### **Supporting Information For**

# Transition-metal-free catalytic hydroborative reduction of amides to amines

Wubing Yao,\*<sup>a,b</sup> Jiali Wang,<sup>a,b</sup> Aiguo Zhong,<sup>a</sup> Shiliang Wang,<sup>a</sup> and Yinlin Shao<sup>c</sup>

<sup>a</sup>School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P.R. China

<sup>b</sup>Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China

<sup>c</sup>College of Chemistry & Materials Engineering and Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, P.R. China

> Corresponding author : Wubing Yao E-mail: icyyw2010@yeah.net

### **Table of Contents**

| General considerations          | 1. Genera  |
|---------------------------------|------------|
| The typical reaction procedures | 2. The typ |
| The mechanism studies           | 3. The me  |
| 3.1 The free radical experiment | 3.1        |
| 3.2 The homogeneous test        | 3.2        |
| 3.3 The kinetic studies         | 3.3        |
| 3.4 The DFT calculations        | 3.4        |
| NMR spectra dataS18             | 4. NMR s   |
| References                      | 5. Referen |
| NMR spectra                     | 6. NMR s   |

### 1. General considerations

#### **1.1 Materials**

All manipulations were carried out using standard Schlenk, high vacuum, and glovebox techniques. Glassware was dried in a 140 °C oven over 4 h prior to use. KOtBu (95%), BEt<sub>3</sub> (1M solution in THF), KBEt<sub>3</sub>H (1M solution in THF) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (97%) were purchased from Aladdin and used as received. BPh<sub>3</sub> (96%) and HBpin (97%) were purchased from Alfa and used as received. Flash colum chromatography was performed on silica gel (particle size 300-400 mesh ASTM), purchased from Yantai, China. The other bases and aldehydes were obtained from commerical sources and used as received. All solvents were obtained from commercial sources and used as received. All solvents were obtained from commercial sources and dried and degassed according to standard procedures. Secondary and tertiary aromatic amides are all known compounds, and are synthesized according to literature procedures.<sup>1</sup> All heating reactions were performed on the IKA RCT Basic magnetic stirring apparatus with an oil bath.

#### **1.2 Analytical Methods**

NMR spectra data were obtained on Avance (III) HD 400 MHz instruments. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were referenced to residual protic solvent peaks or TMS signal (0 ppm). <sup>19</sup>F NMR chemical shifts were externally referenced to CCl<sub>3</sub>F (0 ppm). Data for <sup>1</sup>H NMR are recorded as follows: chemical shift ( $\delta$ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, br = broad singlet, coupling constant (s) in Hz, integration). Data for <sup>13</sup>C NMR are reported in terms of chemical shift ( $\delta$ , ppm). GC was performed on a Shimadzu GC-2010 plus spectrometer. GC/MS was performed on a Shimadzu GCMS-QP2010 Plus spectrometer. The photophysical measurements were performed on the U-5100 spectrophotometer (HITACHI) and FLS980 fluorescence spectrophotometer (Edinburgh). Melting points were determined on a microscopic apparatus and were uncorrected. High-resolution mass spectra (HRMS) analyses were performed on Waters SYNAPT G2-Si mass spectrometer.

### 2. The typical reaction procedures

#### 2.1 Hydroboration of primary amides

In an argon filled glovebox, a 10 mL dried Schlenk tube equipped with a magnetic stir bar was charged with KOtBu (5 mol %), BEt<sub>3</sub> (5 mol %), amide (0.5 mmol), HBpin (4.0 equiv.), MTBE (2.0 mL). The tube was then sealed with a Teflon plug under an argon atmosphere, and removed from the glovebox. Then, the solution was stirred at 25 °C for 48 h. After that, the residue was filtrated though Celite. The filtrate was collected and the corresponding reduced amines were concentrated in vacuum. Consequently, 2.0 mL 1 M aqueous HCl was added to the concentrated amines followed by addition of 10 mL Et<sub>2</sub>O, stirring at 25 °C for 6 h. The corresponding amine hydrochloride salt was purified by washing with Et<sub>2</sub>O. Isolated amine hydrochlorides were characterized through NMR spectroscopy in DMSO-*d*6.

#### 2.2 Hydroboration of secondary and tertiary amines

In an argon filled glovebox, a 10 mL dried Schlenk tube equipped with a magnetic stir bar was charged with KOtBu (5 mol %), BEt<sub>3</sub> (5 mol %), amide (0.5 mmol), HBpin (4.0 equiv.), MTBE (2.0 mL). The tube was then sealed with a Teflon plug under an argon atmosphere, and removed from the glovebox. Then, the solution was stirred at 60 °C for 24 h. After this time, the reaction mixture was cooled to room temperature, and quenched by the addition of 1 mL of water. The crude mixture was extracted with ethyl acetate and the combined organic layers were dried over MgSO<sub>4</sub>. The crude product was purified by silica gel column chromatography using the ethyl acetate/petroleum ether mixture.

### 3. The mechanism studies

#### 3.1 The free radical experiment



Addition of typical radical scavengers, such as TEMPO and 9,10-dihydroanthracene, did not obviously effect the reduction transformations, rendering a free radical mechanism unlikely to be operative.

#### 3.2 The homogeneous test



Addition of commonly used heterogeneous catalyst poison PMe<sub>3</sub> or Hg showed no adverse effect on the yield of 4a, which indicated that the combined KO*t*Bu/BEt<sub>3</sub> catalyst was likely to be homogeneous under current conditions.

#### 3.3 The kinetic studies

#### a. General procedure for typical reaction kinetics

# For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (2.0 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE:

In a glovebox,  $KOtBu/BEt_3$  (2.80 mg, 0.025 mmol) was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of *N*,*N*-dimethylbenzamide (74.60 mg, 0.50 mmol) and pinacolborane (256.0 mg, 2.0 mmol) in 2 mL MTBE was added. The sealed tube was taken out from the glovebox, and was stirred at 60 °C taken out at 5, 10, 15, 20, 25, 30, 40, 60, 90, 120, 180 minutes. The sample was analyzed by GC. The percentage yields of the product **4n** were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S1. The molar concentrations of the product **4n** were plotted against the reaction time to obtain a typical reaction kinetic profile.

| Time (s) | Yield of <b>4n</b> (M) |
|----------|------------------------|
| 0        | 0                      |
| 300      | 0.01928                |
| 600      | 0.02881                |
| 900      | 0.03122                |
| 1200     | 0.03306                |
| 1500     | 0.03328                |
| 1800     | 0.03842                |
| 2400     | 0.04275                |
| 3600     | 0.04992                |
| 5400     | 0.05778                |
| 7200     | 0.07045                |
| 10800    | 0.07530                |

Table S1. The molar concentration of product 3n at different time interval





## b. General procedure to determine the dependence of reaction rate on the concentration of pinacolborane

## For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE:

In a glovebox, KOtBu/BEt<sub>3</sub> (2.80 mg, 0.025 mmol) was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of *N*,*N*-dimethylbenzamide (74.60mg, 0.50 mmol) and pinacolborane (256.0 mg, 2.0 mmol) in 2 mL MTBE was added. The sealed tube was taken out from the glovebox, and was stirred at 60 °C taken out at 30, 60, 90, 120 minutes. The

sample was analyzed by GC. The percentage yields of the product 4n were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S2. The molar concentrations of the product 4n were plotted against the reaction time to obtain a typical reaction kinetic profile.

For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (1.80 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of pinacolborane (2.00 mmol), pinacolborane (1.80 mmol) were added in the reaction.

For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (1.60 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of pinacolborane (2.00 mmol), pinacolborane (1.60 mmol) were added in the reaction.

For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (1.40 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of pinacolborane (2.00 mmol), pinacolborane (1.40 mmol) were added in the reaction.

The percentage yields of the product 4n were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The molar concentration of product 4n was plotted against the reaction time and the slope of linear portion of the curve was used to determine the initial rates of the reaction. The Table S3 showing molar concentration of product 4n in different concentration of pinacolborane, graph showing the rate at different concentration of pinacolborane, table with  $k_{in}$  in value and the graph showing  $k_{in}$  in versus [HBpin] are shown below.

| ne miervar |           |           |           |           |
|------------|-----------|-----------|-----------|-----------|
| Time (s)   | HBPin     | HBPin     | HBPin     | HBPin     |
|            | [20/20 M] | [18/20 M] | [16/20 M] | [14/20 M] |
| 1800       | 0.03842   | 0.03350   | 0.03069   | 0.02755   |

0.03992

0.05044

0.05752

0.03765

0.04305

0.04929

0.03068

0.03741

0.04038

Table S2. The molar concentration of product 4n in different concentration of pinacolborane at different time interval

| Table 62  | The V                        | value of | maduat  | An in  | different | achaption     | $\mathbf{a}\mathbf{f}$ | ninooo  | lhonono |
|-----------|------------------------------|----------|---------|--------|-----------|---------------|------------------------|---------|---------|
| Table 55. | $I \Pi \subset \Lambda_{in}$ | value of | product | 4H III | umerem    | concentration | 01                     | pinaco. | loorane |

0.04992

0.05778

0.07045

3600

5400

7200

| HBPin (M) | $K_{in} \mathrm{M}\mathrm{s}^{-1}$ |
|-----------|------------------------------------|
| 20/20     | 5.7829×10 <sup>-6</sup>            |
| 18/20     | 4.5871×10 <sup>-6</sup>            |
| 16/20     | 3.3997×10 <sup>-6</sup>            |
| 14/20     | 2.5110×10 <sup>-6</sup>            |



**Figure S2**. (a) Plot of the rise of product **4n** from the reaction of **3n** (0.5 mmol), KO*t*Bu/BEt<sub>3</sub> (0.025 mmol) with 1.40 mmol, 1.60 mmol, 1.80 mmol and 2.00 mmol of pinacolborane in 2 mL MTBE at different time. (b) Plot of  $K_{in}$  versus [HBPin] from the reaction of **3n** (0.5 mmol), KO*t*Bu/BEt<sub>3</sub> (0.025 mmol) with 1.40 mmol, 1.60 mmol, 1.80 mmol and 2.00 mmol of pinacolborane in 2 mL MTBE.

# c. General procedure to determine the dependence of reaction rate on the concentration of 3n (*N*,*N*-dimethylbenzamide)

## For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE:

In a glovebox, KOtBu/BEt<sub>3</sub> (2.80 mg, 0.025 mmol) was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of *N*,*N*-dimethylbenzamide (74.60 mg, 0.50 mmol) and pinacolborane (256.0 mg, 2.0 mmol) in 2 mL MTBE was added. The sealed tube was taken out from the glovebox, and was stirred at 60 °C taken out at 30, 60, 90, 120 minutes. The sample was analyzed by GC. The percentage yields of the product **4n** were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction

was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S4. The molar concentrations of the product **4n** were plotted against the reaction time to obtain a typical reaction kinetic profile.

For the reaction of *N*,*N*-dimethylbenzamide (0.40 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of *N*,*N*-dimethylbenzamide (0.50 mmol), *N*,*N*-dimethylbenzamide (0.40 mmol) were added in the reaction.

For the reaction of *N*,*N*-dimethylbenzamide (0.30 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of *N*,*N*-dimethylbenzamide (0.50 mmol), *N*,*N*-dimethylbenzamide (0.30 mmol) were added in the reaction.

For the reaction of *N*,*N*-dimethylbenzamide (0.20 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of *N*,*N*-dimethylbenzamide (0.50 mmol), *N*,*N*-dimethylbenzamide (0.20 mmol) were added in the reaction.

The percentage yields of the product **4n** were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The molar concentration of product **4n** was plotted against the reaction time and the slope of linear portion of the curve was used to determine the initial rates of the reaction. The Table S5 showing molar concentration of product **4n** in different concentration of *N*,*N*-dimethylbenzamide, graph showing the rate at different concentration of *N*,*N*-dimethylbenzamide, table with  $k_{in}$  in value and the graph showing  $k_{in}$  in versus [*N*,*N*-dimethylbenzamide] are shown below.

| Time (s) | <b>3n</b> [5/20 M] | <b>3n</b> [4/20 M] | <b>3n</b> [3/20 M] | <b>3n</b> [2/20 M] |
|----------|--------------------|--------------------|--------------------|--------------------|
| 1800     | 0.03842            | 0.02591            | 0.01638            | 0.00951            |
| 3600     | 0.04992            | 0.03498            | 0.01980            | 0.01292            |
| 5400     | 0.05778            | 0.04038            | 0.02527            | 0.01496            |
| 7200     | 0.07045            | 0.04523            | 0.03065            | 0.01875            |

Table S4. The molar concentration of product 4n in different concentration of *N*,*N*-dimethylbenzamide (3n) at different time interval

| Гab | le | <b>S</b> 5 | . T | he l | Kin | valı | ie o | f pro | oduct | : 3n | in | di | ffere | nt | concentrat | ion | of | N, | ,Λ | /-d | limet | hyl | benzam | ide | 3 |
|-----|----|------------|-----|------|-----|------|------|-------|-------|------|----|----|-------|----|------------|-----|----|----|----|-----|-------|-----|--------|-----|---|
|-----|----|------------|-----|------|-----|------|------|-------|-------|------|----|----|-------|----|------------|-----|----|----|----|-----|-------|-----|--------|-----|---|

| <b>3n</b> (M) | $K_{in}\mathrm{Ms}^{-1}$ |
|---------------|--------------------------|
| 2/20          | 1.6531×10 <sup>-6</sup>  |
| 3/20          | 2.6816×10 <sup>-6</sup>  |
| 4/20          | 3.5213×10 <sup>-6</sup>  |
| 5/20          | 5.7829×10 <sup>-6</sup>  |



**Figure S3.** (a) Plot of the rise of product **4n** from the reaction of pinacolborane (2.00 mmol) with KO*t*Bu/BEt<sub>3</sub> (0.025 mmol) with 0.20 mmol, 0.30 mmol, 0.40 mmol and 0.50 mmol of *N*,*N*-dimethylbenzamide (**3n**) in 2 mL MTBE at different time interval. (b) Plot of  $K_{in}$  versus [*N*,*N*-dimethylbenzamide] from the reaction of pinacolborane (2.00 mmol), KO*t*Bu/BEt<sub>3</sub> (0.025 mmol) with 0.20 mmol, 0.30 mmol, 0.40 mmol and 0.50 mmol of *N*,*N*-dimethylbenzamide in 2 mL MTBE.

## d. General procedure to determine the dependence of reaction rate on the concentration of catalyst

# For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.025 mmol) in 2 ml MTBE:

In a glovebox, KOtBu/BEt<sub>3</sub> (2.80 mg, 0.025 mmol) was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of *N*,*N*-dimethylbenzamide (74.60 mg, 0.50 mmol) and pinacolborane (256.0 mg, 2.0 mmol) in 2 mL MTBE was added. The sealed tube was taken out from the glovebox, and was stirred at 60 °C taken out at 30, 60, 90, 120 minutes. the sample was analyzed by GC. The percentage yields of the product **4n** were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S6. The molar concentrations of the product **4n** were plotted against the reaction time to obtain a typical reaction kinetic profile.

For the reaction of *N*,*N*-dimethylbenzamide (0.50 mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.020 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of KOtBu/BEt<sub>3</sub> (0.025 mmol), KOtBu/BEt<sub>3</sub> (0.020 mmol) were added in the reaction.

For the reaction of *N*,*N*-dimethylbenzamide (0.50mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.015 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of KOtBu/BEt<sub>3</sub> (0.025 mmol), KOtBu/BEt<sub>3</sub> (0.015 mmol) were added in the reaction.

For the reaction of *N*,*N*-dimethylbenzamide (0.50mmol), pinacolborane (2.00 mmol) with KOtBu/BEt<sub>3</sub> (0.010 mmol) in 2 ml MTBE: The procedure for this reaction was the same as above but instead of KOtBu/BEt<sub>3</sub> (0.025 mmol), KOtBu/BEt<sub>3</sub> (0.010mol) were added in the reaction.

The percentage yields of the product 4n were calculated by mesitylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The molar concentration of product 4n was plotted against the reaction time and the slope of linear portion of the curve was used to determine the initial rates of the reaction. The Table S7 showing molar concentration of product 4n in different concentration of pinacolborane, graph showing the rate at different concentration of KOtBu/BEt<sub>3</sub>, table with  $k_{in}$  in value and the graph showing  $k_{in}$  in versus KOtBu/BEt<sub>3</sub> are shown below.

| Table S6.    | The molar   | concentration | of product 4 | <b>n</b> in different | concentration | of KOtBu/BEt3 at |
|--------------|-------------|---------------|--------------|-----------------------|---------------|------------------|
| different ti | ime interva | 1             |              |                       |               |                  |

| Time | KOtBu/BEt <sub>3</sub> | KOtBu/BEt <sub>3</sub> | KOtBu/BEt <sub>3</sub> | KOtBu/BEt <sub>3</sub> |
|------|------------------------|------------------------|------------------------|------------------------|
| (s)  | [25/3000M]             | [20/3000M]             | [15/3000M]             | [10/3000 M]            |
| 1800 | 0.03842                | 0.03104                | 0.02811                | 0.02738                |
| 3600 | 0.04992                | 0.03811                | 0.03507                | 0.03343                |
| 5400 | 0.05778                | 0.04743                | 0.04334                | 0.03972                |
| 7200 | 0.07045                | 0.05515                | 0.05085                | 0.04727                |

Table S7. The Kin value of product 4n in different concentration of KOtBu/BEt3

| KOtBu/BEt <sub>3</sub> (M) | $K_{in}\mathrm{Ms}^{-1}$ |
|----------------------------|--------------------------|
| 10/3000                    | 3.6642×10 <sup>-6</sup>  |
| 15/3000                    | 4.2495×10 <sup>-6</sup>  |
| 20/3000                    | 4.5362×10 <sup>-6</sup>  |
| 25/3000                    | 5.7829×10 <sup>-6</sup>  |



**Figure S4**. (a) Plot of the rise of product **4n** from the reaction of **3n** (0.5 mmol), pinacolborane (2.0 with 0.01mmol, 0.015mmol, 0.020mmol and 0.025mmol concentration of KO*t*Bu/BEt<sub>3</sub> respectively in different time interval. (b) Plot of  $K_{in}$  versus KO*t*Bu/BEt<sub>3</sub> from the reaction of **3n** (0.5 mmol), pinacolborane (2.0 mmol) with 0.01mmol, 0.015mmol, 0.020mmol and 0.025mmol of KO*t*Bu/BEt<sub>3</sub> in 2mL MTBE.

### **3.4 The DFT calculations**



Table S8 The calculated gibbs free energies of reactions by DFT/B3LYP/6-311+G\*

| Eq (1) | Gulan                  | G <mark>B</mark> /a.u. | Galan                  |                      | $\Delta G_{eq(1)}$ | $\Delta G_{eq(1)}$ | $\Delta G_{eq(1)}$ |
|--------|------------------------|------------------------|------------------------|----------------------|--------------------|--------------------|--------------------|
|        | Ū <sub>A</sub> ∕a.u.   |                        | U <mark>O</mark> /a.u. |                      | (a.u.)             | (kcal/mol)         | (kJ/mol)           |
|        | -862.8889              | -400.8579              | -1263.7552             |                      | -0.0084            | -5.2711            | -22.03             |
| E (2)  | G <mark>c</mark> /a.u. |                        | G <sub>E</sub> /a.u.   | G <sub>A</sub> /a.u. | $\Delta G_{eq(2)}$ | $\Delta G_{eq(2)}$ | $\Delta G_{eq(2)}$ |
| Eq (2) |                        | UD/a.u.                |                        |                      | (a.u.)             | (kcal/mol)         | (kJ/mol)           |
|        | -1263.7552             | -411.6966              | -812.5606              | -862.8889            | 0.0023             | 1.4433             | 6.03               |

1 a.u. = 627.5095 kcal/mol 1 kcal/mol = 4.18 kJ/mol

--- Start of file A xyz ---

 $G_A = -862.8889$  a.u.

| Center | Atomic | Forces (Hartrees/Bohr) |              |              |  |
|--------|--------|------------------------|--------------|--------------|--|
| Number | Number | Х                      | Y            | Z            |  |
| 1      | 5      | -0.021270705           | -0.011873266 | -0.002129049 |  |
| 2      | 6      | -0.004405418           | 0.009734887  | 0.000647107  |  |
| 3      | 6      | 0.013841113            | 0.002893197  | -0.004982339 |  |
| 4      | 6      | 0.002556609            | 0.011955923  | -0.005996825 |  |
| 5      | 6      | 0.009330507            | -0.004863058 | 0.007574435  |  |
| 6      | 6      | 0.004357375            | 0.012444893  | -0.002024044 |  |
| 7      | 6      | 0.010124115            | -0.009039381 | 0.000374515  |  |
| 8      | 1      | 0.006424519            | 0.006422577  | -0.002483950 |  |
| 9      | 1      | -0.002109879           | 0.003884438  | 0.001407329  |  |
| 10     | 1      | -0.002912116           | -0.002655493 | -0.000234681 |  |
| 11     | 1      | -0.002712822           | 0.000660726  | -0.001843345 |  |

| 12            | 1         | -0.004609519   | 0.002725645  | -0.002098600 |
|---------------|-----------|----------------|--------------|--------------|
| 13            | 1         | -0.006908579   | -0.001601944 | 0.003758998  |
| 14            | 1         | 0.001557662    | 0.001327046  | 0.004931252  |
| 15            | 1         | -0.000666562   | -0.010083028 | 0.003873379  |
| 16            | 1         | 0.002521225    | -0.000967290 | 0.003814903  |
| 17            | 1         | -0.002956992   | -0.002211083 | 0.000700762  |
| 18            | 1         | -0.003488140   | 0.006587726  | 0.010355252  |
| 19            | 1         | -0.002438767   | -0.006909759 | 0.003225381  |
| 20            | 1         | 0.001891971    | -0.003298874 | -0.003895321 |
| 21            | 1         | 0.003328174    | -0.003330329 | -0.001348346 |
| 22            | 1         | -0.001296200   | -0.003750876 | -0.012269964 |
| 23            | 1         | -0.002997163   | -0.002089684 | 0.000612218  |
| 24            | 19        | 0.002839591    | 0.004037007  | -0.001969068 |
| Cartesian For | rces: Max | 0.021270705 RM | S 0.0059605  | 33           |

\_\_\_\_\_

--- End of file **A** xyz ---

--- Start of file **B** xyz ---

 $G_B = -400.8579 \text{ a.u.}$ 

| Center       | Atomic     | Forces (Hartrees/Bohr) |              |              |
|--------------|------------|------------------------|--------------|--------------|
| Number       | Number     | Х                      | Y            | Z            |
| 1            | 6          | -0.000027588           | 0.000084037  | -0.000055662 |
| 2            | 6          | 0.000162392            | -0.000082937 | -0.000048217 |
| 3            | 7          | -0.000003442           | 0.000012552  | 0.000036577  |
| 4            | 8          | -0.000082414           | 0.000094405  | 0.000044226  |
| 5            | 6          | -0.000058941           | -0.000011711 | 0.000046449  |
| 6            | 6          | 0.000041309            | -0.000029143 | -0.000015876 |
| 7            | 6          | -0.000009903           | 0.000037246  | -0.000021365 |
| 8            | 6          | -0.000046759           | -0.000032626 | -0.000004934 |
| 9            | 6          | 0.000044003            | -0.000053097 | 0.000030937  |
| 10           | 1          | -0.000031908           | -0.000021935 | -0.000008994 |
| 11           | 1          | -0.000004530           | -0.000011790 | -0.000008808 |
| 12           | 1          | 0.000009136            | -0.000006863 | -0.000010188 |
| 13           | 1          | -0.000003156           | -0.000005482 | -0.000003659 |
| 14           | 1          | -0.000009054           | -0.000000418 | 0.000007289  |
| 15           | 1          | 0.000006503            | 0.000006311  | 0.000001253  |
| 16           | 1          | 0.000014352            | 0.000021452  | 0.000010973  |
| Cartesian Fo | orces: Max | 0.000162392 RM         | s 0.0000428  |              |

--- End of file **B** xyz ----

--- Start of file C xyz ----

 $G_C = -1263.7552 \text{ a.u.}$ 

| Center | Atomic | Forces (Hartrees/Bohr) |              |              |
|--------|--------|------------------------|--------------|--------------|
| Number | Number | Х                      | Ŷ            | Z            |
|        |        |                        |              |              |
| 1      | 6      | 0.015303753            | -0.020955657 | -0.010760326 |
| 2      | 7      | -0.007038576           | 0.003529487  | -0.008086987 |
| 3      | 8      | 0.005220515            | 0.010884585  | 0.012569632  |
| 4      | 6      | -0.002534776           | 0.000770277  | -0.012958708 |
| 5      | 6      | -0.002646893           | -0.006820690 | -0.001688298 |
| 6      | 6      | 0.005092101            | -0.003612063 | 0.001925035  |
| 7      | 6      | 0.007663878            | 0.001318343  | 0.002702965  |
| 8      | 6      | 0.003038327            | 0.006525058  | -0.002145991 |
| 9      | 6      | -0.001332874           | 0.003830188  | -0.005011623 |
| 10     | 5      | -0.010124567           | 0.007351992  | -0.000573922 |
| 11     | 6      | -0.015549298           | -0.000658379 | 0.005252277  |
| 12     | 6      | -0.008173087           | 0.001083519  | -0.015523552 |
| 13     | 6      | 0.003568524            | 0.012430495  | 0.003484609  |
| 14     | 6      | -0.007830734           | -0.007478355 | 0.005699206  |
| 15     | 6      | -0.002741263           | -0.010894440 | 0.008395441  |
| 16     | 6      | 0.001143012            | 0.008866318  | -0.005369859 |
| 17     | 1      | 0.007893032            | -0.013110903 | 0.015910453  |
| 18     | 1      | 0.005519164            | -0.000794140 | -0.002079141 |
| 19     | 1      | 0.009088654            | 0.005358559  | -0.003901521 |
| 20     | 1      | -0.000730727           | 0.011098987  | 0.000848915  |
| 21     | 1      | -0.003671334           | 0.003991055  | -0.001007010 |
| 22     | 1      | -0.004338425           | -0.001199781 | -0.001568381 |
| 23     | 1      | -0.002439158           | -0.005088555 | 0.001252404  |
| 24     | 1      | 0.012829460            | -0.013389999 | 0.009376095  |
| 25     | 1      | 0.003365232            | -0.001957232 | 0.003468385  |
| 26     | 1      | 0.000960368            | -0.001051703 | 0.002040114  |
| 27     | 1      | 0.008847377            | 0.009740732  | 0.006586763  |
| 28     | 1      | 0.003532689            | 0.000968848  | 0.007378052  |
| 29     | 1      | -0.001895427           | 0.002347209  | 0.002826110  |
| 30     | 1      | -0.003890209           | -0.000967901 | -0.000936732 |
| 31     | 1      | -0.002277256           | -0.004926705 | -0.003042162 |
| 32     | 1      | 0.000056781            | -0.003200471 | 0.001543351  |
| 33     | 1      | 0.002067199            | -0.007788379 | -0.007274345 |

\_\_\_\_\_

| 34                                                | 1  | -0.004003173 | -0.000112210 | 0.002085366  |  |
|---------------------------------------------------|----|--------------|--------------|--------------|--|
| 35                                                | 1  | 0.002424651  | 0.000929325  | -0.003778656 |  |
| 36                                                | 1  | -0.004970843 | 0.005744445  | -0.003750247 |  |
| 37                                                | 1  | 0.002499700  | 0.002360408  | 0.000306264  |  |
| 38                                                | 1  | -0.008855507 | 0.004931158  | 0.000663821  |  |
| 39                                                | 1  | 0.001705835  | -0.000030239 | -0.000388705 |  |
| 40                                                | 19 | -0.006776123 | -0.000023184 | -0.004469091 |  |
|                                                   |    |              |              |              |  |
| Cartesian Forces: Max 0.020955657 RMS 0.006545053 |    |              |              |              |  |

Cartesian Forces: Max 0.020953657 RMS 0.006545055

--- End of file C xyz ----

--- Start of file **D** xyz ----

 $G_D = -411.6966$  a.u.

| Center      | Atomic     | Forces (Hartrees/Bohr) |              |              |
|-------------|------------|------------------------|--------------|--------------|
| Number      | Number     | Х                      | Y            | Z            |
| 1           | 8          | -0.007346085           | 0.027149595  | 0.000000615  |
| 2           | 6          | 0.007969577            | -0.016748527 | 0.000001313  |
| 3           | 6          | -0.007968637           | -0.016751353 | -0.000000311 |
| 4           | 8          | 0.007345890            | 0.027151144  | 0.000000491  |
| 5           | 5          | -0.000002108           | -0.004531253 | -0.000000414 |
| 6           | 6          | 0.007066697            | -0.002833520 | 0.009665700  |
| 7           | 6          | 0.007068759            | -0.002835549 | -0.009666408 |
| 8           | 6          | -0.007065567           | -0.002835088 | 0.009667416  |
| 9           | 6          | -0.007067506           | -0.002835000 | -0.009666493 |
| 10          | 1          | 0.000000651            | 0.003208902  | 0.00000134   |
| 11          | 1          | -0.000149010           | 0.001302544  | -0.000295011 |
| 12          | 1          | 0.000359235            | -0.002764821 | -0.005067997 |
| 13          | 1          | -0.005515592           | -0.000573674 | -0.003611383 |
| 14          | 1          | -0.000148295           | 0.001303450  | 0.000295379  |
| 15          | 1          | -0.005515402           | -0.000572110 | 0.003610780  |
| 16          | 1          | 0.000356939            | -0.002765480 | 0.005066870  |
| 17          | 1          | 0.005514458            | -0.000571831 | -0.003610860 |
| 18          | 1          | -0.000359063           | -0.002766232 | -0.005067519 |
| 19          | 1          | 0.000148688            | 0.001303073  | -0.000294580 |
| 20          | 1          | 0.005514769            | -0.000570204 | 0.003610124  |
| 21          | 1          | 0.000147627            | 0.001303289  | 0.000295301  |
| 22          | 1          | -0.000356026           | -0.002767352 | 0.005066853  |
| Cartesian F | orces: Max | 0.027151144 RN         | 1S 0.006988  | 128          |

S16

### --- End of file **D** xyz ---

---- Start of file **E** xyz ----

### $G_E = -812.5606$ a.u.

| Center<br>Number | Atomic<br>Number | H<br>X       | Forces (Hartrees/B<br>Y | Sohr)<br>Z   |
|------------------|------------------|--------------|-------------------------|--------------|
| 1                | 6                | 0.000841402  | -0.006907416            | 0.002743857  |
| 2                | 6                | -0.006092320 | -0.009084784            | -0.004852176 |
| 3                | 7                | 0.006847642  | 0.002303078             | 0.007456424  |
| 4                | 8                | 0.020764180  | 0.004249355             | 0.007083517  |
| 5                | 5                | -0.009494641 | 0.007309173             | -0.004697825 |
| 6                | 8                | -0.022162354 | -0.014959119            | 0.004078386  |
| 7                | 6                | 0.018368576  | 0.008209621             | -0.002024304 |
| 8                | 6                | 0.018582577  | -0.008691910            | 0.004428472  |
| 9                | 8                | -0.025357036 | 0.017704274             | -0.006393251 |
| 10               | 6                | 0.005124686  | 0.008760306             | 0.007228156  |
| 11               | 6                | 0.002393568  | 0.003592459             | -0.010863275 |
| 12               | 6                | 0.000732163  | -0.002951864            | 0.011406218  |
| 13               | 6                | 0.004562902  | 0.006402087             | -0.000348370 |
| 14               | 6                | -0.001843339 | 0.002173366             | -0.000121495 |
| 15               | 6                | -0.004401806 | 0.002007560             | -0.000034440 |
| 16               | 6                | -0.003056978 | -0.002374015            | 0.000151731  |
| 17               | 6                | -0.001645478 | -0.002690238            | 0.000488610  |
| 18               | 1                | -0.004465357 | 0.001051888             | -0.017107128 |
| 19               | 1                | -0.005096965 | -0.001737883            | 0.005064942  |
| 20               | 1                | -0.005843979 | 0.000758719             | 0.002217201  |
| 21               | 1                | -0.000830803 | 0.000313262             | -0.000422321 |
| 22               | 1                | 0.002954176  | -0.002343753            | -0.005467265 |

| Cartesian Forces: | Max | 0.025357036 RMS | 0.00673146   | 1            |
|-------------------|-----|-----------------|--------------|--------------|
| 38                | 1   | 0.002205147     | 0.001833360  | 0.005576961  |
| 37                | 1   | 0.000065007     | 0.005684641  | 0.001714651  |
| 36                | 1   | -0.001491573    | -0.000227481 | 0.000296537  |
| 35                | 6   | 0.005452817     | -0.008903814 | -0.006205994 |
| 34                | 1   | -0.000126049    | 0.006467521  | -0.000539429 |
| 33                | 1   | 0.002871403     | 0.002460653  | -0.000240775 |
| 32                | 1   | 0.003477470     | -0.001343545 | -0.000052275 |
| 31                | 1   | 0.000648651     | -0.003948330 | 0.000151841  |
| 30                | 1   | -0.007827062    | -0.007523543 | 0.000864156  |
| 29                | 1   | -0.001596770    | 0.000609028  | -0.000605661 |
| 28                | 1   | 0.002547645     | -0.001867159 | -0.003518153 |
| 27                | 1   | 0.001783862     | 0.003729620  | -0.004972828 |
| 26                | 1   | 0.002177796     | 0.001411980  | 0.003597678  |
| 25                | 1   | 0.000720032     | -0.004589028 | 0.005433236  |
| 24                | 1   | -0.001376203    | -0.000620481 | 0.000192316  |
| 23                | 1   | -0.000412988    | -0.006267586 | -0.001707925 |

--- End of file E xyz ---

### 4. NMR spectra data



Phenylmethanamine hydrochloride (2'a), white solid, 0.057 g, 80%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) δ 8.35 (s, 3H), 7.49 (s, 2H), 7.40 (d, *J* = 7.1 Hz, 3H), 3.99 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) δ 134.2, 129.0, 128.5, 128.4, 42.1. These spectroscopic data correspond to reported data.<sup>2</sup>

NH<sub>3</sub>CI

4-Methylbenzylamine hydrochloride (2'b), white solid, 0.066 g, 83%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) δ 8.38 (s, 3H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.8 Hz, 2H), 3.95 (q, J = 5.7 Hz, 2H), 2.31 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  137.8, 131.0, 129.1, 128.9, 41.9, 20.7. These spectroscopic data correspond to S18 reported data.<sup>2</sup>

(4-(Tert-butyl)phenyl)methanamine hydrochloride (2'c), white solid, 0.085 g, 85%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.50 (s, 3H), 7.42 (s, 4H), 3.95 (s, 2H), 1.27 (s, 9H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  150.9, 131.1, 128.7, 125.3, 41.8, 34.3, 31.0. These spectroscopic data correspond to reported data.<sup>2</sup>



**4-Methoxybenzylamine hydrochloride (2'd)**, white solid, 0.061 g, 70%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.29 (s, 3H), 7.41 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 3.93 (q, J = 5.7 Hz, 2H), 3.76 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  159.4, 130.5, 125.9, 113.9, 55.2, 41.7. These spectroscopic data correspond to reported data.<sup>2</sup>



**4-Fluorobenzylamine hydrochloride (2'e)**, white solid, 0.075 g, 92%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.52 (s, 3H), 7.56 (dd, J = 8.3 Hz, J = 5.7 Hz, 2H), 7.25 (t, J = 8.9 Hz, 2H), 4.00 (s, 2H). <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  -113.69. <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  163.3, 160.8, 131.3 (d, J = 8.4 Hz), 130.4 (d, J = 3.1 Hz), 115.4, 115.2, 41.4. These spectroscopic data correspond to reported data.<sup>3</sup>



**4-Chlorobenzylamine hydrochloride (2'f)**, white solid, 0.079 g, 90%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.60 (s, 3H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.47 (d, *J* = 7.9 Hz, 2H), 4.00 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  133.2, 133.1, 131.0, 128.5, 41.4. These spectroscopic data correspond to reported data.<sup>3</sup>

**4-Bromobenzylamine hydrochloride (2'g)**, white solid, 0.097 g, 88%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.63 (s, 3H), 7.59 (d, *J* = 8.3 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 3.96 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  133.6, 131.4, 121.6, 41.4. These spectroscopic data correspond to reported data.<sup>3</sup>



(4-(Trifluoromethyl)phenyl)methanamine (2'h), white solid, 0.054 g, 51%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.89 (s, 3H), 7.75 (q, J = 8.2 Hz, 4H), 4.10 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  138.9, 130.0, 129.0 (q, J = 31.8 Hz), 128.3, 125.6, 125.4 (d, J = 3.7 Hz), 122.9, 120.2, 41.7. <sup>19</sup>F NMR (377 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  -61.17. These spectroscopic data correspond to reported data.<sup>2</sup>



**Naphthalen-1-ylmethanamine hydrochloride (2'i)**, white solid, 0.02 g, 21%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.52 (s, 3H), 8.15 (d, *J* = 8.2 Hz, 1H), 8.00 (t, *J* = 9.1 Hz, 2H), 7.69-7.51 (m, 4H), 4.52 (d, *J* = 5.6 Hz, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  133.2, 130.7, 130.2, 128.9, 128.7, 127.3, 126.8, 126.2, 125.4, 123.5. These spectroscopic data correspond to reported data.<sup>3</sup>



(2-Methoxyphenyl)methanamine hydrochloride (2'j), white solid, 0.053 g, 36%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.33 (s, 3H), 7.39 (dd, *J* = 11.6 Hz, *J* = 7.6 Hz, 2H), 7.07 (d, *J* = 8.2 Hz, 1H), 6.98 (t, *J* = 7.4 Hz, 1H), 3.95 (q, *J* = 5.6 Hz, 2H), 3.83 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  157.2, 130.3, 130.2, 121.7, 120.3, 110.9, 55.5 37.6. These spectroscopic data correspond to reported data.<sup>3</sup>



**Benzo[b]thiophen-2-ylmethanamine hydrochloride (2'k)**, white solid, 0.077 g, 77%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.77 (s, 3H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.94-7.76 (m, 1H), 7.58 (s, 1H), 7.41-7.35 (m, 2H), 4.33 (s, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  139.6, 139.0, 136.6, 125.4, 124.8, 124.7, 123.8, 122.6, 37.5. These spectroscopic data correspond to reported data.<sup>3</sup>



**Phenylethylamine hydrochloride (2'l)**, white solid, 0.071 g, 90%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.37 (s, 3H), 7.35-7.27 (m, 2H), 7.26-7.19 (m, 3H), 2.94 (s, 4H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  137.7, 128.6, 126.7, 32.8. These spectroscopic data correspond to reported data.<sup>3</sup>



**Phenylethylamine hydrochloride (2'm)**, white solid, 0.079 g, 93%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.03 (s, 3H), 7.30 (t, J = 7.4 Hz, 2H), 7.25-7.13 (m, 2H), 2.76 (dd, J = 13.4 Hz, J = 6.4 Hz, 2H), 2.64 (t, J = 7.7 Hz, 2H), 1.93-1.72 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  140.9, 128.4, 128.2, 126.0, 38.3, 31.8, 28.7. These spectroscopic data correspond to reported data.<sup>3</sup>



**2-(Naphthalen-1-yl)ethan-1-amine hydrochloride (2'n)**, white solid, 0.039 g, 38%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.21 (d, J = 11.4 Hz, 3H), 8.18 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.58 (dt, J = 14.7 Hz, J = 6.9 Hz, 2H), 7.51-7.40 (m, 2H), 3.46-3.29 (m, 2H), 3.22-2.96 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  133.5, 133.4, 131.3, 128.7, 127.4, 126.9, 126.4, 125.8, 125.7, 123.5, 30.2. These spectroscopic data correspond to reported data.<sup>3</sup>

### ∕\_NH<sub>3</sub>Cl

**Ethylamine hydrochloride (2'o)**, white solid, 0.037 g, 91%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  7.84 (s, 3H), 2.77 (dd, *J* = 14.0 Hz, *J* = 6.9 Hz, 2H), 1.15 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  34.0, 12.5. These spectroscopic data correspond to reported data.<sup>3</sup>

### MH<sub>3</sub>Cl

*n*-Propylamine hydrochloride (2'p), white solid, 0.044 g, 92%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.09 (s, 3H), 2.70 (t, *J* = 7.5 Hz, 2H), 1.57 (dd, *J* = 15.0 Hz, *J* = 7.5 Hz, 2H), 0.89 (t, *J* = 7.5 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  40.3, 20.4, 10.9. These spectroscopic data correspond to reported data.<sup>3</sup>

### MH<sub>3</sub>CI

*n*-Butylamine hydrochloride (2'q), white solid, 0.042 g, 76%. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  8.03 (s, 3H), 2.90-2.63 (m, 2H), 1.53 (dt, J = 15.2 Hz, J = 7.6 Hz, 2H), 1.41-1.19 (m, 2H), 0.87 (t, J = 7.3 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO- $d_6$ , 20 °C)  $\delta$  38.4, 29.0, 19.2, 13.5. These spectroscopic data correspond to reported data.<sup>3</sup>

### MH<sub>3</sub>Cl

Hexylamine hydrochloride (2'r), white solid, 0.054 g, 78%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.22 (s, 3H), 2.69 (t, *J* = 7.5 Hz, 2H), 1.63-1.46 (m, 2H), 1.28 (dd, *J* = 14.5 Hz, *J* = 7.7 Hz, 6H), 0.85 (t, *J* = 6.7 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  30.8, 26.8, 25.6, 22.0, 13.9. These spectroscopic data correspond to reported data.<sup>3</sup>

### 

**Isobutylamine hydrochloride (2's)**, white solid, 0.078 g, 71%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.11 (s, 3H), 2.59 (s, 2H), 1.93-1.83 (m, 1H), 0.91 (d, *J* = 6.7 Hz, 6H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  45.6, 26.3, 19.8. These spectroscopic data correspond to reported data.<sup>3</sup>



**Cyclohexanemethylamine hydrochloride (2't)**, white solid, 0.066 g, 87%. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  8.08 (s, 3H), 2.60 (s, 2H), 1.70 (dd, *J* = 24.2 Hz, *J* = 12.6 Hz, 4H), 1.65-1.47 (m, 2H), 1.24-1.05 (m, 3H), 1.02-0.74 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C)  $\delta$  44.3, 35.4, 29.8, 25.6, 25.0. These spectroscopic data correspond to reported data.<sup>3</sup>



*N*-benzylaniline (4a). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave white solid, 0.087 g, 95%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.44-7.34 (m, 4H), 7.31 (dd, *J* = 8.1 Hz, *J* = 5.5 Hz, 1H), 7.21 (dd, *J* = 8.5 Hz, *J* = 7.4 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.67 (dd, *J* = 8.5 Hz, *J* = 0.9 Hz, 2H), 4.36 (s, 2H), 4.04 (s, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  148.3, 139.6, 129.4, 128.8, 127.6, 127.4, 117.7, 113.0, 48.5. These spectroscopic data correspond to reported data.<sup>4</sup>



**4-Chloro-N-ethylaniline (4b)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave yellow oil, 0.071 g, 91%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.11 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 3.12 (q, J = 7.1 Hz, 2H), 1.30-1.06 (m, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  147.0, 129.2, 122.0, 114.0, 38.8, 29.9. These spectroscopic data correspond to reported data.<sup>4</sup>



*N*-ethyl-4-iodoaniline (4c). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow solid, 0.12 g, 98%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.41 (d, *J* = 8.6 Hz, 2H), 6.38 (d, *J* = 8.6 Hz, 2H), 3.59 (s, 1H), 3.12 (q, *J* = 7.1 Hz, 2H), 1.25 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)

 $\delta$  148.0, 137.8 , 115.0, 77.6, 38.4, 14.8. These spectroscopic data correspond to reported data.^4



*N*-ethyl-4-methylaniline (4d). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave colorless oil, 0.066 g, 97%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.02 (d, *J* = 8.2 Hz, 2H), 6.57 (d, *J* = 8.2 Hz, 2H), 3.40 (s, 1H), 3.16 (q, *J* = 7.1 Hz, 2H), 2.27 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  146.4, 129.8, 126.6, 113.1, 39.0, 20.5, 15.1. These spectroscopic data correspond to reported data.<sup>4</sup>



*N*-ethyl-4-methoxyaniline (4e). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.072 g, 95%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  6.80 (d, *J* = 8.9 Hz, 2H), 6.60 (d, *J* = 8.9 Hz, 2H), 3.76 (s, 3H), 3.12 (q, *J* = 7.1 Hz, 2H), 2.99 (s, 1H), 1.25 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  152.2, 142.9, 115.0, 114.2, 55.9, 39.6, 15.1. These spectroscopic data correspond to reported data.<sup>4</sup>



**1,2,3,4-Tetrahydroquinoxaline (4f)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave brown solid, 0.052 g, 78%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  6.63-6.54 (m, 2H), 6.54-6.46 (m, 2H), 3.42 (s, 4H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  133.8, 118.9, 114.9, 41.5. These spectroscopic data correspond to reported data.<sup>5</sup>



**2,3,4,5-tetrahydro-1H-benzo[b]azepine (4g)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave white solid, 0.071 g, 97%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.11 (d, *J* = 7.4 Hz, 1H), 7.04 (td, *J* = 7.6 Hz, *J* = 1.4 Hz, 1H), 6.83 (td, *J* = 7.4 Hz, *J* = 1.0 Hz, 1H), 6.74 (d, *J* = 7.7 Hz, 1H), 3.12-2.98 (m, 2H), 2.82-2.70 (m, 2H), 1.80 (ddd, *J* = 7.9 Hz, *J* = 6.9 Hz, *J* = 4.4 Hz, 2H), 1.69-1.57 (m, 2H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  150.5, 133.9, 130.9, 126.7, 120.9, 119.5, 49.0, 36.2, 32.1, 27.0. These spectroscopic data correspond to reported data.<sup>5</sup>



**3,4-dihydro-2H-benzo[b][1,4]oxazine (4h)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave colorless oil, 0.064 g, 95%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.45-7.34 (m, 4H), 7.31 (t, *J* = 6.8 Hz, 1H), 7.21 (dd, *J* = 8.5 Hz, *J* = 7.4 Hz, 2H), 6.76 (t, *J* = 7.3 Hz, 1H), 6.67 (dd, *J* = 8.5 Hz, *J* = 0.9 Hz, 2H), 4.36 (s, 2H), 4.04 (s, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  148.3, 139.6, 129.4, 128.8, 127.6, 127.4, 117.7, 113.0, 48.5. These spectroscopic data correspond to reported data.<sup>5</sup>



**Indole (4k)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave white solid, 0.064 g, 69%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  8.02 (s, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7.24-7.05 (m, 3H), 6.54 (d, J = 0.8 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  135.9, 127.9, 124.3, 122.1, 120.8, 119.9, 111.2, 102.7. These spectroscopic data correspond to reported data.<sup>6</sup>



**5-Bromo-indole (41).** Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave white solid, 0.084 g, 86%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  8.20 (s, 1H), 7.78 (s, 1H), 7.32-7.23 (m, 2H), 7.21 (t, *J* = 2.8 Hz, 1H), 6.57-6.36 (m, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  134.5, 129.8, 125.5, 125.0, 123.4, 113.2, 112.6, 102.4. These spectroscopic data correspond to reported data.<sup>6</sup>



**4-Chloro-indole (4m)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.049 g, 65%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  8.26 (s, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.18-7.09 (m, 2H), 6.68 (d, J = 2.3 Hz, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  136.6, 126.9, 126.2, 124.8, 122.7, 119.7, 109.8, 101.4. These spectroscopic data correspond to reported data.<sup>6</sup>



*N,N*-dimethyl-1-phenylmethanamine (4n). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave colorless oil, 0.048 g, 72%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.46-7.12 (m, 5H), 3.42 (s, 2H), 2.24 (s, 6H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  138.8, 129.2, 128.3, 127.1, 64.4, 45.4. These spectroscopic data correspond to reported data.<sup>7</sup>



*N,N*-dimethyl-1-phenylmethanamine (40). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave colorless oil, 0.048 g, 70%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.29 (d, *J* = 8.4 Hz, 2H), 7.23 (d, *J* = 8.3 Hz, 2H), 3.37 (s, 2H), 2.22 (s, 6H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  137.5, 132.8, 130.5, 128.5, 63.7, 45.4. These spectroscopic data correspond to reported data.<sup>7</sup>



*N*-ethyl-N-methylaniline (4p). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.042 g, 62%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.26 (dd, *J* = 8.4 Hz, *J* = 7.7 Hz, 2H), 6.72 (dd, *J* = 15.0 Hz, *J* = 7.7 Hz, 3H), 3.43 (q, *J* = 7.1 Hz, 2H), 2.93 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  149.2, 129.3, 116.1, 112.5, 46.9, 37.6, 11.3. These spectroscopic data correspond to reported data.<sup>8</sup>



*N*-ethyl-4-fluoro-N-methylaniline (4q). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.056 g, 73%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  6.98-6.89 (m, 2H), 6.66 (ddd, J = 10.7 Hz, J = 5.4 Hz, J = 3.2 Hz, 2H), 3.35 (q, J = 7.1 Hz, 2H), 2.86 (s, 3H), 1.10 (t, J = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  156.6, 154.3, 146.2, 115.6 (d, J = 21.9 Hz), 114.0 (d, J = 7.3 Hz), 47.7, 38.1, 11.1. These spectroscopic data correspond to reported data.<sup>8</sup>



**4-Bromo-N-ethyl-N-methylaniline** (4r). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave yellow oil, 0.066 g, 62%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.29 (d, J = 9.1 Hz, 2H), 6.57 (d, J = 9.0 Hz, 2H), 3.37 (q, J = 7.1 Hz, 2H), 2.88 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  148.1, 131.9, 114.0, 107.9, 47.0, 37.6, 11.1. These spectroscopic data correspond to reported data.<sup>8</sup>



*N*-ethyl-N,2-dimethylaniline (4s). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.052 g, 70%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.24-7.15 (m, 2H), 7.08 (d, *J* = 7.1 Hz, 1H), 6.99 (td, *J* = 7.3 Hz, *J* = 1.2 Hz, 1H), 2.95 (q, *J* = 7.1 Hz, 2H), 2.72 (s, 3H), 2.35 (s, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  152.3, 133.2, 131.1, 126.4, 122.8, 119.9, 50.6, 41.0, 18.4, 13.0. These spectroscopic data correspond to reported data.<sup>8</sup>



*N*-ethyl-*N*, 3-dimethylaniline (4t). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave yellow oil, 0.067 g, 90%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.14 (t, *J* = 8.1 Hz, 1H), 6.59 (s, 3H), 3.39 (q, *J* = 7.1 Hz, 2H), 2.91 (s, 3H), 2.32 (s, 3H), 1.13 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  149.3, 138.9, 129.2, 117.2, 113.3, 109.8, 47.0, 37.6, 22.1, 11.4. These spectroscopic data correspond to reported data.<sup>8</sup>



**N-ethyl-N,4-dimethylaniline (4u)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.060 g, 81%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.06 (d, J = 8.3 Hz, 2H), 6.68 (d, J = 8.6 Hz, 2H), 3.38 (q, J = 7.1 Hz, 2H), 2.88 (s, 3H), 2.27 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  147.4, 129.8, 125.6, 113.1, 47.3, 37.8, 20.4, 11.2. These spectroscopic data correspond to reported data.<sup>8</sup>



1-Ethylindoline (4v). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave yellow oil, 0.070 g, 95%. <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>, 20 °C)  $\delta$  7.08 (t, J = 7.7 Hz, 2H), 6.71-6.61 (m, 1H), 6.50 (d, J = 7.7 Hz, 1H), 3.88 (q, J = 7.0 Hz, 1H), 3.34 (t, J = 8.3 Hz, 2H), 3.15 (q, J = 7.2 Hz, 2H), 2.97 (t, J = 8.2 Hz, 2H), 1.26 (t, J = 7.0 Hz, 1H), 1.21 (t, J = 7.2 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  152.5, 130.4, 127.4, 124.5, 117.6, 107.3, 52.4, 43.3, 28.6, 12.1. These spectroscopic data correspond to reported data.<sup>8</sup>



**1-Ethyl-1,2,3,4-tetrahydroquinoline** (4w). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.052 g, 65%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.07 (t, *J* = 7.7 Hz, 1H), 6.96 (d, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 8.2 Hz, 1H), 6.57 (t, *J* = 7.3 Hz, 1H), 3.36 (q, *J* = 7.1 Hz, 2H), 3.33-3.24 (m, 2H), 2.77 (t, *J* = 6.4 Hz, 2H), 2.05-1.82 (m, 2H), 1.16 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  145.1, 129.3, 127.2, 122.6, 115.5, 110.7, 48.5, 45.4, 28.3, 22.4, 10.9. These spectroscopic data correspond to reported data.<sup>8</sup>



**4-Ethyl-3,4-dihydro-2H-benzo[b][1,4]oxazine (4x)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave pale yellow oil, 0.061 g, 75%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  6.84 (td, *J* = 8.1 Hz, *J* = 1.5 Hz, 1H), 6.78 (dd, *J* = 7.9 Hz, *J* = 1.4 Hz, 1H), 6.70 (dd, *J* = 8.0 Hz, *J* = 1.1 Hz, 1H), 6.61 (td, *J* = 7.9 Hz, *J* = 1.4 Hz, 1H), 4.39-4.19 (m, 2H), 3.34 (dt, *J* = 8.8 Hz, *J* = 5.8 Hz, 4H), 1.16 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  144.3, 135.0, 121.7, 117.4, 116.4, 112.3, 64.7, 46.1, 45.0, 10.7. These spectroscopic data correspond to reported data.<sup>8</sup>



**4-Ethyl-3,4-dihydro-2H-benzo[b][1,4]thiazine (4y)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave yellow oil, 0.074 g, 83%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.03 (dd, *J* = 7.0 Hz, *J* = 5.5 Hz, 1H), 6.98 (dd, *J* = 6.9 Hz, *J* = 1.3 Hz, 1H), 6.70 (d, *J* = 7.6 Hz, 1H), 6.60 (t, *J* = 6.6 Hz, 1H), 3.60 (dd, *J* = 6.0 Hz, *J* = 4.2 Hz, 2H), 3.48-3.27 (m, 2H), 3.05 (dd, *J* = 5.9 Hz, *J* = 4.4 Hz, 2H), 1.19 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  143.3, 128.1, 126.1, 117.8, 117.1, 112.6, 49.1, 46.6, 26.1, 11.3. These spectroscopic data correspond to reported data.<sup>8</sup>



**N-ethyl-4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxy)aniline** (4ab). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave white solid, 0.079 g, 60%. mp: 89-92 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  6.69 (d, J = 8.6 Hz, 2H), 6.54 (d, J = 8.7 Hz, 2H), 4.31 (s, 1H), 3.10 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 8.0 Hz, 12H), 1.22 (d, J = 7.1 Hz, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  148.2, 142.6, 116.3, 114.8, 83.3, 75.4, 39.9, 25.0, 24.7, 15.1. HRMS (ESI/TOF) Calcd for C<sub>14</sub>H<sub>23</sub>NO<sub>3</sub>B [(M+H)<sup>+</sup>]: 264.1771; found: 264.1773.



7-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butoxy)-1,2,3,4-tetrahydroquinoline

(4ac). Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave colorless oil, 0.17 g, 81%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.19-7.09 (m, 2H), 6.96 (dd, J = 6.4 Hz, J = 3.0 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.19 (dd, J = 8.2, 2.3 Hz, 1H), 6.04 (d, J = 2.2 Hz, 1H), 3.92 (t, J = 6.2 Hz, 2H), 3.33-3.22 (m, 2H), 3.07 (s, 4H), 2.68 (dd, J = 15.0 Hz, J = 8.6 Hz, 6H), 2.52-2.40 (m, 2H), 1.97-1.86 (m, 2H), 1.79 (dt, J = 13.1 Hz, J = 6.4 Hz, 2H), 1.68 (dt, J = 9.4 Hz, J = 7.0 Hz, 2H), 1.26 (s, 1H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  158.4, 151.5, 145.6, 134.1, 130.2, 127.6, 127.5, 124.6, 118.7, 114.1, 103.6, 100.3, 100.1, 67.7, 58.4, 53.4, 51.4, 42.0, 27.5, 26.4, 23.6, 22.6. HRMS (ESI/TOF) Calcd for C<sub>23</sub>H<sub>30</sub>N<sub>3</sub>O Cl<sub>2</sub> [(M+H)<sup>+</sup>]: 434.1766; found: 434.1759.



**2-(4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazin-1-yl)pyrimidine (4ad)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave white solid 0.086 g, 61%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  8.28 (d, *J* = 4.7 Hz, 2H), 6.88 (s, 1H), 6.81-6.70 (m, 2H), 6.45 (t, *J* = 4.7 Hz, 1H), 5.94 (s, 2H), 3.83 (dd, *J* = 21.3 Hz, *J* = 16.3 Hz, 4H), 3.44 (s, 2H), 2.63-2.32 (m, 4H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  161.8, 157.8, 147.8, 146.7, 132.0, 122.3, 109.8, 109.6, 108.0, 101.0, 63.0, 52.9, 43.8. These spectroscopic data correspond to reported data.<sup>9</sup>



**Dibenzylamine (5)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave colorless oil, 0.069 g, 70%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)

δ 7.32 (dd, J = 8.2 Hz, J = 5.5 Hz, 8H), 7.29-7.21 (m, 2H), 3.80 (s, 4H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C) δ 140.5, 128.5, 128.3, 127.1, 53.30. These spectroscopic data correspond to reported data.<sup>9</sup>



**6-Methoxy-2-(p-tolyl)benzo[d]thiazole (6)**. Purification by silica gel column chromatography using petroleum ether/ethyl acetate gave yellow solid, 0.084 g, 66%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  7.97-7.84 (m, 3H), 7.33 (d, *J* = 2.3 Hz, 1H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.07 (dd, *J* = 8.9 Hz, *J* = 2.4 Hz, 1H), 3.87 (s, 3H), 2.41 (s, 3H). <sup>13</sup>C{<sup>1</sup>H} NMR (101 MHz, CDCl<sub>3</sub>, 20 °C)  $\delta$  165.9, 157.8, 148.8, 141.0, 136.4, 131.2, 129.8, 127.3, 123.6, 115.6, 104.3, 55.9, 21.6. These spectroscopic data correspond to reported data.<sup>10</sup>

### 5. References

[1] (a) K. Phukan, M. Ganguly and N. Devi, *Synthetic Commun.*, 2009, **39**, 2694; (b) R. Qiu, G. Zhang, X. Ren, X. Xu, R. Yang, S. Luo and S. Yin, *J. Organomet. Chem.*, 2010, **695**, 1182; (c) P. Gupta and S. Paul, *Green Chem.*, 2011, **13**, 2365.

- [2] M. Bhunia, S. R. Sahoo, A. Das, J. Ahmed, S. P. and S. K. Mandal, Chem. Sci., 2020, 11, 1848.
- [3] C. Bäumler, C. Bauer and R. Kempe, ChemSusChem, 2020, 13, 3110.
- [4] Y. Wei, Q. Xuan, Y. Zhou and Q. Song, Org. Chem. Front., 2018, 5, 3510.

[5] Y. Pan, Z. Luo, X. Xu, H. Zhao, J. Han, L. Xu, Q. Fan, J. Xiao, *Adv. Synth. Catal.*, 2019, **361**, 3800.

- [6] N. Biswas, R. Sharma and D. Srimani, Adv. Synth. Catal., 2020, 362, 2902.
- [7] D. Mukherjee, S. Shirase, K. Mashima and J. Okuda, Angew. Chem. Int. Ed., 2016, 55, 13326.
- [8] S. B. Ötvös and C. O. Kappe, ChemSusChem, 2020, 13, 1800.
- [9] P. Ye, Y. Shao, X. Ye, F. Zhang, R. Li, J. Sun, B. Xu and J. Chen, Org. Lett., 2020, 22, 1306.
- [10] J. Kim and K. Oh, Adv. Synth. Catal., 2020, 362, 3576-3582.



Figure S6.  ${}^{13}C{}^{1}H{}$  (101 MHz, DMSO- $d_6$ , 20 °C) of 2'a



Figure S8.  ${}^{13}C{}^{1}H{}$  (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of **2'b** 



Figure S10. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'c



Figure S11. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'd



Figure S12. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'd



Figure S14. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'e





Figure S16. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'f



Figure S17.  $^{13}C\{^{1}H\}$  (101 MHz, DMSO-d6, 20 °C) of 2'f



Figure S18. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of **2'g**


Figure S20. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'h



Figure S22. <sup>19</sup>F NMR (377 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'h



Figure S24. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'i



Figure S26. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'j



Figure S27. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'k



Figure S28. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'k



Figure S30.  $^{13}{\rm C}\{^{1}{\rm H}\}~(101~{\rm MHz},\,{\rm DMSO}\text{-}{\it d}_{6},\,20~^{\rm o}{\rm C})~{\rm of}~2'{\rm l}$ 



Figure S32.  ${}^{13}C{}^{1}H$  (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of **2'm** 



Figure S34. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'n



Figure S36. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'o



Figure S38. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'p



Figure S40. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'q



Figure S42. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2'r



Figure S44. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2's



Figure S46. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, DMSO-*d*<sub>6</sub>, 20 °C) of 2't





Figure S48. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4a



Figure S50.  $^{13}C\{^{1}H\}$  (101 MHz, CDCl\_3, 20 °C) of 4b



Figure S52. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4c



Figure S54. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4d



Figure S56.  $^{13}C\{^{1}H\}$  (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4e



Figure S58. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4f

90 80 f1 (ppm)

-3.00E+08

-2.00E+08

-1.00E+08

-0.00E+00



Figure S59. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C) of 4g



Figure S60. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4g



Figure S62. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4h



Figure S63. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C) of 4k



Figure S64.  $^{13}C\{^{1}H\}$  (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4k





Figure S66. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4l



Figure S68. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4m



Figure S70. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4n



Figure S72.  $^{13}C\{^{1}H\}$  (101 MHz, CDCl<sub>3</sub>, 20 °C) of 40



Figure S74. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4p



Figure S76. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4q



Figure S78.  $^{13}C\{^{1}H\}$  (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4r





Figure S80.  $^{13}C\{^{1}H\}$  (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4s

-500 -0



Figure S82. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4t



Figure S84. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4u



Figure S86. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4v



Figure S88. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4w



Figure S90. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4x


Figure S92. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4y



Figure S94. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4ab



Figure S96. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 20 °C) of 4ac







Figure S98. HR MS of 4ac



Figure S100. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 4ad



Figure S102. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 5



Figure S104. <sup>13</sup>C{<sup>1</sup>H} (101 MHz, CDCl<sub>3</sub>, 20 °C) of 6