Supporting Information

Jiadi Zhou, ${ }^{\text {a }}$ Cheng Cheng, ${ }^{\text {b }}$ Zhihao Lin, ${ }^{\text {b }}$ Quanlei Ren, ${ }^{\text {b }}$ Ning Xu, ${ }^{\text {b }}$ Jiangfeng Lin, ${ }^{\text {b }}$ Yimin Qin, ${ }^{\text {b }}$ and Jianjun Lia, ${ }^{\text {b }}$ *
${ }^{a}$ Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients,Zhejiang University of Technology, Hangzhou 310014, P. R. of China.
${ }^{b}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China.

*E-mail: lijianjun@zjut.edu.cn

Context S2
General methods S2
General procedure and characterization of the products S2-S18
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra S18-S51

General methods

The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. All reactions were monitored by TLC with silica gelcoated plates. The oil bath was used for the reactions that require heating. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ NMR and ${ }^{13} \mathrm{C}(101 \mathrm{MHz})$ NMR spectra were recorded on a Varian spectrometer in CDCl_{3} or DMSO- d_{6} using tetramethylsilane (TMS) as internal standards. Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity
reported according to the following convention: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{br} \mathrm{s}=$ broad singlet. Mass spectra were measured with a HRMS-APCI instrument using ESI ionization.

General procedure for the remote $\mathbf{C}\left(\mathbf{s p}^{\mathbf{3}}\right)$ - \mathbf{H} bond heteroarylation. A mixture of Heteroarylation 1 ($0.3 \mathrm{mmol}, 1.0$ equiv.), alcohol 2 ($0.9 \mathrm{mmol}, 3.0$ equiv.), AgNO_{3} ($0.06 \mathrm{mmol}, 20 \mathrm{~mol} \%$), $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($0.6 \mathrm{mmol}, 2.0$ equiv.) in a 10 mL Schlenk tube was added the Acetone $/ \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL} / 1 \mathrm{~mL})$ under N_{2} atmosphere. The mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was quenched by NaHCO_{3} and then extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed by brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate $=6 / 1-1 / 2$, or methylene chloride $/$ methanol $=30 / 1-20 / 1$) on silica get to give the products 3a-3ai.

Characterization of the products

3a

4-(4-Methylquinolin-2-yl)pentan-1-ol (3a): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $54.3 \mathrm{mg}, 79 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.02(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ $(\mathrm{s}, 1 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 1.96-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . ;{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.3,147.2,144.8,129.2,129.2,127.0$, 125.6, 123.6, 120.2, 62.4, 42.2, 33.0, 30.7, 21.0, 18.9. HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}$

3b
4-(4-Bromoquinolin-2-yl)pentan-1-ol (3b): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $53.8 \mathrm{mg}, 61 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.7,148.2,134.7,130.5,129.2,127.2,126.7,126.6$, 123.8, 62.6, 42.2, 33.0, 30.7, 20.9. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrNO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 294.0488, Found: 294.0478

4-(4-Chloro-6,7-dimethoxyquinolin-2-yl)pentan-1-ol (3c): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $47.5 \mathrm{mg}, 51 \%$ yield; ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.07-2.99$ $(\mathrm{m}, 1 \mathrm{H}), 2.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.92-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.5$, $153.1,150.2,145.5,141.0,120.5,118.0,107.9,101.8,62.7,56.4,56.3,42.1,33.3,30.8$, 21.1. HRMS: Calcd. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ClNO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 310.1204$, Found: 310.1196

3d
4-(4,7-Dichloroquinolin-2-yl)pentan-1-ol (3d): petroleum ether/ethyl acetate $=6 / 1$ as an eluent; yellow oil; $47.7 \mathrm{mg}, 56 \%$ yield; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 3.67$ - 3.58 (m, 2H), $3.12-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.11$ (br s, 1H), $1.95-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.71$ $(\mathrm{m}, 1 \mathrm{H}), 1.66-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1,149.0,143.0,136.5,128.3,127.9,125.5,123.8,120.3,62.7$, 42.4, 32.9, 30.7, 20.9. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 284.0603$, Found: 284.0601

2-(5-Hydroxypentan-2-yl)quinoline-4-carbaldehyde (3e): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $30.7 \mathrm{mg}, 42 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.19(\mathrm{~m}, 1 \mathrm{H})$, $2.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.03-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.54-$ $1.46(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 193.2,166.9$, $148.9,137.6,130.2,129.5,128.5,125.1,124.3,122.8,62.7,42.4,33.0,30.7,20.9$. HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 244.1332, Found: 244.1324

4-(2-Methylquinolin-4-yl)pentan-1-ol (3f): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $59.2 \mathrm{mg}, 86 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01$ (dd, $J=$ $8.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.62 (ddd, $J=8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 3.63(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.55(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 1.90-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) δ 158.7, 153.6, 148.1, 129.4, 129.1, 125.6, 122.9, 118.6, 62.6, 33.6, 33.3, 30.8, 25.4, 21.3. HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 230.1539$, Found: 230.1539

$3 g$

4-(2-Methoxyquinolin-4-yl)pentan-1-ol (3g): petroleum ether/ethyl acetate $=4 / 1$ as an eluent; yellow oil; $47.8 \mathrm{mg}, 65 \%$ yield; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.3,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37$ (ddd, $J=8.3,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.53$ - $3.45(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.88-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.48$ $(\mathrm{m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.7,156.0,147.3$, 129.2, 128.3, 124.4, 123.9, 123.0, 109.3, 62.8, 53.3, 33.3, 33.3, 30.7, 21.2. HRMS: Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 246.1489$, Found: 246.1440

4-(2-Chloroquinolin-4-yl)pentan-1-ol (3h): petroleum ether/ethyl acetate $=3 / 1$ as an eluent; yellow oil; $42.7 \mathrm{mg}, 57 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03$ (dd, $J=$ $14.0,8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 3.64$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 1.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.91-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.68-$ $1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,151.0$, $148.3,130.2,129.5,126.8,126.0,123.2,118.9,62.6,33.6,33.4,30.6,21.1$. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{ClNO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 250.0993 , Found: 250.0991

$3 i$

Methyl 4-(5-hydroxypentan-2-yl)quinoline-2-carboxylate (3i): Petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $68.1 \mathrm{mg}, 83 \%$ yield; ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, 7.86 (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (ddd, $J=8.3,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=5.2$ Hz, 1H), $3.96(\mathrm{~s}, 3 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.36(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.49-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) δ 165.7, $155.3,147.5,147.3,130.8,130.2,128.6,127.7,123.6,117.0,60.6,52.6,33.3,32.7$, 30.4, 21.0. HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$274.1438, Found: 274.1436

4-(Quinolin-2-yl)pentan-1-ol ($\mathbf{3} \mathbf{j}-\mathbf{o}$): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $20.0 \mathrm{mg}, 31 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.34$ (br s, 1H), $2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.44$ $(\mathrm{m}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.7, 147.6, 136.8, 129.6, 128.8, 127.6, 127.1, 126.0, 119.8, 62.7, 42.4, 33.1, 30.8, 21.1. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 216.1383$, Found: 216.1378

3j-p

4-(Quinolin-4-yl)pentan-1-ol (3j-p): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; 20.0mg, 31\% yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.79(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.11(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 3 \mathrm{H}), 3.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.48(\mathrm{~m}$, $2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.7,150.3,148.4$, 130.4, 129.1, 127.4, 126.5, 123.1, 117.8, 62.8, 33.6, 33.4, 30.8, 21.4. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 216.1383$, Found: 216.1378

3k

4-(Isoquinolin-1-yl)pentan-1-ol (3k): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $30.4 \mathrm{mg}, 47 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.51(\mathrm{~m}, 2 \mathrm{H})$, $2.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.44(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,141.8$, 136.6, 129.8, 127.7, 127.1, 126.9, 124.8, 119.2, 62.8, 36.2, 32.2, 31.1, 21.3. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 216.1383$, Found: 216.1382

31

4-(4-Methylpyridin-2-yl)pentan-1-ol (31): methylene chloride/methanol $=30 / 1$ as an eluent; yellow oil; $25.3 \mathrm{mg}, 47 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.31$ (d, $J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 166.0, 148.6, 147.8, 122.5, 122.4, 62.6, 41.3, 33.3, 30.7, 21.2, 20.9. HRMS: Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 180.1383$, Found: 180.1376

2-(5-Hydroxypentan-2-yl)isonicotinonitrile (3m): petroleum ether/ethyl acetate $=1 / 2$ as an eluent; yellow oil; $26.3 \mathrm{mg}, 46 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=5.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ - $2.94(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.1, 150.3, 123.5, 122.8, 120.8, 116.9, 62.7, 41.8, 33.0, 30.6, 20.7. HRMS: Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 191.1179$, Found: 191.1169

4-(2-Chloropyrimidin-4-yl)pentan-1-ol (3n): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $36.1 \mathrm{mg}, 60 \%$ yield; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.49(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.86$ $-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 178.8,161.4,159.4,117.7,62.6,41.4$, 32.4, 30.5, 20.0. HRMS: Calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{NaO}\left[\mathrm{M}+\mathrm{Na}^{+}\right]: 223.0609$, Found: 223.0598

30

4-(Phthalazin-1-yl)pentan-1-ol (30): methylene chloride/methanol $=20 / 1$ as an eluent; yellow oil; $34.4 \mathrm{mg}, 53 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~s}, 1 \mathrm{H})$, $8.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.84(\mathrm{~m}, 3 \mathrm{H}), 3.81-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.57(\mathrm{~m}, 2 \mathrm{H})$, $2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.58-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.6,150.3$, 132.6, 132.0, 127.3, 126.7, 125.5, 123.6, 62.8, 35.6, 32.1, 31.0, 20.9. HRMS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 217.1335$, Found: 217.1327

2-(5-Hydroxypentan-2-yl)quinazolin-4(3H)-one (3p): methylene chloride/methanol $=30 / 1$ as an eluent; white solid, m.p. $116-117^{\circ} \mathrm{C} ; 49.5 \mathrm{mg}, 71 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 12.12(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ (ddd, $J=8.5,7.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=8.1,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53$ $(\mathrm{m}, 1 \mathrm{H}), 1.49-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.0,161.2,149.0,134.3,127.0,125.9,125.7,120.9,60.6,38.7,31.1,30.3,18.7$. HRMS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$233.1285, Found: 233.1273

4-(4-Bromoquinolin-2-yl)pentan-1-ol (3q): petroleum ether/ethyl acetate $=2 / 1$ as an
eluent; yellow solid, m.p. $156-157^{\circ} \mathrm{C}$; $50.2 \mathrm{mg}, 63 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.40(\mathrm{~d}, J=31.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47$ (s, $2 \mathrm{H}), 4.37-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.34-2.19(\mathrm{~m}, 2 \mathrm{H})$, $1.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,149.0,148.7,130.8,130.4,129.6,126.2,126.0,125.7,125.5$, 124.7, 124.6, 123.7, $62.6,34.1,33.7,32.1,21.4$. HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 266.1539, Found: 266.1531

$3 r$

4-(3-Chloroquinoxalin-2-yl)pentan-1-ol (3r): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $60.9 \mathrm{mg}, 81 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04-8.00$ $(\mathrm{m}, 1 \mathrm{H}), 7.96-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.73-7.67(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.05(\mathrm{~m}$, H), $2.04(\operatorname{br~s~1H}), 1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.36$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.2,147.6,141.1,140.7,130.1$, 130.1, 128.8, 128.1, 62.8, 37.5, 31.5, 30.7, 19.7. HRMS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]:$251.0946, Found: 251.0937

4-(3,5,6-Trimethylpyrazin-2-yl)pentan-1-ol (3s): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $50.6 \mathrm{mg}, 81 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.59-3.49$ (m, 2H), 3.05-2.97(m, 1H), 2.47-2.43(m, 9H), $2.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.94-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,148.8,147.8,147.2,62.7,36.1,31.7,30.9,21.6,21.4,20.9,20.4$.

HRMS: Calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$209.1648, Found: 209.1641

3w

4-(4-Methylquinolin-2-yl)butan-1-ol (3w): petroleum ether/ethyl acetate $=1 / 2$ as an eluent; yellow oil; $39.4 \mathrm{mg}, 61 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=8.4$ Hz, 1H), 7.97 (dd, $J=8.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69 (ddd, $J=8.4,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ (ddd, $J=8.2,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.70(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.00-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,147.4,144.8,129.4,129.1,126.9,125.8,123.7,122.4,62.3$, 38.1, 32.4, 25.6, 18.8. HRMS: Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]:$216.1383, Found: 216.1372

4-(4-Methylquinolin-2-yl)hexan-1-ol (3x): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $53.3 \mathrm{mg}, 73 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05$ (d, $J=8.4$ Hz, 1H), 7.93 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, , 7.67 - 7.63 (m, 1H), 7.51 - 7.47 (m, 1H), 7.11 (s, $1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.90-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.68$ $(\mathrm{m}, 4 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,147.4,144.7,129.3,129.2,127.1,125.7,123.7,120.8,62.7$, 49.8, 31.5, 30.8, 28.8, 19.0, 12.3. HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}\left[\mathrm{M}^{+} \mathrm{H}^{+}\right]:$244.1696, Found: 244.1687

4-(4-Methylquinolin-2-yl)heptan-1-ol (3y): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $59.5 \mathrm{mg}, 77 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (d, $J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (s, 1H), $3.63-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.91-$ $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.31-$ $1.23(\mathrm{~m}, 1 \mathrm{H}), 1.22-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.6,147.4,144.6,129.4,129.2,127.1,125.6,123.7,120.8,62.8,48.0,38.2$, 31.8, 30.8, 20.9, 19.0, 14.3. HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 258.1852, Found: 258.1841

2-Methyl-4-(4-methylquinolin-2-yl)pentan-1-ol (3z): (d.r. $=1: 1$), petroleum ether/ethyl acetate $=3 / 1$ as an eluent; yellow oil; $65.0 \mathrm{mg}, 89 \%$ yield; ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.69-$ 7.64 (m, 2 H , two isomers), $7.53-7.48(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 7.17 ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $3.52-3.42$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 3.39 ($\mathrm{d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $3.35-3.26(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $3.23-3.14(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $2.84(\mathrm{br} \mathrm{s}, 2 \mathrm{H}$, two isomers), $2.69(\mathrm{~s}, 3 \mathrm{H}$, one isomer), $2.68(\mathrm{~s}, 3 \mathrm{H}$, one isomer), $2.25-2.18(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $1.82-1.74(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.72-1.64(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $1.58-1.50$
$(\mathrm{m}, 1 \mathrm{H}$, one isomer), $1.44-1.38(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $1.35(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}$, two isomers), 0.97 ($\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, one isomer), $0.87(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}$, one isomer). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6 \& 166.2$ (two isomers), $147.3 \& 147.1$ (two isomers), $145.2 \& 145.0$ (two isomers), $129.4 \& 129.4$ (two isomers), $129.3 \& 129.2$ (two isomers), $127.1 \& 127.1$ (two isomers), 125.8 (two isomers), 123.7 (two isomers), $121.1 \& 120.2$ (two isomers), $68.4 \& 67.8$ (two isomers), $41.3 \& 40.4$ (two isomers), $39.6 \& 39.6$ (two isomers), $34.6 \& 33.7$ (two isomers), $22.7 \& 21.2$ (two isomers), 19.0 \& 19.0 (two isomers), 17.7 \& 17.6 (two isomers). HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]:$244.1696, Found: 244.1688

3aa

4-Methyl-4-(4-methylquinolin-2-yl)pentan-1-ol (3aa): petroleum ether/ethyl acetate $=5 / 1$ as an eluent; yellow oil; $47.5 \mathrm{mg}, 65 \%$ yield; ${ }^{1} \mathbf{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{ddd}, J=8.4,6.9,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.69$ (s, 3H), $2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.8,147.1,144.3,129.6,129.1,126.6,125.7,123.5$, 119.6, 63.1, 40.8, 37.9, 28.6, 28.3, 19.1. HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 244.1696, Found: 244.1691

3ab

5-(4-Methylquinolin-2-yl)hexan-2-ol (3ab): (d.r. = 1:1), petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $60.6 \mathrm{mg}, 83 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.94 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.69-7.64$ (m, 2 H , two isomers), $7.53-7.48$ (m , two isomers), 7.15 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $3.85-3.77(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $3.76-3.68(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $3.14-3.04(\mathrm{~m}, 2 \mathrm{H}$, two isomers), 2.68 ($\mathrm{d}, J=0.8 \mathrm{~Hz}, 6 \mathrm{H}$, two isomers), 2.31 (br s, 2 H , two isomers), 2.03 $-1.91(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.84-1.71(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.57-1.47(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.42-1.38(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $1.37(\mathrm{~s}, 3 \mathrm{H}$, one isomer), $1.35(\mathrm{~s}, 3 \mathrm{H}$, one isomer), $1.33-1.28(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $1.14(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}$, one isomer), $1.13(\mathrm{~d}$, $J=3.2 \mathrm{~Hz}, 3 \mathrm{H}$, one isomer). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3 \& 166.3$ (two isomers), $147.4 \& 147.3$ (two isomers), $144.9 \& 144.8$ (two isomers), $129.4 \& 129.4$ (two isomers), $129.3 \& 129.2$ (two isomers), 127.2 (two isomers), $125.8 \& 125.7$ (two isomers), 123.7 (two isomers), $120.6 \& 120.5$ (two isomers), $68.2 \& 67.7$ (two isomers), $42.6 \& 42.4$ (two isomers), $37.4 \& 37.2$ (two isomers), $32.7 \& 32.6$ (two isomers), 23.7 \& 23.6 (two isomers), 21.4 \& 21.3 (two isomers), 19.0 (two isomers). HRMS: Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 244.1696$, Found: 244.1686

5-(4-Methylquinolin-2-yl)heptan-2-ol (3ac): (d.r. = 1:1), petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $54.8 \mathrm{mg}, 71 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.06$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.94 ($\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.66 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), $7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, two isomers), 7.11 ($\mathrm{s}, 2 \mathrm{H}$, two isomers), $3.81-3.76(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $3.71-3.66(\mathrm{~m}, 1 \mathrm{H}$, one isomer), $2.89-2.82$ ($\mathrm{m}, 2 \mathrm{H}$, two isomers), 2.68 ($\mathrm{s}, 6 \mathrm{H}$, two isomers), 2.49 (br s, 2 H , two isomers), $1.93-$
$1.74(\mathrm{~m}, 8 \mathrm{H}$, two isomers), $1.50-1.41(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.35-1.28(\mathrm{~m}, 2 \mathrm{H}$, two isomers), $1.13-1.09$ ($\mathrm{m}, 6 \mathrm{H}$, two isomers), $0.83\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}\right.$, two isomers). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4 \& 165.3$ (two isomers), $147.5 \& 147.4$ (two isomers), $144.6 \& 144.5$ (two isomers), $129.5 \& 129.5$ (two isomers), $129.2 \& 129.1$ (two isomers), 127.2 (two isomers), $125.7 \& 125.7$ (two isomers), $123.7 \& 123.7$ (two isomers), 121.0 (two isomers), $68.2 \& 67.8$ (two isomers), $50.1 \& 49.9$ (two isomers), $37.4 \& 37.2$ (two isomers), $31.1 \& 31.0$ (two isomers), $29.0 \& 29.0$ (two isomers), 23.6 \& 23.6 (two isomers), 19.0 (two isomers), $12.3 \& 12.2$ (two isomers). HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 258.1852$, Found: 258.1842

5-Methyl-5-(4-methylquinolin-2-yl)hexan-2-ol (3ad): petroleum ether/ethyl acetate $=$ $8 / 1$ as an eluent; yellow oil; $61.8 \mathrm{mg}, 80 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) δ $8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (s, 1H), 4.25 (br s, 1H), $3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.82$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, 3H). ${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 167.8,147.0,144.4,129.5,129.2,126.7,125.8$, 123.6, 119.8, 68.1, 40.9, 37.2, 34.7, 28.9, 28.6, 23.5, 19.2. HRMS: Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 258.1852$, Found: 258.1844

2-(2-(4-Methylquinolin-2-yl)cyclohexyl)ethan-1-ol (3ae): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $68.7 \mathrm{mg}, 85 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.03$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (dd, $J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (ddd, $J=8.4,6.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (s, 1H), $3.57-3.47$ (m, 2H), $2.73-$ $2.69(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.52(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.17(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.7,147.2,145.1,129.5,129.1,127.1,125.8,123.8$, 121.6, $60.7,52.6,37.8,37.5,35.0,33.0,26.7,26.4,19.0$. HRMS: Calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]: 270.1852$, Found: 270.1845

3af

4-(4-Methylquinolin-2-yl)undec-10-en-1-ol (3af): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $33.6 \mathrm{mg}, 36 \%$ yield; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 4.96-4.86(\mathrm{~m}, 2 \mathrm{H})$, $3.65-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}$, $2 H), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.37(\mathrm{~m}$, $1 \mathrm{H}), 1.33$ - 1.27 (m, 6H). ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 165.5, 147.4, 144.7, 139.2, $129.4,129.2,127.2,125.7,123.7,120.8,114.3,62.9,48.2,35.9,33.8,31.9,30.8,29.4$, 28.9, 27.6, 19.0. HRMS: Calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 312.2322$, Found: 312.2309

Benzyl (6-hydroxy-3-(4-methylquinolin-2-yl)hexyl)carbamate (3ag): petroleum ether/ethyl acetate $=1 / 1$ as an eluent; yellow oil; $69.5 \mathrm{mg}, 59 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) ., 7.69-7.63(\mathrm{~m}, 1 \mathrm{H})$, $7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.247(\mathrm{~m}, 5 \mathrm{H}), 7.12$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 5.04$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.62-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.66$ (s, 3H), $2.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 1 \mathrm{H})$ 1.46 - $1.37(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.3,156.6,147.4,145.2,136.8$, $129.4,129.3,128.6,128.1,127.2,126.0,123.8,120.8,66.6,62.5,45.5,39.2,35.5,31.5$, 30.6, 19.0. HRMS: Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 393.2173$, Found: 393.2166

6-Hydroxy-3-(4-methylquinolin-2-yl)hexyl 4-chlorobenzoate (3ah): petroleum ether/ethyl acetate $=2 / 1$ as an eluent; yellow oil; $59.7 \mathrm{mg}, 50 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.52-$ $7.48(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63-3.53$ (m, 2H), $3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.34(\mathrm{~m}, 1 \mathrm{H})$, $2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 1 \mathrm{H})$, $1.47-1.36(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.7,164.0,147.7,144.9,139.2$, $130.9,129.5,129.3,128.6,128.6,127.2,125.8,123.7,121.2,64.1,62.7,45.6,34.4$, 32.1, 30.6, 18.9. HRMS: Calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClNO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 398.1517, Found: 398.1517

3ai

2-((4-Methylquinolin-2-yl)methoxy)ethan-1-ol (3ai): methylene chloride/methanol = $30 / 1$ as an eluent; yellow oil; $29.3 \mathrm{mg}, 45 \%$ yield; ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.96-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.68$ (ddd, $J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.53 (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 3.84-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.76$ (m, 2H), 3.45 (br s, 1H), $2.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.4, 147.2, 145.5, 129.6, 129.3, 127.6, 126.4, 123.8, 120.0, 73.9, 73.2, 61.9, 18.9. HRMS: Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 218.1176, Found: 218.1165

NMR spectra

${ }^{1} \mathrm{H}$ NMR of 3a

${ }^{13}$ C NMR of 3a

	 	تֻণ	

${ }^{\mathbf{1}} \mathbf{H}$ NMR of 3b

\qquad 1
$\begin{array}{lllllllll}1.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5\end{array}$

${ }^{13}$ C NMR of 3b

${ }^{1} \mathbf{H}$ NMR of $\mathbf{3 c}$

${ }^{13}$ C NMR of 3c

がํㅜㅇㅜํ ำ.

${ }^{1} \mathrm{H}$ NMR of 3d

${ }^{13}$ C NMR of 3d

${ }^{1} \mathrm{H}$ NMR of 3 e

${ }^{13} \mathrm{C}$ NMR of 3 e

${ }^{1}$ H NMR of $3 f$

${ }^{13} \mathrm{C}$ NMR of 3 f

\qquad
${ }^{1} \mathbf{H}$ NMR of $\mathbf{3 g}$

${ }^{13}$ C NMR of $\mathbf{3 g}$

※
लッ

${ }^{1} H$ NMR of $\mathbf{3 h}$

${ }^{13}$ C NMR of $\mathbf{3 h}$

8
6

लेल్లn

${ }^{1} \mathrm{H}$ NMR of 3i

${ }^{13} \mathbf{C}$ NMR of 3i

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j - 0}$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 j - 0}$

${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{j}-\mathrm{p}$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 j}-\mathbf{p}$

Nิ

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}$

${ }^{13}$ C NMR of $\mathbf{3 k}$

${ }^{1} \mathrm{H}$ NMR of 31

$\underset{8.5}{\substack{0}}$
${ }^{13}$ C NMR of 31

${ }^{\mathbf{1}} \mathrm{H}$ NMR of $\mathbf{3 m}$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 m}$

${ }^{1} \mathbf{H}$ NMR of 3n

${ }^{13}$ C NMR of 3n

$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \text { 导首 } \\ & \text { do } \end{aligned}$		－		
$\stackrel{\infty}{7}$	$\frac{50}{7}$	\ni	－	子 후	

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 o}$

${ }^{13}$ C NMR of 30

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}$

${ }^{13}$ C NMR of 3p

${ }^{1}$ H NMR of $\mathbf{3 q}$

Clons)

${ }^{13}$ C NMR of $\mathbf{3 q}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 r}$

${ }^{13}$ C NMR of 3r

[^0]
${ }^{1} \mathrm{H}$ NMR of 3s

${ }^{13}$ C NMR of 3s

${ }^{1}$ H NMR of $\mathbf{3 w}$

${ }^{13}$ C NMR of $3 \mathbf{w}$

${ }^{\mathbf{1}} \mathbf{H}$ NMR of $\mathbf{3 x}$

${ }^{13}$ C NMR of $3 \mathbf{x}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 y}$

${ }^{13}$ C NMR of $3 y$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 z}$

${ }^{13}$ C NMR of $3 z$

${ }^{1} \mathrm{H}$ NMR of 3aa

${ }^{13} \mathrm{C}$ NMR of 3aa

\qquad
${ }^{1} \mathbf{H}$ NMR of 3ab

웅

11.5	11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5. $5 \quad 5.0$		4.5	4.0	3.5	3.0	2.5	2.0	1.5	$\begin{array}{ll}1.0 & 0.5\end{array}$		0.0	-0.5

${ }^{13}$ C NMR of 3ab

${ }^{1} \mathbf{H}$ NMR of 3ac

${ }^{13}$ C NMR of 3ac

${ }^{1} \mathrm{H}$ NMR of 3ad

${ }^{13}$ C NMR of 3ad

궁

${ }^{1} \mathrm{H}$ NMR of 3ae

${ }^{13}$ C NMR of 3ae

${ }^{1} \mathbf{H}$ NMR of 3af

${ }^{13}$ C NMR of 3af

${ }^{1} \mathrm{H}$ NMR of 3ag

${ }^{13} \mathrm{C}$ NMR of 3 ag

${ }^{1}$ H NMR of 3ah

${ }^{13} \mathbf{C}$ NMR of 3ah

${ }^{1}$ H NMR of 3ai

${ }^{13}$ C NMR of 3ai

[^0]:

