Supporting Information for

One-Pot Three-Component Reaction of Quinone Monoacetals, Proline and

Naphthols to Afford N-Aryl-2-Arylpyrrolidines

Xin Wang, Gang Li, Xiaojie Li, Dunru Zhu, Ruwei Shen*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China. E-mail: shenrw@njtech.edu.cn

Table of Contents

1.	General Information	S2
2.	Starting Materials	S2
3.	Results on the optimization of the reaction	S3
4.	Crystal structure determination of 4a and 8d	S4-S5
5.	Experimental details and characterization data of the products	S6-S20
6.	References	S21
7.	Copies of ¹ H and ¹³ C NMR spectra	S22-S91

1. General Information

Unless otherwise specified, all reactions were performed under dry nitrogen atmosphere. Anhydrous solvents were distilled prior to use: THF, dioxane and toluene were distilled from sodium using benzophenone as the indicator; MeCN, DMF and DMSO were distilled from CaH₂ under appropriate pressure; Et₃N was distilled from KOH. p-Quinone monoacetals and p-quinol ethers were prepared following known method.¹ L-proline and naphtholswere purchased from commercial source and used as recieved. Thin layer chromatography was performed on precoated glass-backed plates and visualized with UV light at 254 nm. Flash chromatography was performed on silica gel using petroleum ether and EtOAc as eluent. ¹H NMR spectra were recorded on a Bruker AscendTM 400 spectrometer at 400 MHz. ¹³C NMR spectra were recorded on a Bruker AscendTM 400 spectrometer at 100 MHz. Spectra were obtained in CDCl₃. Chemical shifts are expressed in ppm and J values are given in Hz. Proton chemical shifts are reported relative to internal tetramethylsilane (TMS, $\delta 0.0$ ppm), or with the solvent reference relative to TMS employed as an internal standard (CDCl₃, δ 7.26 ppm). Carbon chemical shifts were reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, δ 77.0 ppm). HRMS analysis was performed on an Agilent 6540 UHD accurate-mass quadrupole time-of-flight (Q-TOF) mass spectrometer in the electrospray ionization mode (positive mode). The X-Ray crystallographic analysis was performed on a Bruker SMART APEX II CCD diffractometer using a graphite-monochromated Mo K_{α} ($\lambda = 0.71073$ Å) radiation. Melting points were determined with a Shanghai Jingke WRS-2A digital melting point apparatus instrument, and were uncorrected. Optical rotation was determined using a Shanghai Jingmi WZZ-2B digital polarimeter.

2. Starting Materials

The structures of *p*-quinone monoacetals **1a-1h**, *p*-quinol ethers **1i-1l** and naphthols **3a-3m** used in this study are shown in Figure S1.

1a,² **1b**,² **1c**,² **1d**,³ **1e**,⁴ **1f**,⁵ **1g**,² **1i**,⁵ **1j**,⁵ **1k**⁵ and **1l**⁶ were known compounds, and were synthesized *via* the oxidation of the corresponding phenols by PhI(OAc)₂ following literature procedures.¹ **1h** is a new compound (33% yield). Yellow liquid. ¹H NMR (CDCl₃, 400 MHz): $\delta = 6.73$ (d, J = 10.0 Hz, 1H), 6.33 (dd, $J_I = 10.0$ Hz, $J_2 = 2.0$ Hz, 1H), 6.19 (s, 1H), 3.48–3.40 (m, 2H), 3.30–3.22 (m, 2H), 1.94 (d, J = 1.2 Hz, 3H), 1.20 (t, J = 7.0 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 185.2$, 157.0, 145.6, 131.8, 129.6, 94.8, 58.9, 16.9, 15.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₁H₁₇O₃ 197.1178, found 197.1179.

3. Results on the optimization of the reaction

Table S1. Optimization on the reaction conditions^a

Entry	1a/2a/3a	Solvent	Base	Tempt (°C)	Yield (%) ^b
1	1/1/1	MeCN	-	100	29 ^c
2	1/1/1	MeCN	Et ₃ N	100	44
3	1/1/1	MeCN	Et ₃ N	80	50
4	1/1/1	MeCN	Et ₃ N	60	63
5	1/1/1	MeCN	Et ₃ N	rt	trace
6	1/1/1	MeCN	DBU^d	60	38
7	1/1/1	MeCN	$K_2CO_3^d$	60	51(63) ^e
8	1/1/1	MeCN	$NaOH^d$	60	23
9	1/1/1	MeCN	Pyridine ^f	60	35
10	1/1/1	Dioxane	Et ₃ N	60	28
11	1/1/1	Toluene	Et ₃ N	60	30
12	1/1/1	DMF	Et ₃ N	60	43
13	1/1/1	DMSO	Et ₃ N	60	40
14	1/1/1	EtOH	Et ₃ N	60	58
15	1/1/1	DCE	Et ₃ N	60	54
16	1/1/1	EtOAc	Et ₃ N	60	27
17	1/1/1	THF	Et ₃ N	60	25
18	1/1.2/1	MeCN	Et ₃ N	60	68
19	1/1.5/1	MeCN	Et ₃ N	60	72
20	1/2/1	MeCN	Et ₃ N	60	72
21 ^c	1.2/1.5/1	MeCN	Et ₃ N	60	67
22	1.5/1.5/1	MeCN	Et ₃ N	60	65
23	1.5/2/1	MeCN	Et ₃ N	60	63
24	1/1.5/1	MeCN	Et ₃ N ^g	60	71
25	1/1.5/1	MeCN	Et_3N^h	60	74
26	1/1.5/1	MeCN	$\mathrm{Et}_3\mathrm{N}^{h,i}$	60	72
27	1/1.5/1.2	MeCN	Et ₃ N ^h	60	77
28	1/1.5/1.2	MeCN	$\mathrm{Et}_3\mathrm{N}^{h,i}$	60	75
29	1/1.5/1.5	MeCN	Et_3N^h	60	73
30	1/1/1.5	MeCN	Et ₃ N	60	66
31	1.5/1/1	MeCN	Et ₃ N	60	61

^{*a*} Unless otherwise noted, a mixture of **1a** (0.2-0.3 mmol), **2a** (0.2-0.4 mmol) and **3a** (0.2-0.3 mmol) in the solvent (2 mL) with Et₃N (2 mL) was charged to a 10 mL screw-capped Schlenk tube under N₂ and heated for 12 h. ^{*b*}Isolated yields. ^{*c*}**5a** was obtained in 34% yield based on **1a**. ^{*d*}0.4 mmol base was added. ^{*e*}**1a/2a/3a**: 1/1.5/1.2, 5 equiv K₂CO₃. ^{*f*}1 mL pyridine was used; **5a** was obtained in ca.10% yield based on **1a**. ^{*g*}1 mL. ^{*b*}0.5 mL.^{*i*}**1a** in MeCN (1 mL) was slowly added to a mixture of **2a** and **3a** in MeCN (1 mL) and Et₃N (0.5 mL) *via* a syringe pump over 10 h (flow rate: 0.1 mL/h).

4. Crystal structure determination of 4a and 6d

The well-shaped single crystals were selected for X-ray diffraction study. The unit cell parameters and intensity data were collected at 296(2) K on a Bruker SMART APEX II CCD diffractometer using a graphite-monochromated Mo K_{α} ($\lambda = 0.71073$ Å) radiation. The structure was solved by direct methods and refined on F^2 by full-matrix least squares procedures using SHELXTL software. All non-hydrogen atoms were refined anisotropically. All H atoms were located from a difference map and refined isotropically. ORTEP representation (30% probability level) of the molecular structures and CCDC numbers for compounds **4a** and **6d** are presented in Table S2. Crystallographic data are listed in Table S3. These data can be obtained free of charge from the Cambridge Crystallographic Date Center via <u>www.ccdc.cam.ac.uk</u>.

Table S2 Molecular structures of 4a and 6d

Compound	4a	6d
Empirical formula	C ₂₁ H ₂₁ NO ₂	C ₂₁ H ₂₀ BrNO ₂
Formula weight	319.39	398.29
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_{1}/n$	<i>P</i> 2 ₁ 2 ₁ 2 ₁
<i>a</i> / Å	7.064(3)	7.5488(8)
b / Å	23.992(9)	14.1447(14)
<i>c</i> / Å	9.994(4)	17.0775(18)
β/(°)	98.766(4)	90
$V/Å^3$	1674.0(10)	1823.5(3)
Ζ	4	4
$D_{\rm c} / ({\rm g.cm^{-3}})$	1.267	1.451
μ / mm ⁻¹	0.081	2.268
<i>F</i> (000)	680	816
Crystal size / mm ³	0.11×0.09×0.07	0.15×0.11×0.09
heta range / (°)	1.698-25.003	1.869-25.002
Reflections collected	10867	13075
Independent reflections	2936 [R_{int} = 0.0470]	3193 [$R_{int} = 0.0308$]
Reflections observed ($I \ge 2\sigma(I)$)	2035	2818
Data/restraints/parameters	2936/6/219	3193/0/229
Goodness-of-fit on F^2	1.045	1.024
R_1/wR_2 ($I > 2\sigma(I)$)	0.0536/0.1162	0.0289/0.0636
R_1/wR_2 (all data)	0.0873/0.1298	0.0367/0.0661
$(\Delta ho)_{ m max}, (\Delta ho)_{ m min}$ / (e·Å ⁻³)	0.167, -0.206	0.294, -0.310

Table S3 Crystal data and structure refinements for the products 4a and 6d

5. Experimental details and characterization data of the products

General procedure for the three-component reaction: To an oven-dried Schlenk tube (10 mL) were added QMA 1 (0.2 mmol), L-proline 2a (1.5 equiv), α -naphthol 3 (1.2 equiv), MeCN (2 mL) and Et₃N (0.5 mL). The tube was sealed and the resulting mixture was stirred and heated to 60 °C for 12 h. After the reaction was cooled down to room temperature, silica gel (ca. 200 mg) was added and the volatiles were removed in vacuo to afford a dry powder. The residue was purified by column chromatography on silica gel (PE/EtOAc) to afford the pure product 4.

2-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4a). Following the general procedure, the reaction of **1a** (30.9 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3a** (34.7 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4a** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 49.2 mg, 77%. Mp: 110–111 °C. $[\alpha]_D^{21} = 0$ (c 0.25, EtOH). ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.80$ (br, 1H), 8.15–8.13 (m, 1H), 7.75–7.72 (m, 1H), 7.43–7.38 (m, 2H), 7.36 (d, J = 8.4 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 6.86 (d, J = 9.2 Hz, 2H), 6.73 (d, J = 9.2 Hz, 2H), 4.58–4.55 (m, 1H), 3.93–3.88 (m, 1H), 3.68 (s, 3H), 3.22 (dd, $J_I = 17.2$ Hz, $J_2 = 7.6$ Hz, 1H), 2.51–2.41 (m, 1H), 2.25–2.11 (m, 2H), 2.07–2.02 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 154.3$, 151.9, 142.6, 133.5, 127.3, 126.0, 125.7, 125.4, 125.0, 122.1, 119.2, 119.1, 117.9, 114.5, 67.3, 55.6, 53.4, 35.5, 24.3. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₂NO₂ 320.1651, found 320.1653. *The structure of this compound was further determined by single crystal X-ray diffraction*.

Procedure on 3.25 mmol scale: To a oven-dried Schlenk tube (25 mL) were added **1a** (500 mg, 3.25 mmol), **2a** (562 mg, 4.88 mmol) and **3a** (562 mg, 3.90 mmol), MeCN (6 mL) and Et₃N (1.5 mL). The tube was sealed and the resulting mixture was heated at 60 °C for 12 h. The reaction mixture was cooled down. The solvent was removed in vacuo, and the residue was purified by column chromatography on silica gel (PE/EtOAc = 60/1) to afford the pure product **4a**. Yield: 746 mg, 72%.

2-(1-(4-methoxy-3-methylphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4b). Following the general procedure, the reaction of **1b** (33.7 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3a** (34.6 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4b** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 46.9 mg, 70%. Mp: 113–115 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.92 (br, 1H), 8.16–8.13 (m, 1H), 7.75–7.72 (m, 1H), 7.43–7.38 (m, 2H), 7.35 (d, *J* = 8.8 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 2.8 Hz, 1H), 6.69 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.8 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 4.57 (dd, *J*₁ = 8.4 Hz, 1H), 3.93–3.88 (m, 1H), 3.69 (s, 3H), 3.22 (dd, *J*₁ = 16.8 Hz, *J*₂ = 7.2 Hz, 1H), 2.47–2.40 (m, 1H), 2.24–2.14 (m, 2H), 2.12 (s, 3H), 2.06–2.01 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 152.6, 152.0, 142.2, 133.5, 127.4, 127.2, 125.9, 125.7, 125.4, 124.9, 122.1, 119.9, 119.3, 119.0, 114.6, 110.8, 67.2, 55.7, 53.5, 35.5, 24.3, 16.6. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₂ 334.1807, found 334.1809.

2-(1-(4-methoxy-3,5-dimethylphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4c). Following the general procedure, the reaction of **1c** (36.5 mg, 0.2 mmol), **2a** (34.5 mg, 0.3 mmol) and **3a** (34.7 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4c** as a white solid, which was purified by column chromatography (PE/EtOAc = 70/1). Yield: 45.2 mg, 65%. Mp: 118–120 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.64 (br, 1H), 8.16–8.14 (m, 1H), 7.76–7.74 (m, 1H), 7.45–7.39 (m, 2H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 6.55 (s, 2H), 4.64–4.61 (m, 1H), 3.93–3.87 (m, 1H), 3.61 (s, 3H), 3.25 (dd, *J*₁ = 17.2 Hz, *J*₂ = 7.6 Hz, 1H), 2.49–2.39 (m, 1H), 2.22–2.10 (m, 2H), 2.16 (s, 6H), 2.06–2.00 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.9, 151.2, 144.7, 133.5, 131.2, 127.3, 126.0, 125.7, 125.4, 124.9, 122.1, 119.4, 119.2, 116.7, 66.9, 59.8, 53.1, 35.7, 24.4, 16.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1964, found 348.1968.

2-(1-(3-chloro-4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4d). Following the general procedure, the reaction of **1d** (37.7 mg, 0.2 mmol), **2a** (34.5 mg, 0.3 mmol) and **3a** (34.8 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4d** as a white solid, which was purified by column

chromatography (PE/EtOAc = 60/1). Yield: 42.3 mg, 60%. Mp: 123–125 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.26 (br, 1H), 8.15–8.13 (m, 1H), 7.76–7.74 (m, 1H), 7.45–7.40 (m, 2H), 7.38 (d, *J*= 8.4 Hz, 1H), 7.20 (d, *J* = 8.8 Hz, 1H), 6.97 (d, *J*= 2.0 Hz, 1H), 6.74–6.69 (m, 2H), 4.56 (dd, *J*₁ = 8.0 Hz, *J*₂ = 6.4 Hz, 1H), 3.92–3.87 (m, 1H), 3.75 (s, 3H), 3.22 (dd, *J*₁ = 16.4 Hz, *J*₂ = 7.2 Hz, 1H), 2.51–2.42 (m, 1H), 2.23–2.13 (m, 2H), 2.09–2.03 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.6, 149.5, 143.1, 133.6, 127.3, 126.1, 125.6, 125.3, 125.1, 122.9, 122.0, 119.4, 118.8, 115.6, 113.1, 67.1, 56.6, 53.2, 35.5, 24.3. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁CINO₂ 354.1261, found 354.1264.

2-(1-(3-bromo-4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4e). Following the general procedure, the reaction of **1e** (46.7 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3a** (34.8 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4e** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 43.8 mg, 55%. Mp: 133–135 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.25 (br, 1H), 8.14 (d, *J* = 6.4 Hz, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.43–7.36 (m, 3H), 7.19 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 2.0 Hz, 1H), 6.76 (d, *J* = 8.8 Hz, 1H), 6.66 (d, *J* = 9.2 Hz, 1H), 4.55 (t, *J* = 6.8 Hz, 1H), 3.89–3.86 (m, 1H), 3.73 (s, 3H), 3.21 (d, *J* = 8.4 Hz, 1H), 2.50–2.41 (m, 1H), 2.24–2.11 (m, 2H), 2.07–2.02 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.6, 150.5, 143.4, 133.6, 127.3, 126.1, 125.6, 125.3, 125.1, 122.0, 121.7, 119.4, 118.8, 116.4, 112.8, 112.2, 67.1, 56.7, 53.2, 35.5, 24.3. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁BrNO₂ 398.0756, found 398.0759.

2-(1-(4-ethoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4g). Following the general procedure, the reaction of **1g** (36.5 mg, 0.2 mmol), **2a** (34.5 mg, 0.3 mmol) and **3a** (34.7 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4g** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 51.3 mg, 77%. Mp: 114–116 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.86 (br, 1H), 8.16–8.13 (m, 1H), 7.74–7.72 (m, 1H), 7.42–7.37 (m, 2H), 7.35 (d, *J*= 8.0 Hz, 1H), 7.18 (d, *J*= 8.0 Hz, 1H), 6.83 (d, *J*= 9.2 Hz, 2H), 6.71 (d, *J*= 9.2 Hz, 2H), 4.54 (dd, *J*₁ = 8.0 Hz, *J*₂ = 6.0 Hz, 1H), 3.89–3.84 (m, 1H), 3.86 (q, *J*= 7.2 Hz, 2H), 3.18 (dd, *J*₁ = 16.8 Hz, *J*₂ = 7.6 Hz, 1H), 2.48–2.38 (m, 1H), 2.22–2.09 (m, 2H), 2.04–1.98 (m, 1H), 1.30 (t, *J*= 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 153.6, 152.0, 142.5, 133.6, 127.3, 126.0, 125.8, 125.4, 125.0, 122.1, 119.3, 119.1, 117.9, 115.2, 67.4, 63.8, 53.3, 35.6, 24.4, 15.0. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₂ 334.1807, found 334.1808.

2-(1-(4-ethoxy-3-methylphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4h). Following the general procedure, the reaction of **1h** (39.3 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3a** (34.8 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4h** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 47.2 mg, 68%. Mp: 117–118 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.96 (br, 1H), 8.16–8.13 (m, 1H), 7.75–7.73 (m, 1H), 7.43–7.38 (m, 2H), 7.35 (d, *J*= 8.4 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 1H), 6.76 (d, *J*= 2.8 Hz, 1H), 6.66 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.8 Hz, 1H), 6.60 (d, *J*= 8.8 Hz, 1H), 4.57 (dd, *J*₁ = 8.0 Hz, *J*₂ = 6.4 Hz, 1H), 3.92–3.85 (m, 1H), 3.88 (q, *J*= 7.2 Hz, 2H), 3.21 (dd, *J*₁ = 16.8 Hz, *J*₂ = 7.6 Hz, 1H), 2.49–2.40 (m, 1H), 2.22–2.10 (m, 2H), 2.12 (s, 3H), 2.06–2.00 (m, 1H), 1.32 (t, *J*= 7.2 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 152.0, 151.9, 142.1, 133.5, 127.7, 127.2, 125.9, 125.7, 125.4, 124.9, 122.1, 119.7, 119.3, 119.0, 114.6, 112.1, 67.2, 64.0, 53.4, 35.5, 24.3, 16.6, 15.0. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1964, found 348.1967.

2-(1-(p-tolyl)pyrrolidin-2-yl)naphthalen-1-ol (4i). Following the general procedure, the reaction of **1i** (27.7 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3a** (34.7 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4i** as a yellow liquid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 31.8 mg, 52%. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.49$ (br, 1H), 8.14–8.12 (m, 1H), 7.75–7.73 (m, 1H), 7.44–7.39 (m, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.21 (d, J = 8.4 Hz, 1H), 6.98 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.8 Hz, 2H), 4.62 (dd, $J_1 = 8.4$ Hz, $J_2 = 6.0$ Hz, 1H), 3.95–3.90 (m, 1H), 3.27 (dd, $J_1 = 16.8$ Hz, $J_2 = 7.6$ Hz, 1H), 2.51–2.41 (m, 1H), 2.23–2.12 (m, 2H), 2.21 (s, 3H), 2.07–2.02 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 151.8$, 146.5, 133.5, 130.0, 129.6, 127.2, 126.0, 125.6, 125.4, 125.0, 122.1, 119.3, 119.2, 116.4, 66.9, 52.8, 35.6, 24.4, 20.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₂NO 304.1701, found 304.1708.

2-(1-(3,4-dimethylphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4j). Following the general procedure, the reaction of 1j (30.5 mg, 0.2 mmol), 2a (34.5 mg, 0.3 mmol) and 3a (34.8 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded 4j as a yellow liquid, which was purified by column

chromatography (PE/EtOAc = 60/1). Yield: 34.8 mg, 55%. ¹H NMR (CDCl₃, 400 MHz): δ = 10.57 (br, 1H), 8.14–8.12 (m, 1H), 7.75–7.73 (m, 1H), 7.44–7.39 (m, 2H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 2.4 Hz, 1H), 6.63 (dd, *J*₁ = 8.4 Hz, *J*₂ = 2.8 Hz, 1H), 4.63 (dd, *J*₁ = 8.4 Hz, *J*₂ = 6.0 Hz, 1H), 3.96–3.91 (m, 1H), 3.30–3.24 (m, 1H), 2.47–2.40 (m, 1H), 2.23–2.16 (m, 2H), 2.14 (s, 3H), 2.12 (s, 3H), 2.05–2.00 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.8, 146.9, 137.2, 133.5, 130.1, 128.9, 127.2, 125.9, 125.7, 125.4, 124.9, 122.1, 119.4, 119.1, 118.0, 113.8, 66.8, 52.8, 35.6, 24.4, 20.2, 18.8. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO 318.1858, found 318.1861.

2-(1-(4-ethylphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4k). Following the general procedure, the reaction of **1k** (30.4 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3a** (34.7 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4k** as a yellow liquid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 31.5 mg, 50%. ¹H NMR (CDCl₃, 400 MHz): δ = 10.48 (br, 1H), 8.14–8.12 (m, 1H), 7.76–7.73 (m, 1H), 7.44–7.39 (m, 2H), 7.37 (d, *J*= 8.4 Hz, 1H), 7.22 (d, *J*= 8.4 Hz, 1H), 7.01 (d, *J*= 8.4 Hz, 2H), 6.83 (d, *J*= 8.8 Hz, 2H), 4.66–4.62 (m, 1H), 3.97–3.92 (m, 1H), 3.32–3.26 (m, 1H), 2.51 (q, *J*= 7.6 Hz, 2H), 2.47–2.42 (m, 1H), 2.25–2.13 (m, 2H), 2.09–2.01 (m, 1H), 1.14 (t, *J*= 7.6 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.8, 146.7, 136.5, 133.5, 128.4, 127.2, 126.0, 125.6, 125.4, 125.0, 122.1, 119.4, 119.2, 116.4, 66.9, 52.7, 35.6, 27.9, 24.4, 15.7. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO 318.1858, found 318.1860.

2-(1-([1,1'-biphenyl]-4-yl)pyrrolidin-2-yl)naphthalen-1-ol (4l). Following the general procedure, the reaction of **1l** (40.2 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3a** (34.6 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4l** as a yellow slurry solid, which was purified by column chromatography (PE/EtOAc = 50/1). Yield: 42.5 mg, 58%. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.02$ (br, 1H), 8.16–8.13 (m, 1H), 7.77–7.75 (m, 1H), 7.48–7.39 (m, 7H), 7.35 (t, J = 7.6 Hz, 2H), 7.26–7.23 (m, 2H), 6.94 (d, J = 8.8 Hz, 2H), 4.72 (dd, $J_1 = 8.0$ Hz, $J_2 = 6.0$ Hz, 1H), 4.01–3.95 (m, 1H), 3.40–3.34 (m, 1H), 2.51–2.44 (m, 1H), 2.27–2.17 (m, 2H), 2.10–2.04 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 151.5$, 148.1, 140.8, 133.6, 133.3, 128.7, 127.8, 127.3, 126.6, 126.5, 126.1, 125.6, 125.4, 125.1, 122.0, 119.5, 119.4, 116.4, 66.7, 52.5, 35.7, 24.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₆H₂₄NO 366.1858, found 366.1861.

2-(1-(4-methoxyphenyl)pyrrolidin-2-yl)-4-methylnaphthalen-1-ol (4m). Following the general procedure, the reaction of **1a** (30.9 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3d** (38.0 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4m** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 54.8 mg, 82%. Mp: 112–114 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.56 (br, 1H), 8.17 (d, *J* = 9.6 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.48–7.40 (m, 2H), 7.02 (s, 1H), 6.85 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 4.51 (t, *J* = 7.2 Hz, 1H), 3.91–3.67 (m, 1H), 3.67 (s, 3H), 3.20 (q, *J* = 8.0 Hz, 1H), 2.61 (s, 3H), 2.47–2.40 (m, 1H), 2.22–2.10 (m, 2H), 2.05–2.00 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.2, 150.3, 142.7, 132.4, 126.1, 125.8, 125.6, 125.0, 124.7, 123.8, 122.5, 118.6, 117.8, 114.6, 67.3, 55.6, 53.2, 35.6, 24.3, 18.8. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₂ 334.1807, found 334.1808.

4-methoxy-2-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4n). Following the general procedure, the reaction of **1a** (30.9 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3e** (41.8 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4n** as a white solid, which was purified by column chromatography (PE/EtOAc = 50/1). Yield: 50.3 mg, 72%. Mp: 128–130 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.26 (br, 1H), 8.17–8.13 (m, 1H), 8.12–8.09 (m, 1H), 7.46–7.41 (m, 2H), 6.86–6.83 (m, 2H), 6.76–6.73 (m, 2H), 6.52 (s, 1H), 4.49 (dd, J_1 = 8.4 Hz, J_2 = 6.0 Hz, 1H), 3.98 (s, 3H), 3.91–3.86 (m, 1H), 3.68 (s, 3H), 3.21 (q, J = 8.0 Hz, 1H), 2.49–2.42 (m, 1H), 2.24–2.13 (m, 2H), 2.07–2.01 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.1, 148.8, 145.4, 142.7, 126.3, 125.7, 125.4, 125.3, 121.9, 121.5, 118.1, 117.6, 114.5, 103.6, 67.7, 55.9, 55.6, 53.0, 35.5, 24.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₃ 350.1756, found 350.1753.

4-methoxy-2-(1-(4-methoxy-3,5-dimethylphenyl)pyrrolidin-2-yl)naphthalen-1-ol (40). Following the general procedure, the reaction of 1c (36.6 mg, 0.2 mmol), 2a (34.8 mg, 0.3 mmol) and 3e (42.0 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded 4o as a yellow liquid, which was

purified by column chromatography (PE/EtOAc = 80/1). Yield: 49.0 mg, 65%. ¹H NMR (CDCl₃, 400 MHz): δ = 10.11 (br, 1H), 8.17–8.14 (m, 1H), 8.13–8.09 (m, 1H), 7.47–7.43 (m, 2H), 6.54 (s, 3H), 4.56 (dd, J_1 = 8.8 Hz, J_2 = 5.6 Hz, 1H), 3.99 (s, 3H), 3.91–3.86 (m, 1H), 3.61 (s, 3H), 3.25 (dd, J_1 = 16.8 Hz, J_2 = 7.6 Hz, 1H), 2.49–2.40 (m, 1H), 2.23–2.13 (m, 2H), 2.17 (s, 6H), 2.07–2.01 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.0, 148.8, 145.4, 144.7, 131.3, 126.3, 125.7, 125.4, 125.3, 121.8, 121.5, 118.3, 116.4, 103.6, 67.2, 59.8, 56.0, 52.8, 35.7, 24.5, 16.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₄H₂₈NO₃ 378.2069, found 378.2071.

2-(1-(4-ethoxyphenyl)pyrrolidin-2-yl)-4-methoxynaphthalen-1-ol (4p). Following the general procedure, the reaction of **1g** (36.5 mg, 0.2 mmol), **2a** (34.5 mg, 0.3 mmol) and **3e** (41.9 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4p** as a yellow liquid, which was purified by column chromatography (PE/EtOAc = 90/1). Yield: 50.8 mg, 70%. ¹H NMR (CDCl₃, 400 MHz): δ = 10.29 (br, 1H), 8.18–8.13 (m, 1H), 8.12–8.08 (m, 1H), 7.45–7.40 (m, 2H), 6.84–6.80 (m, 2H), 6.74–6.70 (m, 2H), 6.50 (s, 1H), 4.47 (dd, J_1 = 8.4 Hz, J_2 = 6.0 Hz, 1H), 3.96 (s, 3H), 3.89–3.83 (m, 1H), 3.86 (q, J = 6.8 Hz, 2H), 3.18 (dd, J_1 = 16.8 Hz, J_2 = 7.6 Hz, 1H), 2.46–2.39 (m, 1H), 2.21–2.11 (m, 2H), 2.04–1.98 (m, 1H), 1.30 (t, J = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 153.4, 148.8, 145.5, 142.7, 126.3, 125.8, 125.4, 125.3, 121.9, 121.5, 118.2, 117.6, 115.3, 103.6, 67.7, 63.8, 55.9, 53.0, 35.5, 24.4, 15.0. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₆NO₃ 364.1913, found 364.1915.

4-methoxy-2-(1-(p-tolyl)pyrrolidin-2-yl)naphthalen-1-ol (4q). Following the general procedure, the reaction of **1i** (27.7 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3e** (41.9 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4q** as a yellow liquid, which was purified by column chromatography (PE/EtOAc = 90/1). Yield: 42.6 mg, 64%. ¹H NMR (CDCl₃, 400 MHz): δ = 9.95 (br, 1H), 8.17–8.13 (m, 1H), 8.11–8.07 (m, 1H), 7.46–7.41 (m, 2H), 6.99 (d, *J*= 8.4 Hz, 2H), 6.79 (d, *J*= 8.4 Hz, 2H), 6.98 (s, 1H), 4.55 (dd, *J*₁ = 8.4 Hz, *J*₂ = 5.6 Hz, 1H), 3.99 (s, 3H), 3.94–3.89 (m, 1H), 3.27 (dd, *J*₁ = 16.4 Hz, *J*₂ = 7.2 Hz, 1H), 2.52–2.42 (m, 1H), 2.25–2.16 (m, 2H), 2.21 (s, 3H), 2.08–2.02 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 148.8, 146.5, 145.3, 129.8, 129.7, 126.3, 125.7, 125.4, 125.3, 121.9, 121.5, 118.2, 116.2, 103.5, 67.2, 55.9, 52.5, 35.6, 24.4, 20.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₂ 334.1807, found 334.1810.

4-chloro-2-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4r). Following the general procedure, the reaction of **1a** (30.8 mg, 0.2 mmol), **2a** (34.8 mg, 0.3 mmol) and **3f** (43.0 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4r** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 56.6 mg, 80%. Mp: 120–122 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.97 (br, 1H), 8.18 (dd, J_1 = 14.8 Hz, J_2 = 8.4 Hz, 2H), 7.59–7.54 (m, 1H), 7.50–7.46 (m, 1H), 7.33 (s, 1H), 6.89–6.86 (m, 2H), 6.79–6.76 (m, 2H), 4.53 (dd, J_1 = 8.0 Hz, J_2 = 6.4 Hz, 1H), 3.94–3.89 (m, 1H), 3.70 (s, 3H), 3.26–3.20 (m, 1H), 2.53–2.44 (m, 1H), 2.26–2.12 (m, 2H), 2.10–2.03 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.5, 151.3, 142.2, 130.4, 127.1, 126.5, 125.7, 125.4, 124.0, 122.5, 121.8, 119.5, 118.0, 114.6, 67.0, 55.5, 53.4, 35.5, 24.3. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁ClNO₂ 354.1261, found 354.1263.

4-bromo-2-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-1-ol (4s). Following the general procedure, the reaction of **1a** (30.8 mg, 0.2 mmol), **2a** (34.8 mg, 0.3 mmol) and **3g** (53.5 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4s** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 55.7 mg, 70%. Mp: 130–132 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.00 (br, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.55–7.37 (m, 3H), 6.86–6.84 (m, 2H), 6.75–6.73 (m, 2H), 4.59–4.49 (m, 1H), 3.91–3.86 (m, 1H), 3.68 (s, 3H), 3.20 (q, *J* = 8.0 Hz, 1H), 2.51–2.41 (m, 1H), 2.23–2.10 (m, 2H), 2.08–2.00 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 154.5, 152.0, 142.2, 131.6, 129.0, 127.4, 126.7, 126.6, 125.7, 122.5, 120.2, 118.0, 114.6, 111.7, 66.9, 55.5, 53.4, 35.5, 24.3. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁BrNO₂ 398.0756, found 398.0759.

2,6-bis(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalene-1,5-diol (4t). Following the general procedure, the reaction of **1a** (61.9 mg, 0.4 mmol), **2a** (69.2 mg, 0.6 mmol) and **3b** (32.1 mg, 0.2 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4t** as a white solid, which was purified by column chromatography (PE/EtOAc = 20/1). Yield: 45.9 mg, 45%. Mp: 223–225 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.68 (br, 2H), 7.65 (dd, J_1 = 8.4 Hz, J_2 = 2.0 Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 9.2 Hz, 4H), 6.73 (dd, J_1 = 9.2 Hz, J_2 = 2.0 Hz, 4H), 4.55 (dd, J_1 = 8.0 Hz, J_2 = 6.4 Hz, 2H), 3.93–3.87 (m, 2H), 3.69 (s, 6H), 3.22 (dd, J_1 = 16.4 Hz, J_2 = 7.6 Hz, 2H), 2.47–2.40 (m, 2H), 2.25–2.11 (m, 4H), 2.08–1.99 (m, 2H). ¹³C NMR

(CDCl₃, 100 MHz): δ = 154.1, 151.6, 142.6, 125.4, 124.8, 119.5, 117.8, 114.5, 113.3, 67.2, 55.6, 53.3, 35.4, 24.3. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₃₂H₃₅N₂O₄ 511.2597, found 511.2601.

2,6-bis(1-(p-tolyl)pyrrolidin-2-yl)naphthalene-1,5-diol (4u). Following the general procedure, the reaction of **1i** (55.5 mg, 0.4 mmol), **2a** (69.3 mg, 0.6 mmol) and **3b** (32.3 mg, 0.2 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4u** as a white solid, which was purified by column chromatography (PE/EtOAc = 20/1). Yield: 45.8 mg, 48%. Mp: 236–238 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 10.41 (br, 2H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 6.4 Hz, 4H), 6.79 (d, *J* = 8.4 Hz, 4H), 4.60 (t, *J* = 6.8 Hz, 2H), 3.92–3.89 (m, 2H), 3.29–3.21 (m, 2H), 2.49–2.39 (m, 2H), 2.21 (s, 6H), 2.21–2.10 (m, 4H), 2.07–2.01 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 151.5, 146.5, 129.92, 129.90, 129.61, 129.60, 125.4, 124.8, 119.63, 119.60, 116.4, 113.4, 66.86, 66.83, 52.75, 52.72, 35.59, 35.56, 24.4, 20.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₃₂H₃₅N₂O₂ 479.2699, found 479.2701.

3-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6a). *2 mmol scale.* Following the general procedure, to a oven-dried Schlenk tube (25 mL) were added **1a** (308.0 mg, 2 mmol), **2a** (346.0 mg, 3 mmol) and **3h** (432.1 mg, 3 mmol) in MeCN (4 mL) and Et₃N (1 mL) at 60 °C for 12 h afforded **6a** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 383.3 mg, 60%. Mp: 165–166 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.46 (br, 1H), 7.88 (d, *J* = 8.8 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.82–6.79 (m, 2H), 6.74–6.70 (m, 2H), 5.22 (dd, *J*₁ = 8.4 Hz, *J*₂ = 5.6 Hz, 1H), 3.94–3.89 (m, 1H), 3.68 (s, 3H), 3.26–3.19 (m, 1H), 2.65–2.55 (m, 1H), 2.26–2.19 (m, 1H), 2.17–2.06 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 155.3, 154.4, 142.6, 131.6, 129.1, 129.0, 128.9, 126.6, 122.7, 121.2, 119.9, 117.7, 116.1, 114.6, 63.4, 55.6, 53.0, 34.4, 24.6. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₂NO₂ 320.1651, found 320.1654.

7-methoxy-1-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6b). Following the general procedure, the reaction of **1a** (31.0 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3i** (52.2 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6b** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 40.5 mg, 58%. Mp: 174–176 °C. ¹H NMR (CDCl₃, 400 MHz): δ =

11.45 (br, 1H), 7.69 (d, J= 8.8 Hz, 1H), 7.57 (d, J= 8.8 Hz, 1H), 7.16 (d, J= 1.6 Hz, 1H), 7.02 (dd, J_{l} = 8.8 Hz, J_{2} = 2.0 Hz, 1H), 6.86 (d, J= 8.8 Hz, 1H), 6.81 (d, J= 9.2 Hz, 2H), 6.74 (d, J= 9.2 Hz, 2H), 5.12 (dd, J_{l} = 8.8 Hz, J_{2} = 5.2 Hz, 1H), 3.92 (s, 3H), 3.92–3.87 (m, 1H), 3.69 (s, 3H), 3.25–3.19 (m, 1H), 2.66–2.56 (m, 1H), 2.27–2.20 (m, 1H), 2.18–2.11 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.3, 155.9, 154.4, 142.7, 132.7, 130.6, 128.8, 124.2, 117.6, 117.4, 115.3, 114.6, 114.0, 101.3, 63.7, 55.6, 55.3, 52.8, 34.1, 24.6. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₃ 350.1756, found 350.1758.

6-hydroxy-5-(1-(4-methoxyphenyl)pyrrolidin-2-yl)-2-naphthonitrile (6c). Following the general procedure, the reaction of **1a** (30.9 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3j** (50.8 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6c** as a white solid, which was purified by column chromatography (PE/EtOAc = 30/1). Yield: 37.2 mg, 54%. Mp: 160–162 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 12.03 (br, 1H), 8.15 (d, *J* = 1.2 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.63 (dd, *J_I* = 9.2 Hz, *J₂* = 2.0 Hz, 1H), 7.10 (d, *J* = 8.8 Hz, 1H), 6.82–6.78 (m, 2H), 6.76–6.72 (m, 2H), 5.18 (dd, *J_I* = 8.8 Hz, *J₂* = 6.0 Hz, 1H), 3.96–3.91 (m, 1H), 3.70 (s, 3H), 3.25 (dd, *J_I* = 16.4 Hz, *J₂* = 9.2 Hz, 1H), 2.66–2.57 (m, 1H), 2.27–2.20 (m, 1H), 2.18–2.06 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.3, 154.8, 142.1, 135.0, 133.3, 129.7, 127.7, 127.4, 122.2, 121.8, 119.6, 118.0, 116.7, 114.6, 105.8, 63.3, 55.5, 53.3, 34.3, 24.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₁N₂O₂ 345.1603, found 345.1604.

6-bromo-1-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6d). Following the general procedure, the reaction of **1a** (30.8 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3k** (66.9 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6d** as a white solid, which was purified by column chromatography (PE/EtOAc = 90/1). Yield: 40.0 mg, 50%. Mp: 185–186 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.51 (br, 1H), 7.92 (d, *J* = 2.0 Hz, 1H), 7.75 (d, *J* = 9.2 Hz, 1H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 1H), 6.79–6.76 (m, 2H), 6.74–6.71 (m, 2H), 5.14 (dd, *J*₁ = 8.8 Hz, *J*₂ = 6.0 Hz, 1H), 3.93–3.88 (m, 1H), 3.68 (s, 3H), 3.21 (dd, *J*₁ = 16.0 Hz, *J*₂ = 9.2 Hz, 1H), 2.62–2.53 (m, 1H), 2.27–2.18 (m, 1H), 2.15–2.07 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 155.6, 154.6, 142.4, 130.9, 130.2, 130.1, 129.7, 128.1, 123.0, 121.0, 117.8, 116.5, 116.2, 114.6, 63.3, 55.5, 53.1, 34.3, 24.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁BrNO₂ 398.0756, found 398.0757. *The structure of this compound was further determined by single crystal X-ray diffraction*.

7-bromo-1-(1-(4-methoxyphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6e). Following the general procedure, the reaction of **1a** (30.9 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3l** (67.0 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6e** as a white solid, which was purified by column chromatography (PE/EtOAc = 90/1). Yield: 43.0 mg, 54%. Mp: 177–179 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.63 (br, 1H), 8.02 (s, 1H), 7.62 (dd, J_1 = 14.8 Hz, J_2 = 8.4 Hz, 2H), 7.40 (dd, J_1 = 8.8 Hz, J_2 = 2.0 Hz, 1H), 7.00 (d, J = 8.8 Hz, 1H), 6.81–6.78 (m, 2H), 6.75–6.71 (m, 2H), 5.10 (dd, J_1 = 8.8 Hz, J_2 = 5.6 Hz, 1H), 3.94–3.89 (m, 1H), 3.69 (s, 3H), 3.26–3.19 (m, 1H), 2.67–2.58 (m, 1H), 2.28–2.19 (m, 1H), 2.16–2.06 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.2, 154.6, 142.3, 132.9, 130.7, 128.9, 127.3, 125.9, 123.5, 121.2, 120.3, 117.9, 115.5, 114.6, 63.3, 55.5, 53.1, 34.3, 24.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁BrNO₂ 398.0756, found 398.0758.

1-(1-(4-methoxyphenyl)pyrrolidin-2-yl)-6-phenylnaphthalen-2-ol (6f). Following the general procedure, the reaction of 1a (31.1 mg, 0.2 mmol), 2a (34.6 mg, 0.3 mmol) and 3m (66.2 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded 6f as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 39.7 mg, 50%. Mp: 181–183 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.47 (br, 1H), 7.99 (d, J = 1.2 Hz, 1H), 7.96 (d, J = 8.8 Hz, 1H), 7.76 (dd, J_1 = 8.8 Hz, J_2 = 1.6 Hz, 1H), 7.72–7.70 (m, 3H), 7.48 (t, J = 7.6 Hz, 2H), 7.36 (d, J = 7.2 Hz, 1H), 7.03 (d, J = 8.8 Hz, 1H), 6.83 (d, J = 9.2 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 5.24 (dd, J_1 = 8.4 Hz, J_2 = 5.6 Hz, 1H), 3.95–3.90 (m, 1H), 3.68 (s, 3H), 3.23 (dd, J_1 = 16.0 Hz, J_2 = 8.8 Hz, 1H), 2.67–2.58 (m, 1H), 2.30–2.21 (m, 1H), 2.19–2.10 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 155.4, 154.5, 142.6, 141.0, 135.4, 130.8, 129.4, 129.2, 128.9, 127.2, 127.1, 127.0, 126.1, 121.8, 120.3, 117.8, 116.2, 114.6, 63.4, 55.6, 53.1, 34.4, 24.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₇H₂₆NO₂ 396.1964, found 396.1965.

1-(1-(4-methoxy-3,5-dimethylphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6g). Following the general procedure, the reaction of **1c** (36.5 mg, 0.2 mmol), **2a** (34.5 mg, 0.3 mmol) and **3h** (43.3 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6g** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 44.3 mg, 64%. Mp: 172–173 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.36 (br, 1H), 7.87 (d, *J*= 8.4 Hz, 1H), 7.79 (d, *J*= 8.0 Hz, 1H), 7.65 (d, *J*= 8.8 Hz, 1H), 7.52–7.48 (m, 1H), 7.34 (t, *J*= 7.4 Hz, 1H), 7.00 (d, *J*= 9.2 Hz, 1H), 6.51 (s, 2H), 5.26 (dd, *J*₁ = 8.8 Hz, *J*₂ = 4.8 Hz, 1H), 3.91–3.86 (m, 1H), 3.62 (s, 3H), 3.28–3.22 (m, 1H), 2.62–2.52 (m, 1H), 2.29–2.17 (m, 1H), 2.15–2.06 (m, 2H), 2.13 (s, 6H). ¹³C NMR (CDCl₃, 100 MHz): δ = 155.2, 151.5, 144.7, 131.6, 131.4, 129.1, 129.0, 126.5, 122.6, 121.3, 119.8, 116.6, 116.3, 63.3, 59.8, 52.7, 34.8, 24.6, 16.4. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1964, found 348.1967.

1-(1-(4-ethoxy-3-methylphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6h). Following the general procedure, the reaction of **1h** (39.5 mg, 0.2 mmol), **2a** (34.8 mg, 0.3 mmol) and **3h** (43.4 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6h** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 36.1 mg, 52%. Mp: 168–170 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.60 (br, 1H), 7.89 (d, *J* = 8.8 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 9.2 Hz, 1H), 7.51–7.47 (m, 1H), 7.33 (t, *J* = 7.2 Hz, 1H), 7.00 (d, *J* = 8.8 Hz, 1H), 6.75 (s, 1H), 6.62–6.57 (m, 2H), 5.22 (dd, *J*₁ = 8.8 Hz, *J*₂ = 5.2 Hz, 1H), 3.93–3.86 (m, 1H), 3.88 (q, *J* = 6.8 Hz, 2H), 3.26–2.19 (m, 1H), 2.64–2.54 (m, 1H), 2.27–2.18 (m, 1H), 2.16–2.04 (m, 2H), 2.11 (s, 3H), 1.33 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 155.3, 152.2, 142.1, 131.6, 129.1, 128.91, 128.88, 127.8, 126.5, 122.6, 121.3, 119.9, 119.7, 116.3, 114.4, 112.2, 64.1, 63.3, 53.1, 34.4, 24.5, 16.6, 15.0. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₃H₂₆NO₂ 348.1964, found 348.1965.

7-bromo-1-(1-(p-tolyl)pyrrolidin-2-yl)naphthalen-2-ol (6i). Following the general procedure, the reaction of **1i** (27.6 mg, 0.2 mmol), **2a** (34.6 mg, 0.3 mmol) and **3l** (66.9 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6i** as a slurry solid, which was purified by column chromatography (PE/EtOAc = 90/1). Yield: 45.8 mg, 60%. Mp: 188–190 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.35 (br, 1H), 8.02 (s, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.41 (dd, *J*₁ = 8.8 Hz, *J*₂ = 2.0 Hz, 1H), 6.99 (d, *J* = 5.6 Hz, 1H), 6.97 (d, *J* = 5.2 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 5.14 (dd, *J*₁ = 8.8 Hz, *J*₂ = 5.6 Hz, 1H), 3.95–3.90 (m, 1H), 3.29–3.23 (m, 1H), 2.67–2.57 (m, 1H), 2.27–2.19 (m, 1H), 2.22 (s, 3H), 2.16–2.06 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 156.1, 146.3, 132.9, 130.7, 129.8, 128.9, 127.3, 126.0, 123.7, 121.2, 120.3, 116.5, 115.6, 63.0, 52.6, 34.5, 24.5, 20.5. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₁H₂₁BrNO 382.0807, found 382.0810.

6-hydroxy-5-(1-(p-tolyl)pyrrolidin-2-yl)-2-naphthonitrile (6j). Following the general procedure, the reaction of **1i** (27.9 mg, 0.2 mmol), **2a** (34.8 mg, 0.3 mmol) and **3j** (50.9 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6j** as a white solid, which was purified by column chromatography (PE/EtOAc = 30/1). Yield: 34.1 mg, 52%. Mp: 163–165 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.73 (br, 1H), 8.15 (d, *J* = 1.6 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.63 (dd, *J*₁ = 8.8 Hz, *J*₂ = 1.6 Hz, 1H), 7.09 (d, *J* = 8.8 Hz, 1H), 6.99 (d, *J* = 8.4 Hz, 2H), 6.73 (d, *J* = 8.4 Hz, 2H), 5.22 (dd, *J*₁ = 8.8 Hz, *J*₂ = 5.6

Hz, 1H), 3.98–3.93 (m, 1H), 3.31–3.25 (m, 1H), 2.66–2.56 (m, 1H), 2.29–2.20 (m, 1H), 2.22 (s, 3H), 2.18–2.04 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): δ = 158.2, 146.1, 135.0, 133.3, 131.1, 129.8, 129.6, 127.8, 127.4, 122.3, 121.7, 119.6, 116.8, 116.5, 105.8, 63.0, 52.7, 34.5, 24.5, 20.5 HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₁N₂O 329.1654, found 329.1655.

1-(1-(3,4-dimethylphenyl)pyrrolidin-2-yl)naphthalen-2-ol (6k). Following the general procedure, the reaction of **1j** (30.6 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol) and **3h** (43.4 mg, 0.3 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **6k** as a white solid, which was purified by column chromatography (PE/EtOAc = 60/1). Yield: 38.6 mg, 61%. Mp: 167–169 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 11.25 (br, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.52–7.47 (m, 1H), 7.34 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 2.4 Hz, 1H), 6.57 (dd, *J_I* = 8.0 Hz, *J*₂ = 2.4 Hz, 1H), 5.27 (dd, *J_I* = 8.8 Hz, *J*₂ = 5.2 Hz, 1H), 3.95–3.90 (m, 1H), 3.30–3.23 (m, 1H), 2.63–2.53 (m, 1H), 2.27–2.18 (m, 1H), 2.16–2.04 (m, 2H), 2.123 (s, 3H), 2.119 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ = 155.2, 146.9, 137.3, 131.6, 130.2, 129.2, 129.1, 128.9, 126.5, 122.6, 121.3, 119.9, 118.0, 116.3, 113.7, 63.1, 52.5, 34.6, 24.6, 20.2, 18.8 HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO 318.1858, found 318.1860.

The reaction of 1a and 2a at 120 °C and 60 °C

5a: 120 °C, 0.5 h, 67%, dr: 1/0.42 60 °C, 12 h, 43%, dr: 1/0.52

A mixture of **1a** (30.8 mg, 0.2 mmol), **2a** (34.5 mg, 0.3 mmol), MeCN (2 mL) and Et₃N (0.5 mL) was heated to 120 °C for 0.5 h in a closed tube. After the reaction was cooled to room temperature, the solvent was removed and the residue was purified to afford **5a** in 67% yield (23.4 mg) as a mixture of diastereo isomers (1/0.42 dr, Figure S1). Similarly, the reaction at 60 °C for 12 h afforded **5a** in 43% yield (14.8 mg) as a mixture of diastereo isomers (1/0.52 dr, **Figure S2**). The structures of the diastereo isomers were assigned based on known similar compounds reported in literatures.^[7] The major isomer was obtained after several times of washing with PE and characterized. **5a** (major isomer): ¹H NMR (CDCl₃, 400 MHz): δ = 6.95 (d, *J* = 2.8 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 2H), 6.76 (d, *J* = 8.4 Hz, 2H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.36 (d, *J* = 8.8 Hz, 1H), 5.02 (d, *J* = 7.2 Hz, 1H), 3.78 (s, 3H), 3.58 (s, 3H), 3.58–3.55 (m, 1H), 3.44–3.36 (m, 2H), 3.22–3.13 (m, 2H), 2.55–2.49 (m, 1H), 2.08–2.06 (m, 1H), 2.02–1.83 (m, 4H), 1.73–1.66 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ = 150.9, 150.8, 143.9, 138.4, 125.2, 115.2, 115.0, 113.5, 112.3, 111.3, 58.4, 57.2, 56.1, 55.7, 48.2, 47.1, 40.6, 29.9, 23.3, 23.0. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₇N₂O₂ 351.2073, found 351.2075.

Figure S3

The reaction of 2-methyl-1-naphthols (3b) with 1a and 2a

The reaction of **1a** (61.7 mg, 0.4 mmol), **2a** (69.2 mg, 0.6 mmol) and **3c** (75.5 mg, 0.48 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded 4-(1-(4-methoxyphenyl)pyrrolidin-2-yl)-2-methylnaphthalen-1-ol (7) in 15% yield (20.0 mg). brown liquid. ¹H NMR (DMSO-d₆, 400 MHz): δ = 8.87 (br, 1H), 8.28–8.25 (m, 1H), 8.09–8.07 (m, 1H), 7.49–7.47 (m, 2H), 6.97 (s, 1H), 6.67 (d, *J* = 9.0 Hz, 2H), 6.31 (d, *J* = 9.0 Hz, 2H), 5.20 (d, *J* = 8.0 Hz, 1H), 3.74–3.70 (m, 1H), 3.57 (s, 3H), 3.32–3.26 (m, 1H), 2.52–2.43 (m, 1H), 2.23 (s, 3H), 1.96–1.88 (m, 2H), 1.78–1.74 (m, 1H). ¹³C NMR (DMSO-d₆, 100 MHz): δ = 150.8, 149.1, 142.3, 130.3, 130.0, 126.54, 126.49, 125.5, 124.8, 123.4, 123.1, 117.5, 115.1, 113.2, 60.0, 55.8, 49.6, 34.9, 23.6, 17.2. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₂₂H₂₄NO₂ 334.1807, found 334.1808.

The competitive reaction of 3b and 3c in equivalent molar ratio with 1a and 2a

The reaction of **1a** (30.9 mg, 0.2 mmol), **2a** (34.7 mg, 0.3 mmol), **3c** (31.7 mg, 0.2 mmol) and **3d** (31.7 mg, 0.2 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4m** in 78% yield (52.2 mg). 7 was detected by TLC, yet was not obtained after column chromatography on silica gel due to a very low yield.

The reaction of QMA 1a, pyrrolidine (8) and 1-naphthols (3a)

The reaction of **1a** (30.8 mg, 0.2 mmol), pyrrolidine (**8**) (21.7 mg, 0.3 mmol), **3a** (34.6 mg, 0.24 mmol) in MeCN (2 mL) and Et₃N (0.5 mL) at 60 °C for 12 h afforded **4a** in 13% yield (8.4 mg), 13,13-dimethoxy-2,3,5,6-tetrahydro-4H-2,6-methanonaphtho[1,2-b]oxocin-4-one (**9**) in 55% yield (32.7 mg), and 1-(4-methoxyphenyl)pyrrolidine (**10**) (ca. 1.2 mg, yield < 4%). 13,13-dimethoxy-2,3,5,6-tetrahydro-4H -2,6-methanonaphtho[1,2-b]oxocin-4-one (**9**) in 55% yield (32.7 mg), and 1-(4-methoxyphenyl)pyrrolidine (**10**) (ca. 1.2 mg, yield < 4%). 13,13-dimethoxy-2,3,5,6-tetrahydro-4H -2,6-methanonaphtho[1,2-b]oxocin-4-one (**9**): orange oil. ¹H NMR (DMSO-d₆, 400 MHz): δ = 8.05–8.02 (m, 1H), 7.84–7.82 (m, 1H), 7.51–7.48 (m, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 5.08-5.06 (m, 1H), 3.63–3.61 (m, 1H), 3.45 (s, 3H), 3.26 (s, 3H), 3.00–2.95 (m, 2H), 2.54–2.49 (m, 1H), 2.44–2.39 (m, 1H). ¹³C NMR (DMSO-d₆, 100 MHz): δ = 207.9, 145.9, 133.7, 128.0, 127.6, 126.7, 126.1, 124.3, 121.7, 121.1, 118.5, 96.5, 72.1, 48.94, 48.86, 45.6, 45.5, 38.1. HRMS (ESI/Q-TOF) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₄ 299.1283, found 299.1288.

6. References

(1) R. M. Moriarty, O. Prakash, Org. React. 2001, 57, 327.

(2) C. Shu, L.-H. Liao, Y.-J. Liao, X.-Y. Hu, Y.-H. Zhang, W.-C. Yuan, X.-M. Zhang, *Eur. J. Org. Chem.* 2014, 2014, 4467.

(3) N. Bodipati, R. K. Peddinti, Org. Biomol. Chem. 2012, 10, 4549.

(4) X. Lei, R. P. Johnson, J. A. Porco, Angew. Chem. Int. Ed. 2003, 42, 3913.

(5) P. Camps, A. González, D. Muñoz-Torrero, M. Simon, A. Zúñiga, M. A. Martins, M. Font-Bardia, X. Solans, *Tetrahedron* **2000**, *56*, 8141.

(6) N. Taneja, R. K. Peddinti, Tetrahedron Lett. 2016, 57, 3958.

(7) C. -L. Ma, X.-H. Li, X.-L. Yu, X.-L. Zhu, Y.-Z. Hu, X.-W. Dong, B. Tan, X.-Y. Liu, *Org. Chem. Front.* **2016**, *3*, 324.

7. Copies of ¹H and ¹³C NMR spectra

¹H NMR of 4a

400 MHz, CDCl₃

¹³C NMR of 4a 100 MHz, CDCl₃

¹H NMR of 4b 400 MHz, CDCl₃

¹³C NMR of 4b 100 MHz, CDCl₃

¹³C NMR of 4c 100 MHz, CDCl₃

¹H NMR of 4d 400 MHz, CDCl₃

¹³C NMR of 4d 100 MHz, CDCl₃

¹H NMR of 4e 400 MHz, CDCl₃

¹³C NMR of 4e 100 MHz, CDCl₃

¹³C NMR of 4g 100 MHz, CDCl₃

¹³C NMR of 4h 100 MHz, CDCl₃

¹³C NMR of 4i 100 MHz, CDCl₃

¹³C NMR of 4j 100 MHz, CDCl₃

¹³C NMR of 4k 100 MHz, CDCl₃

¹³C NMR of 4l 100 MHz, CDCl₃

¹³C NMR of 4m 100 MHz, CDCl₃

¹H NMR of 4n 400 MHz, CDCl₃

¹³C NMR of 4n 100 MHz, CDCl₃

¹³C NMR of 40 100 MHz, CDCl₃

¹³C NMR of 4p 100 MHz, CDCl₃

¹³C NMR of 4q 100 MHz, CDCl₃

¹³C NMR of 4r 100 MHz, CDCl₃

¹³C NMR of 4s 100 MHz, CDCl₃

¹H NMR of 4t 400 MHz, CDCl₃

¹³C NMR of 4t 100 MHz, CDCl₃

¹H NMR of 4u 400 MHz, CDCl₃

¹³C NMR of 4u 100 MHz, CDCl₃

¹³C NMR of 6a 100 MHz, CDCl₃

¹³C NMR of 6b 100 MHz, CDCl₃

¹³C NMR of 6d 100 MHz, CDCl₃

¹³C NMR of 6e 100 MHz, CDCl₃

¹³C NMR of 6f 100 MHz, CDCl₃

¹³C NMR of 6g 100 MHz, CDCl₃

¹H NMR of 6h 400 MHz, CDCl₃

¹H NMR of 6j 400 MHz, CDCl₃

¹³C NMR of 6j 100 MHz, CDCl₃

¹³C NMR of 6k 100 MHz, CDCl₃

¹H NMR of 5a (major isomer) 400 MHz, CDCl₃

OMe

¹³C NMR of 5a (major isomer)100 MHz, CDCl₃

¹H NMR of 7 400 MHz, DMSO-d₆

¹³C NMR of 7 100 MHz, DMSO-d₆

¹H NMR of 9 400 MHz, DMSO-d₆

¹³C NMR of 9 100 MHz, DMSO-d₆

