Electronic Supplementary Information

Highly Selective Synthesis of Bis-sulfanyl Substituted Conjugated Dienes by Copper-Palladium Cooperative Catalysis

Yuan Li, Jin Wu, Hui Li, Qian Sun, Lixue Xiong, Guodong Yin*

Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China E-mail: gdyin@hbnu.edu.cn

Table of Contents

1.	Crystal	data of	f compound	4b)	S1
2.	¹ H and	¹³ C NM	MR Spectra	of 4	4	

Empirical formula	C ₃₂ H ₃₀ S ₂ (CCDC : 2023253)
Formula weight	478.70
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2(1)/c
Unit cell dimensions	$a = 8.7800(10) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 12.5320(8) \text{ Å}$ $\beta = 92.22(2)^{\circ}$
	$c = 11.4990(6) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	1264.30(18) Å ³
Ζ	2
Density (calculated)	1.257 mg/m^3
Absorption coefficient	0.229 mm^{-1}
F(000)	508
Crystal size	$0.29 \times 0.25 \times 0.22 \text{ mm}^3$
Theta range for data collection	2.32 to 25.00 °
Index ranges	-10<=h<=10, -7<=k<=14, -13<=l<=13
Reflections collected	6150
Independent reflections	2225 [R(int) = 0.0719]
Completeness to theta = 25.00°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9512 and 0.9364
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2223 / 0 / 154
Goodness-of-fit on F ²	1.089
Final R indices [I>2sigma(I)]	$R_1 = 0.0550, wR_2 = 0.1021$
R indices (all data)	$R_1 = 0.0969, wR_2 = 0.1109$
Largest diff. peak and hole	0.334 and -0.231 e.Å ⁻³

1. Crystal data of compound 4b

2. ¹H and ¹³C NMR Spectra of 4

Figure S-1¹H NMR spectrum of compound 4a (300 MHz, CDCl₃)

Figure S-2¹³C NMR spectrum of compound 4a (75 MHz, CDCl₃)

Figure S-3 ¹H NMR spectrum of compound 4a' (300 MHz, CDCl₃)

Figure S-5 ¹H NMR spectrum of compound 4b (300 MHz, CDCl₃)

Figure S-9 ¹H NMR spectrum of compound 4d (300 MHz, CDCl₃)

Figure S-11 ¹H NMR spectrum of compound 4e (300 MHz, CDCl₃)

Figure S-13 ¹H NMR spectrum of compound 4f (300 MHz, CDCl₃)

Figure S-14 ¹³C NMR spectrum of compound 4f (75 MHz, CDCl₃)

Figure S-15 ¹H NMR spectrum of compound 4g (300 MHz, CDCl₃)

Figure S-17¹H NMR spectrum of compound 4h (300 MHz, CDCl₃)

Figure S-19¹H NMR spectrum of compound 4i (300 MHz, CDCl₃)

Figure S-21 ¹H NMR spectrum of compound 4j (300 MHz, CDCl₃)

Figure S-23 ¹H NMR spectrum of compound 4k (300 MHz, CDCl₃)

Figure S-24¹³C NMR spectrum of compound 4k (75 MHz, CDCl₃)

Figure S-25 ¹H NMR spectrum of compound 4l (300 MHz, CDCl₃)

Figure S-26¹³C NMR spectrum of compound 4l (75 MHz, CDCl₃)

Figure S-27 ¹H NMR spectrum of compound 4m (300 MHz, CDCl₃)

Figure S-29 ¹H NMR spectrum of compound **4n** (300 MHz, CDCl₃)

Figure S-30¹³C NMR spectrum of compound 4n (75 MHz, CDCl₃)

Figure S-31 ¹H NMR spectrum of compound 40 (300 MHz, CDCl₃)

Figure S-33 ¹H NMR spectrum of compound 4p (300 MHz, CDCl₃)

Figure S-35 ¹H NMR spectrum of compound 4q (300 MHz, CDCl₃)

Figure S-37 ¹H NMR spectrum of compound 4r (300 MHz, CDCl₃)

Figure S-39 ¹H NMR spectrum of compound 4s (300 MHz, CDCl₃)

Figure S-41 ¹H NMR spectrum of compound 4t (300 MHz, CDCl₃)

S23

Figure S-45 ¹H NMR spectrum of compound 4v (300 MHz, CDCl₃)

