Supplementary Information

Functionalisation of esters via 1,3-chelation using NaO*t*Bu: mechanistic investigations and synthetic applications

Hye Sung Yang,^a Lingamurthy Macha,^b Hyun-Joon Ha^{*b} and Jung Woon Yang^{*a}

^a Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea

^b Department of Chemistry, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea

E-mail: hjha@hufs.ac.kr (H.-J. Ha); jwyang@skku.edu (J. W. Yang)

Contents

1. General information and experimental procedures	S2
2. Equivalent screening for transesterification and deesterification	S4
3. Confirmation of side reaction with enolisable esters	S5
4. Deuterium-labeling experiment	S 7
5. Optimisation of the reaction conditions for N-protected amino acid t-butyl esters	S 8
6. Analytical data of products	S9
7. References	S20
8. ¹ H NMR and ¹³ C NMR spectra of the products	S21
9. HPLC spectra of N-protected amino acid t-butyl esters	S78

General information

Thin-layer chromatography (TLC) was performed on Merck silica gel 60 F254. ¹H NMR spectra were recorded on a Varian at 500 MHz in CDCl₃ (δ 7.26 ppm) or DMSO- d_6 (δ 2.50 ppm), ¹³C NMR spectral measurements were performed at 126 MHz using CDCl₃ (δ 77.16 ppm) or DMSO- d_6 (δ 39.52 ppm) or Toluene- d_8 (δ 137.86 ppm). High-resolution mass spectra (HRMS) were obtained on an Agilent 6890 Series and a Bruker Compact mass spectrometer. Infrared (IR) spectra were recorded on a VERTEX 70 (Bruker) IR spectrometer in the range of 1000-4000 cm⁻¹. HPLC analyses for the enantiomeric excess (*ee*) were performed on YL 9100 HPLC systemusing the indicated chiral column (4.6 mm x 0.25 mm) column. Melting Point were checked with a M-560 (BUCHI). ReactIR monitoring was performed with Mettler Toledo ReactIRTM 45m equipped with DS AgX DiCompTM probe. Optical rotation were recorded on JASCO P-2000 polarimeter.

Experimental Procedures

General procedure for the synthesis of *t*-butyl ester 2 [Condition A]

To a stirred suspension of NaOtBu (1.25 mmol, 2.5 equiv.) in toluene (2.5 mL), ester **1** (0.5 mmol) was added. The mixture was stirred at room temperature for 3-4 h. The reaction mixture was quenched with 5% HCl solution and extracted with diethyl ether (2×10 mL). The combined organic extracts were dried over Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography on silica gel (hexanes/EtOAc) to give the corresponding *t*-butyl ester **2**.

General procedure for the synthesis of carboxylic acid 3 [Condition B]

To a stirred solution of NaOtBu (1.25 mmol, 2.5 equiv.) in THF (2.5 mL), ester **1** (0.5 mmol) was added. The mixture was stirred at room temperature for 24 h. The reaction mixture was quenched with water and extracted with diethyl ether (2×10 mL). The aqueous solution was treated with 5% HCl solution and extracted with diethyl ether (2×10 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated under reduced pressure to give the corresponding carboxylic acid **3**.

General procedure for the synthesis of *N*-protected amino acid methyl ester [Condition C]

This general procedure is a slight modification of the procedures available in literature.¹⁻³

To a stirred solution of L-amino acid (3.0 mmol, 1.0 equiv.) in methanol (3.0 mL), trimethylsilyl chloride (6.0 mmol, 2.0 equiv.) was added at 0 °C and stirred overnight at room temperature. After the reaction reached completion, the volatiles were removed under reduced pressure, and the crude product was used without any further purification. A suspension of L-amino acid methyl ester hydrochloride (3.0 mmol, 1.0 equiv.) in CHCl₃ (4.5 mL) was treated with triethylamine (6.0 mmol, 2.0 equiv.) at 0 °C. After 5 min, 4,4'-(bromomethylene)bis(methoxybenzene) (3.0 mmol, 1.0 equiv.) was added to the

mixture and stirred overnight at room temperature. $CHCl_3$ (4.5 mL) was added to the mixture, and the resulting solution was washed with water (2 × 4.5 mL), dried over Na₂SO₄, and concentrated under reduced pressure, and purified by column chromatography on silica gel (hexanes / EtOAc) to afford *N*-protected amino acid methyl ester **10**.

General procedure for the synthesis of *N*-protected amino acid *t*-butyl ester [Condition D]

To a stirred solution of *N*-protected amino acid methyl ester **10** (0.5 mmol, 1.0 equiv.) in CH₂Cl₂ (2.5 mL), NaOtBu solution dissolved in THF (1.35 mmol, 2.7 equiv.) was added slowly at 0 °C. The mixture was stirred, and the reaction was monitored by TLC. After the reaction reached completion, the mixture was quenched with saturated NH₄Cl solution and CH₂Cl₂ (2 × 10 mL). The combined organic extracts were dried over Na₂SO₄, and concentrated under reduced pressure, and purified by column chromatography on silica gel (hexanes/EtOAc) to afford *N*-protected amino acid *t*-butyl ester **11**.

O 1e	OMe Toluene [0.2 M], 3 h	O OtBu 2e
Entry	Equivalent of NaOtBu	Yield $(\%)^a$
1	2.0	70
2	2.5	88
3	3.0	89

 Table S1. Equivalent screening for transesterification.

^{*a*}All yields are those of isolated products.

 Table S2. Equivalent screening for deesterification.

	OEt NaO <i>t</i> Bu THF [0.2 M], 24 h	О ОН Зb
Entry	Equivalent of NaOtBu	Yield $(\%)^a$
1	2.0	53
2	2.5	60
3	3.0	36

^{*a*}All yields are those of isolated products.

Confirmation of side reaction with enolisable esters

2.5 2.0 4.0 3.5 f1 (ppm) 7.5 7.0 6.0 5.5 5.0 4.5 1.5 1.0 0.5 0.0

Deuterium-labeling experiment

Ph OMe NaOtBu-d_g in THF (2.5 equiv) O
toluene [0.2 M], rt, 24 h
1a
$$6$$

57% vield

NaH (60% in mineral oil, 1.25 mmol, 2.5 equiv.) was washed with pentane $(3 \times 2 \text{ mL})$ in a 10 mL round bottom flask. Dry THF (0.625 mL) was added with argon and *t*BuOH-*d*₁₀ was slowly added to the mixture. After 5 h at room temperature, toluene (2.5 mL) and methyl benzoate (0.5 mmol) were added, and the reaction mixture was stirred for 24 h. The reaction was quenched with 5% HCl solution and extracted with diethyl ether (2 × 10 mL). The combined organic extracts were dried over Na₂SO₄, and concentrated under reduced pressure, and purified by column chromatography on silica gel (hexanes/diethyl ether 25:1) to afford the deuterium-incorporated *t*-butyl ester **6** as colorless liquid (57% yield).

¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, *J* = 7.9 Hz, 2H), 7.54–7.50 (m, 1H), 7.41 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 132.5, 132.2, 129.5, 128.3, 80.7, 27.3 (dt, *J* = 38.3, 19.3 Hz) ppm; HRMS (EI) *m*/*z* [M]⁺ calcd. for C₁₁H₅D₉O₂ 187.1559, found 187.1534

$H_{\underline{N}}^{PG} \xrightarrow{PG} OMe \xrightarrow{NaOtBu} \xrightarrow{H_{\underline{N}}^{PG}} OtBu$							
PG:	O ³ 2 OtBu						
	Boc	Trt	Phth	Dpm	Mbh		
Entry	PG	Equiv. of NaOtBu	Solvent	Temp. (°C)	Yield $(\%)^a$	$ee~(\%)^b$	
1	Boc	1.0	toluene	rt	7	0	
2	Boc	1.0	toluene	-15	5	9	
3	Trt	2.5	toluene	rt-50	n.d	n.d	
4	Phth	2.0	toluene	rt	43	0	
5	Dpm	2.0	toluene	rt	13	77	
6	Mbh	2.0	toluene	rt	33	84	
7	Mbh	2.0	THF	rt	28	0	
8	Mbh	2.5	<i>p</i> -xylene	rt	42	74	
9	Mbh	2.5	cyclohexane	rt	60	41	
10	Mbh	2.5	benzene	rt	55	70	
11	Mbh	2.5	diethyl ether	rt	41	21	
12	Mbh	2.5	DCM	rt	27	92	
13	Mbh	2.5	DCM	40	70	73	
14	Mbh	2.5 (2 M in THF)	DCM	rt	91	80	
15	Mbh	2.0 (2 M in THF)	DCM	rt	71	87	
16	Mbh	2.5 (2 M in THF)	DCM	0	84	92	
17	Mbh	2.7 (2 M in THF)	DCM	0	86	94	

Table S4. Optimisation of the reaction conditions for N-protected amino tert-butyl esters

^{*a*}All yields are those of isolated products. ^{*b*}The enantiomeric excess (*ee*) was determined by HPLC analysis.

Analytical data of products

^{2a-2d} *tert*-Butyl benzoate (2a-2d), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 37-99%; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (dd, J = 8.3, 1.3 Hz, 2H), 7.56–7.49 (m, 1H), 7.45–7.38 (m, 2H), 1.60 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 132.5, 132.2, 129.5, 128.3, 81.1, 28.3 ppm. These data were consistent with those reported in the literature.⁴

^{2e} *tert*-Butyl 4-methylbenzoate (2e), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 88%; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.2 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.59 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.9, 143.0, 129.5, 129.4, 128.9, 80.7, 28.3, 21.7 ppm. These data were consistent with those reported in the literature.⁴

^{2f} *tert*-Butyl 4-methoxybenzoate (2f), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 88%; ¹H NMR (500 MHz, CDCl₃) δ 8.01–7.89 (m, 2H), 6.95–6.84 (m, 2H), 3.84 (s, 3H), 1.58 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.7, 163.1, 131.5, 124.6, 113.5, 80.6, 55.5, 28.4 ppm. These data were consistent with those reported in the literature.⁴

^{2g} *tert*-Butyl 4-cyanobenzoate (2g), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 99%; ¹H NMR (500 MHz, CDCl₃) δ 8.17–7.91 (m, 2H), 7.84–7.57 (m, 2H), 1.58 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.0, 135.9, 132.1, 129.9, 118.2, 115.9, 82.4, 28.0 ppm. These data were consistent with those reported in the literature.⁵

^{2h} *tert*-Butyl 4-(trifluoromethyl)benzoate (2h), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 98%; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 8.2 Hz, 2H), 7.67 (d, *J* = 8.2 Hz, 2H), 1.61 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 135.4, 134.1 (q, *J*_{C-F} = 32.5 Hz), 129.9, 125.3 (q, *J*_{C-F} = 3.7 Hz), 123.9 (d, *J*_{C-F} = 272.6 Hz); ¹⁹F NMR (471 MHz, CDCl₃) δ -63.1 ppm. These data were consistent with those reported in the literature.⁶

²ⁱ *tert*-Butyl 3-nitrobenzoate (2i), The title compound was synthesized according to general procedure A. Yellow solid; Yield = 62%; ¹H NMR (500 MHz, CDCl₃) δ 8.81–8.73 (m, 1H), 8.36 (ddd,

J = 8.2, 2.2, 1.0 Hz, 1H), 8.30 (dt, J = 7.7, 1.2 Hz, 1H), 7.61 (t, J = 8.0 Hz, 1H), 1.62 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 163.6, 148.3, 135.3, 133.9, 129.5, 127.0, 124.5, 82.7, 28.2 ppm. These data were consistent with those reported in the literature.⁷

^{2j} *tert*-Butyl 3-bromobenzoate (2j), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 97%; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (t, J = 1.7 Hz, 1H), 8.01 – 7.83 (m, 1H), 7.63 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.28 (t, J = 7.9 Hz, 1H), 1.59 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 135.4, 134.1, 132.5, 129.8, 128.1, 122.4, 81.8, 28.2 ppm. These data were consistent with those reported in the literature.⁴

^{2k} *tert*-Butyl 2-chlorobenzoate (2k), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 95%; ¹H NMR (500 MHz, CDCl₃) δ 7.72 (dd, J = 7.7, 1.5 Hz, 1H), 7.38 (dtd, J = 9.5, 8.0, 1.3 Hz, 2H), 7.28 (dd, J = 10.6, 4.2 Hz, 1H), 1.61 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 165.3, 133.1, 132.3, 131.9, 131.0, 130.9, 126.6, 82.5, 28.3 ppm. These data were consistent with those reported in the literature.⁸

²ⁿ *tert*-Butyl cyclohexanecarboxylate (2n), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 92%; ¹H NMR (500 MHz, CDCl₃) δ 2.16 (tt, J = 11.2, 3.6 Hz, 1H), 1.91–1.80 (m, 2H), 1.77–1.68 (m, 2H), 1.66–1.57 (m, 1H), 1.44 (s, 9H), 1.42–1.32 (m, 2H), 1.31–1.14 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.8, 79.7, 44.3, 29.2, 28.2, 26.0, 25.6 ppm. These data were consistent with those reported in the literature.⁴

²⁰ *tert*-Butyl 2-(4-methoxyphenyl)acetate (20), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 61%; ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, J = 8.5 Hz, 2H), 6.86 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 3.46 (s, 2H), 1.44 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 171.4, 158.7, 130.3, 127.0, 114.0, 80.8, 55.3, 41.8, 28.2 ppm. These data were consistent with those reported in the literature.⁹

^{2p} *tert*-Butyl octanoate (2p), The title compound was synthesized according to general procedure A. Yellow liquid; Yield = 99%; ¹H NMR (500 MHz, CDCl₃) δ 2.20 (t, J = 7.5 Hz, 2H), 1.61–1.53 (m, 2H), 1.44 (s, 9H), 1.34–1.23 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 173.5, 80.0, 35.8, 31.8, 29.2, 29.1, 28.3, 25.3, 22.8, 14.2 ppm. These data were consistent with those reported in the literature.¹⁰

OtBu

^{2q} *tert*-Butyl 2-cyclohexylacetate (2q), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 95%; ¹H NMR (500 MHz, CDCl₃) δ 2.07 (d, J = 6.9 Hz, 2H), 1.79–1.60 (m, 6H), 1.43 (s, 9H), 1.32–1.07 (m, 3H), 1.02–0.87 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.8, 80.0, 43.6, 35.2, 33.1, 28.3, 26.4, 26.2 ppm; HRMS (FAB) m/z [M+H]⁺ calcd. for C₁₂H₂₃O₂ 199.1698, found 199.1698

^{2r} *tert*-Butyl 6-methylnicotinate (2r), The title compound was synthesized according to general procedure A. Yellow liquid; Yield = 88%; ¹H NMR (500 MHz, CDCl₃) δ 9.02 (d, J = 2.0 Hz, 1H), 8.08 (dd, J = 8.1, 2.2 Hz, 1H), 7.17 (d, J = 8.1 Hz, 1H), 2.58 (s, 3H), 1.57 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 162.6, 150.5, 137.2, 125.1, 122.8, 81.8, 28.3, 24.8 ppm; HRMS (FAB) *m/z* [M+H]⁺ calcd. for C₁₁H₁₆NO₂ 194.1181, found 194.1183

^{2s} *tert*-Butyl 1*H*-indole-2-carboxylate (2s), The title compound was synthesized according to general procedure A. White solid; Yield = 45%; ¹H NMR (500 MHz, CDCl₃) δ 8.89 (s, 1H), 7.68 (dd, J = 8.0, 0.4 Hz, 1H), 7.42 (dd, J = 8.3, 0.6 Hz, 1H), 7.34–7.28 (m, 1H), 7.19–7.10 (m, 2H), 1.63 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 136.8, 129.1, 127.7, 125.2, 122.6, 120.7, 112.0, 108.3, 81.9, 28.5 ppm. These data were consistent with those reported in the literature.¹¹

2t *tert*-Butyl benzo[b]thiophene-2-carboxylate (2t), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 98%; ¹H NMR (500 MHz, CDCl₃) δ 7.97 (s, 1H), 7.90–7.80 (m, 2H), 7.47–7.34 (m, 2H), 1.63 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 162.1, 142.2, 138.9, 135.9, 129.8, 126.7, 125.4, 124.8, 122.8, 82.4, 28.3 ppm. These data were consistent with those reported in the literature.¹²

^{2u} *tert*-Butyl thiophene-2-carboxylate (2u), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 95%; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, J = 3.7, 1.3 Hz, 1H), 7.48 (dd, J = 5.0, 1.3 Hz, 1H), 7.05 (dd, J = 5.0, 3.7 Hz, 1H), 1.57 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 136.1, 132.8, 131.7, 127.6, 81.8, 28.3 ppm. These data were consistent with those reported in the literature.⁵

^{2v} *tert*-Butyl furan-2-carboxylate (2v), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 98%; ¹H NMR (500 MHz, CDCl₃) δ 7.56–7.48 (m, 1H), 7.05 (d, J = 3.5 Hz, 1H), 6.45 (dd, J = 3.4, 1.7 Hz, 1H), 1.56 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 146.0, 145.8, 117.0, 111.7, 82.0, 28.3 ppm. These data were consistent with those reported in the literature.⁴

tert-Butyl 3-phenylpropiolate (2w), The title compound was synthesized according to general procedure A. Pale yellow liquid; Yield = 92%; ¹H NMR (500 MHz, CDCl₃) δ 7.60–7.53 (m, 2H), 7.45–7.39 (m, 1H), 7.38–7.32 (m, 2H), 1.54 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 153.2, 133.0, 130.4, 128.6, 120.1, 83.8, 83.6, 82.2, 28.2 ppm. These data were consistent with those reported in the literature.⁴

^{2x} *tert*-Butyl *trans*-cinnamate (2x), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 95%; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 16.0 Hz, 1H), 7.55–7.46 (m, 2H), 7.42–7.31 (m, 3H), 6.38 (d, J = 16.0 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 166.4, 143.6, 134.8, 130.0, 128.9, 128.0, 120.3, 80.5, 28.3 ppm. These data were consistent with those reported in the literature.⁴

2'a Ethyl benzoate (2'a), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 68%; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, J = 7.2 Hz, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 166.7, 132.8, 130.6, 129.6, 128.4, 61.0, 14.4 ppm. These data were consistent with those reported in the literature.¹³

^{2'b} Isopropyl benzoate (2'b), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 78%; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 8.1 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.7 Hz, 2H), 5.33 – 5.18 (m, 1H), 1.37 (d, J = 6.4 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 166.3, 132.8, 131.1, 129.6, 128.4, 68.5, 22.1 ppm. These data were consistent with those reported in the literature.¹⁴

^{2'c} *tert*-Pentyl benzoate (2'c), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 99%; ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 7.4 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 1.93 (q, J = 7.5 Hz, 2H), 1.57 (s, 6H), 0.98 (t, J = 7.5 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 165.8, 132.5, 132.2, 129.5, 128.3, 83.5, 33.9, 25.8, 8.4 ppm. These data were consistent with those reported in the literature.¹⁵

^{3a-3d} **Benzoic acid (3a-3d)**, The title compound was synthesized according to general procedure B. White solid; Yield = 60-99%; ¹H NMR (500 MHz, CDCl₃) δ 12.76 (s, 1H), 8.20–8.08 (m, 2H), 7.68–7.59 (m, 1H), 7.49 (dd, J = 10.8, 4.9 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 134.0, 130.4, 129.5,

128.6 ppm. These data were consistent with those reported in the literature.¹⁶

^{3e} 4-Methylbenzoic acid (3e), The title compound was synthesized according to general procedure B. White solid; Yield = 80%; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 144.8, 130.4, 129.4, 126.7, 21.9 ppm. These data were consistent with those reported in the literature.¹⁷

^{3f} **4-Methoxybenzoic acid (3f)**, The title compound was synthesized according to general procedure B. White solid; Yield = 62%; ¹H NMR (500 MHz, DMSO- d_6) δ 12.61 (s, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 167.0, 162.8, 131.3, 123.0, 113.8, 55.4 ppm. These data were consistent with those reported in the literature.¹⁷

^{3g} 4-Cyanobenzoic acid (3g), The title compound was synthesized according to general procedure B. White solid; Yield = 80%; ¹H NMR (500 MHz, CDCl₃) δ 13.54 (s, 1H), 8.06 (d, J = 8.3 Hz, 2H), 7.94 (d, J = 8.3 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 134.9, 132.7, 130.0, 118.2, 115.1 ppm. These data were consistent with those reported in the literature.¹⁸

^{3h} 4-(Trifluoromethyl)benzoic acid (3h), The title compound was synthesized according to general procedure B. White solid; Yield = 88%; ¹H NMR (500 MHz, Acetone- d_6) δ 11.71 (s, 1H), 8.24 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.3 Hz, 2H); ¹³C NMR (126 MHz, Acetone- d_6) δ 166.5, 135.2, 134.5 (q, J_{C-F} = 32.3 Hz), 131.2, 126.4 (q, J_{C-F} = 3.8 Hz), 124.9 (d, J_{C-F} = 271.9 Hz); ¹⁹F NMR (471 MHz, Acetone- d_6) δ -63.6 ppm. These data were consistent with those reported in the literature.¹⁹

³ⁱ **3-Nitrobenzoic acid (3i)**, The title compound was synthesized according to general procedure B. White solid; Yield = 86%; ¹H NMR (500 MHz, CDCl₃) δ 9.02–8.92 (m, 1H), 8.56–8.42 (m, 2H), 7.73 (t, J = 8.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 170.0, 148.5, 136.0, 131.0, 130.1, 128.5, 125.4 ppm. These data were consistent with those reported in the literature.²⁰

^{3j} **3-Bromobenzoic acid (3j)**, The title compound was synthesized according to general procedure B. White solid; Yield = 72%; ¹H NMR (500 MHz, Acetone- d_6) δ 11.52 (s, 1H), 8.15 (t, J = 1.8 Hz, 1H), 8.09 – 7.97 (m, 1H), 7.81 (ddd, J = 8.0, 2.0, 1.0 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H); ¹³C

NMR (126 MHz, Acetone- d_6) δ 166.2, 136.6, 133.7, 133.1, 131.5, 129.3, 122.8 ppm. These data were consistent with those reported in the literature.²¹

^{3k} **2-Chlorobenzoic acid (3k)**, The title compound was synthesized according to general procedure B. White solid; Yield = 63%; ¹H NMR (500 MHz, Acetone-*d*₆) δ 11.60 (s, 1H), 7.96 – 7.84 (m, 1H), 7.59 – 7.50 (m, 2H), 7.48 – 7.38 (m, 1H); ¹³C NMR (126 MHz, Acetone-*d*₆) δ 166.8, 133.7, 133.6, 132.2, 131.7, 131.7, 127.8 ppm. These data were consistent with those reported in the literature.²²

³ⁿ Cyclohexanecarboxylic acid (3n), The title compound was synthesized according to general procedure B. White solid; Yield = 82%; ¹H NMR (500 MHz, CDCl₃) δ 12.01 (s, 1H), 2.30 (tt, J = 11.2, 3.6 Hz, 1H), 1.91 (dd, J = 13.2, 2.7 Hz, 2H), 1.80–1.69 (m, 2H), 1.67–1.57 (m, 1H), 1.51–1.37 (m, 2H), 1.34–1.12 (m, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 183.2, 43.1, 28.8, 25.8, 25.4 ppm. These data were consistent with those reported in the literature.²³

³⁰ 2-(4-Methoxyphenyl)acetic acid (30), The title compound was synthesized according to general procedure B. Brown solid; Yield = 89%; ¹H NMR (500 MHz, CDCl₃) δ 7.24–7.15 (m, 2H), 6.91–6.84 (m, 2H), 3.80 (s, 3H), 3.59 (s, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 178.3, 159.0, 130.6, 125.5, 114.2, 55.4, 40.3 ppm. These data were consistent with those reported in the literature.²⁴

3p Octanoic acid (3p), The title compound was synthesized according to general procedure B. Colorless liquid; Yield = 87%; ¹H NMR (500 MHz, CDCl₃) δ 2.35 (t, J = 7.5 Hz, 2H), 1.63 (dt, J = 14.9, 7.5 Hz, 2H), 1.39–1.22 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 180.0, 34.1, 31.8, 29.2, 29.0, 24.8, 22.7, 14.2 ppm. These data were consistent with those reported in the literature.²⁵

ОН

^{3q} 2-Cyclohexylacetic acid (3q), The title compound was synthesized according to general procedure B. Yellow liquid; Yield = 90%; ¹H NMR (500 MHz, CDCl₃) δ 11.88 (s, 1H), 2.22 (d, J = 6.8 Hz, 2H), 1.84–1.61 (m, 6H), 1.34–1.22 (m, 2H), 1.14 (ddt, J = 12.7, 7.0, 3.1 Hz, 1H), 1.06–0.90 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 180.0, 42.1, 34.8, 33.1, 26.2, 26.1 ppm. These data were consistent with those reported in the literature.²⁶

^{3r} 6-Methylnicotinic acid (3r), The title compound was synthesized according to general procedure B. Yellow solid; Yield = 99%; ¹H NMR (500 MHz, DMSO- d_6) δ 8.97 (d, J = 1.5 Hz, 1H), 8.61 (d, J = 8.2 Hz, 1H), 7.84 (d, J = 8.2 Hz, 1H), 2.75 (s, 3H); ¹³C NMR (126 MHz, DMSO- d_6) δ 164.1, 158.5, 143.5, 143.3, 127.0, 126.8, 20.5 ppm. These data were consistent with those reported in the

literature.27

^{3s} **1***H***-Indole-2-carboxylic acid (3s)**, The title compound was synthesized according to general procedure B. Brown solid; Yield = 50%; ¹H NMR (500 MHz, DMSO- d_6) δ 12.92 (s, 1H), 11.74 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 1H), 7.29–7.18 (m, 1H), 7.14–7.01 (m, 2H); ¹³C NMR (126 MHz, DMSO- d_6) δ 162.8, 137.2, 128.4, 126.9, 124.3, 121.9, 120.0, 112.5, 107.3 ppm. These data were consistent with those reported in the literature.²⁸

^{3t} Benzo[*b*]thiophene-2-carboxylic acid (3t), The title compound was synthesized according to general procedure B. Pale yellow solid; Yield = 71%; ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.48 (s, 1H), 8.11 (s, 1H), 8.07–7.93 (m, 2H), 7.59–7.36 (m, 2H); ¹³C NMR (126 MHz, DMSO-*d*₆) δ 163.6, 141.4, 138.8, 134.8, 130.3, 127.0, 125.7, 125.1, 123.0 ppm. These data were consistent with those reported in the literature.²⁹

^{3u} Thiophene-2-carboxylic acid (3u), The title compound was synthesized according to general procedure B. White solid; Yield = 56%; ¹H NMR (500 MHz, CDCl₃) δ 11.78 (s, 1H), 7.91 (dd, J = 3.8, 1.2 Hz, 1H), 7.66 (dd, J = 5.0, 1.2 Hz, 1H), 7.15 (dd, J = 4.9, 3.8 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 135.2, 134.2, 133.0, 128.2 ppm. These data were consistent with those reported in the literature.¹⁷

OH

^{3v} Furan-2-carboxylic acid (3v), The title compound was synthesized according to general procedure B. Beige solid; Yield = 62%; ¹H NMR (500 MHz, CDCl₃) δ 11.60 (s, 1H), 7.65 (d, J = 0.6 Hz, 1H), 7.35 (d, J = 3.5 Hz, 1H), 6.57 (dd, J = 3.5, 1.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 163.7, 147.6, 143.9, 120.4, 112.5 ppm. These data were consistent with those reported in the literature.²⁹

^{3w} **3-Phenylpropiolic acid (3w)**, The title compound was synthesized according to general procedure B. Beige solid; Yield = 24%; ¹H NMR (500 MHz, CDCl₃) δ 13.81 (s, 1H), 7.63 (d, *J* = 7.9 Hz, 2H), 7.55 (dd, *J* = 11.0, 3.9 Hz, 1H), 7.48 (t, *J* = 7.7 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 154.3, 132.6, 130.9, 129.0, 119.0, 84.4, 81.7 ppm. These data were consistent with those reported in the literature.³⁰

^{3x} *trans*-Cinnamic acid (3x), The title compound was synthesized according to general procedure B. White solid; Yield = 54%; ¹H NMR (500 MHz, CDCl₃) δ 12.22 (s, 1H), 7.81 (d, *J* = 16.0 Hz, 1H), 7.57 (dd, *J* = 6.8, 2.8 Hz, 2H), 7.48–7.36 (m, 3H), 6.47 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 172.7, 147.3, 134.2, 130.9, 129.1, 128.5, 117.5 ppm. These data were consistent with

those reported in the literature.³¹

⁸ (1R,2R,3R,4S)-Dimethyl bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate (8), The title compound was synthesized according to reference. Colorless liquid; Yield = 99%; ¹H NMR (500 MHz, CDCl₃) δ 6.27 (dd, J = 5.5, 3.2 Hz, 1H), 6.07 (dd, J = 5.6, 2.8 Hz, 1H), 3.71 (s, 3H), 3.64 (s, 3H), 3.37 (t, J = 4.1 Hz, 1H), 3.26 (s, 1H), 3.12 (s, 1H), 2.68 (dd, J = 4.5, 1.5 Hz, 1H), 1.61 (d, J = 8.9 Hz, 1H), 1.46 (dd, J = 8.8, 1.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.0, 173.9, 137.7, 135.3, 52.2, 52.0, 48.0, 47.8, 47.5, 47.2, 45.8 ppm. These data were consistent with those reported in the literature.³²

⁹ (major) ^{9' (minor)} (1S,2R,3R,4R)-2-*tert*-Butyl 3-methyl bicyclo[2.2.1]hept-5-ene-2,3dicarboxylate (9), The title compound was synthesized according to general procedure A. Colorless liquid; Yield = 60%; No attempt was made to separate the isomer mixture; ¹H NMR (500 MHz, CDCl₃) δ 6.26 (dd, J = 5.5, 3.1 Hz, 1H both isomers), 6.07–6.01 (m, 1H both isomers), 3.21 (s, 1H both isomers), 1.57 (d, J = 8.8 Hz, 1H both isomers); **Major** δ 3.62 (s, 3H), 3.33 (t, J = 4.1 Hz, 1H), 3.06 (m, 1H), 2.57 (dd, J = 4.4, 1.6 Hz, 1H), 1.44 (s, 9H), 1.42 (d, J = 1.7 Hz, 1H); **Minor** δ 3.69 (s, 3H), 3.27 (t, J = 4.1 Hz, 1H), 3.08 (m, 1H), 2.63 (dd, J = 4.4, 1.6 Hz, 1H), 1.41–1.40 (m, 1H), 1.40 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) **Major** δ 174.1, 173.7, 137.8, 135.2, 80.7, 51.8, 48.4, 47.9, 47.7, 47.3, 45.8, 28.2; **Minor** δ 175.3, 172.5, 137.6, 135.0, 80.5, 52.1, 49.0, 47.8, 47.5, 46.8, 46.0, 28.2 ppm. These data were consistent with those reported in the literature.³³

^{10a} (*S*)-Methyl 2-((bis(4-methoxyphenyl)methyl)amino)-3-phenylpropanoate (10a), The title compound was synthesized according to general procedure C. White solid; $[α]_D^{20} = -15.2$ (*c* 0.1, MeOH); Yield = 89%; m.p. = 71-72 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.17 (m, 5H), 7.17–7.12 (m, 2H), 7.07 (d, *J* = 8.6 Hz, 2H), 6.78 (d, *J* = 8.7 Hz, 2H), 6.72 (d, *J* = 8.7 Hz, 2H), 4.68 (s, 1H), 3.72 (d, *J* = 5.0 Hz, 6H), 3.64 (s, 3H), 3.43 (dd, *J* = 7.7, 5.9 Hz, 1H), 2.96 (dd, *J* = 13.4, 5.9 Hz, 1H), 2.88 (dd, *J* = 13.4, 7.8 Hz, 1H), 2.06 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 175.5, 158.7, 158.6, 137.7, 137.0, 135.1, 129.6, 128.5, 128.3, 128.3, 126.6, 113.9, 113.8, 64.2, 60.7, 55.3, 55.3, 51.7, 40.2 ppm; HRMS (EI) *m/z* [M]⁺ calcd. for C₂₅H₂₇NO₄405.1940, found 405.1962

^{10b} (S)-Methyl2-((bis(4-methoxyphenyl)methyl)amino)-3-(4-((tertbutyldimethylsilyl)oxy)phenyl) propanoate (10b), The title compound was synthesized according to general procedure C. Colorless oil; $[\alpha]_D^{20} = -0.2$ (c 0.1, MeOH); Yield = 83%; ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, J = 8.6 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H), 7.03 (d, J = 8.4 Hz, 2H), 6.81–6.76 (m, 6H), 4.69 (s, 1H), 3.76 (d, J = 4.7 Hz, 6H), 3.65 (s, 3H), 3.41 (dd, J = 7.6, 6.2 Hz, 1H), 2.87 (ddd, J = 21.3, 13.5, 6.9 Hz, 2H), 2.06 (s, 1H), 1.01 (s, 9H), 0.22 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 158.7, 158.7, 154.5, 137.0, 135.1, 130.5, 130.5, 128.5, 128.4, 120.0, 113.9, 113.9, 64.2, 60.8, 55.3, 55.3, 51.7, 39.5, 25.8, 18.4, -4.3 ppm; HRMS (EI) m/z [M]⁺ calcd. for C₃₁H₄₁NO₅Si 535.2754, found 535.2775

10c (*S*)-Methyl 2-((bis(4-methoxyphenyl)methyl)amino)propanoate (10c), The title compound was synthesized according to general procedure C. Colorless oil; $[α]_D^{20} = -32.8$ (*c* 0.1, MeOH); Yield = 97%; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.33 (m, 2H) 7.28–7.26 (m, 2H), 6.87– 6.82 (m, 4H), 4.76 (s, 1H), 3.77 (d, J = 10.7 Hz, 6H), 3.72 (s, 3H), 3.31 (q, J = 7.1 Hz, 1H), 2.10 (s, 1H), 1.32 (d, J = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 176.7, 158.7, 158.7, 136.9, 135.3, 128.5, 128.4, 113.9, 113.9, 64.1, 55.3, 55.3, 54.4, 51.8, 19.6 ppm; HRMS (EI) *m/z* [M]⁺ calcd. for C₁₉H₂₃NO₄ 329.1627, found 329.1630

10d (*S*)-Methyl 2-((bis(4-methoxyphenyl)methyl)amino)-4-methylpentanoate (10d), The title compound was synthesized according to general procedure C. Colorless oil; $[α]_D^{20} = -46.6 (c \ 0.1, MeOH)$; Yield = 90%; ¹H NMR (500 MHz, CDCl₃) δ 7.37 (d, $J = 8.7 \ Hz, 2H$), 7.31 (d, $J = 8.7 \ Hz, 2H$), 6.86 (dd, $J = 18.9, 8.7 \ Hz, 4H$), 4.73 (s, 1H), 3.78–3.73 (m, 9H), 3.26 (dd, $J = 8.9, 5.5 \ Hz$, 1H), 2.00–1.93 (m, 2H), 1.57–1.43 (m, 2H), 0.94 (d, $J = 6.7 \ Hz, 3H$), 0.85 (d, $J = 6.6 \ Hz, 3H$); ¹³C NMR (126 MHz, CDCl₃) δ 176.8, 158.7, 158.6, 137.2, 135.2, 128.6, 128.2, 113.8, 64.3, 57.6, 55.2, 55.2, 51.6, 43.4, 24.8, 23.2, 22.02 ppm; HRMS (EI) *m/z* [M]⁺ calcd. for C₂₂H₂₉NO₄ 371.2097, found 371.2092

2-((bis(4-methoxyphenyl)methyl)amino)-3-

phenylpropanoate (11a), The title compound was synthesized according to general procedure D. Colorless oil; $[\alpha]_D{}^{20} = -12.9$ (*c* 0.1, MeOH); Yield = 86%; ¹H NMR (500 MHz, CDCl₃) δ 7.27–7.16 (m, 7H), 7.12–7.09 (m, 2H), 6.79–6.73 (m, 4H), 4.70 (s, 1H), 3.73 (d, *J* = 10.0 Hz, 6H), 3.29 (t, *J* = 7.0 Hz, 1H), 2.92–2.84 (m, 2H), 2.05 (s, 1H), 1.38 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 174.3, 158.6, 158.6, 138.0, 137.2, 135.2, 129.7, 128.5, 128.4, 128.2, 126.5, 113.9, 113.8, 81.1, 64.2, 61.2, 55.3, 55.3, 40.3, 28.2 ppm; HRMS (EI) *m/z* [M]⁺ calcd. for C₂₈H₃₃NO₄ 447.2410, found 447.2407; HPLC analysis: Chiralpak OD-H (hexane/isopropyl = 99:1, wavelength = 210 nm, flow rate = 0.7 mL/min), t_R = 10.6 min (major), 12.5 min (minor)

(S)-tert-Butyl

(S)-tert-Butyl 2-((bis(4-methoxyphenyl)methyl)amino)-3-(4-((tertbutyldimethylsilyl)oxy)phenyl) propanoate (11b), The title compound was synthesized according to general procedure D. Colorless oil; $[α]_D^{20} = -2.4$ (*c* 0.1, MeOH); Yield = 56%; ¹H NMR (500 MHz, CDCl₃) δ 7.24 (d, J = 8.6 Hz, 2H), 7.17 (d, J = 8.6 Hz, 2H), 7.07 (d, J = 8.4 Hz, 2H), 6.80 (dd, J = 18.2, 8.8 Hz, 6H), 4.74 (s, 1H), 3.78 (d, J = 10.5 Hz, 6H), 3.29 (t, J = 7.0 Hz, 1H), 2.90–2.82 (m, 2H), 2.06 (s, 1H), 1.42 (s, 9H), 1.02 (s, 9H), 0.23 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 174.4, 158.6, 158.6, 154.3, 137.3, 135.3, 130.8, 130.7, 128.6, 128.4, 119.8, 113.9, 113.8, 81.0, 64.2, 61.3, 55.3, 55.3, 39.5, 28.2, 25.9, 18.4, -4.3 ppm; HRMS (EI) m/z [M]⁺ calcd. for C₃₄H₄₇NO₅Si 577.3224, found 577.3224; HPLC analysis: Chiralpak AD-H (hexane/isopropyl = 99:1, wavelength = 254 nm, flow rate = 0.4 mL/min), t_R = 10.9 min (major), 12.7 min (minor)

11c (*S*)-tert-Butyl 2-((bis(4-methoxyphenyl)methyl)amino)propanoate (11c), The title compound was synthesized according to general procedure D. Colorless oil; $[α]_D^{20} = -21.9$ (*c* 0.1, MeOH); Yield = 82%; ¹H NMR (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.6 Hz, 2H), 7.24 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.80 (d, *J* = 8.7 Hz, 2H), 4.75 (s, 1H), 3.76 (d, *J* = 14.0 Hz, 6H), 3.14 (q, *J* = 7.0 Hz, 1H), 2.04 (s, 1H), 1.47 (s, 9H), 1.25 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.6, 158.7, 158.7, 137.2, 135.4, 128.6, 128.4, 113.9, 113.9, 80.9, 64.1, 55.3, 55.2, 28.3, 19.7 ppm; HRMS (EI) *m/z* [M]⁺ calcd. for C₂₂H₂₉NO₄ 371.2097, found 371.2071; HPLC analysis: Chiralpak AD-H (hexane/isopropyl = 99:1, wavelength = 210 nm, flow rate = 0.7 mL/min), t_R = 11.7 min (major), 16.3 min (minor)

11d (S)-*tert*-Butyl **2-((bis(4-methoxyphenyl)methyl)amino)-4methylpentanoate (11d)**, The title compound was synthesized according to general procedure D. Colorless oil; $[α]_D^{20} = -39.1$ (*c* 0.1, MeOH); Yield = 71%; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 8.6 Hz, 2H), 7.25 (d, J = 8.7 Hz, 2H), 6.82 (dd, J = 23.9, 8.7 Hz, 4H), 4.71 (s, 1H), 3.74 (d, J = 17.0 Hz, 6H), 3.05 (dd, J = 8.5, 5.9 Hz, 1H), 1.95–1.87 (m, 2H), 1.47 (s, 9H), 1.45–1.34 (m, 2H), 0.89 (d, J = 6.7 Hz, 3H), 0.81 (d, J = 6.6 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 175.8, 158.7, 158.6, 137.5, 135.4, 128.7, 128.3, 113.9, 113.8, 80.7, 64.2, 58.3, 55.3, 55.3, 43.4, 28.3, 24.9, 23.2, 22.3 ppm; HRMS (EI) m/z [M]⁺ calcd. for C₂₅H₃₅NO₄ 413.2566, found 413.2570; HPLC analysis: Chiralpak IA (hexane/isopropyl = 97:3, wavelength = 260 nm, flow rate = 0.6 mL/min), t_R = 8.4 min (major), 13.5 min (minor)

^{13a} **2-Benzamidoethyl** *tert*-butyl carbonate (13a), The title compound was synthesized according to general procedure A. White solid; Yield = 78%; m.p. = 92-93 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (d, J = 7.5 Hz, 2H), 7.48 (t, J = 7.4 Hz, 1H), 7.40 (t, J = 7.6 Hz, 2H), 6.71 (s, 1H), 4.26–4.24 (m, 2H), 3.72 (dd, J = 10.4, 5.4 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 153.7, 134.3, 131.7, 128.6, 127.1, 82.8, 65.9, 39.5, 27.8 ppm; HRMS (EI) m/z [M]⁺ calcd. for C₁₄H₁₉NO₄ 265.1314, found 265.1327

^{13b} (*S*)-2-Benzamido-3-phenylpropyl *tert*-butyl carbonate (13b), The title compound was synthesized according to general procedure A. White solid; $[α]_D^{20} = -46.9$ (*c* 0.1, MeOH); Yield = 88%; m.p. = 95-96 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.72 (d, *J* = 7.4 Hz, 2H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.35–7.28 (m, 2H), 7.28–7.20 (m, 3H), 6.46 (d, *J* = 8.0 Hz, 1H), 4.70–4.52 (m, 1H), 4.17 (ddd, *J* = 15.2, 11.3, 4.4 Hz, 2H), 3.07 (dd, *J* = 13.7, 6.2 Hz, 1H), 2.95 (dd, *J* = 13.7, 8.0 Hz, 1H), 1.48 (s, 9H); ¹³C NMR (126 MHz, CDCl₃) δ 167.1, 153.9, 137.2, 134.5, 131.7, 129.5, 128.8, 128.7, 127.1, 127.0, 82.9, 67.1, 50.6, 37.4, 27.9 ppm; HRMS (FAB) *m/z* [M+H]⁺ calcd. for C₂₁H₂₆NO₄ 356.1862, found 356.1868

^{13c} (*S*)-2-Benzamido-3-methylbutyl *tert*-butyl carbonate (13c), The title compound was synthesized according to general procedure A. White solid; $[α]_D^{20} = -5.6$ (*c* 0.1, MeOH); Yield = 72%; m.p. = 92-93 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 7.3 Hz, 2H), 7.50 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 6.32 (d, *J* = 8.9 Hz, 1H), 4.37 (dd, *J* = 11.3, 5.4 Hz, 1H), 4.23–4.10 (m, 2H), 2.04–1.95 (m, 1H), 1.45 (s, 9H), 1.02 (t, *J* = 6.5 Hz, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 167.3, 154.0, 134.7, 131.6, 128.6, 127.1, 82.6, 66.9, 54.3, 29.6, 27.8, 19.5, 19.0 ppm; HRMS (EI) *m/z* [M]⁺ calcd. for C₁₇H₂₅NO₄ 307.1784, found 307.1770

References

- 1 C.-P. Yu, Y. Tang, L. Cha, S. Milikisiyants, T. I. Smirnova, A. I. Smirnov, Y. Guo and W.-c. Chang, *J. Am. Chem. Soc.*, 2018, **140**, 15190-15193.
- 2 K. Tóth, G. Höfner and K. T. Wanner, *Bioorg. Med. Chem.*, 2018, 26, 3668-3687.
- 3 R. W. Hanson and H. D. Law, J. Chem. Soc., 1965, 7285-7296.
- 4 M. T. La and H.-K. Kim, *Tetrahedron*, 2018, **74**, 3748-3754.
- 5 K. Ghosh, R. A. Molla, M. A. Iqubal and S. M. Islam, *Green Chem.*, 2015, 17, 3540-3551.
- 6 Z. Xin, T. M. Gøgsig, A. T. Lindhardt and T. Skrydstrup, Org. Lett., 2012, 14, 284-287.
- 7 W. C. Drewe, R. Nanjunda, M. Gunaratnam, M. Beltran, G. N. Parkinson, A. P. Reszka, W. D. Wilson and S. Neidle, *J. Med. Chem.*, 2008, **51**, 7751-7767.
- 8 Y. Nishimoto, S. A. Babu, M. Yasuda and A. Baba, J. Org. Chem., 2008, 73, 9465-9468.
- 9 I. Abdiaj, L. Huck, J. M. Mateo, A. de la Hoz, M. V. Gomez, A. Díaz-Ortiz and J. Alcázar, *Angew. Chem.*, *Int. Ed.*, 2018, **57**, 13231-13236.
- 10 Y. Iuchi, Y. Obora and Y. Ishii, J. Am. Chem. Soc., 2010, 132, 2536-2537.
- 11 D. H. Kim, C. J. Guinosso, G. C. Buzby, Jr., D. R. Herbst, R. J. McCaully, T. C. Wicks and R. L. Wendt, *J. Med. Chem.*, 1983, **26**, 394-403.
- 12 B. Anxionnat, D. Gomez Pardo, G. Ricci, K. Rossen and J. Cossy, Org. Lett., 2013, 15, 3876-3879.
- 13 B. Teng, J. Shi and C. Yao, *Green Chem.*, 2018, **20**, 2465-2471.
- 14 C. C. D. Wybon, C. Mensch, K. Hollanders, C. Gadais, W. A. Herrebout, S. Ballet and B. U. W. Maes, *ACS Catal.*, 2018, **8**, 203-218.
- 15 X. Sang, X. Hu, R. Tao, Y. Zhang, H. Zhu and D. Wang, *ChemPlusChem*, 2020, **85**, 123-129.
- 16 T. Zweifel, J.-V. Naubron and H. Grützmacher, Angew. Chem., Int. Ed., 2009, 48, 559-563.
- 17 D. Yang, H. Yang and H. Fu, *Chem. Commun.*, 2011, **47**, 2348-2350.
- 18 S. Luliński and K. Zajac, J. Org. Chem., 2008, 73, 7785-7788.
- 19 T. Ohishi, M. Nishiura and Z. Hou, Angew. Chem., Int. Ed., 2008, 47, 5792-5795.
- 20 A. Chacko and B. Mathew, J. Appl. Polym. Sci., 2003, 90, 3708-3717.
- 21 C. Mukhopadhyay and A. Datta, Catal. Commun., 2008, 9, 2588-2592.
- 22 F. C. Lopez, A. Shankar, M. Thompson, B. Shealy, D. Locklear, T. Rawalpally, T. Cleary and C. Gagliardi, *Org. Process Res. Dev.*, 2005, **9**, 1003-1008.
- 23 W. Ren, J. Chu, F. Sun and Y. Shi, Org. Lett., 2019, 21, 5967-5970.
- 24 L. Shen, X. Yang, B. Yang, Q. He and Y. Hu, Eur. J. Med. Chem., 2010, 45, 11-18.
- 25 M. Liu and C.-J. Li, Angew. Chem., Int. Ed., 2016, 55, 10806-10810.
- 26 T. Nakashima, Yakugaku Zasshi, 1955, 75, 1012-1013.
- 27 M. Sechi, L. Sannia, F. Carta, M. Palomba, R. Dallocchio, A. Dessì, M. Derudas, Z. Zawahir and N. Neamati, *Antivir. Chem. Chemother.*, 2005, **16**, 41-61.
- 28 T. Higa and A. J. Krubsack, J. Org. Chem., 1976, 41, 3399-3403.
- 29 E. Dalcanale and F. Montanari, J. Org. Chem., 1986, 51, 567-569.
- 30 L. J. Gooßen, N. Rodríguez, F. Manjolinho and P. P. Lange, Adv. Synth. Catal., 2010, 352, 2913-2917.
- 31 T. Fukuyama, M. Arai, H. Matsubara and I. Ryu, J. Org. Chem., 2004, 69, 8105-8107.
- 32 A. B. Chang, T.-P. Lin, N. B. Thompson, S.-X. Luo, A. L. Liberman-Martin, H.-Y. Chen, B. Lee and R. H. Grubbs, *J. Am. Chem. Soc.*, 2017, **139**, 17683-17693.
- 33 D. E. Rajsfus, P. Gilinsky-Sharon and A. A. Frimer, J. Fluorine Chem., 2013, 148, 59-66.

¹H NMR and ¹³C NMR spectra of the products

120 110 100 90 f1 (ppm)

S25

ī.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

S30

140 130 120 110 100 f1 (ppm)

S34

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

S51

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S61

Peak #	Time(min.)	Area(%)
1	10.6150	50.57
2	12.4917	49.43

Peak #	Time(min.)	Area(%)
1	10.6517	96.01
2	12.5067	3.99

Peak #	Time(min.)	Area(%)
1	11.1483	49.73
2	13.1817	50.27

Peak #	Time(min.)	Area(%)
1	10.9550	97.82
2	12.7150	2.18

Peak #	Time(min.)	Area(%)
1	11.5900	49.80
2	15.6633	50.20

Peak #	Time(min.)	Area(%)
1	11.7150	95.97
2	16.3050	4.03

Peak #	Time(min.)	Area(%)
1	8.4767	49.28
2	13.7067	50.72

Peak #	Time(min.)	Area(%)
1	8.4150	99.61
2	13.5017	0.39