Supporting information

for

Experimental study on the microreactor-assisted synthesis of phosphinic chlorides with varying steric hindrance

Aleksandra Jasiak,*^[a] Krzysztof Owsianik,^[a] Bartłomiej Gostyński,^[a] Grażyna Mielniczak,^[a] Christian V.

Stevens^[c] and Józef Drabowicz*^{[a],[b]}

[a]	B. Sc., A, Jasiak, dr. K. Owsianik, dr. B. Gostyński, dr. G. Mielniczak and prof. J. Drabowicz Department of Organic Chemistry
	Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences
	Sienkiewicza 112, 90-363 Łódź, Poland
	E-mail: ajasiak@cbmm.lodz.pl
	Homepage: www.cbmm.lodz.pl
[b]	Prof. J. Drabowicz
	Institute of Chemistry
	Jan Długosz University in Częstochowa
	Armii Krajowej 13/15, Częstochowa 42-201, Poland
	E-mail: draj@cbmm.lodz.pl

 [c] Prof. C. V. Stevens
 Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Campus Coupure, Coupure Links 653, 9000 Gent, Belgium
 E-mail: <u>Chris.Stevens@UGent.be</u>

Table of contents

Computational details

Energetics of the phosphine oxide **1** tautomerization at various temperatures (kcal/mol) (Tab. S1). Energetics of the phosphine oxide **3** tautomerization at various temperatures (kcal/mol) (Tab. S2). Energetics of the phosphine oxide **2** tautomerization at various temperatures (kcal/mol) (Tab. S3). Energetics of the reaction of phosphine oxide **1** with CCl₄ at various temperatures (kcal/mol) (Tab. S4). Energetics of the reaction of phosphine oxide **3** with CCl₄ at various temperatures (kcal/mol) (Tab. S5). Energetics of the reaction of phosphine oxide **3** with CCl₄ at various temperatures (kcal/mol) (Tab. S5). Energetics of the reaction of phosphine oxide **2** with CCl₄ at various temperatures (kcal/mol) (Tab. S5). Energetics of the reaction of phosphine oxide **2** with CCl₄ at various temperatures (kcal/mol) (Tab. S6).

Technical specification of used microreactor (Tab. S7).

¹H, ³¹P, ¹³C, ¹⁹F NMR spectra of the obtained compounds (Fig. S1-S21)

HPLC spectra optically active compound (S)-4 (flow) and (S)-4 (batch) (Fig. S22-S25)

Details of the conversion of (9) against different conditions under flow (Fig. S26)

temp. [°C]	route	solvent	free substrates	reactant complex	TS 0_1 [ΔG‡]	product complex	free products [ΔG]
		CCl ₄	0.0		59.7		10.8
	(1)	toluene	0.0		59.8		10.9
	(1)	CH ₂ Cl ₂	0.0		60.6		12.1
25		acetonitrile	0.0		60.9		12.5
20	(2)	CCl ₄	0.0	0.5	33.8	19.1	21.5
		toluene	0.0	0.7	34.0	19.9	21.7
	(2)	CH ₂ Cl ₂	0.0	2.2	36.2	22.9	24.1
		acetonitrile	0.0	2.5	37.3	24.1	25.0
	(1)	toluene	0.0		59.8		10.8
60		CH ₂ Cl ₂	0.0		60.6		12.1
		acetonitrile	0.0		60.9		12.5

Table S1. Energetics of the phosphine oxide 1 tautomerization at various temperatures (kcal/mol)

		toluene	0.0	1.8	35.4	20.8	21.7
	(2)	CH ₂ Cl ₂	0.0	3.5	37.7	24.3	24.1
		acetonitrile	0.0	3.8	38.8	25.4	25.0
100	(1)	toluono	0.0		59.8		10.8
100	(2)	loiuene	0.0	3.3	37.1	22.3	21.7

temp. [° C]	route	solvent	free substrates	reactant complex	TS 0_1 [ΔG [‡]]	product complex	free products [ΔG]
		CCl ₄	0.0		60.0		11.4
	(1)	toluene	0.0		60.1		11.5
	(1)	CH ₂ Cl ₂	0.0		61.0		12.9
25		acetonitrile	0.0		61.2		13.3
25		CCl ₄	0.0	-1.1	32.8	18.9	22.8
	(2)	toluene	0.0	-1.5	32.9	19.2	23.0
	(2)	CH ₂ Cl ₂	0.0	1.5	35.9	23.2	25.8
		acetonitrile	0.0	2.3	36.8	24.0	26.7
	(1)	CH ₂ Cl ₂	0.0		61.0		12.9
60	(1)	acetonitrile	0.0		61.2		13.3
00	(2)	CH_2CI_2	0.0	3.0	37.5	24.7	25.8
	(2)	acetonitrile	0.0	3.9	38.5	25.5	26.6
		CCl ₄	0.0		60.0		11.4
	(1)	toluene	0.0		59.8		10.8
		CH ₂ Cl ₂	0.0		61.0		12.9
100		acetonitrile	0.0		61.2		13.3
100		CCI ₄	0.0	1.8	36.3	22.0	22.7
	(2)	toluene	0.0	1.3	36.4	22.3	22.9
	(2)	CH ₂ Cl ₂	0.0	4.6	39.5	26.4	25.8
		acetonitrile	0.0	5.7	40.4	27.1	26.6
110	(1)	acetonitrile	0.0		61.2		13.3
110	(2)	acciontine	0.0	6.1	40.9	27.5	26.6
120	(1)	toluene	0.0		60.0		11.4
120	(2)	tolucito	0.0	2.0	37.3	23.2	22.9
140	(1)	toluene	0.0		60.0		11.4
140	(2)	tolucito	0.0	2.8	38.2	24.0	22.8

Table S2. Energetics of	the phosphine ox	ide 3 tautomerization a	at various temperatures	(kcal/mol).
-------------------------	------------------	-------------------------	-------------------------	-------------

Table S3. E	inergetics of	the phosphine	oxide 2 tauto	merization at	various temp	peratures (k	cal/mol).
-------------	---------------	---------------	---------------	---------------	--------------	--------------	-----------

temp. [°C]	route	solvent	free substrates	reactant complex	TS 0_1 [ΔG [‡]]	product complex	free products [ΔG]
		CCl ₄	0.0		59.5		9.8
	(1)	toluene	0.0		59.6		9.9
		CH_2CI_2	0.0		60.4		10.9
25		acetonitrile	0.0		60.6		11.3
25		CCl ₄	0.0	-2.0	31.9	16.2	19.5
	(2)	toluene	0.0	-1.8	32.1	16.5	19.8
60	(2)	CH_2CI_2	0.0	0.0	33.5	19.6	21.9
		acetonitrile	0.0	0.1	34.0	20.5	22.5
	(1)	CH ₂ Cl ₂	0.0		63.3		10.8
		acetonitrile	0.0		60.6		11.3

	(2)	CH ₂ Cl ₂	0.0	1.6	35.1	21.2	21.7
	(2)	acetonitrile	0.0	1.6	35.7	22.6	22.6
80	(1)	CHaCla	0.0		63.3		10.9
00	(2)	CI 12C12	0.0	2.4	36.1	22.1	21.8
		CCl ₄	0.0		59.6		9.8
	(1)	toluene	0.0		59.7		9.9
100		acetonitrile	0.0		60.6		11.2
100	(2)	CCl ₄	0.0	1.3	35.7	19.8	19.6
		toluene	0.0	1.5	36.0	20.1	19.8
		acetonitrile	0.0	3.2	37.6	24.5	22.4

Table S4. Energetics of the reaction of phosphine oxide **1** with CCl₄ at various temperatures (kcal/mol).

temp. [° C]	solvent	free substrates	reactant complex	TS 1_1 [ΔG [‡]]	P ^(V) compound	TS 2_1 [ΔG [‡]]	product complex	free products [ΔG]
25	CCI ₄	0.0	3.5	51.6	0.5	5.7	-45.6	-47.7
	toluene	0.0	3.5	51.6	0.5	5.6	-45.6	-48.0
	CH ₂ Cl ₂	0.0	3.7	50.9	0.7	4.3	-46.1	-49.1
	acetonitrile	0.0	3.6	50.6	0.8	3.9	-46.2	-49.4
	toluene	0.0	4.5	52.6	2.0	6.9	-44.6	-48.0
60	CH ₂ Cl ₂	0.0	4.6	51.9	2.2	5.6	-45.1	-49.2
	acetonitrile	0.0	4.6	51.6	2.2	5.3	-45.2	-49.6
100	toluene	0.0	5.6	60.6	3.7	8.5	-43.5	-48.1

Table S5. Energetics of the reaction of phosphine oxide **3** with CCl₄ at various temperatures (kcal/mol).

temp. [° C]	solvent	free substrates	reactant complex	TS 1_2 [ΔG [‡]]	P ^(V) compound	TS 2_2 [ΔG [‡]]	product complex	free products [ΔG]
	CCI ₄	0.0	1.7	47.5	-2.0	0.9	-49.2	-48.8
25	toluene	0.0	3.4	50.4	-0.3	4.5	-46.7	-49.0
	CH ₂ Cl ₂	0.0	3.3	49.3	0.0	3.4	-47.2	-50.1
	acetonitrile	0.0	3.5	48.8	0.1	2.8	-47.5	-50.5
60	CH ₂ Cl ₂	0.0	4.2	50.3	1.5	4.8	-46.3	-50.2
00	acetonitrile	0.0	4.4	50.1	1.7	4.2	-46.4	-50.6
	CCl ₄	0.0	3.8	49.7	1.1	3.9	-47.1	-49.0
100	toluene	0.0	5.5	52.6	2.9	7.5	-44.7	-49.1
100	CH ₂ Cl ₂	0.0	5.3	51.4	3.2	6.4	-45.1	-50.3
	acetonitrile	0.0	5.6	50.8	3.2	5.4	-45.4	-50.7
110	acetonitrile	0.0	5.8	51.1	3.6	5.8	-45.2	-50.7
120	toluene	0.0	4.4	51.6	2.2	6.7	-45.7	-49.2
140	toluene	0.0	3.4	50.5	1.4	5.8	-46.7	-49.3

temp. [°C]	solvent	free substrates	reactant complex	ΤS 1_3 [ΔG [‡]]	P ^(V) compound	TS 2_3 [ΔG [‡]]	product complex	free products [ΔG]
25	CCl ₄	0.0	2.6	52.2	1.2	6.9	-44.7	-46.4
	toluene	0.0	2.6	52.2	1.3	7.1	-44.6	-46.6
	CH ₂ Cl ₂	0.0	3.0	51.6	1.7	5.9	-44.5	-47.5
	acetonitrile	0.0	3.0	51.4	1.8	5.5	-44.5	-47.8
60	CH ₂ Cl ₂	0.0	3.9	52.6	3.2	7.3	-43.5	-47.6
00	acetonitrile	0.0	3.9	52.4	3.3	6.9	-43.5	-48.0
80	CH ₂ Cl ₂	0.0	4.5	53.2	4.0	8.1	-42.9	-47.7
100	CCl ₄	0.0	4.6	54.4	4.2	9.8	-42.7	-46.7
	toluene	0.0	4.5	54.4	4.3	10.0	-42.6	-46.7
	acetonitrile	0.0	5.0	53.5	5.0	8.5	-42.4	-48.1

Table S6. Energetics of the reaction of phosphine oxide **2** with CCl₄ at various temperatures (kcal/mol).

 Table S7. Technical specification of used microreactor.

	Asia 120 Microreactor
Wetter materials	glass, quartz
Temperature range	-20 °C to +250 °C ^[a]
Maximum pressure	30 bar
Inside diameter of connection	0.5 mm
tubing	
Connection tubing material	PTFE, FEP
Type of mixer	Double T-mixer

[a] up to 150 °C.

Figure S2: ^{31}P NMR (81 MHz, CDCl₃) of 2.

Figure S3: ¹⁹F NMR (188 MHz, CDCl₃) of **2**.

Figure S4: ¹³C NMR (50 MHz, CDCl₃) of **2**.

Figure S6: 31 P NMR (81 MHz, CDCl₃) of **3**.

Figure S7: ¹³C NMR (50 MHz, CDCl₃) of **3**.

Figure S8: ¹H NMR (500 MHz, CDCl₃) of **4** and **(S)-4**.

Figure S10: 31 P NMR (81 MHz, CDCl₃) of 4 and (S)-4.

Figure S11: ¹³C NMR (50 MHz, CDCl₃) of **4** and **(S)-4**.

Figure S12: 1 H NMR (500 MHz, CDCl₃) of 5.

Figure S13: $^{\rm 31}P$ NMR (202 MHz, CDCl₃) of 5.

Figure S14: $^{19}\mathsf{F}$ NMR (188 MHz, CDCl₃) of 5.

Figure S18: 13 C NMR (125 MHz, CDCl₃) of 6.

Figure S20: ³¹P NMR (202 MHz, CDCl₃) of **8**.

Figure S21: 13 C NMR (125 MHz, CDCl₃) of 8.

Print Date:	Thu Apr	06 15:43:03	3 2017		Page 1 of	1		
Title Run File Method File Sample ID	: : c:\sta : C:\sta : oj50]	ar\data\2017 ar\metody\rc Pht-BuP(O)CJ	7-04-060 bol.mth	j50 pht-bi	up(o)cl .ru	in		
Injection D	ate: 2017	7-04-06 15:1	.5 Ca	lculation	Date: 2017	-04-0	6 15:41	
Operator Workstation Instrument Channel	: JL : : Varian : 1 = 254	Star #1 I nm	Detector Type: 0325 Bus Address : 44 Sample Rate : 5.00 Hz Run Time : 26.253 min					
** LC Works	tation Ve	ersion 6.30	** 0293	3-26d0-ae7	7-0275 **			
Run Mode Peak Measur Calculation	: Ar ement: Pe Type: Pe	alysis ak Area ercent						
Peak P No. N	eak ame	Result (%)	Ret. Time (min)	Time Offset (min)	Area (counts)	Sep. Code	Width 1/2 (sec)	Status Codes
1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15		0.0 0.2 0.1 0.0 0.1 0.3 0.4 95.0 0.6 0.3 0.7	6.141 6.282 6.485 5.6678 6.772 7.920 8.345 9.164 9.665 13.639 14.706 15.767 17.883 21.208 23.507	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3337 97014 406565 39035 6932 134181 36056 176369 207633 202891 52903692 16151 889744 192746 373120	BVP VVV VBP BPP BVV VBP BPP SB BBB BBB BBBBBBBBBB	1.5 14.8 10.1 0.0 21.1 0.0 20.9 16.4 21.7 0.0 21.7 0.0 22.8 22.7	
Totals	s:	100.0		0.000	55685466			
Total Unider	ntified C	ounts : 5	5685464	counts				
Detected Pea	aks: 16	Rej	ected Pe	aks: 1	Identif.	ied Pe	aks: 0	
Multiplier:	1	Divisor:	1	Unide	ntified Pe	ak Fac	tor: 0	
Baseline Of	fset: 0 m	icroAU	LSE	3: 0.1 m	icroAU			
Noise (used) Noise (monit): 200 mi tored bef	croAU - fix ore this ru	ed value n): 125	microAU				
Manual injec	ction							
Original Not	tes:							
OD-H *********	hex-iPOH	5% F=0.5ml	/min *******	*******	* * * * * * * * * * *	*****	*****	******

Figure S23: HPLC of (S)-4 (flow)

Print Da	te: Thu Ap	or 06 15:43:0	03 2017		Page 1 of	1		
Title Run File Method F Sample I	: : c:\s `ile : C:\s :D : oj50	star\data\20; star\metody\; Pht-BuP(O)(17-04-060 robol.mth Cl	j50 pht-b	oup(o)cl .ru	in		
Injectio	on Date: 20	17-04-06 15	:15 Ca	lculation	Date: 2017	-04-0	6 15:41	8
Operator : JL Workstation: Instrument : Varian Star #1 Channel : 1 = 254 nm			Detector Type: 0325 Bus Address : 44 Sample Rate : 5.00 Hz Run Time : 26.253 min					
** LC Wo	rkstation	Version 6.30	** 0293	3-26d0-ae	7-0275 **			
Run Mode Peak Mea Calculat	surement: ion Type:	Analysis Peak Area Percent						
Peak No.	Peak Name	Result (%)	Ret. Time (min)	Time Offset (min)	Area (counts)	Sep. Code	Width 1/2 (sec)	Status Codes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 14 15 7 0	tals:	0.0 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.3 0.4 95.0 0.0 1.6 0.3 0.7	6.141 6.282 6.485 6.67B 6.772 7.920 8.345 9.164 9.665 13.639 14.706 15.767 17.883 21.208 23.507		3337 97014 406565 39035 6932 134181 36056 176369 207633 202891 52903692 16151 889744 192746 373120	BV VV VV VB BP BB BV VB PB BB BB BB BB BB	1.5 1.5 14.8 10.1 0.0 21.1 0.0 20.9 16.4 23.0 21.6 23.0 21.7 0.0 22.8 26.1 52.7	
Total Un	identified	Counts :	55685464	0.000	22002400			
Detected	Peaker 16	Be	docted D	councs		2010 101		
Multipli	reaks. 10	Diminor	jected Pe	eaks: 1	Identif	ied Pe	aks: 0	
Bacaline	Offert 0	DIVISOR	1 1	Unid	entified Pe	ak Fac	tor: 0	
Daserine	OLISEL: U	MICIOAU	LSI	a: 0.1 1	microAU			
Noise (m	onitored b	microAU - fi efore this r	xed value un): 125	microAU				
Manual in	njection							
Original	Notes:							
01	D-H hex-iP	OH 5% F=0.5m	l/min					

Figure S25: HPLC of (S)-4 (batch)

Figure S26: ³¹P NMR (81 MGz, CDCl₃) details of conversion of diphenylphosphine oxide (**9**) against temperature and residence time under flow conditions.