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General Considerations
All manipulations were carried out under an argon atmosphere using Schlenk-techniques, unless stated 
otherwise. All glass devices used for synthesis were dried and cooled under vacuum before use. 
Chemicals were purchased from commercial sources and used as received, if not stated otherwise. 
Oxygen-free and dry solvents were prepared by distillation or using a solvent purification system by 
Innovative Technologies. 
Catalytic experiments were performed in 25 mL sealable glass tubes. Placed in a heating block and stirred 
with a magnetic stirring bar. 
GC measurements were carried out either on a 7890A GC-System with a HP-5 column 
(polydimethylsiloxane with 5% phenyl groups, length 30 m, i.d. 0.32 mm, film 0.25 µm) from Agilent 
Technology or a Trace 1310 chromatograph from Thermo Fisher Scientific with a HP-5 column. 

Catalytic Experiments with Paraformaldehyde and Methanol
In a typical catalytic experiment, the reaction were performed in 25 mL sealable glass tube with Pd(OAc)2 
(1.0 mol%), LIKat Ligand (4.0 mol%), PTSA·H2O (5.0 mmol), and paraformaldehye (200 mg) rapidly 
weighed in the air. If used, solid substrates (1.0 mmol) were also weighed in the air and added into the 
tube. The atmosphere in the vial was then changed to argon and 2.0 mL MeOH were added. Next, liquid 
substrates (1.0 mmol) were added and the tube was fitted with a sealed cap. The reaction mixture was 
stirred at 120 °C for 72 hours. The reaction solution was analysed by gas chromatography using isooctane 
as internal standard.

Data for the Optimization of Reaction Conditions

Tab. S1: [Pd] precursor

Conditions: 1.0 mmol 1a, 1 mol% [Pd], 4 mol% L1, 5 mol% PTSA·H2O, 200 mg (CH2O)n, in 2 mL MeOH, 120 
°C, 20 h.

Tab. S2: Acid studies 

Conditions: 1.0 mmol 1a, 1 mol% [Pd], 4 mol% L1, X mol% acid, 200 mg (CH2O)n, in 2 mL MeOH, 120 °C, 
20 h.

[Pd] yield (l/b)
Pd(acac)2 37 % (>99/1)
PdCl2   0 %
Pd2(dba)3   0 %
Pd(TFA)2 34 % (>99/1)
Pd(OAc)2 56 % (>99/1)

acid (x mol%) yield (l/b)
CF3SO3H (5) 42 % (>99/1)
CH3SO3H (5) 0 %
H2SO4 (5) 53 % (>99/1)
HOAc (5) 0 %
PTSA·H2O (4) 43 % (>99/1)
PTSA·H2O (6) 34 % (>99/1)
PTSA·H2O (7) 19 % (>99/1)
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Tab. S3: Time

Conditions: 1.0 mmol 1a, 1 mol% [Pd], 4 mol% L1, 5 mol% PTSA·H2O, 200 mg (CH2O)n, in 2 mL MeOH, 120 
°C, X h.

Product Characterization 
methyl 3,4-dimethylpentanoate[1] (2a/2a’): 1H NMR (400 MHz, CDCl3): δ = 3.65 (s, 3H), 2.33 (dd, J = 20.0, 8.0 Hz, 
1H), 2.06 (dd, J = 20.0, 8.0 Hz, 1H), 1.89-1.83 (m, 1H), 1.59-1.53 (m, 1H), 0.87-0.81 (m, 9H) ppm. 13C NMR (100 MHz, 
CDCl3): δ = 174.3, 51.5, 39.1, 36.0, 32.2, 19.9, 18.8, 15.9 ppm.

methyl 3-phenylbutanoate[2] (2b/2b’): 1H NMR (300 MHz, CDCl3): δ = 7.18-7.34 (m, 5H), 3.63 (s, 3H), 3.25-3.33 (m, 
1H), 2.51-2.68 (m, 2H), 1.31 (d, J = 6.0 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ = 173.0, 145.8, 128.6, 126.8, 126.5, 
51.6, 42.9, 36.6, 21.9 ppm.

methyl 3-p-tolylbutanoate[3] (2c/2c’): 1H NMR (300 MHz, CDCl3): δ = 7.04 – 7.03 (m, 4H), 3.55 (s, 3H), 3.19-3.16 (m, 
1H), 2.58-2.41 (m, 2H), 2.24 (s, 3H), 1.21 (d, J = 9.0 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ = 172.9, 142.7, 135.9, 
129.2, 126.6, 77.5, 77.1, 76.6, 51.5, 42.8, 36.0, 21.9, 21.0 ppm.

methyl 3-(4-fluorophenyl)butanoate[4] (2d/2d’): 1H NMR (300 MHz, CDCl3): δ = 7.14-7.21 (m, 2H), 6.93-7.01 (m, 2H), 
3.61 (s, 3H), 3.23-3.31 (m, 1H), 2.49-2.63 (m, 2H), 1.28 (d, J = 6.0 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): δ = 172.8, 
161.6 (d, J = 242.3 Hz, 1C), 141.4 (d, J = 3.8 Hz, 1C), 128.3 (d, J = 8.3 Hz, 1C), 115.6 (d, J = 21.0 Hz, 1C), 51.7, 43.0, 
35.9, 22.1 ppm.

methyl 3-(4-chlorophenyl)butanoate[5] (2e/2e’): 1H NMR (300 MHz, CDCl3): δ = 7.24-7.28 (m, 2H), 7.12-7.17 (m, 2H), 
3.61 (s, 3H), 3.22-3.32 (m, 1H), 2.49-2.63 (m, 2H), 1.28 (d, J = 9.0 Hz, 3H)ppm. 13C NMR (75 MHz, CDCl3): δ = 172.7, 
144.2, 132.2, 128.7, 128.2, 51.7, 42.7, 36.0, 21.9 ppm.

methyl 3-(o-tolyl)butanoate[1] (2f/2f’): 1H NMR (300 MHz, CDCl3): δ = 7.24-7.12 (m, 4H), 3.68 (s, 3H), 3.64-3.55 (m, 
1H), 2.70 (dd, J = 15.0, 6.0 Hz, 1H), 2.59 (dd, J = 15.0, 9.0 Hz, 1H), 2.44 (s, 3H), 1.32 (d, J = 6.0 Hz, 3H) ppm. 13C NMR 
(75 MHz, CDCl3): δ = 172.8, 143.7, 135.0, 130.3, 126.1, 125.9, 124.8, 124.7, 51.3, 41.7, 31.2, 21.1, 19.2 ppm.

methyl 3-(naphthalen-2-yl)butanoate[3] (2g/2g’): 1H NMR (300 MHz, CDCl3): δ = 7.73-7.70 (m, 3H), 7.57 (s, 1H), 7.39-
7.27 (m, 3H), 3.53 (s, 3H), 3.40- 3.35 (m, 1H), 2.68- 2.53 (m, 2H), 1.31 (d, J = 6 Hz, 3H) ppm. 13C NMR (75 MHz, CDCl3): 
δ = 172.9, 143.1, 133.6, 132.4, 128.2, 127.7, 127.6, 126.0, 125.5, 125.4, 125.0, 77.4, 77.1, 76.8, 51.6, 42.7, 36.6, 21.8 
ppm.

methyl 3,3-diphenylpropanoate[6] (2h/2h’): 1H NMR (300 MHz, CDCl3): δ = 7.39-7.23 (m, 10H), 4.64 (t, J = 9.0 Hz, 
1H), 3.65 (s, 3H), 3.15 (d, J = 9.0 Hz, 2H) ppm. 13C NMR (75 MHz, CDCl3): δ = 172.4, 143.6, 128.7, 127.8, 126.7, 51.8, 
47.1, 40.7 ppm.

dimethyl 3,3'-(1,3-phenylene)dibutyrate[1] (2i/2i’): 1H NMR (300 MHz, CDCl3): δ = 7.39-7.33 (m, 1H), 7.27-7.17 (m, 
3H), 3.74 (s, 6H), 3.42-3.33 (m, 2H), 2.78-2.62 (m, 4H), 1.41 (d, J = 6.0 Hz, 6H) ppm. 13C NMR (75 MHz, CDCl3): δ = 
172.7, 145.8, 128.5, 125.2, 124.5, 51.4, 42.7, 36.3, 21.6 ppm.

methyl cyclohexanecarboxylate[7] (2k/2k’): 1H NMR (300 MHz, CDCl3): δ = 3.60 (s, 3H), 2.24 (tt, J = 12.3 Hz, 1H), 
1.86-1.81 (m, 2H), 1.71-1.55 (m, 3H), 1.44-1.20 (m, 5H) ppm. 13C NMR (75 MHz, CDCl3): δ = 176.5, 51.4, 43.1, 29.1, 
25.8, 25.5 ppm. 

methyl cycloheptanecarboxylate[8] (2l/2l’): 1H NMR (300 MHz, CDCl3): δ = 3.65 (s, 3H), 2.44-2.51 (m, 1H), 1.61- 1.74 
(m, 4H), 1.39-1.59 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3): δ = 177.7, 51.6, 45.1, 31.0, 28.4, 26.5 ppm. 

time yield (l/b)
48h 78 % (>99/1)
72h 93 % (>99/1)
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methyl cyclooctanecarboxylate[9] (2m/2m’): 1H NMR (300 MHz, CDCl3): δ = 3.65 (s, 3H), 2.47-2.56 (m, 1H), 1.83- 
1.92 (m, 2H), 1.72-1.75 (m, 4H),1.49-1.63 (m, 8H) ppm. 13C NMR (75 MHz, CDCl3): δ = 177.7, 51.7, 43.6, 28.9, 26.9, 
26.3, 25.4 ppm.

methyl 2,3-dihydro-1H-indene-1-carboxylate[10] (2n/2n’): 1H NMR (300 MHz, CDCl3): δ = 7.23 (d, J = 9.0 Hz, 1H), 7.12 
(d, J = 9.0 Hz, 1H), 6.85 (t, J = 9.0 Hz, 2H), 3.78 (s, 3H), 3.67 (s, 3H), 2.90 (t, J = 6.0 Hz, 2H), 2.60 (t, J = 6.0 Hz, 2H) ppm. 
13C NMR (75 MHz, CDCl3): δ = 174.5, 144.2, 140.8, 127.7, 126.6, 124.9, 124.8, 55.3, 51.7, 36.1, 31.2 ppm.

methyl 3-(1,3-dioxoisoindolin-2-yl)propanoate[11] (2o/2o’): 1H NMR (300 MHz, CDCl3): δ = 7.79-7.76 (m, 2H), 7.66- 
7.64 (m, 2H), 3.93 (t, J = 6.0 Hz, 2H), 3.61 (s, 3H), 2.67 (t, J = 7.5 Hz, 2H) ppm. 13C NMR (75 MHz, CDCl3): δ = 171.2, 
170.0, 134.1, 132.0, 123.4, 77.5, 77.1, 76.6, 51.9, 33.8, 32.8 ppm.

methyl 3-(triethylsilyl)propanoate[12] (2q/2q’): 1 H NMR (300 MHz, CDCl3): δ = 3.67 (s, 3H), 2.31-2.25 (m, 2H), 0.96- 
0.84 (m, 11H), 0.56-0.48 (m, 6H) ppm. 13C NMR (75 MHz, CDCl3): δ = 175.6, 51.5, 28.6, 7.3, 6.5, 3.0 ppm.

methyl 3,5,5-trimethylhexanoate[13] (2s/s’): 1H NMR (CDCl3, 300 MHz): δ = 3.65 (s, 3 H), 2.30 (m, 1 H), 2.12 (m, 1 H), 
2.02 (m, 1 H), 1.165 (m, 2 H), 0.97 (d, J = 9.0 Hz, 3 H), 0.90 (s, 9 H) ppm. 13C NMR (CDCl3, 300 MHz): δ = 173.7, 51.4, 
50.7, 44.0, 31.2, 30.1, 27.2, 22.8 ppm. 

methyl 4,5-bis(4-hydroxyphenyl)heptanoate[1] (2t) 1H NMR (300 MHz, CDCl3): δ 7.02-6.61 (m, 8H),
5.85 (s, br, 2H), 3.61 (s, 1H), 3.52 (s, 2H), 2.73-2.42 (m, 2H), 2.14-
1.24 (m, 6H, CH2), 0.72 (t, J = 6.0 Hz, 1H), 0.53 (t, J = 6.0 Hz, 2H) ppm. 13C NMR
(75 MHz, CDCl3): δ 175.45, 175.43, 154.20, 153.98, 153.85, 153.59, 135.58, 135.08, 134.18,
133.34, 130.02, 129.97, 129.24, 115.36, 115.21, 114.66, 114.49, 53.48, 52.65, 51.79, 51.71,
50.86, 49.93, 32.54, 32.45, 29.53, 28.62, 27.25, 26.00 ppm.
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CO Surrogate Reactions Using Methyl formate
Ligand Investigations

Conditions: 2.0 mmol 1a, 1 mol% [Pd], 2 mol% L, 8 mol% PTSA·H2O, in 2 mL HCO2Me, 0.5 mL H20, 100 °C, 
12 h.

Catalytic Experiments with Methyl formate

In a typical catalytic experiment, the reaction were performed in 25 mL sealable glass tube with Pd(OAc)2 
(0.5 mol%), LIKat Ligand (2.0 mol%), and PTSA·H2O (8.0 mmol) rapidly weighed in the air. If used, solid 
substrates (1.0 mmol) were also weighed in the air and added into the tube. The atmosphere in the vial 
was then changed to argon and 2.0 mL methyl formate, 1.0 mL MeOH, and 0.2 mL H2O were added. 
Next, liquid substrates (1.0 mmol) were added and the tube was fitted with a sealed cap. The reaction 
mixture was stirred at 120 °C for 20 hours. The reaction solution was analysed by gas chromatography 
using isooctane as internal standard.
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DIB ratio of Internal to Terminal during the Reaction
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