Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Synthesis of maleimide fused benzocarbazoles and imidazo[1,2-a]pyridines via rhodium(III)-catalyzed

[4 + 2] oxidative cycloaddition

Bin Li,* Chenhao Guo, Nana Shen, Xinying Zhang and Xuesen Fan*

School of Environment, School of Chemistry and Chemical Engineering, Henan Key Laboratory of Organic

Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions,

Ministry of Education, Key Laboratory for Yellow River and Huai River Water Environmental Pollution

Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, P. R. China.

E-mail: libin@htu.edu.cn; xuesen.fan@htu.cn

Table of Contents

1	General experimental information	S2
2	General Procedure for the Preparation of 3 , 5 and 6	S3-S4
3	Mechanism studies	S5-S9
4	X-Ray Crystal Structure and Data of 3c	S10-S11
5	Characterization Data of 3a-3y , 5a-5s and 6	S12-S24
6	References	S25
7	Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra of 3a-3y , 5a-5s and 6	S26-S72

1. General Experimental Information

Reagents and solvents were purchased from commercial suppliers and used without further purification. 2-Arylindoles (1)¹, 2-arylimidazo[1,2-*a*]pyridine (4)², [RhCp*Cl₂]₂³ were prepared according to literature procedures. Melting points were recorded with a micro melting point apparatus and uncorrected. The ¹H NMR spectra were recorded at 400 MHz or 600 MHz. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ), and were reported as s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), m (multiplet), etc. The coupling constants *J* were given in Hz. High resolution mass spectra (HRMS) were obtained *via* ESI mode by using a MicrOTOF mass spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm).

2. General Procedure for the Preparation of 3, 5 and 6

2.1 General Procedure for the Preparation of 3

2-Arylindole (1, 0.75 mmol), *N*-substituted maleimide (2, 0.5 mmol), [Cp*RhCl₂]₂ (0.025 mmol), AgOAc (1.25 mmol) and DCE (3 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C under air for 20 h. Upon completion, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford **3**.

2.1.1 Gram-Scale Synthesis of 3a

2-Phenylindole (**1a**, 15 mmol), *N*-methylmaleimide (**2a**, 10 mmol), $[Cp*RhCl_2]_2$ (0.25 mmol), AgOAc (25 mmol) and DCE (30 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C under air for 20 h. Upon completion, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford **3a** (1.83 g) in 61% yield.

2.2 General Procedure for the Preparation of 5

2-Arylimidazo[1,2-*a*]pyridine (4, 0.75 mmol), *N*-substituted maleimide (2, 0.5 mmol), $[Cp*RhCl_2]_2$ (0.025 mmol), $Cu(OAc)_2$ (1.25 mmol) and DCE (3 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C under air for 20 h. Upon completion, the reaction mixture was cooled to room

temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford **5**.

2.2.1 Gram-Scale Synthesis of 5a

2-Phenylimidazo[1,2-*a*]pyridine (**4a**, 15 mmol), *N*-methylmaleimide (**2a**, 10 mmol), $[Cp*RhCl_2]_2$ (0.25 mmol), $Cu(OAc)_2$ (25 mmol) and DCE (30 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C under air for 20 h. Upon completion, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford **5a** (2.77 g) in 92% yield.

2.3 Synthesis of Compound 6

5,6,7-Trimethoxy-2-methyl-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione (**3x**, 0.2 mmol), aqueous ammonia (26%, 2 mL) and DMF (2 mL) were charged into a sealed tube. The mixture was then stirred at 80 °C for 4h. Upon completion, it was cooled to room temperature and quenched with saturated NH₄Cl (15 mL) and extracted with DCM (5 mL × 3). The combined organic phase was dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (3:1) as eluent to afford 5,6,7-trimethoxy-2-methyl-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione (**6**) in 93% yield.

3. Mechanistic Studies

3.1 Reversibility of C-H Bond Cleavage

(a) 2-Phenylindole (**1a**, 0.5 mmol), $[Cp*RhCl_2]_2$ (0.025 mmol), AgOAc (1.25 mmol), CD₃OD (0.5 mL) and DCE (2 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C under air for 2 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (10:1) as eluent to afford **1a**-*d*_n in 87% yield. Upon analyzing the ¹H NMR spectra as shown in **Figure S1**, the rate of H/D exchange at the *ortho*-position of the 2-phenyl ring was 22% and at the C3-position of indole scaffold was 13%. This result implied that the phenyl C(sp²)–H activation is reversible.

Figure S1. The ¹H NMR spectra of $1a-d_n$

(b) 2-Phenylimidazo[1,2-*a*]pyridine (**4a**, 0.5 mmol), [Cp*RhCl₂]₂ (0.025 mmol), Cu(OAc)₂ (1.25 mmol), CD₃OD (0.5 mL) and DCE (2 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C under air for 2 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (3:1) as eluent to afford **4a**-*d*_n in 95% yield. Upon analyzing the ¹H NMR spectra as shown in **Figure S2**, the rate of H/D exchange at the *ortho*-position of the 2-phenyl ring was 42% and at the C3-position of imidazo[1,2-*a*]pyridine scaffold was 73%. This result implied that the phenyl C(sp²)–H activation is reversible.

Figure S2. The ¹H NMR spectra of $4a-d_n$

3.2 Intermolecular Kinetic Isotope Effect Study

(a) 2-Phenylindole (1a, 0.375 mmol), deuterated substrate 2-Phenylindole (1a- d_5 , 0.375 mmol), *N*-methylmaleimide (2a, 0.5 mmol), [Cp*RhCl₂]₂ (0.025 mmol), AgOAc (1.25 mmol) and DCE (3 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C for 2 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford a mixture of 3a and 3a- d_4 . Upon analyzing the ¹H NMR spectra as shown in Figure S3, the ratio of 3a and 3a- d_4 was determined as 0.78:0.22 and a value of k_H/k_D = 3.55 was calculated, it seems that the C–H activation may be involved in the rate-determining step.

Figure S3. The ¹H NMR spectra of a mixture of 3a and $3a-d_4$

(b) 2-Phenylimidazo[1,2-*a*]pyridine (4a, 0.375 mmol), deuterated substrate 2-phenylimidazo- [1,2*a*]pyridine (4a- d_5 , 0.375 mmol), *N*-methylmaleimide (2a, 0.5 mmol), [Cp*RhCl₂]₂ (0.025 mmol), Cu(OAc)₂ (1.25 mmol) and DCE (3 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C for 2 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford a mixture of **5a** and **5a***d*₄. Upon analyzing the ¹H NMR spectra as shown in **Figure S4**, the ratio of **5a** and **5a**-*d*₄ was determined as 0.79:0.21 and a value of $k_H/k_D = 3.76$ was calculated, it seems that the C–H activation may be involved in the rate-determining step.

Figure S4. The ¹H NMR spectra of a mixture of 5a and $5a-d_4$

3.3 Competitive Reaction

(a) 2-(4-Methoxyphenyl)-1*H*-indole (0.375 mmol), 2-(4-(trifluoromethyl)phenyl)-1*H*-indole (0.375 mmol), *N*-methylmaleimide (**2a**, 0.5 mmol), [Cp*RhCl₂]₂ (0.025 mmol), AgOAc (1.25 mmol) and DCE (3 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C for 2 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was

concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford **3k** and **3o** in 18% and 7% yields, respectively.

(b) 2-(*p*-Tolyl)imidazo[1,2-*a*]pyridine (0.375 mmol), 2-(4-(trifluoromethyl)phenyl)imidazo[1,2-*a*]pyridine (0.375 mmol), *N*-methylmaleimide (**2a**, 0.5 mmol), [Cp*RhCl₂]₂ (0.025 mmol), Cu(OAc)₂ (1.25 mmol) and DCE (3 mL) were charged into a sealed tube. The mixture was then stirred at 100 °C for 2 h. Then, the reaction mixture was cooled to room temperature and filtered through a plug of celite. The organic phase was concentrated under reduced pressure, and the residue was purified by silica gel chromatography using petroleum ether/dichloromethane (1:1) as eluent to afford **51** and **5n** in 29% and 9% yields, respectively.

4. X-Ray Crystal Structure and Data of 3c

Compound 3c

Figure S4. X-ray structure of 3c with 30% ellipsoid probability

X-ray structure determination. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of the solvent from a trichloromethane solution of **3c**. Crystal data collection and refinement parameters of **3c** are summarized in Table S1. Intensity data were collected at 298 K on a SuperNova Dual diffractometer using mirror-monochromated Cu K α radiation, $\lambda = 1.54184$ Å. The data were corrected for decay, Lorentz, and polarization effects as well as absorption and beam corrections based on the multi-scan technique. The structure was solved by a combination of direct methods in SHELXS and the difference Fourier technique, and refined by full-matrix least-squares procedures. Nonhydrogen atoms were refined with anisotropic displacement parameters. The H-atoms were either located or calculated and subsequently treated with a riding model.

Empirical formula	$C_{22}H_{18}N_2O_2$
Formula weight	342.38
Temp, K	299.03(10)
Crystal system	monoclinic
Space group	P2 ₁
<i>a</i> , Å	6.1925(3)
b, Å	12.0017(6)
<i>c</i> , Å	11.9195(6)
α (°)	90
β (°)	97.588(4)
γ (°)	90
Volume, Å ³	878.11(8)
Ζ	2
d_{calc} , g cm ⁻³	1.295
λ, Å	1.54184
μ , mm ⁻¹	0.670
No. of data collected	4154
No. of unique data	2613
R _{int}	0.0210
Goodness-of-fit on <i>F</i> ²	1.156
$R_1, wR_2 (I > 2\sigma(I))$	0.0415, 0.1022
R_1 , w R_2 (all data)	0.0482, 0.1074

 Table S1 Crystallographic data and structure refinement results of 3c

5. Characterization Data of 3a-3y, 5a-5s and 6

2-Methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3***a*): yellow solid (117 mg, 78%); mp: >300 °C (lit.⁴ mp: 244 °C); ¹H NMR (600 MHz, DMSO-*d*₆): δ 3.04 (s, 3H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.70-7.75 (m, 2H), 8.55 (d, *J* = 7.8 Hz, 1H), 8.80 (d, *J* = 7.8 Hz, 1H), 8.84 (d, *J* = 7.8 Hz, 1H), 12.79 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 23.9, 112.2, 118.0, 121.1, 121.6, 122.8, 123.2, 124.4, 125.1, 125.2, 126.3, 127.0, 128.0, 128.1, 128.6, 140.3, 140.7, 169.5, 170.4. HRMS calcd for C₁₉H₁₃N₂O₂⁺: 301.0972 [M+H]⁺, found: 301.0962.

2-Ethylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3b**): yellow solid (119 mg, 76%); mp: 293-294 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 1.26 (t, *J* = 7.2 Hz, 3H), 3.67 (q, *J* = 7.2 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.74-7.80 (m, 2H), 8.59-8.61 (m, 1H), 8.86 (d, *J* = 8.0 Hz, 1H), 8.90-8.92 (m, 1H), 12.85 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 14.5, 32.6, 112.3, 112.3, 117.9, 121.2, 121.6, 122.9, 123.2, 124.4, 125.2, 126.3, 127.0, 128.0, 128.1, 128.6, 140.4, 140.8, 169.3, 170.2. HRMS calcd for C₂₀H₁₄N₂NaO₂⁺: 337.0947 [M+Na]⁺, found: 337.0945.

2-(*Tert***-butyl)benzo[***a***]pyrrolo[3,4-c]carbazole-1,3(2***H***,8***H***)-dione (3c): yellow solid (127 mg, 74%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-***d***₆) δ: 1.75 (s, 9 H), 7.38 (t,** *J* **= 7.6 Hz, 1H), 7.56 (t,** *J* **= 8.0 Hz, 1H), 7.74 (d,** *J* **= 8.0 Hz, 1H), 7.78-7.85 (m, 2H), 8.68 (d,** *J* **= 8.0 Hz, 1H), 8.94 (d,** *J* **= 8.0 Hz, 1H), 9.03 (d,** *J* **= 7.6 Hz, 1H), 12.91 (s, 1H). ¹³C NMR (150 MHz, DMSO-***d***₆) δ: 29.5, 57.3, 111.8, 112.3, 117.8, 121.2, 121.7, 123.2, 123.3, 124.7, 125.4, 126.2, 126.9, 128.2, 128.7, 140.4, 140.9, 170.8, 171.9. HRMS calcd for C₂₂H₁₈N₂NaO₂⁺: 365.1260 [M+Na]⁺, found: 365.1299.**

2-Cyclohexylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3d**): yellow solid (134 mg, 73%); mp: 275-276 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 1.23-1.28 (m, 1H), 1.36-1.43 (m, 2H), 1.70-1.72 (m, 1H), 1.82-1.89 (m, 4H), 2.19-2.26 (m, 2H), 4.08-4.14 (m, 1H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.56 (t, *J* = 7.2 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.79-7.83 (m, 2H), 8.65-8.68 (m, 1H), 8.92 (d, *J* = 7.8 Hz, 1H), 8.98-9.00 (m, 1H), 12.91 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 25.5, 26.2, 30.3, 50.4, 112.3, 112.3, 117.7, 121.2, 121.7, 123.0, 123.3, 124.5, 125.2, 126.4, 127.0, 128.0, 128.2, 128.7, 140.4, 140.9, 169.6, 170.5. HRMS calcd for C₂₄H₂₁N₂O₂⁺: 369.1598 [M+H]⁺, found: 369.1550.

2-Benzylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3e**): yellow solid (150 mg, 80%); mp: 271-272 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 4.80 (s, 2H), 7.28 (t, *J* = 8.4 Hz, 1H), 7.33-7.37 (m, 3H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.73-7.75 (m, 2H), 8.57 (d, *J* = 7.2 Hz, 1H), 8.82 (d, *J* = 8.4 Hz, 1H), 8.88 (d, *J* = 7.8 Hz, 1H), 12.83 (s, 1H). ¹³C NMR (150 MHz, DMSO*d*₆) δ: 41.1, 112.27, 112.32, 117.7, 121.2, 121.6, 122.9, 123.2, 124.4, 125.2, 126.3, 127.1, 127.8, 127.9, 128.2, 128.7, 129.1, 137.7, 140.4, 140.9, 169.2, 170.0. HRMS calcd for C₂₅H₁₇N₂O₂⁺: 377.1285 [M+H]⁺, found: 377.1260.

2-Phenylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3f**): yellow solid (139 mg, 77%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 7.36 (t, *J* = 7.6 Hz, 1H), 7.44-7.51 (m, 1H), 7.54-7.61 (m, 5H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.78-7.84 (m, 2H), 8.66 (d, *J* = 8.4 Hz, 1H), 8.88 (d, *J* = 8.0 Hz, 1H), 8.98 (d, *J* = 7.6 Hz, 1H), 12.94 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 112.35, 112.38, 117.7, 121.3, 121.7, 123.1, 123.3, 124.5, 125.4, 126.5, 127.1, 128.0, 128.0, 128.2, 128.4, 128.8, 129.3, 132.7, 140.4, 141.1, 168.6, 169.4. HRMS calcd for C₂₄H₁₅N₂O₂⁺: 363.1128 [M+H]⁺, found: 363.1120.

2,11-Dimethylbenzo[*a*]**pyrrolo**[**3,4**-*c*]**carbazole-1,3**(*2H*,8*H*)-**dione** (**3g**): yellow solid (112 mg, 71%); mp: 277-278 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 2.50 (s, 3H), 3.09 (s, 3H), 7.66 (s, 2H), 7.80-7.82 (m, 2H), 8.58-8.60 (m, 1H), 8.90-8.91 (m, 1H), 8.94 (s, 1H), 13.02 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 21.9, 23.9, 111.8, 112.0, 117.7, 121.8, 122.7, 123.1, 124.0, 125.1, 126.2, 127.9, 128.0, 128.3, 128.4, 129.8, 138.6, 140.9, 169.4, 170.4. HRMS calcd for C₂₀H₁₅N₂O₂⁺: 315.1128 [M+H]⁺, found: 315.1123.

11-Chloro-2-methylbenzo[*a*]**pyrrolo**[**3,4-***c***]carbazole-1,3**(*2H*,8*H*)-**dione** (**3h**): yellow solid (120 mg, 72%); mp: >300 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 3.06 (s, 3H), 7.52 (dd, $J_1 = 9.0$ Hz, $J_2 = 1.8$ Hz, 1H),

7.67 (d, J = 8.4 Hz, 1H), 7.77-7.79 (m, 2H), 8.54 (d, J = 7.2 Hz, 1H), 8.73 (s, 1H), 8.86 (d, J = 8.4 Hz, 1H), 12.95 (s, 1H). ¹³C NMR (150 MHz, DMSO- d_6) δ : 24.0, 111.2, 113.8, 118.6, 122.7, 122.9, 123.2, 123.3, 125.2, 125.3, 126.5, 126.8, 128.0, 128.4, 129.0, 138.7, 141.3, 169.4, 170.3. HRMS calcd for C₁₉H₁₁ClN₂NaO₂⁺: 357.0401 [M+Na]⁺, found: 357.0401.

11-Bromo-2-methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3i**): yellow solid (142 mg, 75%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 2.97 (s, 3H), 7.53-7.59 (m, 2H), 7.67-7.73 (m, 2H), 8.42 (d, *J* = 6.8 Hz, 1H), 8.73 (s, 2H), 12.80 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 24.0, 111.2, 113.2, 114.3, 118.7, 122.9, 123.29, 123.31, 125.3, 126.3, 126.5, 128.0, 128.4, 129.0, 129.3, 139.0, 141.2, 169.5, 170.3. HRMS calcd for C₁₉H₁₁BrN₂NaO₂⁺: 400.9896 [M+Na]⁺, found: 400.9896.

2,9-Dimethylbenzo[*a*]**pyrrolo**[**3,4**-*c*]**carbazole-1,3**(2*H*,8*H*)-**dione** (**3j**): yellow solid (115 mg, 73%); mp: >300 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 3.09 (s, 3H), 3.10 (s, 3H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.52-7.56 (m, 2H), 7.62 (t, *J* = 7.2 Hz, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 8.91 (d, *J* = 8.4 Hz, 1H), 8.98 (d, *J* = 7.8 Hz, 1H), 11.60 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 21.9, 24.0, 111.9, 112.1, 117.8, 121.9, 122.9, 123.2, 124.1, 125.2, 126.3, 128.0, 128.2, 128.4, 128.6, 130.0, 138.7, 140.9, 169.6, 170.6. HRMS calcd for C₂₀H₁₅N₂O₂⁺: 315.1128 [M+H]⁺, found: 315.1124.

5-Methoxy-2-methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(2*H*,**8***H*)-**dione** (**3k**): yellow solid (124 mg, 75%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 3.01 (s, 3H), 3.90 (s, 3H), 7.30-7.37 (m, 2H), 7.51 (td, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz, 1H), 7.64 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 2.8 Hz, 1H), 8.43 (d, J = 9.2 Hz, 1H), 8.77 (d, J = 8.0 Hz, 1H), 12.62 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 23.8, 55.7, 103.9, 111.4, 112.0, 116.6, 117.7, 119.8, 121.0, 121.7, 124.2, 124.8, 126.7, 128.1, 128.2, 140.4, 141.3, 159.5, 169.5, 170.5. HRMS calcd for C₂₀H₁₄N₂NaO₃⁺: 353.0897 [M+Na]⁺, found: 353.0861.

2,5-Dimethylbenzo[*a*]**pyrrolo**[**3,4-***c*]**carbazole-1,3**(*2H*,8*H*)-**dione (3l**): yellow solid (113 mg, 72%); mp: >300 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 2.53 (s, 3H), 3.10 (s, 3H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.75-7.80 (m, 2H), 8.61 (d, *J* = 7.8 Hz, 1H), 8.64 (s, 1H), 8.92-8.93 (m, 1H), 12.76 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 21.9, 24.0, 111.9, 112.1, 117.9, 121.9, 122.9, 123.2, 124.1, 125.2, 126.3, 128.0, 128.2, 128.4, 128.6, 130.0, 138.7, 141.0, 169.6, 170.6. HRMS calcd for C₂₀H₁₅N₂O₂⁺: 315.1128. [M+H]⁺, found: 315.1126.

5-Chloro-2-methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(*2H*,**8***H*)-**dione** (**3m**): yellow solid (114 mg, 68%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 2.98 (s, 3H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.72 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.0 Hz, 1H), 8.50 (d, *J* = 8.8 Hz, 1H), 8.69 (d, *J* = 2.0 Hz, 1H), 8.74 (d, *J* = 8.0 Hz, 1H), 12.84 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 24.1, 112.4, 112.8, 117.1, 121.0, 121.47, 121.51, 123.8, 124.5, 125.5, 126.8, 127.4, 128.4, 129.1, 133.6, 140.5, 140.6, 169.3, 170.2. HRMS calcd for C₁₉H₁₁ClN₂NaO₂⁺: 357.0401 [M+Na]⁺, found: 357.0397.

5-Bromo-2-methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(2*H*,**8***H*)-**dione** (**3n**): yellow solid (145 mg, 77%); mp: 282-283 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 2.89 (s, 3H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J*₁ = 8.8 Hz, *J*₂ = 2.4 Hz, 1H), 8.32 (d, *J* = 8.8 Hz, 1H), 8.65 (d, *J* = 7.6 Hz, 1H), 8.74 (s, 1H), 12.72 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 24.1, 112.4, 112.8, 116.9, 121.2, 121.48, 121.50, 122.4, 124.5, 125.5, 127.0, 127.2, 127.4, 129.0, 130.9, 140.5, 140.7, 169.2, 170.2. HRMS calcd for C₁₉H₁₁BrN₂NaO₂⁺: 400.9896 [M+Na]⁺, found: 400.9897.

2-Methyl-5-(trifluoromethyl)benzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(2*H*,**8***H*)-**dione (30**): yellow solid (120 mg, 65%); mp: >300 °C. ¹H NMR (400 MHz, CF₃CO₂D) δ : 2.43 (s, 3H), 6.93-6.98 (m, 2H), 7.05 (t, *J* = 6.8 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.32 (t, *J* = 6.8 Hz, 1H), 7.74 (d, *J* = 7.2 Hz, 1H), 8.17 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ : 23.9, 112.3, 113.5, 118.1, 121.1, 121.5, 122.3 (q, ³*J*_{C-F} = 4.8 Hz), 123.0 (q, ³*J*_{C-F} = 2.7 Hz), 123.7, 124.5, 124.58, 124.64, 124.7 (q, ¹*J*_{C-F} = 271.35 Hz), 127.6, 128.1 (q, ²*J*_{C-F} = 32.1 Hz), 128.8, 139.8, 140.5, 168.7, 169.8. ¹⁹F NMR (565 MHz, DMSO-*d*₆) δ : -61.0. HRMS calcd for C₂₀H₁₁F₃N₂NaO₂⁺: 391.0665 [M+Na]⁺, found: 391.0652.

2,6-Dimethylbenzo[*a*]**pyrrolo**[**3,4**-*c*]**carbazole**-**1,3**(2*H*,8*H*)-**dione** (**3p**): yellow solid (130 mg, 79%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.07 (s, 3H), 4.00 (s, 3H), 7.33-7.40 (m, 2H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 8.00 (d, *J* = 1.6 Hz, 1H), 8.79 (d, *J* = 9.2 Hz, 1H), 8.84 (d, *J* = 8.0 Hz, 1H), 12.64 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 23.9, 56.1, 102.6, 112.2, 112.5, 118.8, 120.7, 121.0, 121.2, 121.7, 124.4, 124.6, 125.3, 126.9, 127.0, 139.8, 140.3, 159.2, 169.8, 170.6. HRMS calcd for C₂₀H₁₅N₂O₃⁺: 331.1077 [M+H]⁺, found: 331.1069.

2,6-Dimethylbenzo[*a*]**pyrrolo**[**3,4-c**]**carbazole-1,3**(*2H*,8*H*)-**dione** (**3q**): yellow solid (121 mg, 77%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 2.51 (s, 3H), 3.02 (s, 3H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 1H), 8.28 (s, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 8.79 (d, *J* = 8.0 Hz, 1H), 12.66 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 22.2, 23.9, 112.2, 112.3, 118.2, 121.0, 121.7, 122.2, 123.0, 124.3, 124.9, 126.8, 127.0, 130.4, 137.8, 140.2, 140.3, 169.6, 170.4. HRMS calcd for C₂₀H₁₅N₂O₂⁺: 315.1128 [M+H]⁺, found: 315.1123.

6-Bromo-2-methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(2*H*,**8***H*)-**dione** (**3r**): yellow solid (144 mg, 76%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 2.88 (s, 3H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 8.46 (d, *J* = 8.8 Hz, 1H), 8.54 (s, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 12.5 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 23.7, 112.1, 112.7, 117.5, 121.09, 121.13, 121.4, 123.3, 124.2, 124.3, 125.2, 126.8, 127.1, 127.7, 130.9, 139.1, 140.1, 168.7, 169.6. HRMS calcd for C₁₉H₁₂BrN₂O₂⁺: 379.0077 [M+H]⁺, found: 379.0067.

7-Methoxy-2-methylbenzo[*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-1**,**3**(2*H*,**8***H*)-**dione** (**3s**): yellow solid (129 mg, 78%); mp: 243-244 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.09 (s, 3H), 4.18 (s, 3H), 7.22 (d, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.6 Hz, 1H), 7.66 (t, *J* = 8.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 8.91 (d, *J* = 7.6 Hz, 1H), 11.99 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 19.0, 24.0, 56.5, 111.2, 113.2, 114.3, 118.7, 122.9, 123.3, 125.3, 126.3, 126.5, 128.1, 128.4, 129.1, 129.4, 139.0, 141.2,

169.5, 170.3. HRMS calcd for $C_{20}H_{14}N_2NaO_3^+$: 353.0897 [M+Na]⁺, found: 353.0894.

2,7-Dimethylbenzo[*a*]**pyrrolo**[**3,4**-*c*]**carbazole-1,3**(*2H*,8*H*)-**dione (3t**): yellow solid (125 mg, 80%); mp: 269-270 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ : 3.08 (s, 6H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.51 (d, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.61 (d, *J* = 7.2 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 8.89 (d, *J* = 8.4 Hz, 1H), 8.97 (d, *J* = 7.8 Hz, 1H), 11.58 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): δ 24.0, 24.5, 113.3, 113.6, 118.6, 120.7, 121.3, 123.0, 123.1, 124.1, 126.7, 127.6, 127.8, 128.0, 130.0, 134.2, 140.0, 140.6, 169.4, 170.4. HRMS calcd for C₂₀H₁₅N₂O₂+: 315.1128 [M+H]⁺, found: 315.1123.

8-Methylnaphtho[1,2-*a*]pyrrolo[3,4-*c*]carbazole-7,9(8*H*,14*H*)-dione (3u): red solid (144mg, 82%); mp: >300 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ: 3.13 (s, 3H), 7.40-7.42 (m, 1H), 7.62 (td, *J*₁ = 7.8 Hz, *J*₂ = 1.2 Hz, 1H), 7.82-7.84 (m, 1H), 7.92 (d, *J* = 7.8 Hz, 1H), 7.93-7.96 (m, 1H), 8.10 (d, *J* = 9.0 Hz, 1H), 8.15-8.16 (m, 1H), 9.03 (d, *J* = 9.0 Hz, 1H), 9.06 (d, *J* = 7.8 Hz, 1H), 9.21 (d, *J* = 8.4 Hz, 1H), 12.47 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 24.2, 113.1, 117.0, 118.4, 119.3, 120.8, 121.5, 122.5, 124.7, 126.4, 126.89, 126.94, 127.86, 127.94, 128.4, 128.7, 129.6, 129.9, 132.7, 140.2, 142.1, 169.3, 170.5. HRMS calcd for C₂₃H₁₄N₂NaO₂⁺: 373.0947 [M+Na]⁺, found: 373.0945.

6-Methylnaphtho[**2**,**3**-*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-5**,**7**(**6***H*,**14***H*)-**dione** (**3v**)^{lit. 5}: red solid (135mg, 77%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.00 (s, 3H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.60-7.63 (m, 2H), 7.67 (d, *J* = 8.0 Hz, 1H), 8.04 (d, *J* = 7.2 Hz, 1H), 8.13 (d, *J* = 8.0 Hz, 1H), 8.77 (d, *J* = 8.0 Hz, 1H), 9.07 (s, 1H), 9.35 (s, 1H), 13.00 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ: 23.9, 109.9, 112.3, 118.4, 121.4, 121.5, 121.8, 122.1, 123.9, 124.0, 124.5, 126.2, 127.1, 127.4, 128.6, 129.1, 129.5, 131.8, 132.3, 139.7, 140.4, 169.5, 170.5. HRMS calcd for C₂₃H₁₄N₂NaO₂⁺: 373.0947 [M+Na]⁺, found: 373.0941.

3-Methoxy-6-methylnaphtho[**2**,**3**-*a*]**pyrrolo**[**3**,**4**-*c*]**carbazole-5**,**7**(6*H*,**1**4*H*)-**dione** (**3w**): red solid (141mg, 74%); mp: >300 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.05 (s, 3H), 3.89 (s, 3H), 7.12 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.8 Hz, 1H), 7.58 (d, *J* = 8.8 Hz, 1H), 7.60-7.66 (m, 2H), 8.06-8.08 (m, 1H), 8.15-8.17 (m, 1H),

8.32 (d, J = 2.4 Hz, 1H), 9.08 (s, 1H), 9.39 (s, 1H), 12.91 (s, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ: 23.9, 55.8, 105.7, 110.0, 113.0, 115.9, 117.9, 121.65, 121.70, 122.7, 124.0, 124.5, 127.1, 127.4, 128.6, 129.2, 129.7, 131.8, 132.3, 134.5, 140.8, 154.9, 169.7, 170.5. HRMS calcd for C₂₄H₁₇N₂O₃⁺: 381.1234 [M+H]⁺, found: 381.1229.

5,6,7-Trimethoxy-2-methylbenzo[*a*]**pyrrolo**[**3,4-***c***]carbazole-1,3**(2*H*,8*H*)-**dione** (**3x**): yellow solid (121 mg, 62%); mp: 235-236 °C; ¹H NMR (400 MHz, CDCl₃) δ: 3.16 (s, 3H), 4.05 (s, 3H), 4.06 (s, 3H), 4.25 (s, 3H), 7.34-7.38 (m, 1H), 7.46-7.52 (m, 2H), 8.21 (s, 1H), 8.93 (d, *J* = 8.0 Hz, 1H), 10.03 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 23.5, 56.2, 61.3, 61.7, 100.7, 110.8, 112.5, 113.0, 117.0, 121.1, 121.2, 124.4, 124.7, 126.4, 127.2, 138.9, 139.1, 141.6, 148.4, 154.9, 169.4, 170.1. HRMS calcd for C₂₂H₁₉N₂O₅⁺: 391.1288 [M+H]⁺, found: 391.1294.

5,6,7-Trimethoxy-2-phenylbenzo[*a*]**pyrrolo**[**3,4-***c***]carbazole-1,3**(*2H*,8*H*)-**dione** (**3y**): yellow solid (146mg, 65%); mp: 257-258 °C; ¹H NMR (400 MHz, CDCl₃) δ: 4.05 (s, 3H), 4.06 (s, 3H), 4.28 (s, 3H), 7.36-7.43 (m, 2H), 7.50-7.60 (m, 6H), 8.40 (s, 1H), 9.05 (d, *J* = 8.0 Hz, 1H), 10.02 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 56.2, 61.4, 61.8, 101.1, 111.0, 112.8, 113.5, 116.5, 121.2, 121.4, 124.7, 124.9, 126.6, 126.7, 127.0, 127.6, 129.0, 132.3, 139.1, 139.6, 142.0, 148.6, 155.2, 168.4, 169.8. HRMS calcd for C₂₇H₂₁N₂O₅⁺: 453.1445 [M+H]⁺, found: 453.1440.

2-Methyl-1*H***-benzo**[*e*]**pyrido**[1',2':1,2]**imidazo**[4,5-*g*]**isoindole-1**,3(2*H*)-**dione** (5a): yellow solid (145 mg, 96%); mp: >300 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ : 3.48 (s, 3H), 7.90 (t, *J* = 7.2 Hz, 1H), 8.13-8.16 (m, 2H), 8.30 (d, *J* = 9.0 Hz, 1H), 8.43 (t, *J* = 7.8 Hz, 1H), 8.69 (dd, *J*₁ = 6.6 Hz, *J*₂ = 3.0 Hz, 1H), 9.39 (dd, *J*₁ = 6.6 Hz, *J*₂ = 3.0 Hz, 1H), 10.67 (d, *J* = 6.6 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 23.3, 111.9, 117.7, 118.7, 119.7, 122.2, 123.0, 126.1, 126.3, 127.4, 131.9, 131.9, 132.6, 133.3, 139.2, 142.9, 167.5, 170.3. HRMS calcd for C₁₈H₁₂N₃O₂⁺: 302.0924 [M+H]⁺, found: 302.0909.

2-Ethyl-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione (5b): yellow solid (145 S18 mg, 92%); mp: >300 °C; ¹H NMR (400 MHz, CF₃CO₂D) δ : 1.57 (t, *J* = 7.2 Hz, 3H), 4.13 (q, *J* = 7.2 Hz, 2H), 7.98 (t, *J* = 7.2 Hz, 1H), 8.21-8.23 (m, 2H), 8.37 (d, *J* = 8.8 Hz, 1H), 8.50 (t, *J* = 8.0 Hz, 1H), 8.77 (d, *J* = 5.2 Hz, 1H), 9.46-9.48 (m, 1H), 10.76 (d, *J* = 6.4 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 12.1, 33.8, 111.9, 117.8, 118.7, 119.8, 122.2, 123.1, 126.2, 126.3, 127.5, 131.8, 131.9, 132.7, 133.3, 139.2, 142.8, 167.3, 170.0. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1064.

2-(*Tert***-butyl)-1***H***-benzo[***e***]pyrido[1',2':1,2]imidazo[4,5-***g***]isoindole-1,3(2***H***)-dione (5c): yellow solid (151 mg, 88%); mp: 280-281 °C; ¹H NMR (400 MHz, CF₃CO₂D) \delta: 1.98 (s, 9H), 7.93 (t,** *J* **= 7.2 Hz, 1H), 8.13-8.19 (m, 2H), 8.33 (d,** *J* **= 8.8 Hz, 1H), 8.46 (t,** *J* **= 8.0 Hz, 1H), 8.71 (d,** *J* **= 8.4 Hz, 1H), 9.47 (d,** *J* **= 8.4 Hz, 1H), 10.85 (d,** *J* **= 6.8 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) \delta: 27.7, 60.1, 111.7, 117.6, 118.4, 120.2, 122.0, 122.9, 126.0, 126.4, 127.2, 131.3, 131.6, 133.05, 133.14, 138.9, 142.7, 168.1, 171.0. HRMS calcd for C₂₁H₁₉N₃O₂⁺: 344.1394 [M+H]⁺, found: 344.1367.**

2-Cyclohexyl-1*H***-benzo**[*e*]**pyrido**[1',2':1,2]**imidazo**[4,5-g]**isoindole-1**,3(2*H*)**-dione (5d**): yellow solid (168 mg, 91%); mp: 277-278 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ : 1.51-1.58 (m, 1H), 1.64-1.71 (m, 2H), 1.98-2.00 (m, 1H), 2.10-2.11 (m, 2H), 2.17-2.19 (m, 2H), 2.48-2.54 (m, 2H), 4.49-4.53 (m, 1H), 8.00 (t, *J* = 6.6 Hz, 1H), 8.24-8.26 (m, 2H), 8.40 (d, *J* = 9.6 Hz, 1H), 8.53 (t, *J* = 7.8 Hz, 1H), 8.79-8.80 (m, 1H), 9.51-9.53 (m, 1H), 10.84 (d, *J* = 6.6 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 24.5, 25.5, 29.6, 53.3, 111.9, 117.9, 118.7, 119.9, 122.2, 123.1, 126.0, 126.5, 127.6, 131.8, 132.0, 133.0, 133.3, 139.2, 142.9, 167.5, 170.3. HRMS calcd for C₂₃H₂₀N₃O₂⁺: 370.1550 [M+H]⁺, found: 370.1527.

2-Benzyl-1*H***-benzo**[*e*]**pyrido**[**1'**,**2'**:**1**,**2**]**imidazo**[**4**,**5**-*g*]**isoindole-1**,**3**(2*H*)**-dione** (**5e**): yellow solid (174 mg, 92%); mp: >300 °C; ¹H NMR (400 MHz, CF₃CO₂D) δ: 5.22 (s, 2H), 7.39-7.47 (m, 3H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.97 (t, *J* = 7.2 Hz, 1H), 8.22-8.23 (m, 2H), 8.38 (d, *J* = 8.0 Hz, 1H), 8.51 (t, *J* = 6.8 Hz, 1H), 8.78 (s, 1H), 9.47-9.49 (m, 1H), 10.77 (d, *J* = 6.4 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 42.3, 112.1, 118.0, 118.9, 120.0, 122.4, 123.3, 126.3, 126.6, 127.68, 127.72, 128.4, 128.9, 132.10, 132.14, 132.9, 133.6,

134.8, 139.5, 143.1, 167.4, 170.1. HRMS calcd for $C_{24}H_{16}N_3O_2^+$: 378.1237 [M+H]⁺, found: 378.1231.

2-Phenyl-1*H***-benzo**[*e*]**pyrido**[**1**',**2**':**1**,**2**]**imidazo**[**4**,**5**-g]**isoindole-1**,**3**(*2H*)**-dione (5f**): yellow solid (171 mg, 94%); mp: 293-294 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ: 7.64 (d, *J* = 7.8 Hz, 2H), 7.76-7.79 (m, 3H), 7.99 (t, *J* = 7.2 Hz, 1H), 8.27-8.31 (m, 2H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.55 (t, *J* = 7.8 Hz, 1H), 8.87 (d, *J* = 7.2 Hz, 1H), 9.54 (d, *J* = 8.4 Hz, 1H), 10.74 (d, *J* = 6.6 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 112.1, 117.9, 118.8, 119.6, 122.4, 123.4, 125.7, 126.6, 127.5, 127.6, 129.4, 129.8, 130.3, 132.2, 132.3, 132.6, 133.9, 139.5, 143.1, 167.6, 170.0. HRMS calcd for C₂₃H₁₄N₃O₂⁺: 364.1081 [M+H]⁺, found: 364.1071.

2,11-Dimethyl-1*H***-benzo[***e***]pyrido[1',2':1,2]imidazo[4,5-***g***]isoindole-1,3(2***H***)-dione (5g): yellow solid (131 mg, 83%); mp: >300 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ: 2.91 (s, 3H), 3.52 (s, 3H), 7.77 (d,** *J* **= 3.6 Hz, 1H), 8.09 (s, 1H), 8.170-8.173 (m, 2H), 8.90 (t,** *J* **= 1.8 Hz, 1H), 9.41 (d,** *J* **= 3.0 Hz, 1H), 10.52 (s, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 20.8, 23.3, 110.5, 117.5, 119.5, 120.9, 122.0, 123.0, 125.5, 126.2, 127.3, 131.4, 131.70, 131.73, 133.3, 143.1, 154.4, 167.7, 170.4. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1077.**

11-Chloro-2-methyl-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione (5h): yellow solid (138 mg, 82%); mp: >300 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ : 3.53 (s, 3H), 8.210-8.214 (m, 2H), 8.33 (d, *J* = 9.0 Hz, 1H), 8.41 (d, *J* = 8.4 Hz, 1H), 8.75 (s, 1H), 9.44 (d, *J* = 3.0 Hz, 1H), 10.78 (s, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 23.3, 112.4, 117.6, 119.5, 122.3, 123.0, 126.4, 126.6, 127.4, 127.9, 130.2, 132.05, 132.12, 133.6, 140.0, 141.2, 167.4, 170.0. HRMS calcd for C₁₈H₁₁ClN₃O₂⁺: 336.0534 [M+H]⁺, found: 336.0528.

2,10-Dimethyl-1*H***-benzo**[*e*]**pyrido**[**1',2':1,2**]**imidazo**[**4,5-***g*]**isoindole-1,3**(2*H*)**-dione** (5i): yellow solid (135 mg, 86%); mp: 291-292 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ: 2.91 (s, 3H), 3.52 (s, 3H), 7.78 (d, *J* = 6.6 Hz, 1H), 8.08 (s, 1H), 8.16-8.17 (m, 2H), 8.68-8.69 (m, 1H), 9.40 (dd, *J*₁ = 6.6 Hz, *J*₂ = 3.0 Hz, 1H), 10.51 (d, *J* = 7.2 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 20.8, 23.3, 110.5, 117.5, 119.5, 120.9, 122.0,

123.0, 125.5, 126.2, 127.3, 131.4, 131.7, 133.3, 143.1, 154.4, 167.7, 170.4. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1080.

2,9-Dimethyl-1*H***-benzo**[*e*]**pyrido**[**1'**,**2':1**,**2**]**imidazo**[**4**,**5**-*g*]**isoindole-1**,**3**(2*H*)**-dione (5j**): yellow solid (132 mg, 84%); mp: 287-288 °C; ¹H NMR (400 MHz, CF₃CO₂D) δ: 2.97 (s, 3H), 3.48 (s, 3H), 7.82 (t, *J* = 6.8 Hz, 1H), 8.12-8.14 (m, 2H), 8.23 (d, *J* = 7.2 Hz, 1H), 8.77 (d, *J* = 5.2 Hz, 1H), 9.38-9.40 (m, 1H), 10.56 (d, *J* = 6.4 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 14.8, 23.3, 118.2, 118.7, 119.6, 122.3, 123.1, 123.3, 126.2, 126.3, 127.4, 130.2, 131.7, 131.8, 133.3, 138.8, 142.7, 167.5, 170.2. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1073.

2-Methyl-5-phenyl-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione (5k): yellow solid (160 mg, 85%); mp: >300 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ : 3.55 (s, 3H), 7.48 (t, *J* = 7.8 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.81 (d, *J* = 7.2 Hz, 2H), 7.93 (t, *J* = 7.2 Hz, 1H), 8.33-8.37 (m, 2H), 8.48 (t, *J* = 7.8 Hz, 1H), 8.71 (d, *J* = 8.4 Hz, 1H), 9.44 (s, 1H), 10.63 (d, *J* = 6.6 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D): δ 23.4, 112.0, 117.6, 118.7, 120.1, 121.7, 122.77, 122.79, 125.7, 126.6, 127.8, 128.9, 129.0, 130.6, 132.5, 133.1, 137.6, 139.2, 142.8, 144.7, 167.3, 170.2. HRMS calcd for C₂₄H₁₆N₃O₂+: 378.1237 [M+H]⁺, found: 378.1228.

2,5-Dimethyl-1*H***-benzo**[*e*]**pyrido**[**1',2':1,2**]**imidazo**[**4,5-***g*]**isoindole-1,3**(2*H*)**-dione (5l**): yellow solid (150 mg, 95%); mp: 287-288 °C; ¹H NMR (400 MHz, CF₃CO₂D) δ: 2.80 (s, 3H), 3.48 (s, 3H), 7.87 (t, *J* = 7.6 Hz, 1H), 8.02 (d, *J* = 8.8 Hz, 1H), 8.14 (t, *J*= 7.6 Hz, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 8.70 (d, *J* = 8.8 Hz, 1H), 9.16 (s, 1H), 9.30 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ: 21.6, 24.1, 116.9, 117.0, 117.5, 118.4, 121.6, 123.1, 123.4, 123.9, 125.3, 125.7, 129.1, 133.5, 138.2, 149.6, 167.4, 168.6. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1073.

5-Chloro-2-methyl-1*H***-benzo**[*e*]**pyrido**[1',2':1,2]**imidazo**[4,5-*g*]**isoindole-1,3**(2*H*)-**dione** (5m): yellow solid (148 mg, 88%); mp: >300 °C; ¹H NMR (600 MHz, CF₃CO₂D): δ 3.57 (s, 3H), 8.00 (t, *J* = 6.6 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.54 (t, J = 7.2 Hz, 1H), 8.76 (d, J = 8.4 Hz, 1H), 9.47 (s, 1H), 10.75 (d, J = 6.0 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D): δ 23.4, 112.1, 117.9, 118.9, 120.9, 121.2, 123.7, 125.0, 125.4, 128.1, 132.67, 132.71, 133.4, 139.6, 139.7, 143.1, 167.1, 169.8. HRMS calcd for C₁₈H₁₁ClN₃O₂⁺: 336.0534 [M+H]⁺, found: 336.0525.

2-Methyl-5-(trifluoromethyl)-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione

(5n): yellow solid (148 mg, 80%); mp: 292-293 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ : 3.55 (s, 3H), 7.99 (t, J = 6.6 Hz, 1H), 8.38-8.42 (m, 2H), 8.53 (t, J = 7.8 Hz, 1H), 8.94 (d, J = 8.4 Hz, 1H), 9.77 (s, 1H), 10.75 (d, J = 6.6 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 23.5, 112.2, 118.98, 119.02, 121.2, 123.0 (q, ¹ $J_{C-F} = 270.3$ Hz), 123.7, 123.9 (q, ³ $J_{C-F} = 4.2$ Hz), 124.4, 126.5, 126.7, 127.5 (q, ⁴ $J_{C-F} = 3.15$ Hz), 132.8, 133.0, 134.4 (q, ² $J_{C-F} = 34.05$ Hz), 139.9, 143.3, 166.9, 169.5. ¹⁹F NMR (565 MHz, CF₃CO₂D) δ : -78.1. HRMS calcd for C₁₉H₁₁F₃N₃O₂⁺: 370.0798 [M+H]⁺, found: 370.0789.

2,6–Dimethyl-1*H***-benzo**[*e*]**pyrido**[**1',2':1,2**]**imidazo**[**4,5-***g*]**isoindole-1,3**(2*H*)**-dione (50**): yellow solid (151 mg, 96%); mp: 268-269 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ : 2.91 (s, 3H), 3.58 (s, 3H), 7.99 (t, *J* = 6.6 Hz,1H), 8.11 (d, *J* = 9.0 Hz, 1H), 8.43 (d, *J* = 7.2 Hz, 1H), 8.52 (d, *J* = 6.0 Hz, 1H), 8.58 (s, 1H), 9.37 (d, *J* = 8.4 Hz, 1H), 10.75 (d, *J* = 6.0 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 20.5, 23.3, 112.0, 117.9, 118.6, 121.3, 123.5, 125.6, 126.1, 126.3, 132.5, 132.7, 134.2, 139.1, 142.8, 144.6, 167.8, 170.5. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1067.

6-Chloro-2-methyl-1*H*-benzo[*e*]pyrido[1',2':1,2]imidazo[4,5-*g*]isoindole-1,3(2*H*)-dione (5p): yellow solid (144 mg, 86%); mp: >300 °C. ¹H NMR (400 MHz, CF₃CO₂D) δ : 3.53 (s, 3H), 7.97 (t, *J* = 7.6 Hz, 1H), 8.13 (d, *J* = 8.8 Hz, 1H), 8.37 (d, *J* = 8.8 Hz, 1H), 8.50 (t, *J* = 8.0 Hz, 1H), 8.74 (s, 1H), 9.39 (d, *J* = 9.2 Hz, 1H), 10.71 (d, *J* = 6.8 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ : 23.4, 112.1, 118.6, 118.9, 119.6, 121.7, 123.9, 125.6, 126.2, 127.7, 132.2, 132.7, 132.9, 139.60, 139.61, 143.0, 167.2, 169.8. HRMS calcd for C₁₈H₁₁ClN₃O₂⁺: 336.0534 [M+H]⁺, found: 336.0530. **2,7-Dimethyl-1***H***-benzo**[*e*]**pyrido**[**1',2':1,2**]**imidazo**[**4,5-***g*]**isoindole-1,3**(2*H*)**-dione (5q**): yellow solid (118 mg, 75%); mp: 284-285 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ: 3.33 (s, 3H), 3.51 (s, 3H), 7.96 (s, 1H), 8.00 (d, *J* = 6.0 Hz, 1H), 8.07 (t, *J* = 6.6 Hz, 1H), 8.44-8.46 (m, 2H), 9.42 (d, *J* = 7.8 Hz, 1H), 10.85 (d, *J* = 6.0 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 21.3, 23.4, 112.2, 118.3, 118.8, 119.3, 123.1, 124.5, 126.6, 128.7, 131.5, 132.4, 133.0, 134.0, 139.0, 142.3, 167.3, 170.2. HRMS calcd for C₁₉H₁₄N₃O₂⁺: 316.1081 [M+H]⁺, found: 316.1045.

8-Methyl-7*H***-naphtho[2,1-***e***]pyrido[1',2':1,2]imidazo[4,5-***g***]isoindole-7,9(8***H***)-dione (5r): yellow solid (119 mg, 68%); mp: >300 °C; ¹H NMR (600 MHz, CF₃CO₂D) δ: 3.60 (s, 3H), 8.02 (t,** *J* **= 7.2 Hz, 1H), 8.05-8.06 (m, 1H), 8.08-8.10 (m, 1H), 8.31 (d,** *J* **= 7.8 Hz, 1H), 8.41 (d,** *J* **= 8.4 Hz, 1H), 8.47 (d,** *J* **= 9.0 Hz, 1H), 8.54-8.57 (m, 1H), 8.99 (d,** *J* **= 8.4 Hz, 1H), 9.36 (d,** *J* **= 9.0 Hz, 1H), 10.90 (d,** *J* **= 7.2 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D) δ: 23.5, 112.2, 118.9, 119.9, 121.1, 121.7, 124.0, 125.0, 127.0, 129.1, 129.4, 130.0, 130.1, 132.3, 132.8, 133.6, 133.8, 140.1, 143.6, 167.1, 170.1. HRMS calcd for C₂₂H₁₄N₃O₂+: 352.1081 [M+H]⁺, found: 352.1076.**

5-Methyl-4*H***-pyrido[2',1':2,3]imidazo[4,5-***e***]thieno[2,3-***g***]isoindole-4,6(5***H***)-dione (5s): yellow solid (101 mg, 66%); mp: 283-284 °C; ¹H NMR (600 MHz, CF₃CO₂D) \delta: 3.60 (s, 3H), 8.02 (t,** *J* **= 7.2 Hz, 1H), 8.35-8.38 (m, 2H), 8.56-8.58 (m, 2H), 10.78 (d,** *J* **= 6.6 Hz, 1H). ¹³C NMR (150 MHz, CF₃CO₂D): 23.4, 112.0, 117.7, 118.3, 118.7, 122.4, 123.5, 130.8, 131.0, 133.1, 134.7, 136.3, 140.1, 143.4, 167.7, 169.7. HRMS calcd for C₁₆H₁₀N₃O₂S⁺: 308.0488 [M+H]⁺, found: 308.0487.**

5,6,7-Trimethoxybenzo[*a*]**pyrrolo**[**3,4**-*c*]**carbazole-1,3**(*2H*,8*H*)-**dione** (**6**): yellow solid (35 mg, 93%); mp: >300 °C (lit.⁴ mp: 272 °C); ¹H NMR (400 MHz, DMSO-*d*₆) δ: 3.97 (s, 3H), 4.00 (s, 3H), 4.21 (s, 3H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 8.29 (s, 1H), 8.92 (d, *J* = 7.6 Hz, 1H), 11.09 (s, 1H), 11.91 (s, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆): 56.4, 61.5, 62.1, 100.5, 112.1, 113.1, 113.7, 117.4, 120.9, 121.0, 124.0, 124.4, 126.5, 128.3, 138.9, 140.4, 141.9, 149.0, 155.1, 171.0, 172.2. HRMS calcd for $C_{21}H_{17}N_2O_5^+$: 377.1132 [M+H]⁺, found: 377.1128.

6. References

(1). (a) E. Fisher and F. Jourdan, Ber. Dtsch. Chem. Ges., 1883, 16, 2241-2245. (b) Z. Y. Qiu, Chao.

Hang, Z. Zhang and H. W. Hu, YOUJI HUAXUE, 1992, 12, 282-285. (c). S. D. Yang, C. L. Sun, Z. Fang, B.

J. Li, Y. Z. Li and Z. J. Shi, Angew. Chem., Int. Ed., 2008, 47, 1473-1476.

(2). K. Pericherla, P. Khedar, B. Khungar and A. Kuma, Chem. Commun., 2013, 49, 2924-2926

(3). K. I. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Org. Lett., 2004, 6, 2785-2788.

(4). S. Routier, J. Y. Mérour, N. Dias, A. Lansiaux, C. Bailly, O. Lozach and L. Meijer, *J. Med. Chem.*, 2006, **49**, 789-799.

(5). S. Routier, P. Peixoto, J. Y. Mérour, G. Coudert, N. Dias, C. Bailly, A. Pierré, S. Léonce and D. H. Caignard, J. Med. Chem., 2005, 48, 1401-1413.

(6). C. Peifer, T. Stoiber, E. Unger, F. Totzke, C. Schächtele, D. Marmé, R. Brenk, G. Klebe, D. J. Med. Chem., 2006, 49, 1271-1281.

S45

S46

0PPN

