Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Diastereoselective construction of cage-like and bridged azahetereocycles through dearomative maximization of the reactive sites of azaarenes

Hongjie Miao,^{a,†} Xuguan Bai,^{a,†} Lele Wang,^a Junhui Yu,^a Zhanwei Bu^a and Qilin Wang,^{a,*}

^a Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.

⁺ These authors contribute equally to this work.

E-mail: wangqilin@henu.edu.cn

Table of Contents

1.	General methods	S2
2.	Experimental data for the formation of 3	S2
3.	Experimental data for the formation of 5	S10
4.	Experimental data for the formation of 7 and 8	S17
5.	Experimental data for the formation of 12	S26
6.	Experimental data for the formation of 13	833
7.	Scalable preparation of 3a and chemical conversions of 3a , 8g and 12f	S36
8.	Crystal structures of 3a , 5a , 7a , 8e , 12a , 13a , 17 and 18	S41
9.	¹ H NMR and ¹³ C NMR spectra	S51

1. General methods

NMR spectra were recorded with tetramethylsilane as the internal standard. ¹H NMR spectra were recorded at 400 MHz, and ¹³C NMR spectra were recorded at 100 MHz (Bruker Avance). ¹H NMR chemical shifts (δ) are reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard (CDCl₃ at 7.26 ppm, (CD₃)₂SO at 2.50 ppm). ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.00 ppm, (CD₃)₂SO at 39.52 ppm). Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet), br (broad) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. IR spectra were recorded on a Thermo Fisher Nicolet Avatar 360 FTIR spectrometer on a KBr beam splitter. All the solvents were used directly without any purification.

2. Experimental data for the formation of 3

General procedure: To a 5.0 mL vial were successively added 1,5-diazapentadienium salts **1** (0.10 mmol), *N*-benyl 3-nitropyridinium salt **2** (0.22 mmol) and 0.8 mL of CH₃CN. And then, DBU (38.1 mg, 0.25 mmol) was added by syringe. The resulting mixture was stirred at 35 °C for 2 h, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products **3**. For **3a** and **3j**, the products were precipitated from the homogeneous reaction systems and only a filtration was needed to purify them.

1-(1,7-dibenzyl-10a,11-dinitro-3-phenyl-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-

(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-phenylmethanimine (**3a**) Yellow solid obtained by filtration of the precipitate; 48.9 mg, 75% yield; dr > 20:1; reaction time = 2 h; mp 193.8-194.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.46 (q, *J* = 4.0 Hz, 2H), 7.38 (q, *J* = 16.0 Hz, 4H), 7.23-7.16 (m, 12H), 7.05 (s, 2H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.75 (s, 1H), 4.47 (d, *J* = 16.0 Hz, 1H), 4.36 (d, *J* = 16.0 Hz, 1H), 4.20 (dd, *J_I* = *J₂* = 8.0 Hz, 3H), 3.98 (dd, *J_I* = *J₂* = 4.0 Hz, 1H), 3.79-3.75 (m, 2H), 3.34 (d, *J* = 8.0 Hz, 1H), 2.76 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 152.8, 144.7, 139.2, 139.2, 136.8, 136.5, 130.0, 129.0, 128.7, 128.6, 128.3, 128.2, 127.8, 127.8, 125.4, 124.7, 121.5, 120.9, 113.7, 88.1, 83.2, 78.1, 58.5, 58.2, 56.2, 51.8, 45.7, 39.8, 26.0, one carbon missing in the aromatic region. IR (KBr) ν 3444, 2862, 1634, 1582, 1233, 761 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₅N₆O₄ [M+H]⁺ 651.2714, found 651.2726.

1-(1,7-dibenzyl-3-(4-methoxyphenyl)-10a,11-dinitro-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(4-

methoxyphenyl)methanimine (3b)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 55.4 mg, 78% yield; dr > 20:1; reaction time = 2 h; mp 169.7-170.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.46 (q, *J* = 4.0 Hz, 2H), 7.23-7.18 (m, 8H), 7.11-7.04 (m, 4H), 6.94-6.86 (m, 5H), 6.51 (d, *J* = 8.0 Hz, 1H), 5.59 (s, 1H), 4.47 (d, *J* = 16.0 Hz, 1H), 4.36 (d, *J* = 16.0 Hz, 1H), 4.21-4.14 (m, 3H), 3.94 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.77-3.71 (m, 2H), 3.30 (d, *J* = 8.0 Hz, 1H), 2.72 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 157.1, 156.0, 146.0, 139.4, 139.2, 138.2, 136.9, 136.6, 128.7, 128.6, 128.3, 128.2, 127.8, 127.7, 123.7, 121.8, 115.0, 114.3, 88.3, 83.3, 78.6, 58.7, 58.1, 56.1, 55.5, 51.8, 45.8, 39.8, 25.8, one carbon in the aromatic region and two carbons in the aliphatic region are missing. IR (KBr) *v* 3417, 2843, 1622, 1503, 1239, 737 cm⁻¹. HRMS (ESI) calcd for C₄₁H₃₉N₆O₆ [M+H]⁺ 711.2926, found 711.2921.

1-(1,7-dibenzyl-10a,11-dinitro-3-(*p*-tolyl)-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(*p*-tolyl)methanimine (**3c**) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 50.7 mg, 75% yield; dr > 20:1; reaction time = 2 h; mp 153.7-154.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.46 (q, *J* = 4.0 Hz, 2H), 7.25-7.11 (m, 12H), 7.07-7.03 (m, 4H), 6.99 (s, 1H), 6.51 (d, *J* = 8.0 Hz, 1H), 5.68 (s, 1H), 4.46 (d, *J* = 16.0 Hz, 1H), 4.35 (d, *J* = 16.0 Hz, 1H), 4.21-4.14 (m, 3H), 3.95 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.76-3.73 (m, 2H), 3.30 (d, *J* = 8.0 Hz, 1H), 2.73 (t, *J* = 8.0 Hz, 1H), 2.38 (s, 3H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.1, 150.3, 142.4, 139.3, 139.3, 136.9, 136.6, 135.3, 134.3, 130.5, 129.7, 128.8, 128.6, 128.4, 128.3, 127.8, 127.8, 121.7, 120.8, 113.3, 88.2, 83.4, 83.3, 78.2, 58.6, 58.1, 56.1, 51.8, 45.8, 39.9, 26.0, 21.0, 20.9. IR (KBr) *v* 3418, 2857, 1633, 1584, 1228, 733 cm⁻¹. HRMS (ESI) calcd for C₄₁H₃₉N₆O₄ [M+H]⁺ 679.3027, found 679.3036.

1-(1,7-dibenzyl-3-(4-ethylphenyl)-10a,11-dinitro-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(4ethylphenyl)methanimine (**3d**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 50.4 mg, 71% yield; dr > 20:1; reaction time = 2 h; mp 184.8-185.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.47 (q, *J* = 4.0 Hz, 2H), 7.25-7.15 (m, 12H), 7.10-7.05 (m, 4H), 7.01 (s, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.71 (s, 1H), 4.47 (d, *J* = 16.0 Hz, 1H), 4.36 (d, *J* = 16.0 Hz, 1H), 4.23-4.16 (m, 3H), 3.97 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.80-3.77 (m, 2H), 3.32 (d, *J* = 4.0 Hz, 1H), 2.76 (t, *J* = 8.0 Hz, 1H), 2.72-2.61 (m, 4H), 1.29 (t, *J* = 8.0 Hz, 3H), 1.24 (t, *J* = 8.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.9, 150.5, 142.5, 141.5, 140.7, 139.2, 139.2, 136.9, 136.6, 129.2, 128.7, 128.6, 128.4, 128.3, 128.2, 127.7, 127.7, 121.6, 120.8, 113.3, 88.1, 83.3, 83.2, 78.1, 58.5, 58.0, 56.1, 51.7, 45.7,

39.8, 28.4, 28.2, 25.9, 15.7, 15.4. IR (KBr) v 3428, 2862, 1633, 1542, 1232, 737 cm⁻¹. HRMS (ESI) calcd for $C_{43}H_{43}N_6O_4$ [M+H]⁺ 707.3340, found 707.3336.

1-(1,7-dibenzyl-3-(4-fluorophenyl)-10a,11-dinitro-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(4-

fluorophenyl)methanimine (3e)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 56.9 mg, 83% yield; dr > 20:1; reaction time = 2 h; mp 181.2-182.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.46 (q, *J* = 4.0 Hz, 2H), 7.23-7.15 (m, 8H), 7.12-7.02 (m, 8H), 6.95 (s, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.63 (s, 1H), 4.46 (d, *J* = 16.0 Hz, 1H), 4.35 (d, *J* = 16.0 Hz, 1H), 4.24-4.15 (m, 3H), 3.95 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.79-3.72 (m, 2H), 3.34 (d, *J* = 4.0 Hz, 1H), 2.73 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.4 (d, *J* = 241.0 Hz, 1C), 160.3 (d, *J* = 245.0 Hz, 1C), 157.3, 148.8 (d, *J* = 5.0 Hz, 1C), 140.9, 140.9, 139.5, 139.3, 136.7, 136.5, 128.7, 128.6, 128.2, 128.1, 127.8, 123.7 (d, *J* = 9.0 Hz, 1C), 122.1 (d, *J* = 8.0 Hz, 1C), 116.7 (d, *J* = 23.0 Hz, 1C), 115.7 (d, *J* = 22.0 Hz, 1C), 113.5, 88.1, 83.2, 83.1, 78.6, 58.8, 58.3, 56.2, 51.9, 45.8, 39.8, 25.8. ¹⁹F NMR (375 MHz, CDCl₃) δ -116.0, -118.9. IR (KBr) *v* 3430, 2864, 1628, 1503, 1228, 734 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃F₂N₆O₄ [M+H]⁺ 687.2526, found 687.2528.

N-(4-chlorophenyl)-1-(1,7-dibenzyl-3-(4-chlorophenyl)-10a,11-dinitro-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**3f**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 58.1 mg, 81% yield; dr > 20:1; reaction time = 2 h; mp 180.1-181.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.45 (q, *J* = 4.0 Hz, 2H), 7.35-7.29 (m, 4H), 7.22-7.11 (m, 8H), 7.07-6.98 (m, 5H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.68 (s, 1H), 4.44 (d, *J* = 16.0 Hz, 1H), 4.34 (d, *J* = 16.0 Hz, 1H), 4.23-4.13 (m,

3H), 3.94 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 3.78-3.73 (m, 2H), 3.34 (d, J = 4.0 Hz, 1H), 2.71 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 151.2, 143.0, 139.3, 139.2, 136.6, 136.4, 130.9, 130.1, 130.0, 129.1, 128.7, 128.7, 128.2, 127.8, 122.7, 122.2, 114.0, 88.0, 83.2, 83.0, 78.2, 58.8, 58.3, 56.3, 51.9, 45.7, 39.8, 25.9, two carbons missing in the aromatic region. IR (KBr) *v* 3428, 64, 1628, 1503, 1229, 740 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃Cl₂N₆O₄ [M+H]⁺ 719.1935, found 719.1932.

N-(4-bromophenyl)-1-(1,7-dibenzyl-3-(4-bromophenyl)-10a,11-dinitro-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**3g**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 63.3 mg, 78% yield; dr > 20:1; reaction time = 2 h; mp 164.9-166.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.45 (q, *J* = 4.0 Hz, 2H), 7.35-7.30 (m, 4H), 7.22-7.18 (m, 6H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.06-6.98 (m, 5H), 6.52 (d, *J* = 8.0 Hz, 1H), 5.68 (s, 1H), 4.45 (d, *J* = 16.0 Hz, 1H), 4.34 (d, *J* = 16.0 Hz, 1H), 4.23-4.14 (m, 3H), 3.94 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.78-3.74 (m, 2H), 3.34 (d, *J* = 4.0 Hz, 1H), 2.71 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 151.6, 143.5, 139.3, 139.1, 136.6, 136.4, 133.0, 132.0, 128.7, 128.7, 128.2, 127.9, 122.9, 122.6, 118.6, 117.9, 114.1, 88.0, 83.2, 83.0, 78.1, 58.8, 58.3, 56.3, 51.9, 45.7, 39.8, 25.9, two carbons missing in the aromatic region. IR (KBr) *v* 3432, 2857, 1633, 1486, 1227, 732 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃Br₂N₆O₄ [M+H]⁺ 807.0925, found 807.0926.

1-(1,7-dibenzyl-3-(3-methoxyphenyl)-10a,11-dinitro-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(3methoxyphenyl)methanimine (**3h**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 53.5 mg,

75% yield; dr > 20:1; reaction time = 2 h; mp 182.0-183.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.41 (q, *J* = 4.0 Hz, 2H), 7.24-7.14 (m, 8H), 7.04-6.99 (m, 3H), 6.77-6.62 (m, 6H), 6.47 (d, *J* = 8.0 Hz, 1H), 5.70 (s, 1H), 4.41 (d, *J* = 16.0 Hz, 1H), 4.30 (d, *J* = 16.0 Hz, 1H), 4.18-4.10 (m, 3H), 3.91 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.80 (s, 3H), 3.77-3.71 (m, 5H), 3.29 (d, *J* = 8.0 Hz, 1H), 2.69 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 160.3, 157.7, 154.3, 145.8, 139.3, 136.8, 136.5, 130.7, 129.7, 128.7, 128.6, 128.3, 128.2, 127.8, 127.7, 113.6, 113.6, 113.3, 110.6, 110.6, 107.9, 107.5, 106.5, 88.1, 83.2, 83.2, 77.9, 58.5, 58.2, 56.2, 55.3, 55.3, 51.8, 45.7, 39.8, 26.0. IR (KBr) *v* 3439, 2843, 1633, 1581, 1150, 735 cm⁻¹. HRMS (ESI) calcd for C₄₁H₃₉N₆O₆ [M+H]⁺ 711.2926, found 711.2926.

1-(1,7-dibenzyl-10a,11-dinitro-3-(*m*-tolyl)-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(*m*-tolyl)methanimine (**3i**) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 51.9 mg, 77% yield; dr > 20:1; reaction time = 2 h; mp 169.1-170.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.43 (q, *J* = 4.0 Hz, 2H), 7.22-7.17 (m, 8H), 7.02-6.91 (m, 9H), 6.48 (d, *J* = 8.0 Hz, 1H), 5.70 (s, 1H), 4.43 (d, *J* = 16.0 Hz, 1H), 4.32 (d, *J* = 16.0 Hz, 1H), 4.19-4.12 (m, 3H), 3.94 (dd, *J_I* = *J*₂ = 4.0 Hz, 1H), 3.75-3.71 (m, 2H), 3.30 (d, *J* = 8.0 Hz, 1H), 2.72 (t, *J* = 8.0 Hz, 1H), 2.37 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 152.9, 144.6, 139.9, 139.2, 139.2, 138.7, 136.9, 136.6, 129.7, 128.8, 128.7, 128.5, 128.3, 128.2, 127.7, 127.7, 126.2, 125.4, 122.1, 121.6, 118.5, 118.0, 113.5, 88.1, 83.3, 78.0, 58.5, 58.1, 56.3, 51.8, 45.7, 39.8, 26.0, 21.4, two carbons missing in the aliphatic region. IR (KBr) *v* 3435, 2857, 1635, 1578, 1224, 740 cm⁻¹. HRMS (ESI) calcd for C₄₁H₃₉N₆O₄ [M+H]⁺ 679.3027, found 679.3023.

N-(3-chlorophenyl)-1-(1,7-dibenzyl-3-(3-chlorophenyl)-10a,11-dinitro-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**3j**)

Yellow solid obtained by filtration of the precipitate; 47.0 mg, 65% yield; dr > 20:1; reaction time = 2 h; mp 185.4-186.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.42 (q, *J* = 4.0 Hz, 2H), 7.30-6.99 (m, 17H), 6.50 (d, *J* = 8.0 Hz, 1H), 5.70 (s, 1H), 4.42 (d, *J* = 16.0 Hz, 1H), 4.32 (d, *J* = 16.0 Hz, 1H), 4.22-4.10 (m, 3H), 3.93 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.78-3.75 (m, 2H), 3.35 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 154.0, 145.4, 139.3, 139.1, 136.5, 136.4, 135.6, 134.6, 130.9, 130.0, 128.7, 128.6, 128.1, 127.8, 125.4, 124.7, 121.4, 120.9, 119.5, 119.1, 114.3, 87.9, 83.2, 83.0, 78.0, 58.8, 58.3, 56.5, 51.8, 45.6, 39.8, 25.9, two carbons missing in the aromatic region. IR (KBr) *v* 3417, 2857, 1636, 1576, 1226, 753 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃Cl₂N₆O₄ [M+H]⁺ 719.1935, found 719.1929.

N-(3-bromophenyl)-1-(1,7-dibenzyl-3-(3-bromophenyl)-10a,11-dinitro-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**3**k)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1) 68.3 mg, 85% yield; dr > 20:1; reaction time = 2 h; mp 188.3-189.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.42 (q, *J* = 4.0 Hz, 2H), 7.33-7.16 (m, 12H), 7.13-7.10 (m, 1H), 7.06-7.03 (m, 1H), 7.00-6.98 (m, 3H), 6.50 (d, *J* = 8.0 Hz, 1H), 5.69 (s, 1H), 4.42 (d, *J* = 16.0 Hz, 1H), 4.32 (d, *J* = 16.0 Hz, 1H), 4.21-4.10 (m, 3H), 3.93 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.78-3.74 (m, 2H), 3.35 (d, *J* = 8.0 Hz, 1H), 2.69 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 154.1, 145.5, 139.3, 139.2, 136.5, 136.4, 131.1, 130.3, 128.7, 128.6, 128.4, 128.2, 128.1, 127.9, 127.9, 127.6, 124.3, 123.7, 123.5, 122.7, 120.1, 119.6, 114.3, 87.9, 83.2, 83.0, 78.0, 58.9, 58.3, 56.5, 51.9, 45.6, 39.7, 25.9. IR (KBr) ν 3434, 2857, 1636, 1573, 1225, 749 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃Br₂N₆O₄ [M+H]⁺ 807.0925, found 807.0926.

1-(1,7-dibenzyl-3-(2-fluorophenyl)-10a,11-dinitro-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(2-

fluorophenyl)methanimine (3l)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 40.6 mg, 59% yield; dr > 20:1; reaction time = 2 h; mp 173.7-174.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.40 (q, *J* = 4.0 Hz, 2H), 7.21-7.06 (m, 16H), 6.91 (s, 1H), 6.50 (d, *J* = 8.0 Hz, 1H), 5.55 (s, 1H), 4.46 (d, *J* = 16.0 Hz, 1H), 4.34 (d, *J* = 16.0 Hz, 1H), 4.19 (d, *J* = 8.0 Hz, 1H), 4.12 (t, *J* = 8.0 Hz, 2H), 3.94 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.77 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.70 (d, *J* = 8.0 Hz, 1H), 3.70 (d, *J* = 8.0 Hz, 1H), 3.32 (d, *J* = 8.0 Hz, 1H), 2.81 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 156.4 (d, *J* = 248.0 Hz, 1C), 155.7 (d, *J* = 247.0 Hz, 1C), 141.3, 141.2, 140.7, 140.6, 139.4, 136.5 (d, *J* = 15.0 Hz, 1C), 132.2 (d, *J* = 11.0 Hz, 1C), 128.6, 128.6, 128.5, 128.2, 127.9 (d, *J* = 8.0 Hz, 1C), 127.7 (d, *J* = 10.0 Hz, 1C), 126.0, 125.4 (d, *J* = 4.0 Hz, 1C), 125.4, 124.4 (d, *J* = 4.0 Hz, 1C), 121.4 (d, *J* = 2.0 Hz, 1C), 117.1 (d, *J* = 20.0 Hz, 1C), 116.0 (d, *J* = 20.0 Hz, 1C), 113.3, 87.9, 83.6, 82.4, 78.5, 59.0, 57.4, 55.9, 51.2, 45.5, 39.6, 25.6. ¹⁹F NMR (375 MHz, CDCl₃) δ -123.1, -126.7. IR (KBr) ν 3416, 2860, 1631, 1584, 1236, 750 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃F₂N₆O₄ [M+H]⁺ 687.2526, found 687.2519.

N-(2-chlorophenyl)-1-(1,7-dibenzyl-3-(2-chlorophenyl)-10a,11-dinitro-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**3m**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 40.5 mg, 56% yield; dr > 20:1; reaction time = 2 h; mp 180.1-180.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1H), 7.46-7.40 (m, 2H), 7.33-7.19 (m, 12H), 7.11-7.05 (m, 3H), 7.00 (dd, $J_I = J_2 = 4.0$ Hz, 1H), 6.90 (s, 1H), 6.47 (d, J = 8.0 Hz, 1H), 5.50 (s, 1H), 4.48 (d, J = 16.0 Hz, 1H), 4.35 (d, J = 16.0 Hz, 1H), 4.14 (d, J = 8.0 Hz, 1H), 4.09 (t, J = 8.0 Hz, 2H), 3.98 (dd, $J_I = J_2 = 4.0$ Hz, 1H), 3.88 (dd, $J_I = J_2 = 4.0$ Hz, 1H), 3.65 (d, J = 8.0 Hz, 1H), 3.36 (d, J = 8.0 Hz, 1H), 2.97 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 150.2, 141.8, 141.5, 139.3, 136.8, 136.0, 131.2, 130.0, 129.7,

128.7, 128.7, 128.6, 128.4, 128.3, 128.2, 128.0, 127.9, 127.8, 127.6, 127.6, 125.2, 119.9, 112.6, 88.1, 83.7, 81.8, 78.3, 59.3, 56.9, 55.5, 51.2, 45.7, 39.3, 25.7. IR (KBr) *v* 3451, 2857, 1635, 1542, 1228, 749 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₃Cl₂N₆O₄ [M+H]⁺ 719.1935, found 719.1934.

3. Experimental data for the formation of 5

Scheme S1 Diastereoselective dearomatization of quinolinium salts.

General procedure: To a 5.0 mL vial were successively added 1,5-diazapentadienium salts **1** (0.20 mmol), *N*-benyl quinilinium salts **4** (0.44 mmol) and 0.8 mL of CH₃CN. And then, DBU (91.4 mg, 0.60 mmol) was added by syringe. The resulting mixture was stirred at 35 °C for 30 min. During the reaction process, a large amount of precipitate is generated. So, only a simple filtration was needed to obtain the pure products **5**. The filtrate contained a small amount of products, which can be purified by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 5:1). (*Note: compounds 5 were not very stable in solution, but they were very stable in solid state.*)

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-phenyl-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-phenylmethanimine (**5a**)

White solid obtained by filtration of the precipitate; 108.2 mg, 82% yield; dr > 20:1; reaction time = 30 min; mp 188.4-188.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.0 Hz, 1H), 7.77 (s, 1H), 7.30 (q, *J* = 8.0 Hz, 4H), 7.20-6.91 (m, 20H), 6.77 (t, *J* = 8.0 Hz, 2H), 6.64-6.59 (m, 2H), 6.47 (d, *J* = 8.0 Hz, 1H), 5.45 (s, 1H), 5.26 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 5.07 (d, *J* = 16.0 Hz, 1H), 4.55 (d, *J* = 12.0 Hz, 2H), 4.29 (d, *J* = 16.0 Hz, 1H), 4.14 (d, *J* = 16.0 Hz, 1H), 3.79 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 2.39 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 153.9, 146.2, 143.1, 142.4, 141.6, 138.9, 138.4, 130.0, 129.8, 128.9, 128.8, 128.7, 128.2, 127.3, 127.2, 127.1, 126.7, 126.5, 124.6, 124.3, 124.0, 123.1, 121.3, 120.9, 120.7, 119.7, 117.9, 116.9, 114.7, 110.4, 68.7, 56.1, 56.0, 52.7, 40.7, 30.9, two carbons missing in the aromatic region. IR (KBr) *v* 3443, 3029, 1611, 1582, 1491, 1165, 741 cm⁻¹. HRMS (ESI) calcd for C₄₇H₄₁N₄ [M+H]⁺ 661.3326, found 661.3345.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(*p*-tolyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(*p*-tolyl)methanimine (**5b**)

Light yellow solid obtained by filtration of the precipitate; 109.8 mg, 80% yield; dr > 20:1; reaction time = 30 min; mp 177.6-178.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 4.0 Hz, 1H), 7.19-6.99 (m, 15H), 6.92 (t, *J* = 4.0 Hz, 6H), 6.85-6.74 (m, 3H), 6.63-6.58 (m, 2H), 6.45 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 5.38 (s, 1H), 5.24 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 5.07 (d, *J* = 16.0 Hz, 1H), 4.55 (d, *J* = 12.0 Hz, 2H), 4.28 (d, *J* = 16.0 Hz, 1H), 4.15 (d, *J* = 16.0 Hz, 1H), 3.79 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 2.38-2.31 (m, 7H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 151.4, 143.9, 143.2, 142.4, 141.7, 139.0, 138.5, 134.0, 133.4, 130.3, 130.0, 129.5, 128.8, 128.6, 128.2, 127.2, 127.1, 126.7, 126.6, 126.5, 124.7, 123.1, 121.3, 120.9, 120.7, 120.4, 120.4, 119.3, 117.8, 116.8, 114.7, 110.4, 68.9, 56.1, 55.9, 52.8, 40.8, 30.8, 20.9, 20.8. IR (KBr) *v* 3439, 3025, 2860, 1613, 1580, 1502, 1161, 740 cm⁻¹. HRMS (ESI) calcd for C₄₉H₄₅N₄ [M+H]⁺ 689.3639,

found 689.3624.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(4-ethylphenyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(4-ethylphenyl)methanimine (**5c**)

Light yellow solid obtained by filtration of the precipitate; 103.3 mg, 72% yield; dr > 20:1; reaction time = 30 min; mp 161.6-162.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 4.0 Hz, 1H), 7.77 (s, 1H), 7.23-7.11 (m, 10H), 7.06-6.87 (m, 12H), 6.76 (q, *J* = 8.0 Hz, 2H), 6.61 (q, *J* = 8.0 Hz, 2H), 6.46 (d, *J* = 12.0 Hz, 1H), 5.39 (s, 1H), 5.25 (dd, *J_I* = *J*₂ = 4.0 Hz, 1H), 5.08 (d, *J* = 16.0 Hz, 1H), 4.56 (d, *J* = 16.0 Hz, 2H), 4.29 (d, *J* = 16.0 Hz, 1H), 4.16 (d, *J* = 16.0 Hz, 1H), 3.79 (dd, *J_I* = *J*₂ = 4.0 Hz, 1H), 2.66-2.59 (m, 4H), 2.38 (d, *J* = 8.0 Hz, 1H), 1.25-1.21 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 157.9, 151.6, 144.0, 143.2, 142.4, 141.7, 140.4, 139.9, 139.0, 138.5, 130.0, 129.1, 128.8, 128.7, 128.6, 128.3, 128.2, 127.2, 127.1, 126.7, 126.6, 126.5, 124.8, 123.1, 121.4, 121.0, 120.9, 120.7, 119.3, 117.8, 116.8, 114.7, 110.5, 68.9, 56.1, 56.0, 52.8, 40.8, 30.8, 28.4, 28.2, 15.8, 15.6. IR (KBr) *v* 3441, 2962, 1613, 1583, 1501, 1165, 743 cm⁻¹. HRMS (ESI) calcd for C₅₁H₄₉N₄ [M+H]⁺ 717.3952, found 717.3972.

1-(1-benzyl-11-(-1-benzyl-1,2-dihydroquinolin-2-yl)-3-(4-fluorophenyl)-1,2,3,6-tetrahydro-2,6methanobenzo[d][1,3]diazocin-5-yl)-N-(4-fluorophenyl)methanimine (**5d**) White solid obtained by filtration of the precipitate; 123.0 mg, 88% yield; dr > 20:1; reaction time = 30 min; mp 181.8-183.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 1H), 7.72 (s, 1H), 7.21-7.12 (m, 6H), 7.07-6.90 (m, 15H), 6.78 (t, J = 8.0 Hz, 3H), 6.62 (q, J = 8.0 Hz, 2H), 6.48 (d, J = 8.0 Hz, 1H), 5.33 (s, 1H), 5.24 (dd, $J_I = J_2 = 8.0$ Hz, 1H), 5.06 (d, J = 16.0 Hz, 1H), 4.54 (t, J = 16.0 Hz, 2H), 4.27 (d, J = 16.0 Hz, 1H), 4.14 (d, J = 16.0 Hz, 1H), 3.79 (dd, $J_I = J_2 = 4.0$ Hz, 1H), 2.37 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.1 (d, J = 241.0 Hz, 1C), 159.7 (d, J = 244.0 Hz, 1C), 158.3, 149.9 (d, J = 3.0 Hz, 1C), 143.1, 142.5 (d, J = 3.0 Hz, 1C), 142.2, 141.9, 138.8, 138.2, 129.9, 128.8, 128.7, 128.2, 127.3 (d, J = 3.0 Hz, 1C), 127.2 (d, J = 4.0 Hz, 1C), 127.1, 126.8, 126.4, 124.5, 123.1, 123.0, 122.9, 122.0, 121.9, 121.2, 119.5, 118.0, 116.9, 116.5 (d, J = 23.0 Hz, 1C), 115.4 (d, J = 22.0 Hz, 1C), 114.7, 110.6, 69.7, 56.1, 55.8, 53.0, 40.7, 30.7. IR (KBr) ν 3440, 2948, 1612, 1499, 1161, 744 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉F₂N₄ [M+H]⁺ 697.3137, found 697.3125.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(4-chlorophenyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(4-chlorophenyl)methanimine (**5e**)

Light yellow solid obtained by filtration of the precipitate; 127.5 mg, 87% yield; dr > 20:1; reaction time = 30 min; mp 187.4-188.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.0 Hz, 1H), 7.73 (s, 1H), 7.25-7.13 (m, 9H), 7.03-6.78 (m, 15H), 6.92 (s, 2H), 6.48 (d, *J* = 8.0 Hz, 1H), 5.38 (s, 1H), 5.25 (s, 1H), 5.05 (d, *J* = 16.0 Hz, 1H), 4.55 (d, *J* = 16.0 Hz, 2H), 4.26 (d, *J* = 16.0 Hz, 1H), 4.18 (d, *J* = 16.0 Hz, 1H), 3.77 (s, 1H), 2.35 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.5, 152.2, 144.5, 143.1, 142.2, 141.4, 141.1, 138.8, 138.1, 129.9, 129.8, 129.6, 129.4, 128.9, 128.7, 128.4, 128.2, 127.3, 127.1, 126.8, 126.6, 126.4, 124.2, 123.1, 122.1, 121.8, 121.4, 121.0, 120.2, 118.0, 117.0, 114.8, 110.6, 69.2, 56.1, 55.8, 53.0, 40.6, 30.8. IR (KBr) *v* 3446, 3033, 1609, 1570, 1490, 1165, 741 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉Cl₂N₄ [M+H]⁺ 729.2546, found 729.2539.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(4-nitrophenyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(4-nitrophenyl)methanimine (**5f**)

Yellow solid obtained by filtration of the precipitate; 94.9 mg, 63% yield; dr > 20:1; reaction time = 30 min; mp 153.7-154.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.0 Hz, 2H), 8.13 (d, *J* = 8.0 Hz, 2H), 7.84 (s, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.24-7.02 (m, 14H), 6.93 (dd, *J*₁ = 8.0 Hz, *J*₂ = 4.0 Hz, 4H), 6.84 (q, *J* = 8.0 Hz, 2H), 6.67 (t, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.0 Hz, 1H), 5.62 (s, 1H), 5.35 (dd, *J*₁ = *J*₂ = 8.0 Hz, 1H), 5.05 (d, *J* = 16.0 Hz, 1H), 4.58 (t, *J* = 16.0 Hz, 2H), 4.34 (d, *J* = 16.0 Hz, 1H), 4.26 (d, *J* = 16.0 Hz, 1H), 3.79 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 2.38 (d, *J* = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 159.0, 149.9, 144.5, 143.0, 142.9, 142.0, 140.5, 138.5, 137.6, 129.9, 129.0, 128.9, 128.3, 127.9, 127.7, 127.6, 127.5, 127.0, 127.0, 126.3, 125.8, 125.0, 124.9, 123.1, 122.9, 121.3, 120.5, 118.5, 118.3, 117.3, 114.9, 110.7, 68.8, 56.3, 55.7, 53.0, 40.4, 31.0. IR (KBr) *v* 3442, 3030, 1563, 1500, 1334, 1166, 744 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉N₆O₄ [M+H]⁺ 773.2847, found 773.2844.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(*m*-tolyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(*m*-tolyl)methanimine (**5g**) White solid obtained by filtration of the precipitate; 105.8 mg, 77% yield; dr > 20:1; reaction time = 30 min; mp 174.7-175.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 4.0 Hz, 1H), 7.78 (s, 1H), 7.22-7.13 (m, 8H), 7.06-6.89 (m, 12H), 6.85-6.75 (m, 4H), 6.64-6.60 (m, 2H), 6.47 (d, *J* = 8.0 Hz, 1H), 5.42 (s, 1H), 5.26 (dd, $J_1 = J_2 = 8.0$ Hz, 1H), 5.07 (d, J = 16.0 Hz, 1H), 4.56 (d, J = 8.0 Hz, 2H), 4.28 (d, J = 16.0 Hz, 1H), 4.18 (d, J = 16.0 Hz, 1H), 3.79 (dd, $J_1 = 4.0$ Hz, $J_2 = 8.0$ Hz, 1H), 2.39-2.34 (m, 4H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.3, 154.0, 146.1, 143.2, 142.4, 141.6, 1397, 138.9, 138.6, 138.5, 130.0, 129.5, 128.8, 128.7, 128.6, 128.2, 127.2, 127.1, 127.1, 126.7, 126.6, 125.0, 124.7, 124.6, 123.1, 121.7, 121.4, 121.3, 119.6, 117.8, 117.8, 117.6, 116.8, 114.7, 110.4, 68.7, 56.1, 56.0, 52.8, 40.7, 30.9, 21.5, 21.4, two carbons missing in the aromatic region. IR (KBr) *v* 3442, 3033, 1580, 1491, 1157, 741 cm⁻¹. HRMS (ESI) calcd for C₄₉H₄₅N₄ [M+H]⁺ 689.3639, found 689.3643.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(3-chlorophenyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(3-chlorophenyl)methanimine (**5h**)

Light yellow solid obtained by filtration of the precipitate; 131.8 mg, 90% yield; dr = 10:1; reaction time = 30 min; mp 173.1-174.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.23-7.18 (m, 5H), 7.15-7.14 (m, 3H), 7.10-6.88 (m, 14H), 6.80 (dd, *J_I* = 4.0 Hz, *J₂* = 8.0 Hz, 2H), 6.65 (dd, *J_I* = *J*₂ = 4.0 Hz, 2H), 6.50 (d, *J* = 8.0 Hz, 1H), 5.41 (s, 1H), 5.26 (dd, *J_I* = *J*₂ = 8.0 Hz, 1H), 5.05 (d, *J* = 16.0 Hz, 1H), 4.56 (t, *J* = 16.0 Hz, 2H), 4.26 (d, *J* = 16.0 Hz, 1H), 4.20 (d, *J* = 16.0 Hz, 1H), 3.77 (dd, *J_I* = 8.0 Hz, *J₂* = 4.0 Hz, 1H), 2.35 (tt, *J_I* = *J₂* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 154.9, 146.9, 143.1, 142.2, 141.2, 138.8, 138.1, 135.5, 134.4, 130.7, 130.0, 129.9, 128.9, 128.7, 128.5, 128.4, 128.3, 127.4, 127.4, 127.4, 127.1, 126.8, 126.7, 126.5, 124.2, 124.1, 123.1, 121.2, 121.0, 120.6, 119.2, 118.3, 118.1, 117.0, 114.8, 110.6, 68.9, 56.2, 55.9, 52.9, 40.6, 30.8. IR (KBr) *v* 3430, 3029, 1575, 1483, 1452, 1177, 738 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉Cl₂N₄ [M+H]⁺ 729.2546, found 729.2548.

1-(1-benzyl-11-(1-benzyl-1,2-dihydroquinolin-2-yl)-3-(3-bromophenyl)-1,2,3,6-tetrahydro-2,6methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-(3-bromophenyl)methanimine (**5**i)

Light yellow solid obtained by filtration of the precipitate; 142.8 mg, 87% yield; dr = 16:1; reaction time = 30 min; mp 193.2-194.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.18-7.14 (m, 6H), 7.12-7.06 (m, 6H), 7.00-6.92 (m, 4H), 6.88-6.82 (m, 6H), 6.72 (dd, $J_I = J_2 =$ 8.0 Hz, 2H), 6.58-6.55 (m, 2H), 6.42 (d, J = 8.0 Hz, 1H), 5.32 (s, 1H), 5.17 (dd, $J_I = J_2 = 8.0$ Hz, 1H), 4.97 (d, J = 16.0 Hz, 1H), 4.48 (t, J = 20.0 Hz, 2H), 4.16 (dd, $J_I = J_2 = 16.0$ Hz, 2H), 3.68 (dd, $J_I = 8.0$ Hz, $J_2 = 4.0$ Hz, 1H), 2.26 (tt, $J_I = J_2 = 8.0$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 155.1, 147.0, 143.1, 142.2, 141.2, 138.8, 138.1, 130.9, 130.2, 130.0, 128.9, 128.7, 128.7, 128.5, 128.4, 128.2, 127.4, 127.4, 127.1, 127.1, 127.0, 126.8, 126.6, 124.0, 124.0, 123.5, 123.1, 122.6, 121.0, 120.6, 119.7, 118.7, 118.1, 117.0, 114.8, 110.5, 68.9, 56.2, 55.8, 52.9, 40.6, 30.8. IR (KBr) ν 3439, 3054, 1612, 1572, 1482, 1176, 739 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉Br₂N₄ [M+H]⁺ 817.1536, found 817.1548.

1-(1-benzyl-11-(1-benzyl-6-bromo-1,2-dihydroquinolin-2-yl)-8-bromo-3-phenyl-1,2,3,6tetrahydro-2,6-methanobenzo[*d*][1,3]diazocin-5-yl)-*N*-phenylmethanimine (**5j**) White solid obtained by filtration of the precipitate; 66.1 mg, 40% yield; dr > 20:1; reaction time = 30 min; mp 188.6-189.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.75 (s, 1H), 7.28-7.13 (m, 11H), 7.11-6.99 (m, 12H), 6.94 (s, 1H), 6.46 (q, *J* = 8.0 Hz, 1H), 6.15 (d, *J* = 8.0 Hz, 1H), 5.54 (s, 1H), 4.69-4.50 (m, 3H), 4.42 (t, J = 8.0 Hz, 1H), 4.25 (d, J = 20.0 Hz, 1H), 4.08 (s, 1H), 3.15 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 1.99 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 153.1, 146.0, 142.0, 141.0, 139.6, 138.1, 137.1, 133.7, 132.7, 132.2, 129.9, 129.8, 129.6, 128.9, 128.8, 127.3, 127.3, 126.5, 126.4, 126.3, 124.4, 124.3, 124.2, 120.9, 120.4, 119.7, 113.8, 113.1, 111.8, 109.5, 98.1, 69.7, 53.4, 53.1, 41.5, 35.9, 31.0. IR (KBr) ν 3448, 3066, 1616, 1578, 1498, 1210, 748 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉Br₂N₄ [M+H]⁺ 817.1536, found 817.1533.

4. Experimental data for the formation of 7 and 8

General procedure: To a 5.0 mL vial were successively added 1,5-diazapentadienium salts **1** (0.20 mmol), *N*-benyl quinilinium salts **4** (0.44 mmol) and 0.8 mL of CH₃CN. And then, DBU (91.4 mg, 0.60 mmol) was added by syringe. The resulting mixture was stirred at 35 °C and the reaction went completion after 1 h. During the reaction process, a large amount of precipitate was generated. The reaction was quite dependent on the workup procedures. By a simple filtration, the trifunctionalized products **7** were obtained. And we got bifunctionalized products **8** as the sole products by directly subjecting the reaction mixture to silica gel column chromatography with petroleum ether and ethyl acetate as eluents. (*Note: compounds 7 were not very stable in solution, but they were very stable in solid state.*)

1-(11-benzyl-1-(2-benzyl-1,2-dihydroisoquinolin-1-yl)-3-phenyl-1,2,3,6-tetrahydro-2,6epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (**7a**)

White solid obtained by filtration of the precipitate; 106.6 mg, 81% yield; dr > 20:1; reaction time = 1 h; mp 163.8-164.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 4.0 Hz, 2H), 7.35-7.27 (m, 5H), 7.19-7.03 (m, 11H), 6.99 (q, *J* = 8.0 Hz, 2H), 6.82-6.79 (m, 3H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.56 (d, *J* = 8.0 Hz, 2H), 6.23 (d, *J* = 8.0 Hz, 1H), 5.77 (s, 1H), 5.27 (t, *J* = 8.0 Hz, 2H), 4.99 (d, *J* = 4.0 Hz, 1H), 3.94 (d, *J* = 16.0 Hz, 1H), 3.89 (d, *J* = 16.0 Hz, 1H), 3.77 (d, *J* = 16.0 Hz, 1H), 3.57 (d, *J* = 16.0 Hz, 1H), 2.98 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 153.6, 143.1, 139.8, 138.2, 138.1, 137.9, 137.2, 134.3, 132.3, 129.8, 129.5, 129.2, 128.9, 128.4, 128.2, 127.9, 127.6, 127.5, 127.5, 127.1, 126.5, 126.2, 125.8, 124.8, 124.0, 122.8, 122.5, 120.8, 117.7, 112.8, 95.7, 72.4, 65.5, 58.6, 57.6, 54.4, 50.7, one carbon missing in the aromatic region. IR (KBr) *v* 3441, 3027, 1617, 1574, 1488, 1228, 758 cm⁻¹. HRMS (ESI) calcd for C₄₇H₄₁N₄ [M+H]⁺ 661.3326, found 661.3331.

1-(11-benzyl-1-(2-benzyl-1,2-dihydroisoquinolin-1-yl)-3-(4-nitrophenyl)-1,2,3,6-tetrahydro-2,6epiminobenzo[*d*]azocin-5-yl)-*N*-(4-nitrophenyl)methanimine (**7b**)

Red solid obtained by filtration of the precipitate; 76.4 mg, 51% yield; dr > 20:1; reaction time = 1 h; mp 177.9-178.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 12.0 Hz, 2H), 7.93 (s, 1H), 7.79 (d, *J* = 12.0 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.40-7.16 (m, 15H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.89 (d, *J* = 4.0 Hz, 2H), 6.78 (t, *J* = 8.0 Hz, 1H), 6.41 (d, *J* = 8.0 Hz, 1H), 6.16 (d, *J* = 8.0 Hz, 2H), 6.55 (d, *J* = 8.0 Hz, 1H), 5.51 (s, 1H), 5.29 (d, *J* = 8.0 Hz, 1H), 4.96 (s, 1H), 4.38 (d, *J* = 8.0 Hz, 1H), 3.86 (s, 1H), 3.82 (d, J = 4.0 Hz, 1H), 3.50 (d, J = 16.0 Hz, 1H), 3.19 (d, J = 16.0 Hz, 1H), 3.03 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 158.5, 146.6, 144.5, 142.0, 138.3, 138.1, 136.9, 136.8, 136.6, 133.7, 132.4, 130.2, 129.0, 128.9, 128.4, 128.1, 127.4, 127.3, 127.2, 127.1, 126.2, 125.9, 125.8, 125.5, 125.3, 125.0, 124.4, 122.9, 121.3, 117.6, 115.0, 97.4, 70.0, 61.7, 59.1, 57.3, 54.2, 44.2. IR (KBr) v 3435, 3028, 1556, 1499, 1330, 1175, 761 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₈N₆NaO₄ [M+Na]⁺ 773.2847, found 773.2842.

1-(11-benzyl-1-(2-benzyl-6-bromo-1,2-dihydroisoquinolin-1-yl)-9-bromo-3-phenyl-1,2,3,6tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (**7c**)

Light yellow solid obtained by filtration of the precipitate; 96.5 mg, 59% yield; dr > 20:1; reaction time = 1 h; mp 153.7-154.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.40-7.29 (m, 7H), 7.21-7.07 (m, 11H), 7.01 (t, *J* = 8.0 Hz, 1H), 6.90 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 6.77 (d, *J* = 8.0 Hz, 2H), 6.72 (s, 1H), 6.65 (d, *J* = 8.0 Hz, 2H), 6.36 (d, *J* = 8.0 Hz, 1H), 6.23 (d, *J* = 8.0 Hz, 1H), 5.65 (s, 1H), 5.26 (s, 1H), 5.18 (d, *J* = 8.0 Hz, 1H), 4.80 (d, *J* = 4.0 Hz, 1H), 3.96 (d, *J* = 16.0 Hz, 1H), 3.82 (q, *J* = 12.0 Hz, 2H), 3.54 (d, *J* = 16.0 Hz, 1H), 2.87 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 153.3, 142.9, 138.7, 138.6, 137.6, 137.3, 136.1, 134.1, 132.1, 129.7, 129.6, 129.5, 129.4, 129.0, 128.9, 128.5, 128.4, 128.1, 127.7, 127.4, 127.3, 125.7, 124.8, 124.2, 123.6, 121.7, 120.8, 120.8, 119.5, 118.6, 112.3, 95.1, 71.7, 64.2, 58.8, 57.5, 53.2, 50.8. IR (KBr) *v* 3424, 3029, 1618, 1574, 1488, 1179, 762 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉Br₂N₄ [M+H]⁺ 817.1536, found 817.1521.

1-(11-benzyl-1-(2-benzyl-6-bromo-1,2-dihydroisoquinolin-1-yl)-9-bromo-3-(4-fluorophenyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(4-fluorophenyl)methanimine (**7d**) Light yellow solid obtained by filtration of the precipitate; 142.1 mg, 83% yield; dr > 20:1; reaction time = 1 h; mp 187.4-188.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.32-7.23 (m, 5H), 7.18-7.11 (m, 4H), 7.02 (s, 1H), 6.94-6.86 (m, 5H), 6.85 (d, *J* = 8.0 Hz, 1H), 6.79 (t, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 8.0 Hz, 3H), 6.51 (dd, $J_1 = J_2 = 4.0$ Hz, 2H), 6.32 (d, *J* = 8.0 Hz, 1H), 6.14 (d, *J* = 8.0 Hz, 1H), 5.50 (s, 1H), 5.14 (s, 1H), 5.07 (d, *J* = 8.0 Hz, 1H), 4.74 (d, *J* = 4.0 Hz, 1H), 3.87 (d, *J* = 16.0 Hz, 1H), 3.75 (q, *J* = 12.0 Hz, 2H), 3.46 (d, *J* = 16.0 Hz, 1H), 2.74 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.9 (d, *J* = 241.0 Hz, 1C), 159.2 (d, *J* = 243.0 Hz, 1C), 157.6, 149.4 (d, *J* = 3.0 Hz, 1C), 139.4 (d, *J* = 3.0 Hz, 1C), 138.9, 138.7, 138.0, 137.5, 137.2, 136.2, 134.1, 132.0, 129.7, 129.5, 128.9, 128.6, 128.5, 128.2, 127.8, 127.5, 127.5, 125.8, 124.9, 121.9, 121.8, 120.9, 120.8, 119.7, 116.3 (d, *J* = 23.0 Hz, 1C), 115.5 (d, *J* = 23.0 Hz, 1C), 112.0, 94.7, 72.3, 64.1, 58.8, 57.6, 53.6, 50.7. IR (KBr) v 3429, 3029, 1614, 1580, 1497, 1227, 1176, 719 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₇Br₂F₂N₄ [M+H]⁺ 853.1348, found 853.1335.

1-(11-benzyl-1-(2-benzyl-6-bromo-1,2-dihydroisoquinolin-1-yl)-9-bromo-3-(3-methoxyphenyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(3-methoxyphenyl)methanimine (**7e**) Yellow solid obtained by filtration of the precipitate; 139.1 mg, 79% yield; dr > 20:1; reaction time = 1 h; mp 157.2-158.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.24-7.20 (m, 1H), 7.16-7.07 (m, 5H), 7.02 (d, *J* = 4.0 Hz, 1H), 7.00 (d, *J* = 4.0 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.83 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 6.68 (dd, *J*₁ = *J*₂ = 4.0 Hz, 2H), 6.61 (d, *J* = 4.0 Hz, 1H), 6.58 (d, *J* = 4.0 Hz, 1H), 6.56 (t, *J* = 4.0 Hz, 1H), 6.52-6.49 (m, 2H), 6.30 (t, *J* = 4.0 Hz, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 6.14 (dd, *J*₁ = *J*₂ = 4.0 Hz, 2H), 5.50 (s, 1H), 5.17 (d, *J* = 4.0 Hz, 1H), 5.15 (s, 1H), 4.68 (d, *J* = 4.0 Hz, 1H), 3.90 (d, *J* = 16.0 Hz, 1H), 3.73 (s, 5H), 3.70 (s, 3H), 3.43 (d, *J* = 16.0 Hz, 1H), 2.84 (d, *J* = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.6, 160.3, 157.9, 154.8, 144.2, 138.6, 138.2, 137.8, 137.6, 135.9, 133.8, 132.5, 130.4, 129.9, 129.6, 129.4, 129.0, 128.5, 128.4, 127.9, 127.8, 127.4, 127.3, 127.3, 127.2, 125.6, 124.9, 121.8, 119.4, 113.1, 112.3, 111.0, 110.0, 108.3, 106.5, 105.8, 96.0, 71.7, 64.3, 58.8, 57.5, 55.4, 55.2, 52.3, 51.2. IR (KBr) v 3438, 2928, 1611, 1572, 1482, 1139, 767 cm⁻¹. HRMS (ESI) calcd for C₄₉H₄₃Br₂N₄O₂ [M+H]⁺ 877.1747, found 877.1743.

1-(11-benzyl-1-(2-benzyl-6-bromo-1,2-dihydroisoquinolin-1-yl)-9-bromo-3-(*m*-tolyl)-1,2,3,6tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(*m*-tolyl)methanimine (**7f**) White solid obtained by filtration of the precipitate; 93.5 mg, 55% yield; dr > 20:1; reaction time = 1 h; mp 177.6-178.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.33-7.21 (m, 5H), 7.13-7.08 (m, 5H), 7.01-6.94 (m, 3H), 6.82-6.76 (m, 5H), 6.67 (s, 2H), 6.53 (d, *J* = 12.0 Hz, 2H), 6.36 (d, *J* = 8.0 Hz, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 6.14 (d, *J* = 4.0 Hz, 1H), 5.51 (s, 1H), 5.19 (s, 1H), 5.15 (d, *J* = 8.0 Hz, 1H), 4.69 (d, *J* = 4.0 Hz, 1H), 3.88 (d, *J* = 16.0 Hz, 1H), 3.74 (q, *J* = 12.0 Hz, 2H), 3.45 (d, *J* = 16.0 Hz, 1H), 2.84 (d, *J* = 4.0 Hz, 1H), 2.27 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 153.4, 143.1, 139.5, 138.7, 138.7, 138.3, 137.8, 137.6, 137.5, 136.0, 133.9, 132.4, 129.9, 129.4, 129.0, 128.8, 128.5, 128.4, 127.9, 127.7, 127.4, 127.4, 127.2, 125.7, 124.9, 124.8, 124.6, 124.5, 121.7, 121.6, 119.7, 119.3, 117.8, 115.8, 112.2, 95.9, 71.6, 64.3, 58.9, 57.5, 52.5, 51.1, 21.7, 21.4. IR (KBr) v 3441, 2850, 1624, 1574, 1234, 695 cm⁻¹. HRMS (ESI) calcd for C₄₉H₄₃Br₂N₄ [M+H]⁺ 845.1849, found 845.1847.

1-(11-benzyl-1-(2-benzyl-5-bromo-1,2-dihydroisoquinolin-1-yl)-10-bromo-3-phenyl-1,2,3,6tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (**7g**) Yellow solid obtained by filtration of the precipitate; 90.7 mg, 56% yield; dr > 20:1; reaction time = 1 h; mp 174.5-175.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.47 (d, *J* = 8.0 Hz, 1H), 7.41-7.29 (m, 8H), 7.20 (d, *J* = 8.0 Hz, 4H), 7.11-7.03 (m, 7H), 6.93 (t, *J* = 8.0 Hz, 1H), 6.84 (s, 2H), 6.77 (t, *J* = 8.0 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 1H), 6.43 (d, *J* = 8.0 Hz, 2H), 5.86 (s, 1H), 5.67 (s, 1H), 5.53 (d, *J* = 4.0 Hz, 1H), 5.27 (s, 1H), 4.06 (d, *J* = 12.0 Hz, 1H), 3.97 (d, *J* = 16.0 Hz, 1H), 3.71 (d, *J* = 16.0 Hz, 1H), 3.51 (d, *J* = 12.0 Hz, 1H), 3.00 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.6, 153.5, 142.7, 141.6, 137.6, 137.3, 137.1, 134.2, 132.0, 131.7, 131.6, 131.5, 131.5, 129.9, 129.6, 128.9, 128.5, 128.4, 128.4, 127.8, 127.6, 127.5, 126.5, 125.8, 125.5, 124.8, 124.1, 123.2, 120.8, 118.0, 117.8, 111.7, 92.1, 72.6, 60.2, 58.8, 57.4, 56.4, 49.8. IR (KBr) ν 3438, 2925, 1619, 1589, 1501, 1220, 737 cm⁻¹. HRMS (ESI) calcd for C₄₇H₃₉Br₂N₄ [M+H]⁺ 817.1536, found 817.1519.

1-(11-benzyl-3-phenyl-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (8a)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 75.8 mg, 86% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 4.0 Hz, 1H), 7.72-7.70 (m, 1H), 7.34-7.27 (m, 9H), 7.17 (d, *J* = 4.0 Hz, 1H), 7.15-7.07 (m, 7H), 7.00-6.98 (m, 2H), 5.28 (d, *J* = 4.0 Hz, 1H), 5.05 (s, 1H), 3.88 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.65 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.32 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 2.96 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 153.5, 143.9, 139.8, 137.7, 137.6, 130.0, 129.8, 129.4, 128.9, 128.5, 128.4, 127.4, 126.6, 126.1, 125.7, 124.1, 123.6, 120.9, 118.7, 113.3, 69.3, 56.9, 53.0, 35.8. IR (KBr) v 3419, 3030, 1619, 1571, 1491, 1247, 754 cm⁻¹. HRMS (ESI) calcd for C₃₁H₂₈N₃ [M+H]⁺ 442.2278, found 442.2277.

1-(11-benzyl-3-(4-nitrophenyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(4-nitrophenyl)methanimine (**8b**)

Red oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 56.4 mg, 53% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 8.26-8.22 (m, 4H), 7.99 (s, 1H), 7.61 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 7.45 (s, 1H), 7.31 (s, 5H), 7.21-7.09 (m, 7H), 5.27 (s, 1H), 5.20 (d, J = 8.0 Hz, 1H), 3.92 (d, J = 16.0 Hz, 1H), 3.66 (d, J = 16.0 Hz, 1H), 3.49 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 3.02 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 158.6, 147.7, 144.5, 142.5, 138.4, 136.7, 129.5, 129.2, 128.6, 128.6, 127.8, 126.7, 126.4, 126.0, 125.9, 125.0, 121.2, 117.1, 116.0, 69.6, 57.0, 52.6, 35.4, one carbon missing in the aromatic region. IR (KBr) *v* 3387, 3029, 1558, 1501, 1330, 1176, 1105, 736 cm⁻¹. HRMS (ESI) calcd for C₃₁H₂₆N₅O₄ [M+H]⁺ 532.1979, found 532.1977.

1-(11-benzyl-9-bromo-3-phenyl-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (**8c**)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 84.4 mg, 81% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.35-7.27 (m, 9H), 7.21-7.19 (m, 2H), 7.17 (s, 1H), 7.13-7.07 (m, 4H), 6.98 (d, *J* = 8.0 Hz, 2H), 5.24 (s, 1H), 5.02 (d, *J* = 4.0 Hz, 1H), 3.85 (d, *J* = 16.0 Hz, 1H), 3.65 (d, *J* = 16.0 Hz, 1H), 3.28 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 2.92 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 153.2, 143.7, 138.8, 137.7, 137.5, 132.6, 131.2, 129.8, 129.3, 129.0, 128.8, 128.4, 128.2, 127.5, 124.2, 123.9, 120.8, 119.6, 118.9, 112.9, 69.0, 56.8, 52.5, 35.6. IR (KBr) v 3450, 3054,

1621, 1571, 1488, 1242, 755 cm⁻¹. HRMS (ESI) calcd for $C_{31}H_{26}BrN_3$ [M+H]⁺ 520.1383, found 520.1377.

1-(11-benzyl-9-bromo-3-(4-fluorophenyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(4-fluorophenyl)methanimine (**8d**)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 92.6 mg, 83% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 7.25-7.22 (m, 5H), 7.16-7.14 (m, 2H), 7.01-6.91 (m, 7H), 6.89-6.85 (m, 2H), 5.14 (s, 1H), 4.85 (d, *J* = 4.0 Hz, 1H), 3.81 (d, *J* = 16.0 Hz, 1H), 3.58 (d, *J* = 16.0 Hz, 1H), 3.18 (dd, *J*_I = *J*₂ = 4.0 Hz, 1H), 2.82 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, *J* = 67.0 Hz, 1C), 158.6 (d, *J* = 69.0 Hz, 1C), 157.8, 149.3 (d, *J* = 3.0 Hz, 1C), 140.3 (d, *J* = 3.0 Hz, 1C), 138.8, 138.3, 137.4, 132.5, 131.3, 129.3, 128.9, 128.5, 128.2, 127.6, 121.8 (d, *J* = 8.0 Hz, 1C), 121.4 (d, *J* = 8.0 Hz, 1C), 119.7, 116.6 (d, *J* = 23.0 Hz, 1C), 115.5 (d, *J* = 23.0 Hz, 1C), 112.6, 69.6, 56.9, 52.5, 35.5. IR (KBr) v 3445, 1620, 1590, 1500, 1217, 736 cm⁻¹. HRMS (ESI) calcd for C₃₁H₂₅BrFN₃ [M+H]⁺ 556.1194, found 556.1192.

1-(11-benzyl-9-bromo-3-(3-methoxyphenyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(3-methoxyphenyl)methanimine (**8e**)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 106.7 mg, 92% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 4.0 Hz, 1H), 7.65-7.62 (m, 1H), 7.41-7.33 (m, 5H), 7.31-7.27 (m, 4H), 7.23 (s, 1H), 6.79-6.69 (m, 4H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.58 (d, *J* = 4.0 Hz, 1H), 5.29 (s, 1H), 5.07 (d, *J* = 4.0 Hz, 1H), 3.92 (d, *J* = 16.0

Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.71 (d, J = 16.0 Hz, 1H), 3.33 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 2.99 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 160.3, 158.2, 154.7, 144.9, 138.8, 137.8, 137.5, 132.6, 131.3, 130.6, 129.6, 129.3, 128.8, 128.4, 128.2, 127.6, 119.7, 113.1, 112.8, 111.3, 110.1, 108.9, 106.5, 105.4, 69.0, 56.9, 55.4, 55.2, 52.6, 35.6. IR (KBr) *v* 3421, 1566, 1485, 1244, 1137, 773 cm⁻¹. HRMS (ESI) calcd for C₃₃H₃₁BrN₃O₂ [M+H]⁺ 580.1594, found 580.1589.

1-(11-benzyl-9-bromo-3-(*m*-tolyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(*m*-tolyl)methanimine (**8f**)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 95.9 mg, 88% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 4.0 Hz, 1H), 7.58 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 7.37-7.30 (m, 5H), 7.23-7.21 (m, 4H), 7.16 (s, 1H), 6.95-6.93 (m, 4H), 6.80 (d, *J* = 8.0 Hz, 2H), 5.23 (s, 1H), 5.02 (d, *J* = 4.0 Hz, 1H), 3.87 (d, *J* = 12.0 Hz, 1H), 3.67 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 3.29 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 2.94 (d, *J* = 16.0 Hz, 1H), 2.35 (dd, *J*₁ = *J*₂ = 4.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 158.0, 153.3, 143.8, 139.8, 138.9, 138.7, 137.9, 137.6, 132.7, 131.3, 129.6, 129.4, 128.8, 128.8, 128.4, 128.3, 127.5, 125.0, 124.8, 121.7, 119.9, 119.6, 117.8, 116.2, 112.7, 69.0, 56.9, 52.3, 35.7, 21.6, 21.4. IR (KBr) *v* 3451, 2919, 1614, 1570, 1486, 693 cm⁻¹. HRMS (ESI) calcd for C₃₃H₃₁BrN₃ [M+H]⁺ 548.1696, found 548.1690.

1-(11-benzyl-10-bromo-3-phenyl-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-N-phenylmethanimine (**8g**)

Yellow oil obtained by column chromatography (petroleum ether/ethyl acetate = 15:1); 95.7 mg, 92% yield; dr > 20:1; reaction time = 1 h; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.38-7.29 (m, 10H), 7.22 (d, *J* = 4.0 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 4H), 7.03 (t, *J* = 8.0

Hz, 2H), 6.98 (d, J = 8.0 Hz, 1H), 5.28 (s, 1H), 5.08 (d, J = 4.0 Hz, 1H), 3.89 (d, J = 16.0 Hz, 1H), 3.67 (d, J = 16.0 Hz, 1H), 3.23 (dd, $J_1 = J_2 = 4.0$ Hz, 1H), 2.97 (d, J = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 158.1, 153.3, 143.8, 142.1, 137.7, 137.4, 130.5, 130.0, 129.9, 129.4, 129.0, 128.5, 127.6, 127.3, 125.8, 124.8, 124.3, 123.9, 120.9, 118.8, 112.5, 69.3, 56.6, 53.0, 38.0. IR (KBr) v 3423, 3032, 1619, 1571, 1491, 1179, 756 cm⁻¹. HRMS (ESI) calcd for C₃₁H₂₆BrN₃ [M+H]⁺ 520.1383, found 520.1380.

5. Experimental data for the formation of 12

General procedure: To a 5.0 mL vial were successively added 1,5-diazapentadienium salts **1** (0.23 mmol), 3-nitropyridine **9** (0.30 mmol), CsF (0.90 mmol) and 1.0 mL of CH₃CN. And then, benzyne precursor **11** (0.68 mmol) was added by syringe. The resulting mixture was stirred at 60 °C in oil bath. Upon completion of the reaction (monitoring by TLC), the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate) to afford the corresponding products **12**.

1-(10a,11-dinitro-1,3,7-triphenyl-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-

(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-phenylmethanimine (**12a**) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 68.4 mg, 73% yield; dr > 20:1; reaction time = 4 h; mp 213.7-214.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40-7.20 (m, 8H), 7.17-7.06 (m, 7H), 7.02-6.99 (m, 3H), 6.87 (d, *J* = 12.0 Hz, 2H), 6.79 (d, *J* = 12.0 Hz, 2H), 6.29 (s, 1H), 4.63 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 4.41 (t, *J* = 8.0 Hz, 1H), 4.31 (d, *J* = 8.0 Hz, 1H), 4.21 (s, 1H), 4.19 (d, *J* = 4.0 Hz, 1H), 3.59 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 151.8, 145.5, 145.2, 144.7, 138.6, 134.2, 129.7, 129.6, 129.5, 129.0, 125.1, 125.0, 124.5, 123.7, 123.1, 121.0, 120.9, 119.2, 113.8, 87.5, 85.8, 84.9, 75.7, 59.2, 52.7, 48.3, 38.7, 26.6. IR (KBr) v 3449, 2311, 1637, 1591, 757 cm⁻¹. HRMS (ESI) calcd for $C_{37}H_{31}N_6O_4 \ [M+H]^+ \ 623.2401$, found 623.2399.

1-(10a,11-dinitro-1,7-diphenyl-3-(*p*-tolyl)-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(*p*-tolyl)methanimine

(12b)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 64.5 mg, 66% yield; dr > 20:1; reaction time = 4 h; mp 221.7-222.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.31 (d, *J* = 8.0 Hz, 2H), 7.20-7.13 (m, 5H), 7.02 (dd, *J*₁ = *J*₂ = 8.0 Hz, 7H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.71 (d, *J* = 8.0 Hz, 2H), 6.26 (s, 1H), 4.64 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 4.42 (t, *J* = 8.0 Hz, 1H), 4.33 (d, *J* = 8.0 Hz, 1H), 4.22 (s, 1H), 4.20 (s, 1H), 3.59 (t, *J* = 8.0 Hz, 1H), 2.37 (s, 3H), 2.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 149.2, 145.5, 145.2, 142.3, 138.4, 134.8, 134.6, 134.1, 130.1, 129.6, 129.5, 129.4, 124.3, 123.6, 122.9, 120.8, 120.8, 119.1, 113.4, 87.5, 85.8, 84.8, 75.8, 59.1, 52.6, 48.3, 38.7, 26.5, 20.9, 20.7. IR (KBr) *v* 3447, 2922, 1634, 1586, 1503, 1295, 1204, 750 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₅N₆O₄ [M+H]⁺ 651.2714, found 651.2715.

N-(4-ethylphenyl)-1-(3-(4-ethylphenyl)-10a,11-dinitro-1,7-diphenyl-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)methanimine (**12c**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 65.9 mg, 65% yield; dr > 20:1; reaction time = 4 h; mp 192.3-192.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.42 (s, 2H), 7.33 (s, 2H), 7.19-7.01 (m, 12H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.29 (s, 1H), 4.65 (s, 1H), 4.44 (s, 1H), 4.35 (d, *J* = 4.0 Hz, 1H), 4.24 (s, 2H), 3.60 (s, 1H), 2.69 (d, *J* = 8.0 Hz, 2H), 2.62 (d, *J* = 8.0 Hz, 2H), 1.26 (d, *J* = 24.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 149.4, 145.5, 145.2, 142.4, 141.2, 141.1, 138.4, 134.1, 129.5, 129.4, 128.9, 128.3, 124.3, 123.6, 122.9, 120.9, 120.8, 119.1, 113.4, 87.5, 85.8, 84.8, 75.8, 59.0, 52.6, 48.3, 38.7, 28.3, 28.1, 26.5, 15.6, 15.5. IR (KBr) *v* 3444, 2964, 1635, 1504, 1292, 1206, 755 cm⁻¹. HRMS (ESI) calcd for C₄₁H₃₉N₆O₄ [M+H]⁺ 679.3027, found 679.3030.

N-(4-fluorophenyl)-1-(3-(4-fluorophenyl)-10a,11-dinitro-1,7-diphenyl-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-

yl)methanimine (12d)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 69.2 mg, 70% yield; dr > 20:1; reaction time = 4 h; mp 189.6-190.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 6H), 6.87 (dd, *J*₁ = *J*₂ = 8.0 Hz, 5H), 6.72 (s, 2H), 6.24 (s, 2H), 4.62 (d, *J* = 8.0 Hz, 1H), 4.38 (t, *J* = 8.0 Hz, 1H), 4.29 (d, *J* = 8.0 Hz, 1H), 4.17 (s, 2H), 3.53 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 161.5 (d, *J* = 53.0 Hz, 1C), 159.1 (d, *J* = 53.0 Hz, 1C), 155.9, 147.6, 145.2, 145.0, 141.0 (d, *J* = 3.0 Hz, 1C), 138.7, 134.0, 129.5, 129.5, 124.5, 123.6, 123.1 (d, *J* = 8.0 Hz, 1C), 122.9, 122.1 (d, *J* = 8.0 Hz, 1C), 118.8, 116.3 (d, *J* = 23.0 Hz, 1C), 115.6 (d, *J* = 23.0 Hz, 1C), 113.3, 87.4, 85.8, 84.7, 75.8, 59.1, 52.4, 48.3, 38.7, 26.3. IR (KBr) v 3449, 3067, 1635, 1595, 1502, 1222, 754 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉F₂N₆O₄ [M+H]⁺ 659.2213, found 659.2212.

N-(4-chlorophenyl)-1-(3-(4-chlorophenyl)-10a,11-dinitro-1,7-diphenyl-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**12e**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 77.9 mg, 75% yield; dr > 20:1; reaction time = 4 h; mp 216.5-217.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.35 (t, *J* = 8.0 Hz, 2H), 7.27-7.22 (m, 4H), 7.19-7.09 (m, 5H), 7.04 (t, *J* = 8.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 3H), 6.94 (s, 1H), 6.88 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H), 6.24 (s, 1H), 4.61 (d, J = 8.0 Hz, 1H), 4.38 (t, J = 8.0 Hz, 1H), 4.25 (d, J = 8.0 Hz, 1H), 4.17 (d, J = 8.0 Hz, 2H), 3.52 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 150.0, 145.1, 144.9, 143.0, 138.3, 134.1, 130.5, 130.4, 129.6, 129.6, 129.5, 129.0, 125.0, 123.6, 123.5, 122.2, 122.0, 118.8, 114.1, 87.3, 85.7, 84.8, 75.7, 59.3, 52.3, 48.1, 38.7, 26.4. IR (KBr) v 3449, 3067, 1635, 1595, 1502, 1222, 754 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉Cl₂N₆O₄ [M+H]⁺ 691.1622, found 691.1623.

N-(4-bromophenyl)-1-(3-(4-bromophenyl)-10a,11-dinitro-1,7-diphenyl-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**12f**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 98.9 mg, 85% yield; dr > 20:1; reaction time = 4 h; mp 239.2-240.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (s, 1H), 7.41 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.21 (t, *J* = 4.0 Hz, 2H), 7.17 (t, *J* = 8.0 Hz, 2H), 7.11 (t, *J* = 8.0 Hz, 1H), 7.05 (t, *J* = 8.0 Hz, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.91 (dd, *J_I* = *J₂* = 8.0 Hz, 5H), 6.60 (d, *J* = 8.0 Hz, 2H), 6.23 (s, 1H), 4.61 (dd, *J_I* = *J₂* = 4.0 Hz, 1H), 4.37 (t, *J* = 8.0 Hz, 1H), 4.24 (d, *J* = 8.0 Hz, 1H), 4.17 (d, *J* = 8.0 Hz, 2H), 3.51 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 150.4, 145.1, 144.9, 143.4, 138.2, 134.1, 132.6, 131.9, 129.6, 129.5, 125.0, 123.6, 122.6, 122.2, 118.8, 118.2, 118.1, 114.3, 87.3, 85.7, 84.8, 75.7, 59.3, 52.3, 48.1, 38.7, 26.4, one carbon missing in the aromatic region. IR (KBr) *v* 3444, 3055, 1636, 1597, 1490, 1287, 1201, 755 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉Br₂N₆O₄ [M+H]⁺ 779.0612, found 779.0607.

N-(3-methoxyphenyl)-1-(3-(3-methoxyphenyl)-10a,11-dinitro-1,7-diphenyl-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**12g**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 65.2 mg, 64% yield; dr > 20:1; reaction time = 4 h; mp 188.8-189.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.27-7.22 (m, 3H), 7.18 (t, *J* = 8.0 Hz, 2H), 7.13-7.10 (m, 2H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.71 (d, *J* = 8.0 Hz, 2H), 6.63 (d, *J* = 8.0 Hz, 2H), 6.39 (d, *J* = 8.0 Hz, 1H), 6.25 (s, 2H), 4.60 (d, *J* = 4.0 Hz, 1H), 4.39 (t, *J* = 8.0 Hz, 1H), 4.26 (d, *J* = 4.0 Hz, 1H), 4.19 (d, *J* = 8.0 Hz, 2H), 3.78 (s, 3H), 3.61 (s, 3H), 3.56 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 160.3, 156.6, 153.1, 145.7, 145.5, 145.1, 138.5, 134.1, 130.4, 129.6, 129.5, 129.5, 124.8, 123.6, 119.0, 113.7, 113.0, 112.9, 111.1, 106.7, 106.2, 87.4, 85.8, 84.8, 75.8, 59.3, 55.2, 55.2, 52.5, 48.2, 38.7, 26.5, two carbons missing in the aromatic region. IR (KBr) *v* 3449, 3068, 1635, 1584, 1493, 1208, 765 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₅N₆O₆ [M+H]⁺ 683.2613, found 683.2612.

1-(10a, 11-dinitro-1, 7-diphenyl-3-(m-tolyl)-1, 2, 3, 6, 6a, 6b, 7, 10, 10a, 10b-decahydro-2, 6, 10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocin-5-yl)-*N*-(*m*-tolyl)methanimine (**12h**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 62.4 mg, 64% yield; dr > 20:1; reaction time = 4 h; mp 185.6-185.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.29 (t, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.15-7.09 (m, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.03 (t, *J* = 4.0 Hz, 1H), 7.00 (d, *J* = 8.0 Hz, 1H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.93-6.79 (m, 8H), 6.50 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 6.45 (s, 1H), 6.17 (s, 1H), 4.54 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 4.31 (t, *J* = 8.0 Hz, 1H), 4.20 (d, *J* = 8.0 Hz, 1H), 4.12 (d, *J* = 4.0 Hz, 1H), 4.11 (s, 1H), 3.48 (t, *J* = 8.0 Hz, 1H), 2.27 (s, 3H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 151.6, 145.5, 145.1, 144.5, 139.6, 138.7, 138.4, 134.1, 129.5, 129.4, 129.4, 128.7, 125.8, 124.6, 123.6, 123.4, 122.2, 121.5, 119.1, 117.8, 117.6, 113.6, 87.5, 85.8, 84.9, 75.8, 59.2, 52.5, 48.3, 38.7, 26.5, 21.4, 21.3, one carbon missing in the aromatic region. IR (KBr) *v* 3449, 3049, 1636, 1586, 1494, 1209, 758 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₅N₆O₄ [M+H]⁺ 651.2714, found 651.2714.

N-(3-chlorophenyl)-1-(3-(3-chlorophenyl)-10a,11-dinitro-1,7-diphenyl-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (12i)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 52.9 mg, 51% yield; dr > 20:1; reaction time = 4 h; mp 203.2-203.9 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 7.17-7.07 (m, 6H), 7.04 (d, *J* = 4.0 Hz, 1H), 6.99 (dd, *J_l* = *J*₂ = 8.0 Hz, 3H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 4.0 Hz, 1H), 6.66 (d, *J* = 8.0 Hz, 1H), 6.27 (s, 1H), 4.65 (dd, *J_l* = *J*₂ = 8.0 Hz, 1H), 4.42 (t, *J* = 8.0 Hz, 1H), 4.25 (d, *J* = 4.0 Hz, 1H), 4.22 (dd, *J_l* = *J*₂ = 4.0 Hz, 1H), 4.18 (s, 1H), 3.54 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 152.7, 145.5, 145.1, 145.0, 138.3, 135.3, 134.6, 134.2, 130.6, 130.0, 129.7, 129.6, 125.4, 125.2, 125.1, 124.1, 123.8, 121.6, 121.0, 119.0, 118.7, 114.5, 87.3, 85.8, 85.0, 75.9, 59.5, 52.4, 48.3, 38.7, 26.5. IR (KBr) *v* 3446, 3068, 1634, 1580, 1489, 1204, 757 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉Cl₂N₆O₄ [M+H]⁺ 691.1622, found 691.1618.

N-(3-bromophenyl)-1-(3-(3-bromophenyl)-10a,11-dinitro-1,7-diphenyl-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (**12**j)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 55.4 mg, 47% yield; dr > 20:1; reaction time = 4 h; mp 208.4-209.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.40 (t, *J* = 8.0 Hz, 2H), 7.28-7.25 (m, 5H), 7.20 (dd, *J*₁ = *J*₂ = 8.0 Hz, 3H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.14-7.07 (m, 2H), 7.05-6.99 (m, 3H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.83 (s, 1H), 6.70 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 6.26 (s, 1H), 4.65 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 4.41 (t, *J* = 8.0 Hz, 1H), 4.22 (dd, *J*₁ = *J*₂ = 4.0 Hz, 1H), 4.17 (s, 1H), 3.53 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 152.8, 145.6, 145.1, 144.9, 138.3, 134.3, 130.9, 130.3, 129.7, 129.7, 128.1, 128.0, 125.4, 124.5, 124.2, 124.0, 123.9, 123.2, 122.7, 119.4, 119.2, 118.9, 114.5, 87.3, 85.8, 85.0, 75.9, 59.6, 52.3, 48.3, 38.7, 26.5. IR (KBr) *v* 3448, 3065, 1636, 1572, 1488, 1202, 755 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉Br₂N₆O₄ [M+H]⁺ 779.0612, found 779.0606.

N-(2-fluorophenyl)-1-(3-(2-fluorophenyl)-10a, 11-dinitro-1, 7-diphenyl-1, 2, 3, 6, 6a, 6b, 7, 10, 10a, 10b-decahydro-2, 6, 10-(epimethanetriyl) pyrido [2', 3': 3, 4] cyclobuta [1, 2-d] [1, 3] diazocin-5-

yl)methanimine (12k)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 56.0 mg, 57% yield; dr > 20:1; reaction time = 4 h; mp 201.9-202.6 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.14 (s, 1H), 7.39-7.29 (m, 6H), 7.27-7.08 (m, 7H), 7.03 (t, J = 8.0 Hz, 4H), 6.89 (d, J = 8.0 Hz, 2H), 6.83 (t, J = 8.0 Hz, 1H), 6.67 (s, 1H), 4.98 (d, J = 4.0 Hz, 1H), 4.73 (d, J = 8.0 Hz, 1H), 4.36 (t, J = 8.0 Hz, 1H), 4.17 (d, J = 4.0 Hz, 1H), 3.90 (s, 1H), 3.49 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 160.5, 156.6 (d, J = 70.0 Hz, 1C), 154.1 (d, J = 68.0 Hz, 1C), 144.9 (d, J = 40.0 Hz, 1C), 142.7, 140.1 (d, J = 10.0 Hz, 1C), 133.5, 132.2 (d, J = 10.0 Hz, 1C), 129.4, 128.8, 128.1 (d, J = 8.0 Hz, 1C), 125.5 (d, J = 8.0 Hz, 1C), 125.2, 125.2, 125.1, 124.7 (d, J = 4.0 Hz, 1C), 122.7, 122.0, 121.6, 119.5, 117.4, 116.6 (d, J = 20.0 Hz, 1C), 115.8 (d, J = 20.0 Hz, 1C), 111.8, 87.8, 85.9, 83.6, 79.2, 72.6, 56.6, 51.9, 47.1, 25.7. IR (KBr) v 3451, 1636, 1592, 1499, 754 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉F₂N₆O₄ [M+H]⁺ 659.2213, found 659.2208.

N-(2-chlorophenyl)-1-(3-(2-chlorophenyl)-10a,11-dinitro-1,7-diphenyl-

1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-

d][1,3]diazocin-5-yl)methanimine (12l)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 70:1 to 30:1); 56.2 mg, 54% yield; dr > 20:1; reaction time = 4 h; mp 212.2-213.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.39-7.29 (m, 5H), 7.24 (s, 1H), 7.19-7.12 (m, 3H), 7.08-6.97 (m, 6H), 6.85 (t, *J* = 8.0 Hz, 3H), 6.73 (d, *J* = 8.0 Hz, 2H), 6.36 (s, 1H), 4.64 (d, *J* = 8.0 Hz, 1H), 4.54 (d, *J* = 4.0 Hz, 1H), 4.39 (t, *J* = 8.0 Hz, 1H), 4.19 (s, 1H), 4.13 (d, *J* = 4.0 Hz, 1H), 3.76 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 150.6, 145.3, 142.1, 141.5, 134.3, 130.8, 130.5, 129.6, 129.5, 129.3, 128.2, 128.0, 127.6, 126.8, 125.1, 123.7, 122.8, 120.4, 119.5, 119.4, 111.1, 87.9, 85.5, 83.8, 74.3, 58.1, 53.3, 48.4, 38.6, 26.1, two carbons missing in the aromatic region. IR (KBr) *v* 3447, 3059, 1634, 1597, 1488, 1212, 753 cm⁻¹. HRMS (ESI) calcd for C₃₇H₂₉Cl₂N₆O₄ [M+H]⁺ 691.1622, found 691.1618.

6. Experimental data for the formation of 13

General procedure: To a 5.0 mL vial were successively added 1,5-diazapentadienium salts **1** (0.23 mmol), isoquinolines **10** (0.30 mmol), CsF (0.90 mmol) and 1.0 mL of CH₃CN. And then, benzyne precursor **11** (0.68 mmol) was added by syringe. The resulting mixture was stirred at 60 °C in oil bath. During the reaction process, a large amount of precipitate is generated. So, only a simple filtration was needed to obtain the pure products **13**. (*Note: compounds 13 were not very stable in solution, but they were very stable in solid state.*)

1-(3,11-diphenyl-1-(2-phenyl-1,2-dihydroisoquinolin-1-yl)-1,2,3,6-tetrahydro-2,6epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (**13a**)

Yellow solid obtained by filtration of the precipitate; 80.2 mg, 85% yield; dr > 20:1; reaction time = 4 h; mp 220.2-221.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 8.0 Hz, 1H), 7.70 (s, 1H), 7.37-7.22 (m, 6H), 7.16-7.03 (m, 10H), 6.98 (q, *J* = 8.0 Hz, 4H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.87 (q, *J* = 8.0 Hz, 2H), 6.75 (t, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 4.0 Hz, 1H), 6.50 (s, 1H), 6.36 (d, *J* = 8.0 Hz,

2H), 6.30 (d, J = 8.0 Hz, 2H), 6.09 (d, J = 8.0 Hz, 1H), 5.98 (s, 1H), 5.35 (d, J = 8.0 Hz, 1H), 3.45 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.3, 153.2, 148.5, 145.3, 141.6, 137.7, 136.4, 132.2, 131.4, 129.6, 129.5, 129.4, 129.2, 128.9, 128.5, 127.8, 127.8, 127.5, 127.2, 126.2, 125.6, 124.3, 123.7, 122.6, 121.9, 121.1, 120.9, 118.5, 116.9, 116.7, 115.9, 106.6, 66.8, 63.3, 54.5, 42.8, one carbon missing in the aromatic region. IR (KBr) v 3443, 3065, 1565, 1528, 1244, 752 cm⁻¹. HRMS (ESI) calcd for C₄₅H₃₇N₄ [M+H]⁺ 633.2941, found 633.2938.

1-(11-phenyl-1-(2-phenyl-1,2-dihydroisoquinolin-1-yl)-3-(*p*-tolyl)-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-(*p*-tolyl)methanimine (**13b**)

Yellow solid obtained by filtration of the precipitate; 84.2 mg, 85% yield; dr > 20:1; reaction time = 4 h; mp 225.3-226.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.69 (s, 1H), 7.36 (d, *J* = 8.0 Hz, 1H), 7.31-7.24 (m, 3H), 7.16-7.08 (m, 6H), 7.04-6.94 (m, 7H), 6.85 (t, *J* = 8.0 Hz, 4H), 6.76 (t, *J* = 8.0 Hz, 1H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.49 (s, 1H), 6.35 (d, *J* = 8.0 Hz, 2H), 6.20 (d, *J* = 8.0 Hz, 2H), 6.11 (d, *J* = 8.0 Hz, 1H), 5.93 (s, 1H), 5.35 (d, *J* = 8.0 Hz, 1H), 3.45 (d, *J* = 8.0 Hz, 1H), 2.30 (s, 3H), 2.23 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 150.7, 148.6, 145.3, 139.3, 137.8, 136.1, 133.7, 132.2, 132.0, 131.3, 130.1, 129.5, 129.5, 129.3, 129.2, 128.5, 127.8, 127.8, 127.5, 127.1, 126.1, 125.6, 125.5, 123.7, 121.8, 121.1, 120.7, 118.5, 116.8, 116.2, 115.7, 106.6, 66.8, 63.2, 54.6, 42.8, 20.9, 20.4. IR (KBr) *v* 3442, 3028, 1609, 1569, 1504, 1237, 1225, 747 cm⁻¹. HRMS (ESI) calcd for C₄₇H₄₁N₄ [M+H]⁺ 661.3326, found 661.3326.

N-(4-chlorophenyl)-1-(3-(4-chlorophenyl)-11-phenyl-1-(2-phenyl-1,2-dihydroisoquinolin-1-yl)-

1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)methanimine (13c)

Yellow solid obtained by filtration of the precipitate; 91.2 mg, 87% yield; dr > 20:1; reaction time = 6 h; mp 207.1-207.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1H), 7.68 (s, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 8.0 Hz, 3H), 7.31-7.28 (m, 1H), 7.20-7.02 (m, 13H), 6.95 (s, 1H), 6.90 (q, *J* = 8.0 Hz, 2H), 6.82-6.76 (m, 2H), 6.46 (s, 1H), 6.36 (d, *J* = 8.0 Hz, 2H), 6.21 (d, *J* = 8.0 Hz, 2H), 6.17 (d, *J* = 8.0 Hz, 1H), 5.92 (s, 1H), 5.35 (d, *J* = 8.0 Hz, 1H), 3.43 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 151.5, 148.3, 145.3, 140.1, 137.5, 136.2, 132.2, 131.5, 129.7, 129.6, 129.6, 129.5, 129.4, 129.3, 129.0, 128.9, 128.6, 128.0, 127.8, 127.6, 127.5, 127.3, 126.4, 125.6, 125.5, 123.8, 122.2, 121.2, 118.5, 117.2, 116.9, 106.5, 67.1, 63.2, 54.5, 42.6. IR (KBr) ν 3450, 3066, 1610, 1564, 1493, 1242, 752 cm⁻¹. HRMS (ESI) calcd for C₄₅H₃₅Cl₂N₄ [M+H]⁺ 701.2233, found 701.2231.

1-(11-phenyl-1-(2-phenyl-1,2-dihydroisoquinolin-1-yl)-3-(*m*-tolyl)-1,2,3,6-tetrahydro-2,6epiminobenzo[*d*]azocin-5-yl)-*N*-(*m*-tolyl)methanimine (**13d**)

Yellow solid obtained by filtration of the precipitate; 77.7 mg, 78% yield; dr > 20:1; reaction time = 6 h; mp 212.6-213.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.75 (s, 1H), 7.40-7.33 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 7.19-7.15 (m, 4H), 7.09-6.99 (m, 6H), 6.93 (dd, *J*₁ = *J*₂ = 8.0 Hz, 4H), 6.88 (d, *J* = 8.0 Hz, 1H), 6.83-6.75 (m, 3H), 6.52 (s, 1H), 6.41 (d, *J* = 8.0 Hz, 2H), 6.26 (s, 1H), 6.23 (d, *J* = 8.0 Hz, 1H), 6.15 (d, *J* = 8.0 Hz, 1H), 6.02 (s, 1H), 5.41 (d, *J* = 8.0 Hz, 1H), 3.53 (d, *J* = 8.0 Hz, 1H), 2.38 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.1, 153.2, 148.6, 145.4, 141.8, 139.7, 138.6, 137.7, 136.6, 132.0, 131.4, 129.6, 129.4, 129.3, 129.2, 128.7, 128.5, 128.0, 127.9, 127.5, 127.2, 126.2, 125.6, 125.5, 125.0, 123.9, 123.5, 121.9, 121.7, 121.0, 118.6, 117.9, 116.8, 116.7, 116.6, 113.4, 106.8, 66.8, 63.4, 54.6, 43.1, 21.6, 21.4. IR (KBr) *v* 3439, 2104, 1636, 1551, 1530, 1267, 752 cm⁻¹. HRMS (ESI) calcd for C₄₇H₄₁N₄ [M+H]⁺ 661.3326, found 661.3329.

1-(10-methoxy-1-(5-methoxy-2-phenyl-1,2-dihydroisoquinolin-1-yl)-3,11-diphenyl-1,2,3,6tetrahydro-2,6-epiminobenzo[*d*]azocin-5-yl)-*N*-phenylmethanimine (**13e**) Yellow solid obtained by filtration of the precipitate; 82.8 mg, 80% yield; dr > 20:1; reaction time = 6 h; mp 219.6-220.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (s, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.20-7.09 (m, 7H), 7.05-6.99 (m, 4H), 6.96-6.82 (m, 8H), 6.78 (dd, *J_I* = 4.0 Hz, *J₂* = 8.0 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.57 (dd, *J_I* = *J₂* = 8.0 Hz, 3H), 6.43-6.40 (m, 2H), 5.72 (d, *J* = 4.0 Hz, 1H), 5.71 (s, 1H), 5.64 (d, *J* = 8.0 Hz, 1H), 5.42 (d, *J* = 8.0 Hz, 1H), 3.96 (d, *J* = 4.0 Hz, 1H), 3.76 (s, 3H), 3.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 157.4, 153.2, 152.8, 148.0, 145.9, 142.2, 140.5, 136.2, 129.7, 129.3, 129.1, 128.8, 128.5, 128.0, 127.9, 125.1, 124.1, 122.5, 121.4, 121.2, 120.8, 120.7, 119.2, 119.1, 118.8, 116.4, 116.0, 116.0, 108.5, 107.9, 101.0, 66.9, 60.7, 55.1, 54.1, 45.4, one carbon in the aromatic region and one carbon in the aliphatic region were missing. IR (KBr) *v* 3447, 3055, 1574, 1493, 1256, 754 cm⁻¹. HRMS (ESI) calcd for C₄₇H₄₁N₄O₂ [M+H]⁺ 693.3224, found 693.3221.

7. Scalable preparation of 3a and chemical conversions of 3a, 8g and 12f

Scheme S2 Scale-up preparation of 3a and chemical conversions of 3a, 8g and 12f.

General procedure for the scale-up preparation of 3a: To a 25.0 mL round-bottom flask were successively added 1,5-diazapentadienium salt 1a (0.39 g, 15.0 mmol), *N*-benyl 3-nitropyridinium salt 2a (0.97 g, 33.0 mmol), DBU (0.57 g, 37.5 mmol) and 10.0 mL of CH₃CN. The resulting mixture was stirred at 35 °C for 2 h. Then, the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 15:1) to afford the desired product 3a as a yellow solid in 61% yield (0.60 g).

General procedure for the formation of 14: A 0.5 mL of sodium acetate/acetic acid aqueous solution (pH = 5) was added to a solution of **3a** (65.1 mg, 0.10 mmol) in 1.0 mL of CH₂Cl₂. The reaction mixture was stirred at 35 °C for 14.5 h until the complete consumption of **3a** as monitored by thin layer chromatography. Then, the mixture was extracted with CH₂Cl₂ for three times. The combined organic phase was dried over MgSO₄, filtered, concentrated and purified with silica gel column chromatography to obtain **14** in 63% yield as a yellow solid.

1,7-dibenzyl-10a,11-dinitro-3-phenyl-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocine-5-carbaldehyde (**14**) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 5:1); 36.5 mg, 63% yield; dr > 20:1; reaction time = 14.5 h; mp 167.2-168.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.26 (s, 1H), 7.42-7.37 (m, 6H), 7.31-7.27 (m, 2H), 7.24-7.16 (m, 6H), 6.99-6.95 (m, 2H), 6.51 (d, *J* = 8.0 Hz, 1H), 5.73 (s, 1H), 4.37 (q, *J* = 16.0 Hz, 2H), 4.17 (d, *J* = 12.0 Hz, 1H), 4.11 (t, *J* = 8.0 Hz, 1H), 3.91 (dd, *J_I* = *J*₂ = 4.0 Hz, 2H), 3.89 (d, *J* = 4.0 Hz, 1H), 3.77 (dd, *J_I* = *J*₂ = 4.0 Hz, 1H), 3.68 (d, *J* = 16.0 Hz, 1H), 3.28 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 147.7, 144.0, 139.2, 136.5, 136.4, 130.2, 128.9, 128.7, 128.2, 128.2, 128.0, 127.9, 126.7, 122.2, 115.5, 87.9, 82.8, 82.4, 78.5, 58.7, 58.5, 55.2, 52.0, 46.1, 39.5, 24.5. IR (KBr) *v* 3399, 2921, 1624, 1460, 1187, 734 cm⁻¹. HRMS (ESI) calcd for C₃₃H₃₀N₅O₅ [M+H]+ 576.2241, found 576.2238.

General procedure for the formation of 15: To a 10.0 mL vial were successively added 3a (130.1 mg, 0.20 mmol), hydroxylamine hyrdochcloride (69.5 mg, 1.00 mmol), anhydrous potassium carbonate (138.2 mg, 1.00 mmol) and 2.0 mL of CH_2Cl_2 . The resulting mixture was stirred at 40 °C for 3.5 h, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 5:1) to afford the corresponding product 15 as a yellow solid in 60% yield.

1,7-dibenzyl-10a,11-dinitro-3-phenyl-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-

(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocine-5-carbaldehyde oxime (**15**) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 5:1); 70.6 mg, 60% yield; dr > 20:1; reaction time = 3.5 h; mp 186.5-187.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.34-7.25 (m, 8H), 7.20 (t, *J* = 4.0 Hz, 3H), 7.10 (q, *J* = 8.0 Hz, 3H), 6.99 (dd, *J_I* = *J₂* = 4.0 Hz, 2H), 6.71 (s, 1H), 6.46 (d, *J* = 8.0 Hz, 1H), 5.65 (s, 1H), 4.32 (d, *J* = 4.0 Hz, 2H), 4.15-4.07 (m, 2H), 3.90 (dd, *J_I* = *J₂* = 4.0 Hz, 1H), 3.78 (dd, *J_I* = *J₂* = 4.0 Hz, 1H), 3.73 (d, *J* = 16.0 Hz, 2H), 3.31 (d, *J* = 8.0 Hz, 1H), 2.66 (d, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.7, 144.7, 138.9, 136.9, 136.9, 134.2, 129.9, 129.3, 128.6, 128.6, 128.2, 128.1, 127.8, 125.0, 121.1, 118.6, 115.1, 107.3, 88.0, 83.0, 82.9, 58.2, 56.3, 52.0, 45.5, 39.7, 26.2. IR (KBr) *v* 3417, 3062, 1638, 1541, 1495, 938, 750 cm⁻¹. HRMS (ESI) calcd for C₃₃H₃₁N₆O₅ [M+H]⁺ 591.2350, found 591.2352.

General procedure for the formation of 16: Phenylhyrdrazine (47.5 mg, 0.44 mmol) was successively added to a solution of 3a (130.1 mg, 0.20 mmol) in 2.0 mL of CH_2Cl_2 by syringe. The resulting mixture was stirred at 35 °C for 1 h, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 6:1) to afford the corresponding product 16 as a yellow solid in 64% yield.

1,7-dibenzyl-10a,11-dinitro-3-phenyl-5-(2-phenylhydrazono)methyl)-1,2,3,6,6a,6b,7,10,10a,10bdecahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2-*d*][1,3]diazocine (**16**) Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 6:1); 85.0 mg, 64% yield; dr > 20:1; reaction time = 1 h; mp 151.7-152.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 2H), 7.28-7.25 (m, 7H), 7.24-7.16 (m, 5H), 7.07-7.00 (m, 7H), 6.81 (br, 1H), 6.65 (br, 1H), 6.49 (d, *J* = 8.0 Hz, 1H), 5.67 (s, 1H), 4.46 (d, *J* = 16.0 Hz, 2H), 4.13 (d, *J* = 12.0 Hz, 1H), 4.09 (d, *J* = 8.0 Hz, 1H), 3.93 (dd, *J*₁ = *J*₂ = 4.0 Hz, 2H), 3.85 (br, 1H), 3.76 (d, *J* = 12.0 Hz, 1H), 3.35 (d, *J* = 8.0 Hz, 1H), 2.84 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 138.6, 137.0, 136.7, 136.7, 131.6, 129.8, 129.1, 128.8, 128.7, 128.6, 128.3, 128.2, 127.8, 127.7, 127.5, 124.4, 120.7, 112.5, 88.1, 83.6, 82.3, 58.1, 56.8, 56.6, 51.2, 45.3, 39.8, 26.5, one carbon missing in the aromatic region. IR (KBr) v 3443, 2925, 1630, 1543, 750 cm⁻¹. HRMS (ESI) calcd for C₃₉H₃₆N₇O₄ [M+H]⁺ 666.2667, found 664.2671.

General procedure for the formation of 17: To a 10.0 mL vial were successively added 8g (77.9 mg, 0.15 mmol), hydroxylamine hyrdochcloride (52.1 mg, 0.75 mmol), anhydrous potassium carbonate (103.7 mg, 0.75 mmol) and 2.0 mL of CH_2Cl_2 . The resulting mixture was stirred at 35 °C for 40 min, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 10:1 to 6:1) to afford the corresponding product 17 as a yellow solid in 67% yield.

11-benzyl-10-bromo-3-phenyl-1,2,3,6-tetrahydro-2,6-epiminobenzo[*d*]azocine-5-carbaldehyde oxime (17)

White solid obtained by column chromatography (petroleum ether/ethyl acetate = 10:1 to 6:1); 46.4 mg, 67% yield; dr > 20:1; reaction time = 40 min; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.37-7.29 (m, 9H), 7.07 (t, *J* = 8.0 Hz, 1H), 6.99 (t, *J* = 8.0 Hz, 2H), 6.92 (s, 1H), 6.81 (br, 1H), 5.03 (d, *J* = 8.0 Hz, 1H), 4.80 (s, 1H), 3.81 (d, *J* = 16.0 Hz, 1H), 3.67 (d, *J* = 16.0 Hz, 1H), 3.25 (dd, *J_I* = *J₂* = 4.0 Hz, 1H), 2.96 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 143.9, 141.5, 137.3, 132.3, 130.8, 130.1, 129.8, 129.3, 128.4, 127.5, 127.2, 125.4, 124.9, 123.1, 117.9, 105.9, 68.4, 56.6, 53.0, 38.1. IR (KBr) v 3441, 2920, 1622, 1588, 1184, 928, 752 cm⁻¹. HRMS (ESI) calcd for C₂₅H₂₃BrN₃O [M+H]⁺ 460.1019, found 460.1017.

General procedure for the formation of 18: Phenylhyrdrazine (32.4 mg, 0.30 mmol) was successively added to a solution of 12f (117.1 mg, 0.15 mmol) in 2.0 mL of CH_2Cl_2 by syringe. The resulting mixture was stirred at 35 °C for 1 h, and then the reaction mixture was directly subjected to flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 30:1 to 10:1) to afford the corresponding product 18 as a yellow solid in 61% yield.

3-(4-bromophenyl)-10a,11-dinitro-1,7-diphenyl-5-((2-phenylhydrazono)methyl)-1,2,3,6,6a,6b,7,10,10a,10b-decahydro-2,6,10-(epimethanetriyl)pyrido[2',3':3,4]cyclobuta[1,2*d*][1,3]diazocine (**18**)

Yellow solid obtained by column chromatography (petroleum ether/ethyl acetate = 30:1 to 10:1); 65.5 mg, 61% yield; dr > 20:1; reaction time = 1 h; mp 228.9-229.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.79 (s, 1H), 7.55 (s, 1H), 7.53 (d, *J* = 8.0 Hz, 1H), 7.43 (t, *J* = 8.0 Hz, 4H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 3H), 7.03 (d, *J* = 4.0 Hz, 3H), 6.98 (d, *J* = 8.0 Hz, 2H), 6.91 (t, *J* = 8.0 Hz, 1H), 6.81 (dd, *J*₁ = *J*₂ = 8.0 Hz, 3H), 6.55 (t, *J* = 8.0 Hz, 3H), 4.98 (d, *J* = 8.0 Hz, 1H), 4.88 (d, *J* = 8.0 Hz, 1H), 4.42 (t, *J* = 8.0 Hz, 1H), 4.25 (d, *J* = 4.0 Hz, 1H), 3.76 (s, 1H), 3.40 (t, *J* = 8.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 145.5, 145.3, 143.7, 143.7, 137.6, 132.0, 131.8, 129.7, 129.5, 128.9, 128.8, 122.5, 121.7, 121.0, 120.0, 117.4, 115.0, 114.5, 112.7, 111.3, 87.7, 87.3, 84.0, 71.4, 57.6, 50.7, 45.8, 38.4, 26.4. IR (KBr) *v* 3452, 1637, 1597, 1493, 751 cm⁻¹. HRMS (ESI) calcd for C₃₇H₃₁BrN₇O₄ [M+H]⁺ 716.1615, found 716.1605.

8. Crystal structures of 3a, 5a, 7a, 8e, 12a, 13a, 17 and 18

8.1 Crystal structure of 3a

Preparation of the single crystals of 3a: 30.0 mg of pure compound 3a was dissolved in the combined solvents of petroleum ether and ethyl acetate (6 mL, v/v = 5:1) at room temperature. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about one week, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 3a. The data were collected by a Rigaku Gemini E at 293.0 K.

	•	O ₂ N Bn H H 2N N	H H N				
		3a		X-ra C	y structure of 3a CDC 2018508		
Bond precisio	on:	C-C =	0.0036 A		Wavelength=1.54184		
Cell:	a=41.271(2)		b=10.9578	81(13)	c=23.7743(13)		
	alpha=90		beta=142.	144(12)	gamma=90		
Temperature:	293 K						
		Calculate	ed		Reported		
Volume		6598.1(1	8)		6598.2(12)		
Space group		C 2/c			C 1 2/c 1		
Hall group		-C 2yc			-C 2yc		
Moiety form	ula	$C_{39}H_{34}N_6O_4$			$C_{39}H_{34}N_6O_4$		
Sum formula		$C_{39}H_{34}N_6O_4$			$C_{39}H_{34}N_6O_4$		
Mr		650.72			650.72		
Dx,g cm-3		1.310			1.310		
Ζ		8			8		
Mu (mm-1)		0.701			0.701		
F000		2736.0			2736.0		
F000'		2744.18					
h,k,lmax		49,13,28			49,13,28		
Nref		5891			5889		
Tmin,Tmax		0.881,0.9	926		0.729,1.000		
Tmin'		0.875					
Correction m	ethod= # Rep	orted T L	limits: Tmi	n=0.729 Tm	ax=1.000		
AbsCorr = M	ULTI-SCAN						
Data complet		Tł	neta(max)=	67.076			
R(reflections))= 0.0449(48	(97)		wR2(refle	wR2(reflections)= 0.1271(5889)		
S = 1.042		Npar= 442					

8.2 Crystal structure of 5a

Preparation of the single crystals of **5a**: about 30.0 mg of pure compound **5a** was dissolved in the combined solvents of petroleum ether and ethyl acetate (6 mL, v/v = 5:1) at room temperature. To prevent the decomposition of **5a**, a drop of NEt₃ was added to this solution. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about one week, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the

determination of the structure and relative configuration of **5a**. The data were collected by a Rigaku Gemini E at 293.0 K.

	H H		Bn		
		5a		X-ray CCI	structure of 5a DC 2018509
Bond precisio	n:	C-C =	0.0036 A	V	Vavelength=0.71073
Cell:	a=11.4180(7)		b=11.7859	9(7)	c=13.6713(9)
	alpha=102.345	5(2)	beta=99.7	07(2)	gamma=97.839(2)
Temperature:	150 K				
	С	alculate	ed		Reported
Volume	1′	742.86((19)		1742.86(19)
Space group	Р	-1			P -1
Hall group	-I	P 1			-P 1
Moiety formu	ila C	47H40N	4		$C_{47}H_{40}N_4$
Sum formula	С	47H40N	4		$C_{47}H_{40}N_4$
Mr	6	60.83			660.83
Dx,g cm-3	1.	.259			1.259
Ζ	2				2
Mu (mm-1)	0.	.074			0.074
F000	70	00.0			700.0
F000'	70	00.24			
h,k,lmax	1.	3,14,16			13,14,16
Nref	62	229			6206
Tmin,Tmax	0.	.988,0.9	999		0.660,0.746
Tmin'	0.	.988			
Correction me	ethod= # Repor	rted T L	imits: Tmi	n=0.660 Tm	ax=0.746
AbsCorr = M	ULTI-SCAN				
Data complete	eness= 0.996		Tł	neta(max)=2	25.123
R(reflections)	= 0.0556(3834	4)		wR2(refle	ections)= 0.1329(6206)
S = 1.023		Npai	r= 461		

8.3 Crystal structure of 7a

Preparation of the single crystals of **7a**: about 30.0 mg of pure compound **7a** was dissolved in the combined solvents of petroleum ether and ethyl acetate (6 mL, v/v = 5:1) at room temperature. To prevent the decomposition of **7a**, a drop of NEt₃ was added to

this solution. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about one week, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of **7a**. The data were collected by a Rigaku Gemini E at 293.0 K.

	\langle			048 X	AS COM END	
		I	C38 C40 C38 C38	C11 C17 C28 4 C20 C19 C11 C20 C19 C21 C21 C20		
		H	× =	C36 C34 C33 C17 C36 C34 C16	Nacrosoft 22 C12 C24 C21 C25 C24 N2	
		NT H	H N Bn		NI 07 C8 C10 C15 C14 C14	
				X-ray s	structure of 7a	
		7	а	CCE	DC 2018510	
Bond precisio	on:	C-C =	0.0031 A		Wavelength=0.71073	
Cell:	a=10.9944(6))	b=12.7289(6)	c=13.2362(6)	
	alpha=73.126	5(2)	beta=89.213	3(2)	gamma=79.311(2)	
Temperature:	150 K					
		Calculate	ed		Reported	
Volume		1740.27((15)		1740.27(15)	
Space group		P -1			P -1	
Hall group		-P 1		-P 1		
Moiety formu	ıla	$C_{47}H_{40}N_4$			$C_{47}H_{40}N_4$	
Sum formula		$C_{47}H_{40}N_4$			$C_{47}H_{40}N_4$	
Mr		660.83			660.83	
Dx,g cm-3		1.261			1.261	
Z		2			2	
Mu (mm-1)		0.074		0.074		
F000		700.0			700.0	
F000'		700.24				
h,k,lmax		13,15,15			13,15,15	
Nref		6204			6187	
Tmin,Tmax		0.984,0.9	988	0.570,0.746		
Tmin'	'min' 0.982					
Correction method= # Reported T Limits: Tmin=0.570 Tmax=0.746						
AbsCorr = M	ULTI-SCAN					
Data complete		The	eta(max)=2	25.123		
R(reflections)	= 0.0527(41	wR2(reflections)= 0.1263(61			ections)= 0.1263(6187)	
S = 1.036		Npa	Npar= 461			

8.4 Crystal structure of 8e

Preparation of the single crystals of **8e**: about 15.0 mg of pure compound **8a** was dissolved in CDCl₃ at 0 °C. The bottle was sealed by a piece of plastic film with one tiny hole, thus allowing slow evaporation of the solvents at 0 °C. After about one month, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of **8e**. The data were collected by a Bruker D8 VENTURE PHOTON II CCD diffractometer at 273.0 K.

	MeO∽ Me	N N H N H H O Be		X-ray structure of 8e CCDC 2018511
Bond precisio	on:	C-C = 0.0065	A	Wavelength=0.71073
Cell:	a=14.509(3)	b=18.9	09(4)	c=10.234(2)
	alpha=90	beta=10	03.567(5)	gamma=90
Temperature:	285 K			0
1		Calculated		Reported
Volume		2729.4(10)		2729.2(10)
Space group		P 21/c		P 1 21/c 1
Hall group		-P 2ybc		-P 2ybc
Moiety formu	ıla	$C_{33}H_{30}BrN_3O_2$		$C_{33}H_{30}BrN_3O_2$
Sum formula		$C_{33}H_{30}BrN_3O_2$		C33H30BrN3O2
Mr		580.50		580.51
Dx,g cm-3		1.413		1.413
Ζ		4		4
Mu (mm-1)		1.542		1.542
F000		1200.0		1200.0
F000'		1199.27		
h,k,lmax		18,23,12		18,23,12
Nref		5588		5580
Tmin,Tmax		0.831,0.884	0.641,0.746	
Tmin'		0.831		
Correction m	ethod= # Rep	orted T Limits: T	`min=0.641 Tm	ax=0.746 AbsCorr =
MULTI-SCA	N			
Data complet	eness= 0.999		Theta(max)= 2	26.372
R(reflections)	= 0.0556(26	11)	wR2(reflections) = 0.1363(52)	
S = 1.000		Npar= 355		

8.5 Crystal structure of 12a

Preparation of the single crystals of **12a**: about 15.0 mg of pure compound **12a** was dissolved in the combined solvents of dichloromethane and ethanol (6 mL, v/v = 1:1) at room temperature. The bottle was sealed by a piece of plastic film with three tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about three days, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of **12a**. The data were collected by a Bruker D8 VENTURE PHOTON II CCD diffractometer at 273.0 K.

	0	O ₂ N H H H H H H H H H H H H H H H H H H H	Tray CC	structure of 12a		
Bond precis	sion:	C-C = 0.0075 A	A	Wavelength= 0.71073		
Cell:	a=27.936(2)	b=8.241	16(4)	c=27.402(2)		
The second se	alpha=90	beta=10)3.792(2)	gamma=90		
Temperatur	e: 150 K					
X 7 1		Calculated		Reported		
Volume		612/.1(/)		612/.1(/)		
Space group	0	P 21/c		P 1 21/c 1		
Hall group	1	-P 2ybc				
Molety form	nula	$C_{37}H_{30}N_6O_4$		$C_{37}H_{30}N_6O_4$		
Sum formul	a	$C_{37}H_{30}N_6O_4$		$C_{37}H_{30}N_6O_4$		
Mr		622.67		622.67		
Dx,g cm-3		1.350		1.350		
Z		8		8		
Mu (mm-1)		0.090		0.090		
F000		2608.0		2608.0		
F000'		2609.08				
h,k,lmax		33,9,32		33,9,32		
Nref		10938		10931		
Tmin,Tmax		0.986,0.991		0.658,0.739		
Tmin'		0.977				
Correction 1	method= # Rep	oorted T Limits: Ti	min=0.658 Tn	nax=0.739		
AbsCorr = 1	MULTI-SCAN					
Data compl	eteness= 0.999		Theta(max)= 25.123			
R(reflection	s)= 0.0819(51	.08)) $wR2(reflections) = 0.2397(10931)$			

8.6 Crystal structure of 13a

Preparation of the single crystals of 13a: about 15.0 mg of pure compound 13a was dissolved in the combined solvents of dichloromethane and ethanol (6 mL, v/v = 1:1) at room temperature. The bottle was sealed by a piece of plastic film with three tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about one week, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 13a. The data were collected by a Bruker D8 VENTURE PHOTON II CCD diffractometer at 273.0 K.

				C10 C10 C14	structure of 13a
		13a		CC	CDC 2018505
Bond precisio	on:	C-C =	0.0047 A		Wavelength=0.71073
Cell:	a=9.6677(17	')	b=14.679(3)		c=15.095(3)
	alpha=88.51	8(6)	beta=72.204(6)		gamma=87.368(6)
Temperature:	266 K				
		Calculate	ed		Reported
Volume		2037.4(7)		2037.3(7)
Space group		P -1			P -1
Hall group		-P 1			-P 1
Moiety formu	ıla	C45H36N	4, 2(CH ₂ Cl ₂)		C ₄₅ H ₃₆ N ₄ , 2(CH ₂ Cl ₂)
Sum formula		C47H40C	l ₄ N ₄		$C_{47}H_{40}Cl_4N_4$
Mr		802.63			802.63
Dx,g cm-3		1.308			1.308
Ζ		2			2
Mu (mm-1)		0.329			0.329
F000		836.0			836.0
F000'		837.43			
h,k,lmax		12,18,18			12,18,18
Nref		8326			8306
Tmin,Tmax		0.950,0.9	968		0.698,0.746
Tmin'		0.949			
Correction me	ethod= # Rep	orted T L	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	8 Tm	ax=0.746 AbsCorr =
MULTI-SCA	N				

Data completeness= 0.998		Theta(max)= 26.372
R(reflections) = 0.0685(4731)		wR2(reflections)= 0.2159(8306)
S = 1.030	Npar= 497	

8.7 Crystal structure of 17

Preparation of the single crystals of 17: about 30.0 mg of pure compound 17 was dissolved in the combined solvents of dichloromethane and methanol (6 mL, v/v = 1:1) at 0 °C. The bottle was sealed by a piece of plastic film with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about one week, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of 17. The data were collected by a Rigaku Gemini E at 293.0 K.

		HO, Bn N, H H H H H T7	X-ray structure of 17 CCDC 2018542
Bond precisio	on:	C-C = 0.0048 A	Wavelength=1.54184
Cell:	a=11.1382(4) b=8.5927(3)	c=22.4191(6)
	alpha=90	beta=96.700(3	gamma=90
Temperature:	293 K		
		Calculated	Reported
Volume		2131.02(12)	2131.01(12)
Space group		P 21/c	P 1 21/c 1
Hall group		-P 2ybc	-P 2ybc
Moiety form	ıla	C ₂₅ H ₂₂ BrN ₃ O	C ₂₅ H ₂₂ BrN ₃ O
Sum formula		C ₂₅ H ₂₂ BrN ₃ O	C ₂₅ H ₂₂ BrN ₃ O
Mr		460.36	460.36
Dx,g cm-3		1.435	1.435
Ζ		4	4
Mu (mm-1)		2.794	2.794
F000		944.0	944.0
F000'		943.52	
h,k,lmax		13,10,26	13,10,26
Nref		3813	3807
Tmin,Tmax		0.710,0.756	0.847,1.000
Tmin'		0.644	
		C 4	2

Correction method= # Reporte	ed T Limits: T	Tmin=0.847 Tmax=1.000
AbsCorr = MULTI-SCAN		
Data completeness= 0.998		Theta(max)= 67.075
R(reflections)= 0.0465(3089)		wR2(reflections)= 0.1302(3807)
S = 1.028	Npar=275	

8.8 Crystal structure of 18

Preparation of the single crystals of **18**: 8.0 mg of pure compound **18** was dissolved in the combined solvents of chloroform and ethanol (6 mL, v/v = 2:1) at room temperature. The bottle was sealed by a piece of plastic film with three tiny holes, thus allowing slow evaporation of the solvents at room temperature. After about one day, several small particles were observed at the bottom of the bottle. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the structure and relative configuration of **18**. The data were collected by a Rigaku Gemini E at 293.0 K.

				n all and a second	Marketer.	
	H O ₂ N Br	N N	N H I ≥N _N ,Ph H			
		18			X-ray stru CCDC	ucture of 18 2018507
Bond precisio	on:	C-C =	0.0078 A		Wa	velength=1.54184
Cell:	a=10.61266(19)	b=19.0807(5)	c=28.	5794(7)
	alpha=73.85	3(2)	beta=82.1239	9(17)	gamm	na=87.0339(19)
Temperature:	293 K					
		Calculat	ed			Reported
Volume		5505.9(2	2)		:	5506.0(2)
Space group		P -1				P -1
Hall group		-P 1				-P 1
Moiety formu	ıla	C ₃₇ H ₃₀ B	rN ₇ O ₄ [+ solve	ent]	(C ₃₇ H ₃₀ BrN ₇ O ₄
Sum formula		C ₃₇ H ₃₀ B	rN ₇ O ₄ [+ solve	ent]	(C ₃₇ H ₃₀ BrN ₇ O ₄
Mr		716.58			,	716.59
Dx,g cm-3		1.297				1.297
Ζ		6				6
Mu (mm-1)		1.915				1.915
F000		2208.0				2208.0
F000'		2210.01				
h,k,lmax		12,22,34	ļ.			12,22,34
Nref		19673				19619
Tmin,Tmax		0.813,0.8	875		(0.870,1.000

Tmin'0.810Correction method= # Reported T Limits: Tmin=0.870 Tmax=1.000AbsCorr = MULTI-SCANData completeness= 0.997Theta(max)= 67.077R(reflections)= 0.0668(12122)wR2(reflections)= 0.2084(19619)S = 1.044Npar= 1331

9. ¹H NMR and ¹³C NMR spectra ¹H NMR spectrum of **3a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3a** (100 MHz, CDCl₃)

¹³C NMR spectrum of **3b** (100 MHz, CDCl₃)

¹³C NMR spectrum of **3c** (100 MHz, CDCl₃)

¹³C NMR spectrum of **3d** (100 MHz, CDCl₃)

¹H NMR spectrum of **3e** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3e** (100 MHz, CDCl₃)

¹⁹F NMR spectrum of **3e** (375 MHz, CDCl₃)

¹H NMR spectrum of **3f** (400 MHz, CDCl₃)

 13 C NMR spectrum of **3f** (100 MHz, CDCl₃)

¹H NMR spectrum of **3g** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (100 MHz, CDCl₃)

¹H NMR spectrum of **3h** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3h** (100 MHz, CDCl₃)

¹H NMR spectrum of **3i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3i** (100 MHz, CDCl₃)

¹H NMR spectrum of **3j** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3**j (100 MHz, CDCl₃)

¹H NMR spectrum of **3**k (400 MHz, CDCl₃)

¹³C NMR spectrum of **3k** (100 MHz, CDCl₃)

¹H NMR spectrum of **3l** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3l** (100 MHz, CDCl₃)

¹⁹F NMR spectrum of **3l** (375 MHz, CDCl₃)

¹H NMR spectrum of **3m** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3m** (100 MHz, CDCl₃)

¹H NMR spectrum of **5a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5a** (100 MHz, CDCl₃)

¹H NMR spectrum of **5b** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5b** (100 MHz, CDCl₃)

¹H NMR spectrum of **5c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5c** (100 MHz, CDCl₃)

¹H NMR spectrum of **5d** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5d** (100 MHz, CDCl₃)

¹³C NMR spectrum of **5e** (100 MHz, CDCl₃)

¹H NMR spectrum of **5f** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5f** (100 MHz, CDCl₃)

¹H NMR spectrum of **5g** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5g** (100 MHz, CDCl₃)

¹H NMR spectrum of **5h** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5h** (100 MHz, CDCl₃)

¹H NMR spectrum of **5i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5i** (100 MHz, CDCl₃)

¹³C NMR spectrum of **5**j (100 MHz, CDCl₃)

¹³C NMR spectrum of **7a** (100 MHz, CDCl₃)

¹H NMR spectrum of **7a** (400 MHz, CDCl₃)

¹H NMR spectrum of **7b** (400 MHz, CDCl₃)

¹³C NMR spectrum of **7b** (100 MHz, CDCl₃)

¹H NMR spectrum of **7c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **7c** (100 MHz, CDCl₃)

¹H NMR spectrum of **7d** (400 MHz, CDCl₃)

¹³C NMR spectrum of **7d** (100 MHz, CDCl₃)

¹H NMR spectrum of **7e** (400 MHz, CDCl₃)

¹³C NMR spectrum of 7e (100 MHz, CDCl₃)

¹H NMR spectrum of **7f** (400 MHz, CDCl₃)

¹³C NMR spectrum of **7f** (100 MHz, CDCl₃)

¹H NMR spectrum of 7g (400 MHz, CDCl₃)

¹³C NMR spectrum of **7g** (100 MHz, CDCl₃)

¹H NMR spectrum of **8a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **8a** (100 MHz, CDCl₃)

¹H NMR spectrum of **8b** (400 MHz, CDCl₃)

¹H NMR spectrum of 8c (400 MHz, CDCl₃)

¹³C NMR spectrum of 8c (100 MHz, CDCl₃)

¹³C NMR spectrum of 8d (100 MHz, CDCl₃)

¹H NMR spectrum of **8g** (400 MHz, CDCl₃)

¹³C NMR spectrum of **8g** (100 MHz, CDCl₃)

¹H NMR spectrum of **12a** (400 MHz, CDCl₃)

S89

S90

¹H NMR spectrum of **12d** (400 MHz, CDCl₃)

¹³C NMR spectrum of **12e** (100 MHz, CDCl₃)

¹³C NMR spectrum of **12f** (100 MHz, CDCl₃)

¹³C NMR spectrum of **12g** (100 MHz, CDCl₃)

S96

¹H NMR spectrum of **12i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **12i** (100 MHz, CDCl₃)

¹H NMR spectrum of **12j** (400 MHz, CDCl₃)

S98

80 70 60

50 40 30 20

90

10 0 -10

160 150 140 130 120 110 100 fl (ppm)

210

200 190

180

170

¹³C NMR spectrum of **12k** (100 MHz, CDCl₃)

¹H NMR spectrum of **12l** (400 MHz, CDCl₃)

¹³C NMR spectrum of **12l** (100 MHz, CDCl₃)

¹³C NMR spectrum of **13a** (100 MHz, CDCl₃)

¹H NMR spectrum of **13c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **13c** (100 MHz, CDCl₃)

S104

¹³C NMR spectrum of **13e** (100 MHz, CDCl₃)

¹³C NMR spectrum of **15** (100 MHz, CDCl₃)

¹H NMR spectrum of **16** (400 MHz, CDCl₃)

¹³C NMR spectrum of **16** (100 MHz, CDCl₃)

¹³C NMR spectrum of **17** (100 MHz, CDCl₃)

¹H NMR spectrum of **18** (400 MHz, DMSO- d_6)

¹³C NMR spectrum of **18** (100 MHz, DMSO-*d*₆)

