Hz, 1H), 1.59 (dd, *J* = 15.6, 5.1 Hz, 1.5H), 1.50 (dd, *J* = 15.6, 11.2 Hz, 1H), 1.29 (s, 3H), 1.20 (s, 12H), 0.78 (s, 3H). *Characteristic signals for the minor isomer:* 4.18–4.03 (m, 1H), 1.99 (dd, *J* = 11.9, 5.1 Hz, 1H), 1.28 (s, 3H), 1.18 (s, 12H), 1.06 (dd, *J* = 14.7, 4.0 Hz, 1H), 0.81 (s, 3H), 0.72 (dd, *J* = 14.7, 12.3 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 160.5, 141.6, 130.5, 128.6, 128.4, 127.7, 127.4, 127.3, 126.2, 112.6, 83.3, 59.3, 47.3, 45.8, 27.4, 24.9, 24.5, 24.0.

¹¹**B** NMR (96 MHz, CDCl₃) δ 33.5.

HR-MS (ESI-TOF) calcd. for $C_{26}H_{33}BN_2O_3 [M+H]^+$: 432.2699; found: 432.2693.

(4,4-Dimethyl-5-phenyl-3,4-dihydro-2*H*-pyrrol-2-yl)methanol(5)

21.3 mg, yellow oil, yield: 70%. Eluent: pentane/ethyl a cetate = 2/1 to 0/1.

¹**H NMR** (300 MHz, CDCl₃) δ7.73 – 7.59 (m, 2H), 7.43 – 7.32 (m, 3H), 4.21 – 4.09 (m, 1H), 3.93 (dd, J = 11.2, 4.1 Hz, 1H), 3.57 (dd, J = 11.2, 6.5 Hz, 1H), 2.89 (br.s, 1H), 1.96 (dd, J = 12.5, 7.0 Hz, 1H), 1.68 (dd, J = 12.5, 8.9 Hz, 1H), 1.33 (s, 3H), 1.33 (s, 3H).

 $\label{eq:stars} \begin{array}{l} {}^{13}\text{C NMR} \ (75 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 181.4, 134.5, 129.6, 128.1, 127.8, 69.8, 65.9, 50.7, 43.3, 27.0, 26.0. \\ \textbf{HR-MS} \ (\text{ESI-TOF}) \ \text{calcd. for} \ \textbf{C}_{13}\textbf{H}_{17} \text{NO} \ [\text{M}+\text{H}]^+: 204.1388; \ \text{found:} \ 204.1390. \end{array}$

2-(4-Methoxybenzyl)-4,4-dimethyl-5-phenyl-3,4-dihydro-2H-pyrrole (6)

17.6 mg, yellow solid, yield: 40%. Eluent: pentane/ethyl a cetate = 10/1 to 5/1.

¹**H** NMR (400 MHz, CDCl₃) δ 7.74 – 7.67 (m, 2H), 7.41 – 7.36 (m, 3H), 7.23 – 7.19 (m, 2H), 6.89 – 6.83 (m, 2H), 4.29 – 4.21 (m, 1H), 3.80 (s, 3H), 3.30 (dd, *J* = 13.5, 5.2 Hz, 1H), 2.70 (dd, *J* = 13.5, 8.8 Hz, 1H), 1.94 (dd, *J* = 12.5, 6.7 Hz, 1H), 1.60 (dd, *J* = 12.5, 8.7 Hz, 1H), 1.31 (s, 3H), 1.27 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 179.4, 158.0, 134.9, 131.6, 130.3, 129.3, 128.1, 127.8, 113.6, 69.5, 55.2, 50.3, 47.3, 41.9, 27.2, 26.0.

HR-MS (ESI-TOF) calcd. for $C_{20}H_{23}NO[M+H]^+$: 294.1858; found: 294.1861.

4. Reference

- [1] Liu, R.-H.; Wei, D.; Han, B.; Yu, W. ACS Catalysis 2016, 6, 6525-6530.
- [2] Wang, L.; Wang C. J. Org. Chem. 2019, 84, 6547–6556.

[3] Zhang, M.; Liu, S.; Li, H.; Guo, Y.; Li, N.; Guan, M.; Mehfooz, H.; Zhao, J.; Zhang, Q. *Chem. Eur. J.* **2019**, *25*, 12620–12627.

- [4] Cai, S.-H.; Xie, J.-H.; Song, S.; Ye, L.; Feng, C.; Loh, T.-P. ACS Catalysis 2016, 6, 5571–5574.
- [5] Zhang, Y.; Yin, Y.; Wang H.; Wu, X.-F. Chem. Commun. 2020, 56, 7045–7048.
- [6] Yuan, Y.; Wu, F.-P.; Xu, J.-X.; Wu, X.-F. Angew. Chem. Int. Ed. 2020, 59, 2-9
- [7] Du, W.; Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2014, 50, 7437–7439.

5. ¹H-, ¹³C-, ¹¹B- and ¹⁹F-NMR spectra and HR-MS date copy of products

200721.326.12.fid — Youcan Zhang YZhang-3-405 — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 26 — 96.29MHz

160	150	140	130	120	110 1	100	90 8	80	70	60	50	40	30	20	10 f:	0 1 (ppi	-10 m)	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130 -1	140 -1	.50 -160
ESI-TO	F Acc	curate	e Mas	s Rep	ort																										Page 1
Results Last mo	sults file: E:\Projects\2007.PRO\SampleDB\2007.rpt st modified: Thursday, July 09, 2020 14:31:26																														
Sample	ample Summary:																														
Sample	e		File	Sam	ple Nar	me		U	lser		Tar	get			Fo	rmula	E	kpecte	d Mas	SS		Ot	oserve	d Ma	SS	Error F	PPM	Erro	r mDa		
141 20070910	0910	YZ-	137+141	.41	Youcan	n Zha	ang	31	2.22	49		C1	19H28BN02		313.23	3.232	28			31	313.2333	33		1.6		0.5					
							332.1		89		0	C22H24			333.196		967			314.2301 333.1964	54	-	-0.9		-0.3						

Ph 3a

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

s20

200710.318.12.fid — Youcan Zhang YZhang-3-365 — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 18 — 96.29MHz

- 33.7

200713.322.10.fid — Youcan Zhang YZhang-3-365 — Au19F CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 22 — 282.39MHz

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -50 -50 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 f1 (ppm)

s23

200720.402.12.fid — Youcan Zhang YZhang-3-399 — Au11B CDCl3 {C:\Bruker\TopSpin3.5pl6} 2007 2 — 128.38MHz

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

200706.f335.13.fid — Youcan Zhang YZhang-3-344 — F19 CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 35 — 282.44MHz දි |

-56.5 -57.0 -57.5 -58.0 -58.5 -59.0 -59.5 -60.0 -60.5 -61.0 -61.5 -62.0 -62.5 -63.0 -63.5 -64.0 -64.5 -65.0 -65.5 -66.0 -66.5 -67.0 -67.5 -68.0 -68.5 -69.0 -69.5 -70.0 -70.5 f1 (ppm)

s33

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 fl (ppm)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

200713.307.12.fid — Youcan Zhang YZhang-3-372 — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 7 — 96.29MHz

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

-

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

200709.308.12.fid — Youcan Zhang YZhang-3-374 — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 8 — 96.29MHz

--- 33.9

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

200713.312.12.fid — Youcan Zhang YZhang-3-385 — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2007 12 — 96.29MHz

~1

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

J

200630.321.12.fid — Youcan Zhang YZhang-3-322 — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2006 21 — 96.29MHz

25-TUP ACCURATE MASS REPORT								Page 1			
Results file: E:\Projects\2008.PRO\SampleDB\2008.rpt Last modified: Wednesday, August 05, 2020 16:08:47 											
									Sample	File	Sample Name
72	20080508	YZ-378	Youcan Zh	nang	400.2563	C26H32BNO2	401.2641 402.2609	401.2632 402.2601	-2.2 -2.0	-0.9 -0.8	

○ Ph 3u Chemical Formula: C20H32BNO2

Elemental Composition Report

Youcan Zhang YZ-320

Mass	Calc. Mass	mDa	PPM	Formula	
234.1287	234.1283	0.4	1.7	C17 H16 N	(M+H)+

200626.334.12.fid — Youcan Zhang YZhang-3-36a — Au11B CDCl3 {C:\Bruker\TopSpin3.6.0} 2006 34 — 96.29MHz

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

s70

f1 (ppm)

ESI-TOF Accurate Mass Report File:20080521 Vial:1:E_2 Description:MeOH/0.1% HCOOH in H2O 90:10	Sample Name:YZ-36C Date:05-Aug-2020	UserName:Youcan Zhang Time:16:46:05	Page 2
Sample Report:			
(Time: 0.27) Combine (21:27-86:91)			1:TOF MS ES+ 1.2e+009
100 204.1390			
0.2 mDa			
80			
70	он		
60-	Ph-XY5		
æ 50-	Chemical Formula: C ₁₃ H ₁₂ NO		
40			
30			
205 1426			

,h 800.0 m/z 100.0 300.0 400.0 200.0 500.0 600.0 700.0

205.1426

s75

ESI-TOF Accurate Mass Report Page Results file: E:\Projects\2008.PRO\SampleDB\2008.rpt Last modified: Wednesday, August 05, 2020 16:43:27																					
											ample	File	Sample Name	Us	er Target	Formula	Expected Mass	Observed Mass	Error PPM	Error mDa	
											83	20080519	YZ-404	Youcan Zhar	g 326.2406	C20H30BNO2	327.2484 328.2451	327.2479 328.2447	-1.5 -1.2	-0.5 -0.4	
						r ^e ot															
					Chamical F																
					Gileniicai r	omitia. 02010001102															