Oxidative nucleophilic alkoxylation of nitroaromatics

Viktor V. Khutorianskyi, Norbert Baris, Petr Beier*

Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Prague, Czech Republic E-mail: beier@uochb.cas.cz

Supplementary information

Contents	page
General information	SI1
Synthesis of compounds; General procedure A	SI1
Synthesis of compounds; General procedure B	SI3
Synthesis of compounds; General procedure C	SI6
Mechanistic studies	SI9
References	SI13
Copies of NMR spectra	SI14

General information

NMR chemical shifts (δ) are reported in ppm and the coupling constants (*J*) are given in Hertz and referenced to residual signals of solvents or internal standards: CDCl₃ $\delta_{\rm H} = 7.26$, $\delta_{\rm C} =$ 77.16; Me₄Si $\delta_{\rm H} = 0.00$; CFCl₃ $\delta_{\rm F} = 0.00$. ¹³C and all ¹⁹F NMR spectra were ¹H decoupled. GCMS spectra were recorded on a gas chromatograph coupled with a quadrupole massselective electron impact (EI) detector (70 eV). High-resolution mass spectra (HRMS) were recorded on a gas chromatograph coupled with an orthogonal acceleration time-of-flight detector using EI ionization or an FT mass spectrometer using electrospray (ESI) ionization. Purification was carried out by reverse phase chromatography (C18 silica gel). Dry solvents if used were obtained the following way: Et₂O and THF were distilled over Na/benzophenone and kept over activated 3Å molecular sieves, MeOH was HPLC grade and H₂O was deionized.

General procedure A. To a solution of 4-nitro-1-(pentafluorosulfanyl)benzene (1 mmol, 249 mg) in THF (8 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (10

mmol, 1.12 g) in THF (10 mL) was added in portions (1 mL) every 15 minutes while dry oxygen was slowly bubbled through the apparatus. After 2.5 hours, AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et_2O (3 × 50 mL). The combined organic phase was washed with brine (3 × 50 mL) and with water (3 × 50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. Purification was carried out by reverse phase chromatography (MeOH/H₂O, 85:15) to afford pure product **2a**.

(3-(tert-butoxy)-4-nitrophenyl)pentafluoro- λ^6 -sulfane (2a). Prepared from 4-nitro-1-(pentafluorosulfanyl)benzene following the General procedure A. Yellow oil (205 mg, 64% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.76 (1H, d, J = 8.9 Hz), 7.62 (1H, d, J = 2.2 Hz), 7.52 (1H, dd, J = 8.9, 2.3 Hz), 1.46 (9H, s); ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.10–80.35 (1F, m), 61.80 (4F, d, J = 150.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 155.69 (quint, J = 19.5 Hz), 149.16, 146.63, 124.73, 122.33 (quint, J = 4.5 Hz), 120.41 (quint, J = 4.6 Hz), 84.71, 28.88; GCMS (EI) *m*/*z* 265 (1%), 248 (7), 127 (1), 63 (9), 57 (100), 41 (30), 39 (9); HRMS (EI⁺) *m*/*z* Calcd for C₁₀H₁₂NO₃SF₅ [M]⁺: 321.0458; Found: 321.0457.

(4-(*tert-butoxy*)-3-nitrophenyl)pentafluoro- λ^6 -sulfane (2b). Prepared from 3-nitro-1-(pentafluorosulfanyl)benzene following the General procedure A. Yellow oil (196 mg, 61% yield); ¹H NMR (CDCl₃, 400 MHz) δ 8.12 (1H, d, J = 2.8 Hz), 7.83 (1H, dd, J = 9.2, 2.8 Hz), 7.29 (1H, d, J = 9.2 Hz), 1.51 (9H, s); ¹⁹F NMR (CDCl₃, 376 MHz) δ 83.03–81.35 (1F, m), 63.38 (4F, d, J = 151.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 152.08, 146.38 (quint, J = 23.2 Hz), 143.39, 130.17 (quint, J = 4.5 Hz), 123.63 (quint, J = 4.8 Hz), 122.16, 84.52, 28.96; GCMS (EI) m/z 265 (1%) [M-tBu]⁺, 248 (5), 140 (3), 112 (2), 91 (1), 82 (4), 63 (7), 57 (100), 56 (18), 41 (35), 39 (9); HRMS (CI⁺) m/zCalcd for C₁₀H₁₂NO₃SF₅ [M]⁺: 321.0458; Found: 321.0461.

(4-(*tert-butoxy*)-3-fluoro-5-nitrophenyl)pentafluoro- λ^6 -sulfane (2c). Prepared from 3-nitro-5fluoro-1-(pentafluorosulfanyl)benzene following the General procedure A. Yellow oil (190 mg, 56% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.95–7.89 (1H, m), 7.72 (1H, dd, J = 10.1, 2.7 Hz), 1.43 (9H, d, J = 1.4 Hz); ¹³C NMR

(CDCl₃, 100 MHz) δ 157.81, 155.27, 147.33 (td, J = 21.9, 7.5 Hz), 146.94, 141.15 (d, J = 16.4 Hz), 118.75 (quint, J = 4.6 Hz), 118.48 (tt, J = 9.1, 4.0 Hz), 88.79, 28.65 (d, J = 3.1 Hz); ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.12–78.25 (1F, m), 63.08 (4F, d, J = 151.2 Hz), -115.45 (1F, s); GCMS (EI) m/z 339 (<1%) [M]⁺, 283 (2) [M-*t*Bu]⁺, 266 (11), 264 (11), 158 (12), 130 (5), 100 (8), 81 (7), 57 (100), 56 (10), 41 (33), 39 (8); HRMS (CI⁺) m/z Calcd for C₁₀H₁₁NO₃F₆S [M]⁺: 339.0364; Found: 339.0374. 2-(*tert-butoxy*)-1-*nitro-4-(trifluoromethyl*)*benzene* (2*d*). Prepared from 1-nitro-4-(trifluoromethyl)benzene following the General procedure A. Yellow oil (118 mg, 45% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.77 (1H, d, J = 8.4 Hz), 7.47– 7.43 (1H, m), 7.41–7.34 (1H, m), 1.46 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.56, 147.33, 134.36 (q, J = 33.3 Hz), 125.32, 122.95 (q, J = 273.2 Hz), 121.02 (q, J = 3.7 Hz), 119.45 (q, J = 3.7 Hz), 84.10, 28.91; ¹⁹F NMR (CDCl₃, 376 MHz) δ –63.71 (3F, s); GCMS (EI) *m/z* 207 (1%), 190 (7), 162 (4), 132 (6), 75 (3), 63 (11), 57 (100), 56 (15), 41 (37); HRMS (CI⁺) *m/z* Calcd. for C₁₁H₁₂NO₃F₃ [M]⁺: 263.0769; Found: 263.0772.

1-(tert-butoxy)-2-nitro-4-(trifluoromethyl)benzene (2*e*). Prepared from 1-nitro-3-(trifluoromethyl)benzene following the General procedure A. Yellow oil (158 mg, 60% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.98 (1H, d, J = 2.1 Hz), 7.70 (1H, dd, J = 8.8, 2.9 Hz) 7.34 (1H, d, J = 8.8 Hz), 1.49 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 152.39, 144.44, 129.55 (q, J = 3.4 Hz), 124.43 (q, J = 34.4 Hz), 123.35, 123.17 (q, J = 272.0 Hz), 122.68 (q, J = 3.9 Hz), 84.17, 28.96; ¹⁹F NMR (CDCl₃, 376 MHz) δ -62.73 (3F, s); GCMS (EI) *m/z* 207 (1%), 190 (8), 162 (2), 132 (3), 75 (2), 63 (7), 57 (100), 56 (18), 41 (32); HRMS (CI⁺) *m/z* Calcd. for C₁₁H₁₂NO₃F₃ [M]⁺: 263.0769; Found: 263.0760.

5-bromo-1-(tert-butoxy)-2-nitro-3-(trifluoromethyl)benzene (2f). Prepared from 4-bromo-1- $F_{3}C$ + nitro-2-(trifluoromethyl)benzene following the General procedure A. Yellow oil (289 mg, 85% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.58–7.56 (1H, m), 7.49-7.47 (1H, m), 1.46 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.84, 141.92, 128.53, 124.49 (q, J = 34.6 Hz), 123.88, 122.85 (q, J = 4.7 Hz), 121.22 (q, J = 274.7 Hz), 84.69, 29.01; ¹⁹F NMR (CDCl₃, 376 MHz) δ -61.35 (3F, s); GCMS (EI) m/z 270 (9 %) [M-OtBu]⁺, 268 (10) [M-OtBu]⁺, 145 (4), 131 (6), 81 (7), 58 (7), 57 (100), 56 (14), 41 (35), 39 (8); HRMS (EI⁺) m/z Calcd for C₁₁H₁₁F₃NO₃Br [M]⁺: 340.9874; Found: 340.9875.

General procedure B. To a solution of 4-nitrobenzonitrile (1 mmol, 221 mg) in THF (8 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (10 mmol, 1.12 g) in THF (10 mL) was added in portions (1 mL) every 25 minutes while dry oxygen was slowly bubbled through the apparatus. After 4.5 hours, AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added, the product was extracted with Et₂O (3 × 50 mL). The combined organic phase was washed with brine (3 × 50 mL), then with water (3 × 50 mL), dried over magnesium sulfate and the solvent was removed under reduced pressure. Purification was carried out by reverse phase chromatography (MeOH/H₂O, 85:15) to afford pure product **2**g.

3-(tert-butoxy)-4-nitrobenzonitrile (2g). Prepared from 4-nitrobenzonitrile following the General procedure B. Yellow amorphous solid (169 mg, 77% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (1H, d, J = 8.3 Hz), 7.50 (1H, d, J = 1.5 Hz), 7.40 (1H, d, J = 8.3, 1.6 Hz), 1.47 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.65, 147.72, 127.00, 125.98, 125.58, 117.05, 116.27, 84.63, 28.91; GCMS (EI) *m/z* 205 (1%), 147 (11), 119 (4), 57 (100), 41 (29), 39 (10); HRMS (CI⁺) *m/z* Calcd. for C₁₁H₁₃N₂O₃ [M]⁺: 221.0929; Found: 221.0926.

4-(tert-butoxy)-3-nitrobenzonitrile (2h). Prepared from 3-nitrobenzonitrile following the General procedure B. Brown amorphous solid (170 mg, 77% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.93 (1H, dd, J = 8.1, 1.7 Hz), 7.81 (1H, dd, J = 7.8, 1.7 Hz), 7.32 (1H, t, J = 8.0 Hz), 1.44 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ

151.43, 147.51, 137.43, 129.07, 124.53, 116.22, 113.80, 90.47, 28.95; GCMS (EI) *m/z* 164 (10%) [M-*t*Bu]⁺, 147 (11), 134 (3), 119 (5), 102 (9), 89 (6), 76 (6), 73 (12), 57 (100), 56 (11), 41 (33), 39 (13); HRMS (CI⁺) *m/z* Calcd for C₁₁H₁₃N₂O₃ [M]⁺: 221.0926; Found: 221.0923. *1-(tert-butoxy)-2,4-dinitrobenzene* (**2i**).¹ Prepared from 1,3-dinitrobenzene following the

General procedure B. Orange amorphous solid (108 mg, 45% yield); ¹H NMR (CDCl₃, 400 MHz) δ 8.59 (1H, d, J = 2.8 Hz), 8.34 (1H, dd, J = 9.3, 2.8 Hz), 7.36 (1H, d, J = 9.3 Hz), 1.55 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 154.99,

143.31, 140.75, 129.02, 127.70, 121.29, 85.29, 28.96; GCMS (EI) *m/z* 184 (21%), 183 (3) [M-*t*Bu]⁺, 154 (31), 127 (23), 107 (27), 91 (20), 79 (29), 63 (60), 57 (100), 53 (46), 41 (48), 39 (35); HRMS (CI⁺) *m/z* Calcd for C₁₀H₁₂N₂O₅ [M]⁺: 240.0746; Found: 240.0747.

4-(*tert-butoxy*)-1,2-dinitrobenzene (2j). Prepared from 1,2-dinitrobenzene following the O_{2N} General procedure B. Brown oil (121 mg, 50% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (1H, dd, J = 7.6, 1.9 Hz), 7.60–7.50 (2H, m), 1.47 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.86, 140.62, 130.27, 127.91, 126.07, 118.14, 84.46, 29.03; GCMS (EI) m/z 240 (<1%) [M]⁺, 167 (9), 121 (4), 107 (1), 93 (6), 75 (4), 63 (7), 57 (100), 56 (4), 41 (25), 39 (8); HRMS (EI⁺) m/z Calcd for C₁₀H₁₂N₂O₅ [M]: 240.0746; Found: 240.0748. 4-((3-(*tert-butoxy*)-4-nitrophenyl)sulfonyl)morpholine (2k). Prepared from 4-((4-

nitrophenyl)sulfonyl)morpholine following the General procedure B. Yellow amorphous solid (213 mg, 62% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.44 (1H, dd, J = 8.3, 1.8 Hz), 3.75 (4H, m), 3.05 (4H, m), 1.47 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.68, 147.63, 139.30, 125.42, 122.80, 121.33, 84.54, 66.19, 46.07, 28.95; HRMS (ESI)

m/*z* Calcd for C₁₄H₂₀N₂O₆SNa [M+Na]⁺: 367.0934; Found: 367.0934.

1-(tert-butoxy)-5-chloro-4-(dimethoxymethyl)-2-nitrobenzene (21). Prepared from 1-chloro-2-

(dimethoxymethyl)-4-nitrobenzene following the General procedure B. Yellow amorphous solid (267 mg, 88% yield); ¹H NMR (CDCl₃, 400 MHz) δ 8.01 (1H, s), 7.22 (1H, s), 5.55 (1H, s), 3.38 (6H, s), 1.44 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.88, 143.45, 137.07, 130.48, 124.82, 124.79, 99.87, 84.01, 53.87, 28.89; GCMS (EI) *m/z* 247 (3%) [M-*t*Bu]⁺, 218 (47), 216 (100), 170 (14), 126 (2), 99 (2), 75 (9), 57 (37), 41 (11); HRMS (ESI) *m/z* Calcd for C₁₃H₁₈NO₅ClNa [M]⁺: 326.0771; Found: 326.0769.

2-(tert-butoxy)-4-(1,1-dimethoxyethyl)-1-nitrobenzene (2m). Prepared from 1-(1,1- \downarrow^{NO_2} dimethoxyethyl)-4-nitrobenzene following the General procedure B. Brown amorphous solid (224 mg, 79% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.70 (1H, d, J = 8.4 Hz), 7.35 (1H, d, J = 1.8 Hz), 7.26 (1H, dd, J = 8.4, 1.7 Hz), 3.19 (6H, s), 1.52 (3H, s), 1.42 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 149.14, 148.56, 144.62, 124.75, 122.85, 121.02, 101.08, 82.82, 49.31, 28.99, 25.94; GCMS (EI) *m/z* 251 (1%), 195 (78), 178 (47), 165 (6), 148 (24), 134 (19), 119 (8), 105 (16), 89 (20), 77 (23), 57 (100), 41 (44), 39 (20); HRMS (ESI⁺) *m/z* Calcd for C₁₄H₂₁NO₅Na [M+Na]⁺: 306.1312; Found: 306.1312. 2-(tert-butoxy)-1-nitronaphthalene (2n).² Prepared from 1-nitronaphthalene following the

General procedure B. Yellow amorphous solid (108 mg, 44% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.85 (2H, dd, J = 8.6, 6.4 Hz), 7.66 (1H, d, J = 8.5 Hz), 7.58 (1H, ddd, J = 8.5, 6.9, 1.2 Hz), 7.48 (1H, ddd, J = 8.1, 6.9, 1.2 Hz), 7.38

(1H, d, J = 9.1 Hz), 1.47 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 145.89, 141.88, 130.91, 129.59, 128.78, 128.04, 125.95, 125.67, 122.25, 120.97, 82.97, 29.42; GCMS (EI) *m/z* 190 (12%), 189 (100) [M-*t*Bu]⁺, 172 (10), 159 (6), 144 (15), 132 (22), 115 (25), 102 (12), 90 (13), 77 (8), 63 (8), 57 (36), 41 (22); HRMS (CI⁺) *m/z* Calcd for C₁₄H₁₅NO₃ [M]⁺: 245.1052; Found: 245.1054.

3-(*tert-butoxy*)-2-*nitrothiophene* (20). Prepared from 2-nitrothiophene following the General O_{2N} procedure A. Brown oil (121 mg, 60% yield); ¹H NMR (CDCl₃, 400 MHz) δ $s' \rightarrow \sim$ 7.36 (1H, d, J = 6.0 Hz), 6.87 (1H, d, J = 6.0 Hz), 1.52 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 163.00, 153.69, 128.96, 122.38, 84.37, 28.89; GCMS (EI) *m/z* 146 (9%), 145 (29), 98 (16), 86 (9), 70 (18), 58 (19), 57 (100), 45 (13), 41 (45), 39 (20); HRMS (ESI⁻) *m/z* Calcd for C₈H₁₀NO₃S [M - H]^{-:} 200.0387; Found: 200.0389. 2,4-di-tert-butoxy-1-nitrobenzene (3). To a solution of 4-nitro-1-(pentafluorosulfanyl)-

benzene (1 mmol, 249 mg) in THF (8 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (10 mmol, 1.12 g) in THF (10 mL) was added in portions (1 mL) every 15 minutes while dry oxygen was slowly bubbled through the apparatus. After 2.5 hours the cooling bath was removed and the mixture was

kept at RT overnight. Then AcOH (1 mL, 10 eq.) and brine (30 l) were added and the product was extracted with Et₂O (3 × 50 mL). The combined organic phase was washed with brine (3 × 50 mL), with water (3 × 50 mL), dried over magnesium sulfate and the solvent was evaporated under reduced pressure. Purification was carried out by reverse phase chromatography (MeOH/H₂O, 85:15) to afford pure product as a yellow amorphous solid (181 mg, 68% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (1H, d, *J* = 9.0 Hz), 6.77 (1H, d, *J* = 2.5 Hz), 6.72 (1H, dd, *J* = 8.9, 2.4 Hz), 1.42 (18H, d, *J* = 0.9 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 160.17, 150.91, 140.23, 126.17, 118.38, 116.81, 83.06, 80.54, 29.02, 28.91; GCMS (EI) *m/z* 211 (5%) [M-*t*Bu]⁺, 196 (5), 156 (17), 155 (100), 139 (11), 138 (11), 125 (15), 123 (15), 97 (4), 79 (5), 63 (5), 57 (95), 41 (31); HRMS (ESI⁺) *m/z* Calcd for C₁₄H₂₁NO₄ [M+Na]⁺: 290.1363; Found: 290.1360.

General procedure C. To a solution of 4-nitro-1-(pentafluorosulfanyl)benzene (1 mmol, 249 mg) in THF (8 mL) at -78 °C (dry ice-acetone), a solution of potassium *n*-butylate (10 mmol, 1.12 g) in THF (10 mL), prepared by adding a solution of butanol (750 mg, 10.2 mmol) in THF (10 mL) to the suspension of KH (1.35 g, 30% in oil, 10 mmol), was added in portions (1 mL) every 15 minutes while dry oxygen was slowly bubbled through the apparatus. After 1.5 hours, AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (3 × 30 mL) was added and product was extracted with Et₂O (3 × 50 mL). The combined organic layer was washed with brine (3 × 50 mL), water (3 × 50 mL), dried over magnesium sulfate and the solvent was removed under reduced pressure. Purification was carried out by reverse phase chromatography (MeOH/H₂O, 85:15) to afford pure product **5**.

pentafluoro(3-methoxy-4-nitrophenyl)-λ⁶-sulfane (4). Prepared from 4-nitro-1-(pentafluorosulfanyl)benzene following the General procedure C. Yellow oil (123 mg, 44% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.88 (1H, d, J = 9.3 Hz), 7.47–7.43 (2H, m), 4.03 (3H, s); ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.10–79.78 (1F, m), 61.84 (4F, d, J = 150.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 157.17 (quint, J = 19.1 Hz), 152.54, 141.29, 125.64, 118.39 (quint, J = 5.0 Hz), 112.12 (quint, J = 4.8 Hz), 57.20; GCMS (EI) m/z 279 (95%) [M]⁺, 249 (84), 232 (32), 218 (35), 152 (33), 127 (20), 124 (45), 113 (62), 110 (100), 96 (50), 89 (75), 76 (77), 63 (100), 62 (55), 51 (30), 46 (16); HRMS (EI⁺) *m/z* Calcd for C₇H₆NO₃SF₅ [M]⁺: 278.9989; Found: 278.9997.

(3-butoxy-4-nitrophenyl)pentafluoro- λ^6 -sulfane (5). Prepared from 4-nitro-1-(pentafluorosulfanyl)benzene following the General procedure C. Yellow amorphous solid (148 mg, 46% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.84 (1H, d, J = 8.8 Hz) 7.44 (1H, d, J = 2.1 Hz) 7.41 (1H, dd, J = 8.8, 2.2 Hz) 4.16 (2H, t, J = 6.3 Hz) 1.88–1.78 (2H, m) 1.61–1.45 (2H, m), 0.98 (3H, t, J = 7.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 156.91 (quint., J = 18.6 Hz), 152.08, 141.46, 125.38, 118.02 (quint., J =4.7 Hz), 112.90 (quint., J = 4.7 Hz), 70.28, 30.88, 19.14, 13.79; ¹⁹F NMR (CDCl₃, 376 MHz) δ 82.57–79.36 (1F, m) 61.84 (4F, d, J = 150.5 Hz); GCMS (EI) m/z 321 (5%) [M]⁺, 265 (22), 249 (6), 194 (5), 127 (5), 82 (8), 76 (6), 63 (14), 57 (63), 56 (100), 55 (13), 41 (58), 39 (12); HRMS (EI⁺) m/z Calcd for C₁₀H₁₂F₅NO₃S [M]⁺: 321.0457; Found: 321.0458.

Pentafluoro(3-isopropoxy-4-nitrophenyl)-\lambda^{6}-sulfane (6). Prepared from 4-nitro-1-(pentafluorosulfanyl)benzene following the General procedure C. Yellow oil (166 mg, 54% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (1H, d, J = 8.8 Hz) 7.44 (1H, d, J = 2.2 Hz) 7.40 (1H, dd, J = 8.8, 2.2 Hz), 4.72 (1H, hept., J = 6.1 Hz), 1.43 (6H, d, J = 6.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 156.81 (quint., J = 19.0 Hz), 150.89, 142.56, 125.33, 118.05 (quint., J = 4.7 Hz), 114.41 (quint., J = 4.9 Hz), 73.96, 21.80; ¹⁹F NMR (CDCl₃, 376 MHz) δ 83.11–78.78 (1F, m), 61.79 (4F, d, J = 150.5 Hz); GCMS (EI) m/z307 (1%) [M]⁺, 288 (1), 265 (100), 249 (9), 127 (12), 99 (9), 83 (9), 63 (19), 43 (69), 41 (32); HRMS (EI⁺) m/z Calcd. for C₉H₁₀F₅NO₃S [M]⁺: 307.0302; Found: 307.0309.

(3-(cyclohexyloxy)-4-nitrophenyl)pentafluoro-λ⁶-sulfane (7). Prepared from 4-nitro-1-(pentafluorosulfanyl)benzene following the General procedure C. Yellow oil (212 mg, 61% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.81 (1H, d, J = 8.8 Hz), 7.43 (1H, d, J = 2.2 Hz,) 7.39 (1H, dd, J = 8.8, 2.2 Hz), 4.51 (1H, tt, J = 7.5, 3.5 Hz), 1.97–1.88 (2H, m), 1.86–1.76 (2H, m), 1.77–1.65 (2H, m), 1.59–1.36 (4H, m); ¹³C NMR (CDCl₃, 100 MHz) δ 156.71 (quint., J = 18.6 Hz), 150.81, 142.49, 125.37, 117.89 (quint., J = 4.7 Hz), 114.43 (quint., J = 4.7 Hz), 78.27, 31.06, 25.39, 22.94; ¹⁹F NMR (CDCl₃, 376 MHz) δ 83.15–80.39 (1F, m), 61.81 (4F, d, J = 150.5 Hz); GCMS (EI) *m/z* 249 (3%), 127 (1), 93 (2), 84 (6), 83 (84), 82 (80), 81 (15), 67 (27), 63 (8), 55 (100), 53 (8), 41 (39), 39 (12); HRMS (EI⁺) *m/z* Calcd for C₁₂H₁₄F₅NO₃S [M]⁺: 347.0615; Found: 347.0618. $(3-(tert-butoxy)-4-methoxyphenyl)pentafluoro-\lambda^6-sulfane$ (8). To a solution of 4-nitro-1-

(pentafluorosulfanyl)benzene (1 mmol, 249 mg) in THF (8 mL) at -78 °C (dry ice-acetone), a solution of potassium tert-butylate (10 mmol, 1.12 g) in THF (10 mL) was added in portions (1 mL) every 15 minutes while dry oxygen was slowly ŚF₅ bubbled through the apparatus. After 2.5 hours, AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et₂O (3×50 mL). The combined organic layer was washed with brine $(3 \times 50 \text{ mL})$, water $(3 \times 50 \text{ mL})$, dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. THF (8 mL) was added to the residue and the resulting solution was slowly added to a solution of MeOK (10 mmol) in THF (8 mL) at -78 °C (dry ice-acetone) (prepared similarly as in General procedure C), the resulting mixture was stirred at this temperature for 2.5 hours, then AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added, the product was extracted with Et₂O (3×50 mL). The combined organic layer was washed with brine (3×50 mL), water (3×50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. Purification was carried out by reverse phase chromatography (MeOH/H₂O, 85:15) to afford pure product as a yellow amorphous solid (144 mg, 47% yield); ¹H NMR $(CDCl_3, 400 \text{ MHz}) \delta 7.46 (1\text{H}, \text{dd}, J = 9.0, 2.8 \text{ Hz}), 7.41 (1\text{H}, \text{d}, J = 2.7 \text{ Hz}), 6.89 (\text{d}, J = 9.0 \text{ Hz})$ Hz, 1H), 3.86 (3H, s), 1.36 (9H, s); ¹³C NMR (CDCl₃, 100 MHz) δ 156.50, 145.88 (quint, J = 18.1 Hz), 143.78, 123.69 (quint, J = 4.3 Hz) 122.38 (quint, J = 4.6 Hz), 110.85, 81.49, 56.00, 28.61; ¹⁹F NMR (CDCl₃, 376 MHz) δ 86.40–84.70(1F, m), 63.62 (4F,d, J = 150.2 Hz); GCMS (EI) m/z 291 (8%) [M-Me]⁺, 250 (100), 235 (6), 142 (5), 127 (14), 79 (10), 57 (30), 41 (19); HRMS (CI⁺) *m/z* Calcd for C₁₁H₁₅SO₂F₅ [M]⁺: 306.0713; Found: 306. 0706.

 $4-(2-(tert-butoxy)-4-(pentafluoro-\lambda^6-sulfaneyl)phenyl)morpholine (9).$ To a solution of 4-nitro-1-(pentafluorosulfanyl)benzene (1 mmol, 249 mg) in THF (8 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (10 mmol, 1.12 g) in THF (10 mL) was added in portions (1 mL) every 15 minutes while dry oxygen was slowly

bubbled through the apparatus. After 2.5 hours, AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et₂O (3×50 mL). The combined organic phase was washed with brine (3×50 mL), water (3×50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residuum was dissolved in THF (8 mL) and slowly added to solution of lithium morpholide [prepared from morpholine (4 mmol, 348 mg) in THF (8 mL) at -78 °C (dry ice-acetone) and a solution of *n*-BuLi (2.5 M, 1.6 mL, 4 mmol, 4 equiv.) in hexane, kept 15 min at -78 °C]. The resulting mixture was stirred at -78 °C for 2.5 hours, then AcOH (1 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et₂O (3 × 50 mL). The combined organic phase was washed with brine (3 × 50 mL), water (3 × 50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. Purification was carried out by reverse phase chromatography (MeOH/H₂O, 85:15) to afford pure product as a brown oil (148 mg, 41% yield); ¹H NMR (CDCl₃, 400 MHz) δ 7.41 (1H, dd, *J* = 8.9, 2.7 Hz), 7.36 (1H, d, *J* = 2.6 Hz), 6.86 (1H, d, *J* = 8.9 Hz), 3.89–3.79 (4H, m) 3.26–3.06 (4H, m), 1.38 (9H, s); ¹⁹F NMR (CDCl₃, 376 MHz) δ 86.67–84.55 (1F, m), 63.36 (4F, d, *J* = 150.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 149.73, 147.43, 147.19 (m), 122.75 (quint, *J* = 4.1 Hz), 121.94 (quint, *J* = 4.7 Hz), 116.95, 81.67, 67.13, 50.47, 28.90; GCMS (EI) *m/z* 361 (7%) [M]⁺, 346 (3), 305 (100) [M-*t*Bu]⁺, 274 (6), 247 (75), 246 (75), 57 (26), 41 (16), 39 (5); HRMS (EI⁺) *m/z* Calcd for C₁₄H₂₀NO₂SF₅ [M]⁺: 361.1135; Found: 361.1136.

Mechanistic studies. For the isotopic experiment, 1,3-dinitrobenzene (1i) and 1,3dinitrobenzene- d_4 (98% atom D) (1i- d_4) were used. Product yields and identity was determined from ¹H NMR and GC-MS analyses of the product mixture. Each reaction was carried out three times and observed yields were within ±1% error. For GC-MS yields, standard solutions of 2i (10%, 20%, 30%, 40%, 50%, 60% and 70%) in 1i were prepared. *Reaction with a mixture of 1i and 1i-d_4:* To a solution of 1,3-dinitrobenzene (1i) (0.25 mmol, 42 mg) and 1i- d_4 (0.25 mmol, 43 mg) in THF (4 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (5 mmol, 0.56 g) in THF (5 mL) was added in portions (1 mL) every 25 minutes while dry oxygen was slowly bubbled through the apparatus. After 4.5 hours, AcOH (0.5 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et₂O (3 × 25 mL). The combined organic phase was washed with brine (3 × 25 mL), water (3 × 50 mL), dried over magnesium sulfate and the solvent was removed under reduced pressure. GC-MS analysis revealed 7% yield of 2i and ratio of 2i/2i- $d_n \sim 4$:1 (Figure S1).

Figure S1 MS (EI) spectrum of product mixture showing the ratio of $2i/2i - d_n \sim 4:1$.

Proton/deuterium exchange: To a solution of 1,3-dinitrobenzene (1i) (0.25 mmol, 43 mg) and 1i- d_4 (0.25 mmol, 43 mg) in THF (4 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (5 mmol, 0.56 g) in THF (5 mL) was added. After 4.5 hours, AcOH (0.5 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et₂O (3 × 25 mL). The combined organic phase was washed with brine (3 × 25 mL), water (3 × 50 mL), dried over magnesium sulfate and the solvent was removed under reduced pressure (Figure S2). 1,3-dinitrobenzene (*1i*).³ ¹H NMR (CDCl₃, 400 MHz) δ 9.08 (1H, t, *J* = 2.2 Hz), 8.59 (2H, dd, *J* = 8.2, 2.2 Hz), 7.83 (1H, t, *J* = 8.2 Hz).

Figure S2 MS (EI) spectrum of product mixture 1i, 1i-d, 1i-d₃, 1i-d₄.

1,3-dinitrobenzene-4,5,6-d₃ (1*i*-*d₃). To a solution of 1,3-dinitrobenzene-<i>d₄* (1*i*-*d₄) (0.5 mmol, 86 mg) and <i>tert*-butyl alcohol (5 mmol, 37 mg) in THF (4 mL) at -78 °C (dry ice-acetone), a solution of potassium *tert*-butylate (5 mmol, 0.56 g) in THF (5 mL) was added. After one hour, AcOH (0.5 mL, 10 eq.) was added and the cooling bath was removed. After warming to room temperature, brine (30 mL) was added and the product was extracted with Et₂O (3 × 25 mL). The combined organic phase was washed with brine (3 × 25 mL), water (3 × 50 mL each), dried over magnesium sulfate and the solvent was removed under reduced pressure affording a mixture of 1*i*-*d*₄ (40%), 1*i*-*d*₃ (50%) and 2*i*-*d*₂ (10%) (Figure S3).

Figure S3 ¹H NMR (400 MHz, CDCl₃) spectrum of $1i-d_3$ with a small amount of $2i-d_2$.

*1-(tert-butoxy)-2,4-dinitrobenzene-5,6-d*₂ (**2i**-d₂). Prepared from 1,3-dinitrobenzene-4,5,6-d₃ (**1i**-d₃) following the General procedure B. ¹H NMR analysis showed 36% conversion to **2i**-d₂ (Figure S4).

Figure S4 ¹H NMR (400 MHz, CDCl₃) spectrum of a mixture of $1i-d_3$ and $2i-d_2$.

Figure S5 ¹³C NMR (100 MHz, CDCl₃) spectrum of a mixture of $1i-d_3$ and $2i-d_2$.

References

- Effenberger, F., Koch, M. & Streicher, W. Nucleophile Substitution von Nitrit in Nitrobenzolen, Nitrobiphenylen und Nitronaphthalinen. *Chem. Ber.* 124, 163–173 (1991).
- Liu, Z. *et al.* Boron-Promoted Ether Interchange Reaction: Synthesis of Alkyl Nitroaromatic Ethers from Methoxynitroarenes. *European J. Org. Chem.* 2020, 702– 707 (2020).
- Zhang, K., Budinská, A., Passera, A. & Katayev, D. N -Nitroheterocycles: Bench-Stable Organic Reagents for Catalytic Ipso -Nitration of Aryl- and Heteroarylboronic Acids. Org. Lett. 22, 2714–2719 (2020).

Copies of NMR spectra

2a, ¹H NMR (CDCl₃, 400 MHz)

2a, ¹³C NMR (CDCl₃, 100 MHz)

2b, ¹H NMR (CDCl₃, 400 MHz)

2b, ¹⁹F NMR (CDCl₃, 376MHz)

2c, ¹H NMR (CDCl₃, 400 MHz)

2d, ¹H NMR (CDCl₃, 400 MHz)

2d, ¹⁹F NMR (CDCl₃, 376MHz)

2e, ¹³C NMR (CDCl₃, 100 MHz)

2f, ¹H NMR (CDCl₃, 400 MHz)

2f, ¹⁹F NMR (CDCl₃, 376MHz)

2g, ¹H NMR (CDCl₃, 400 MHz)

2g, ¹³C NMR (CDCl₃, 100 MHz)

2h, ¹³C NMR (CDCl₃, 100 MHz)

2i, ¹³C NMR (CDCl₃, 100 MHz)

2j, ¹H NMR (CDCl₃, 400 MHz)

2j, ¹³C NMR (CDCl₃, 100 MHz)

SI27

2k, ¹³C NMR (CDCl₃, 100 MHz)

SI28

2l, ¹³C NMR (CDCl₃, 100 MHz)

SI29

2m, ¹³C NMR (CDCl₃, 100 MHz)

2n, ¹³C NMR (CDCl₃, 100 MHz)

20, ¹³C NMR (CDCl₃, 100 MHz)

3, ¹³C NMR (CDCl₃, 100 MHz)

1.00--

8 7 f1 (ppm)

2.98--

-1

-2

4, ¹⁹F NMR (CDCl₃, 376MHz)

5, ¹H NMR (CDCl₃, 400 MHz)

5, ¹³C NMR (CDCl₃, 100 MHz)

6, ¹⁹F NMR (CDCl₃, 376MHz)

7, ¹H NMR (CDCl₃, 400 MHz)

7, ¹³C NMR (CDCl₃, 100 MHz)

8 7 f1 (ppm) 3.06H

9.04-

-1

-2

8, ¹⁹F NMR (CDCl₃, 376MHz)

9, ¹H NMR (CDCl₃, 400 MHz)

9, ¹³C NMR (CDCl₃, 100 MHz)

