Supporting Information

Electrochemical tandem trifluoromethylation of allylamines/formal (3+2)-cycloaddition for the rapid access to CF₃-containing imidazolines and oxazolidines

Aurélie Claraz,* Aurélie Djian and Géraldine Masson*

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France

Table of Contents

1.	. General informations				
2.	2. Optimization of reaction conditions				
3.]	Preparation of the starting materials	. S3		
4.]	Electrochemical synthesis of CF ₃ and CF ₂ H-containing imidazolines 3	. S4		
Z	1.1	.1. General procedure A	. S4		
Z	1.2	.2. Characterization of imidazolines 3	. S5		
5.]	Electrochemical synthesis of CF ₃ and CF ₂ H-containing oxazolidines 6	. S9		
5	5.1	.1. General procedure B	. S9		
5	5.2	2. Characterization of oxazolidines 6	. S9		
6.	(Characterization of side products 4 and 5	S13		
7.	(Cyclic voltammetry analyses	S13		
8.]	NMR spectra	S14		

1. General informations

Unless otherwise stated, all reagents were obtained from commercial suppliers and used without further purification.

Analytical thin layer chromatography was performed on silica gel aluminum plates with F-254 indicator; spots were visualized by UV light (254 nm) and/or by staining with a KMnO₄ solution. Flash column chromatographies were performed on kieselgel 35-70 μ m particle sized silica gel (200-400 mesh).

¹H, ¹³C and ¹⁹F NMR analyses were recorded on a Bruker Avance 300 or 500 spectrometer in CDCl₃. The chemical shifts (δ) are reported in parts per million (ppm) and were referenced to the residual isotopomer solvent signals (CHCl₃: δ = 7.26 ppm, CD₃CN: δ = 1.94 ppm) for ¹H NMR spectra, to the solvent signal (CDCl₃: δ = 77.16 ppm, CD₃CN: δ = 118.26 ppm) for ¹³C NMR spectra. Coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad.

HRMS were determined on a Waters XevoQTof spectrometer using an electrospray ionization coupled with a time of flight analyzer (ESI-TOF) after dissolving the analyte in CH₃CN. Melting points were measured with a Stuart Scientific melting point apparatus SMP1.

Infrared spectra were recorded on an IR spectrometer (Perkin Elmer BX FT-IR), and absorption frequencies were reported in reciprocal centimeters (cm⁻¹).

Melting points were measured in capillary tubes on a Büchi B-540 apparatus and were uncorrected.

Electrochemical reactions and cyclic voltammetry experiments were carried out with an IKA ElectraSyn 2.0 Pro apparatus.

2. Optimization of reaction conditions

TsHN		graphite(+)	Ts N F ₃ C	TsN	TsHN
Ph	UF3002114	CH ₃ CN, electrolyte 15 mA, 3.2 <i>F</i> , RT		+ $F_{3}C$ + $F_{3}C$	F ₃ C Ph
1a	2a		3a	4	5

entry ^a	solvent	electrolyte	additive	3a ^b	4^{b}	5 ^b
1	CH ₃ CN/DCM (1:1)	LiClO ₄	-	40%	33%	13%
2	CH ₃ CN	LiClO ₄	-	54%	20%	24%
3	CH ₃ CN	Et ₄ NBF ₄	-	nd ^c (43%)	nd ^c	nd^c
4	CH ₃ CN	n-Bu ₄ NBF ₄	-	nd ^c (37%)	nd ^c	nd^c
5	CH ₃ CN	n-Bu4HSO4	-	nd ^c (11%)	nd ^c	nd^c
6	CH ₃ CN	LiClO ₄	K ₂ CO ₃ (1 equiv)	49%	21%	7%
7^d	CH ₃ CN	LiClO ₄	-	36%	34%	17%
8	CH ₃ CN	LiClO ₄	CH ₃ COOH (1 equiv)	22%	22%	8%
9	CH ₃ CN	LiClO ₄	CF ₃ COOH (1 equiv)	45%	27%	19%
10	CH ₃ CN	LiClO ₄	Bi(OTf) ₃ (0.2 equiv)	45%	19%	20%
11	CH ₃ CN	LiClO ₄	Bi(OTf) ₃ (1 equiv)	48%	0%	22%
12	CH ₃ CN	LiClO ₄	BF3.OEt2 (0.5 equiv)	48%	0%	22%
13	CH ₃ CN	LiClO ₄	BF3.OEt2 (1 equiv)	64% (62%)	0%	16%
14	CH ₃ CN	LiClO ₄	BF3.OEt2 (1 equiv) + MS 3Å (300 mg)	38%	18%	0%
15	CH ₃ CN	LiClO ₄	BF3.OEt2 (1 equiv) + MgSO4 (600 mg)	54%	11%	20%
16^e	CH ₃ CN	LiClO ₄	BF ₃ .OEt ₂ (1 equiv)	63%	0%	8%
17 ^f	CH ₃ CN	LiClO ₄	BF ₃ .OEt ₂ (1 equiv)	0%	0%	0%

^{*a*}Unless otherwise noted, the reaction conditions were: undivided cell, **1a** (0.25 mmol), **2** (0.5 mmol), solvent (2.5 mL), LiClO₄ (0.2 M), CCE (15 mA), 3.2 F.mol⁻¹, RT. ^{*b*}NMR yields were determined by ¹H NMR analysis of the crude material and using 1,3,5-trimethoxybenzene as an internal standard. Isolated yield is written between brackets. ^{*c*}nd: not determined (due to the presence of the electrolyte in the crude material which hampers the analysis of the spectrum). ^{*d*}2.2 F.mol⁻¹ instead of 3.2 F.mol⁻¹. ^{*e*}Graphite (-) instead of nickel (-). ^{*f*}No electricity.

3. Preparation of the starting materials

To a stirred solution of **S1** (1 equiv.) in CH₃CN (0.125 M) at room temperature was added **S2** (3 equiv.) and K_2CO_3 (1 equiv.) as solids. The reaction was stirred overnight under reflux. Full consumption of the starting material was monitored by TLC (DCM: 100%). Distilled water was added and the phases were separated. The aqueous phase was extracted with EtOAc (x3). The combined organic phases were washed with brine, dried over MgSO₄ and evaporated under vacuum. Purification by flash column chromatography (DCM:100%) afforded **1** as a white solid.

Analytical data were in agreement with those previously reported in the literature. **1a**, **1c-1g**: Liu, Y.; Che, C.-M. *Chem. Eur. J.* **2010**, *16*, 10494. **1b**, **1h**: Kiyokawa, K.; Kojima, T.; Hishikawa, Y.; Minakata, S. *Chem. Eur. J.* **2015**, *21*, 15548.

1i: Wei, Y.; Liang, F.; Zhang, X. Org. Lett. 2013, 15, 5186.

4. Electrochemical synthesis of CF₃ and CF₂H-containing imidazolines 3

4.1. General procedure A

An oven-dried, undivided electrochemical cell was charged with a magnetic stir bar, allylamine **1** (0.25 mmol, 1.0 equiv.) and sodium sulfinate **2** (0.5 mmol, 2.0 equiv). The vial was closed with a rubber septum and flushed under argon for 2 min. A 0.2 M solution of LiClO₄ in CH₃CN (predried over MS 3Å, 2.5 mL) was added and the mixture was stirred for 1 min. BF₃.OEt₂ (31 μ L, 0.25 mmol, 1.0 equiv) was added. The rubber septum was replaced by a cap holding the electrodes (a Graphite SK-50 anode and a Nickel cathode). The electrolysis was carried out at room temperature under constant current (15 mA) and was stopped after 1 h 25 min (electricity = 3.2 F.mol⁻¹). The reaction mixture was further stirred for 30 min at room temperature. EtOAc (10 mL) and a saturated aqueous NaHCO₃ solution (10 mL) were added. The phases were separated and the aqueous layer was extracted with EtOAc (3×5 mL). The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (PE/EtOAc = 100:0 to 80:20) to yield the desired product **3**.

Reaction conducted on 1 mmol scale: Following the general procedure A using allylamine **1a** (287 mg, 1 mmol, 1.0 equiv.), CF₃SO₂Na **2a** (312 mg, 2 mmol, 2.0 equiv.) and BF₃.OEt₂ (123 μ L, 1 mmol, 1.0 equiv.) in a 0.2M solution of LiClO₄ in CH₃CN (10 mL), **3a** was obtained as a yellow oil (252 mg, 0.636 mmol, 64%).

4.2. Characterization of imidazolines 3

2-methyl-4-phenyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3a)

Following the general procedure A using allylamine 1a (71.8 mg), CF₃SO₂Na (78 mg), 3a was obtained as a yellow oil (61.4 mg, 0.154 mmol, 62%).

4-(4-fluorophenyl)-2-methyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3b)

Following the general procedure A using allylamine **1b** (72.8 mg), CF_3SO_2Na (78 mg), **3b** was obtained as a yellow oil (58.1 mg, 0.140 mmol, 56%).

IR: v 703.3, 732.7, 896.0, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.72 (d, J = 8.2 Hz, 2H), 7.36 – 7.24 (m, 4H), 7.07 –

6.93 (m, 2H), 4.19 (d, J = 10.2 Hz, 1H), 3.98 (d, J = 10.2 Hz, 1H), 2.56 (qd, J = 10.5, 7.0 Hz, 2H), 2.45 (s, 3H), 2.37 (s, 3H); ¹³C {¹H} **NMR** (75 MHz, CDCl₃): 162.0 (d, ¹ J_{C-F} = 245.2 Hz), 156, 1, 145.0, 139.4, 135.1, 130.1, 127.2 (d, ³ J_{C-F} = 8.2 Hz), 127.1, 125.0 (q, ¹ J_{C-F} = 276.8 Hz), 115.6 (d, ² J_{C-F} = 21.7 Hz), 68.9, 58.2, 45.2 (q, ² J_{C-F} = 26.2 Hz), 29.7, 21.6, 16.6; ¹⁹F **NMR** (282 MHz, CDCl₃): δ -60.20 (t, J = 11.2 Hz, 3F), -114.59 (s, 1F); **HRMS (ESI**⁺): m/z calcd for [C₁₉H₁₉F₄N₂O₂S]⁺ ([M+H]⁺): 415.1103, found: 415.1094.

4-(4-chlorophenyl)-2-methyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3c)

Following the general procedure A using allylamine 1c (80.5 mg), CF₃SO₂Na (78 mg), 3c was obtained as a colorless oil (47.7 mg, 0.111 mmol, 44%).

IR: v 704.3, 733.6, 896.0, 1264.4, 1422.0 cm⁻¹; ¹**H** {¹³**C**} **NMR** (500 MHz, CDCl₃): δ 7.68 (d, J = 8.3 Hz, 2H), 7.36 – 7.17 (m, 6H), 4.17 (d, J

= 10.2 Hz, 1H), 3.94 (d, J = 10.3 Hz, 1H), 2.55 (tq, J = 10.5, 5.4 Hz, 2H), 2.43 (s, 3H), 2.35 (s, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): 156.3, 145.2, 142.3, 135.2, 133.7, 130.2, 128.9, 127.3, 127.0, 124.9 (q, ¹ J_{C-F} = 277.2 Hz), 69.0, 58.3, 45.1 (q, ² J_{C-F} = 26.2 Hz), 21.7, 16.8; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.13 (t, J = 10.1 Hz); HRMS (ESI⁺): m/z calcd for [C₁₉H₁₉ClF₃N₂O₂S]⁺ ([M+H]⁺): 431.0808, found: 431.0824.

Following the general procedure A using allylamine 1d (91.6 mg), CF_3SO_2Na (78 mg), 3c was obtained as an orange gum (56.3 mg, 0.119 mmol, 47%).

2-methyl-4-(*p*-tolyl)-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (**3e**)

Following the general procedure A using allylamine 1d (75.3 mg), CF_3SO_2Na (78 mg), 3c was obtained as a yellow oil (43.8 mg, 0.108 mmol, 43%).

IR: v 704.1, 733.2, 896.0, 1264.4, 1421.9 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.71 (d, J = 8.0 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 7.23

-7.00 (m, 4H), 4.18 (d, J = 10.1 Hz, 1H), 3.98 (d, J = 10.1 Hz, 1H), 2.70 – 2.45 (m, 2H), 2.43 (s, 3H), 2.35 (s, 3H), 2.32 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): 155.7, 144.9, 140.8, 137.4, 135.3, 130.1, 129.3, 127.2, 125.2, 125.1 (q, ¹ $J_{C-F} = 276.8$ Hz), 69.1, 58.1, 44.8 (q, ² $J_{C-F} = 26.2$ Hz), 21.6, 21.0, 16.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.19 (t, J = 10.2 Hz); HRMS (ESI⁺): m/z calcd for $[C_{20}H_{22}F_3N_2O_2S]^+$ ([M+H]⁺): 411.1354, found: 411.1348.

4-(4-(*tert*-butyl)phenyl)-2-methyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3f)

Following the general procedure A using allylamine 1f (85.9 mg), CF₃SO₂Na (78 mg), 3f was obtained as a yellow oil (50.9 mg, 0.112 mmol, 45%).

IR: v 704.0, 732.7, 896.0, 1264.4, 1421.7 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.77 – 7.71 (m, 2H), 7.38 – 7.30 (m, 4H), 7.27 – 7.22

(m, 2H), 4.23 (d, J = 10.1 Hz, 1H), 4.05 (d, J = 10.1 Hz, 1H), 2.60 (qd, J = 10.6, 4.4 Hz, 2H), 2.45 (s, 3H), 2.36 (s, 3H), 1.32 (s, 9H); ¹³C {¹H} NMR (75 MHz, CDCl₃): 155.7, 150.6, 144.8, 140.8, 135.3, 130.1, 127.2, 125.6, 125.2 (q, ¹ $J_{C-F}= 276.8$ Hz), 124.9, 69.1, 57.8, 45.1 (q, ² $J_{C-F}= 26.2$ Hz), 34.4, 31.2, 21.6, 16.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.21 (t, J = 10.3 Hz); HRMS (ESI⁺): m/z calcd for [C₂₃H₂₈F₃N₂O₂S]⁺ ([M+H]⁺): 453.1824, found: 453.1821.

Following the general procedure A using allylamine 1g (84.4 mg), CF₃SO₂Na (78 mg), 3f was obtained as a yellow oil (39.4 mg, 0.087 mmol, 35%).

IR: v 704.2, 733.4, 896.0, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.88 – 7.62 (m, 6H), 7.55 – 7.46 (m, 2H), 7.42 – 7.33 (m,

1H), 7.22 (d, J = 8.2 Hz, 2H), 4.30 (d, J = 10.3 Hz, 1H), 4.12 (d, J = 10.3 Hz, 1H), 2.72 (qd, ${}^{2}J_{C-F} = 10.5, 6.5$ Hz, 2H), 2.44 (s, 3H), 2.33 (s, 3H); 13 C { 1 H} NMR (75 MHz, CDCl₃): 155.9, 144.9, 141.02, 140.96, 133.0, 132.6, 130.0, 128.7, 128.2, 127.5, 127.1, 126.5, 126.4, 125.1 (q, ${}^{1}J_{C-F} = 276.8$ Hz), 124.2, 123.2, 69.5, 58.2, 44.7 (q, ${}^{2}J_{C-F} = 26.2$ Hz), 21.5, 16.7; 19 F NMR (282 MHz, CDCl₃): δ -60.15 (t, J = 10.0 Hz); HRMS (ESI⁺): m/z calcd for [C₂₃H₂₂F₃N₂O₂S]⁺ ([M+H]⁺): 447.1354, found: 447.1353.

2-methyl-1-((4-nitrophenyl)sulfonyl)-4-phenyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3h)

Following the general procedure A using allylamine **1h** (79.6 mg), CF_3SO_2Na (78 mg), **3a** was obtained as an orange gum (57.2 mg, 0.134 mmol, 54%).

IR: v 704.4, 733.6, 896.0, 1264.4, 1421.7, 3055.0 cm⁻¹; ¹H {¹³C} **NMR** (300 MHz, CDCl₃): δ 8.36 - 8.29 (m, 2H), 8.02 - 7.96 (m, 2H), 7.38 -

7.23 (m, 5H), 4.27 (d, J = 10.3 Hz, 1H), 4.05 (d, J = 10.3 Hz, 1H), 2.65 (q, J = 10.5 Hz, 2H), 2.42 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 154.9, 150.7, 143.9, 143.7, 128.8, 128.3, 127.9, 125.1, 125.0 (q, ${}^{1}J_{C-F} = 276.8$ Hz), 124.6, 69.8, 58.1, 45.2 (q, ${}^{2}J_{C-F} = 26.2$ Hz), 29.7; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.28 (t, J = 11.3 Hz); HRMS (ESI⁺): m/z calcd for $[C_{18}H_{17}F_3N_3O_4S]^+$ ([M+H]⁺): 428.0892, found: 428.0900.

2-methyl-4-phenyl-1-(phenylsulfonyl)-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3i)

Following the general procedure A using allylamine 1i (68.3 mg), CF₃SO₂Na (78 mg), 3a was obtained as a white gum (66.1 mg, 0.173 mmol, 69%).

IR: v 704.1, 733.4, 896.0, 1172.2, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.90 – 7.80 (m, 2H), 7.68 – 7.47 (m, 3H), 7.33 (d, *J*

= 3.8 Hz, 5H), 4.25 (d, J = 10.1 Hz, 1H), 4.04 (d, J = 10.2 Hz, 1H), 2.61 (qd, J = 10.6, 3.7 Hz, 2H), 2.39 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 155.7, 143.8, 138.2, 133.8, 129.5, 128.7, 127.7, 127.1, 125.3, 125.1 (q, ¹*J*_{C-F}= 276.9 Hz), 69.4, 58.0, 44.8 (q, ²*J*_{C-F} = 25.5 Hz), 16.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.24 (t, J = 10.2 Hz); HRMS (ESI⁺): m/z calcd for [C₁₈H₁₈F₃N₂O₂S]⁺ ([M+H]⁺): 383.1041, found: 383.1028.

4-(2,2-difluoroethyl)-2-methyl-4-phenyl-1-tosyl-4,5-dihydro-1H-imidazole (3j)

Following the general procedure A using allylamine 1a (71.8 mg), CF₂HSO₂Na (69 mg), 3j was obtained as a yellow oil (29.1 mg, 0.077 mmol, 31%).

IR: v 703.9, 732.9, 896.0, 1067.3, 1168.7, 1264.5, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.72 (d, J = 8.3 Hz, 2H), 7.35 – 7.24 (m, 7H),

5.64 (tt, J = 56.1, 4.7 Hz, 1H), 4.11 (d, J = 12Hz, 1H), 3.92 (d, J = 12Hz, 1H), 2.44 (s, 3H), 2.39 (s, 3H), 2.30 (tdd, J = 16.0, 4.7, 2.6 Hz, 2H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 155.9, 144.9, 144.1, 130.1, 130.0, 128.8, 127.5, 127.1, 125.2, 115.5 (t, ${}^{1}J_{C-F} = 237.8$ Hz), 69.5, 59.2, 45.9 (t, ${}^{2}J_{C-F} = 21.0$ Hz), 21.6, 16.7; ¹⁹F NMR (282 MHz, CDCl₃): δ -113.62 (dt, J = 56.0, 15.5 Hz); HRMS (ESI⁺): m/z calcd for [C₁₉H₂₁F₂N₂O₂S]⁺ ([M+H]⁺): 379.1292, found: 379.1275.

2-ethyl-4-phenyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (3k)

Following a modified general procedure A using allylamine 1a (71.8 mg), CF₃SO₂Na (78 mg) and propionitrile as solvent (instead of acetonitrile), **3k** was obtained as a colorless oil (35.1 mg, 0.086 mmol, 34%).

IR: v 704.2, 733.5, 896.0, 1165.6, 1264.4, 1421.8, 3054.9 cm⁻¹; ¹**H** {¹³**C**} **NMR** (500 MHz, CD₃CN): δ 7.69 (d, J = 8.1 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.30 – 7.21 (m, 5H), 4.16 (d, J = 10.5 Hz, 1H), 3.79 (d, J = 10.5 Hz,

1H), 2.89 – 2.58 (m, 4H), 2.38 (s, 3H), 1.24 (t, J = 7.3 Hz, 3H); ¹³C {¹H} NMR (126 MHz, CD₃CN): δ 161.0, 146.2, 145.6, 135.8, 131.1, 129.4, 128.2, 128.1, 126.7 (q, ${}^{1}J_{C-F} = 278.8$ Hz), 126.3, 70.2, 60.4, 44.7 (q, ${}^{2}J_{C-F} = 26.1$ Hz), 24.1, 21.5, 11.2; ¹⁹F NMR (282 MHz, CD₃CN): δ -60.43 (t, J = 10.3 Hz); HRMS (ESI⁺): m/z calcd for C₂₀H₂₂F₃N₂O₂S ([M+H]⁺): 411.1354, found: 411.1365.

2-isopropyl-4-phenyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (31)

Following a modified general procedure A using allylamine **1a** (71.8 mg), CF_3SO_2Na (78 mg) and *iso*-butyronitrile as solvent (instead of acetonitrile), **3l** was obtained as a yellow oil (39.7 mg, 0.094 mmol, 39%).

IR: v 703.9, 733.1, 895.9, 1166.8, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.66 (d, J = 8.3 Hz, 2H), 7.30 – 7.24 (m, 7H), 4.21 (d, J = 10.4 Hz), 3.96 (d, J = 10.4 Hz), 3.36 (hept, J = 6.6 Hz, 1H), 2.58

(q, J = 10.6 Hz, 2H), 2.42 (s, 3H), 1.31 – 1.26 (m, 6H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 164.5, 144.9, 144.7, 135.3, 129.9, 128.6, 127.4, 127.0, 125.1 (q, ${}^{1}J_{C-F} = 270.1$ Hz), 125.2, 69.1, 58.7, 44.9 (q, ${}^{2}J_{C-F} = 26.2$ Hz), 28.4, 21.5, 21.02, 20.97; ¹⁹F NMR (282 MHz, CDCl₃): δ -59.86 (t, J = 10.0 Hz); HRMS (ESI⁺): m/z calcd for [C₂₁H₂₄F₃N₂O₂S]⁺ ([M+H]⁺): 425.1511, found: 425.1511.

5. Electrochemical synthesis of CF₃ and CF₂H-containing oxazolidines 6

5.1. General procedure B

An oven-dried, undivided electrochemical cell was charged with MS 3 Å (300 mg). The vial was flame-dried under high vacuum during 1 min and put under argon. A magnetic stir bar, allylamine **1** (0.25 mmol, 1.0 equiv.), sodium sulfinate **2** (0.5 mmol, 2.0 equiv) and LiClO₄ (0.2 M, 53 mg) were quickly added. The vial was closed with a rubber septum and flushed under argon for 2 min. Acetone (2.5 mL) was added and the mixture was stirred for 1 min. The rubber septum was replaced by a cap holding the electrodes (a Graphite SK-50 anode and a Nickel cathode). The electrolysis was carried out at room temperature under constant current (15 mA) and was stopped after 1 h 25 min (electricity = 3.2 F.mol^{-1}). The reaction mixture was further stirred for 30 min at room temperature. The reaction mixture was filtered over a pad of celite (rinsed with EtOAc, 15 mL). The filtrate was transferred in a separatory funnel containing a saturated aqueous NaHCO₃ solution (10 mL). The phases were separated and the aqueous layer was extracted with EtOAc (2×10 mL). The combined organic phases were washed with brine, dried over MgSO₄, filtered and concentrated under vacuum. The residue was purified by flash column chromatography on silica gel (PE/EtOAc = 100:0 to 90:10) to yield the desired product **6**.

5.2. Characterization of oxazolidines 6

2-methyl-4-phenyl-1-tosyl-4-(2,2,2-trifluoroethyl)-4,5-dihydro-1H-imidazole (6a)

Following the general procedure B using allylamine 1a (71.8 mg), CF₃SO₂Na (78 mg), **6a** was obtained as a colorless oil (62 mg, 0.150 mmol, 60%).

IR: v 703, 734, 1123, 1168, 1265, 1367, 1733 cm⁻¹; ¹H {¹³C} **NMR** (300 MHz, CDCl₃): δ 7.67 (d, J = 8.1 Hz, 2H), 7.33 – 7.22 (m, 7H), 3.79 (s,

2H), 2.69 (dtt, J = 25.7, 15.3, 10.7 Hz, 2H), 2.42 (s, 3H), 1.74 (s, 3H), 1.40 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 143.8, 141.6, 136.7, 129.6, 128.4, 127.9, 127.5, 126.6 (q, ¹*J*_{C-F}= 276.7 Hz), 125.0, 97.8, 79.7, 56.1, 44.7 (q, ²*J*_{C-F}= 26.2 Hz), 28.4, 27.2, 21.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.18 (m); HRMS (ESI⁺): m/z calcd for [C₂₂H₂₅F₃N₂NaO₃S]⁺ ([M+CH₃CN+Na]⁺): 477.1436, found: 477.1440.

5-(4-fluorophenyl)-2,2-dimethyl-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6b)

Following the general procedure B using allylamine **1b** (72.8 mg), CF_3SO_2Na (78 mg), **6b** was obtained as a colorless oil (72.4 mg, 0.168 mmol, 67%).

IR: v 704.3, 733.6, 896.0, 1264.4, 1422.0 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.64 (d, J = 8.3 Hz, 2H), 7.27 – 7.17 (m, 4H), 7.02 – 6.87 (m,

2H), 3.74 (s, 2H), 2.73 – 2.52 (m, 2H), 2.40 (s, 3H), 1.68 (s, 3H), 1.37 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 162.3 (d, ¹*J*_{C-F} = 246.0 Hz), 143.9, 137.3, 136.7, 129.7, 127.4, 126.9 (d, ³*J*_{C-F} = 8.2 Hz), 124.6 (q, ¹*J*_{C-F} = 276.8 Hz), 115.2 (d, ²*J*_{C-F} = 21.7 Hz), 97.8, 69.3, 56.1, 44.7 (q, ²*J*_{C-F} = 26.2 Hz),

28.3, 27.3, 21.5; ¹⁹**F** NMR (282 MHz, CDCl₃): δ -60.28 (t, J = 11.3 Hz, 3F), -114.29 (s, 1F); HRMS (ESI⁺): m/z calcd for $[C_{20}H_{22}F_4NO_3S]^+$ ([M+H]⁺): 432.1257, found: 432.1256.

5-(4-chlorophenyl)-2,2-dimethyl-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6c)

Following the general procedure B using allylamine 1c (80.5 mg), CF₃SO₂Na (78 mg), 6c was obtained as a colorless oil (50.4 mg, 0.113 mmol, 45%).

IR: v 704.3, 733.7, 896.0, 1010.2, 1264.4, 1421.9 cm⁻¹; ¹H {¹³C} **NMR** (300 MHz, CDCl₃): δ 7.58 (d, J = 8.3 Hz, 2H), 7.22 – 7.10 (m, 6H), 3.69

(s, 2H), 2.68 – 2.47 (m, 2H), 2.35 (s, 3H), 1.64 (s, 3H), 1.32 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 144.0, 140.1, 136.6, 133.9, 129.7, 128.5, 127.4, 126.6, 124.6 (q, ¹*J*_{C-F}= 277.5 Hz), 97.9, 79.3, 56.0, 44.5 (q, ²*J*_{C-F}= 27Hz), 28.3, 27.2, 21.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.18 (t, *J* = 10.0 Hz); HRMS (ESI⁺): *m*/*z* calcd for [C₂₀H₂₂ClF₃NO₃S]⁺ ([M+H]⁺): 448.0961, found: 448.0952.

5-(4-bromophenyl)-2,2-dimethyl-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6d)

Following the general procedure B using allylamine 1d (91.6 mg), CF_3SO_2Na (78 mg), 6d was obtained as a colorless oil (73.2 mg, 0.149 mmol, 59%).

5-(4-bromophenyl)-2,2-dimethyl-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6e)

Following the general procedure B using allylamine 1e (75.3 mg), CF₃SO₂Na (78 mg), **6e** was obtained as a yellow oil (65.8 mg, 0.154 mmol, 62%).

IR: v 704.2, 733.3, 896.0, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.69 (d, J = 8.3 Hz, 2H), 7.34 – 7.23 (m, 2H), 7.21 – 7.05 (m,

4H), 3.79 (s, 2H), 2.84 – 2.56 (m, 2H), 2.43 (s, 3H), 2.34 (s, 3H), 1.74 (s, 3H), 1.40 (s, 3H); ¹³C {¹H} **NMR** (75 MHz, CDCl₃): δ 143.8, 138.7, 137.6, 136.7, 129.6, 129.0, 127.5, 124.8 (q, ¹*J*_{C-F}= 276.0 Hz), 124.9, 97.7, 79.6, 56.1, 44.5 (q, ²*J*_{C-F}= 26.2 Hz), 28.4, 27.2, 21.5, 21.0; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.16 (t, *J* = 11.3 Hz); **HRMS** (**ESI**⁺): *m*/*z* calcd for [C₂₃H₂₇F₃N₂NaO₃S]⁺ ([M+CH₃CN+Na]⁺): 491.1592, found: 491.1611.

5-(4-(*tert*-butyl)phenyl)-2,2-dimethyl-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6f)

Following the general procedure B using allylamine 1f (85.9 mg), CF₃SO₂Na (78 mg), **6e** was obtained as a yellow oil (81.7 mg, 0.174 mmol, 70%).

IR: v 704.0, 732.8, 896.0, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.61 (d, J = 7.8 Hz, 2H), 7.26 – 7.08 (m, 6H), 3.74 (s, 2H), 2.71

- 2.50 (m, 2H), 2.36 (s, 3H), 1.68 (s, 3H), 1.34 (s, 3H), 1.25 (s, 9H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 150.8, 143.7, 138.6, 136.9, 129.6, 127.5, 125.2, 124.8 (q, ${}^{1}J_{C-F}$ = 276.8 Hz), 124.7, 97.7, 79.7, 56.0, 44.6 (q, ${}^{2}J_{C-F}$ = 27Hz), 34.5, 31.3, 28.4, 27.2, 21.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.14 (t, *J* = 10.9 Hz); HRMS (ESI⁺): *m*/*z* calcd for [C₂₄H₃₁F₃NO₃S]⁺ ([M+H]⁺): 470.1977, found: 470.1981.

2,2-dimethyl-5-(naphthalen-2-yl)-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6g)

Following the general procedure B using allylamine 1g (84.4 mg), CF₃SO₂Na (78 mg), 6g was obtained as a yellow gum (62.7 mg, 0.135 mmol, 54%).

IR: v 704.0, 733.1, 896.1, 1160.3, 1264.4, 1421.9 cm⁻¹; ¹**H** {¹³**C**} **NMR** (500 MHz, CDCl₃): δ 7.84 (m, 2H), 7.80 – 7.58 (m, 4H), 7.52 (m, 2H),

7.42 (m, 1H), 7.20 (m, 2H), 3.95 (s, 2H), 2.95 – 2.65 (m, 2H), 2.39 (s, 3H), 1.82 (s, 3H), 1.45 (s, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 143.9, 138.9, 136.8, 132.9, 129.7, 128.5, 128.4, 127.7, 127.5, 126.6, 126.5, 124.9 (q, ¹*J*_{C-F}= 276.0 Hz), 124.0, 123.2, 98.0, 80.0, 56.0, 44.8 (q, ²*J*_{C-F} = 27Hz), 28.6, 27.3, 21.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.18 (t, *J* = 9.9 Hz); HRMS (ESI⁺): *m*/*z* calcd for [C₂₆H₂₇F₃N₂NaO₃S]⁺ ([M+CH₃CN+Na]⁺): 527.1592, found: 527.1610.

2,2-dimethyl-3-((4-nitrophenyl)sulfonyl)-5-phenyl-5-(2,2,2-trifluoroethyl)oxazolidine (6h)

Following the general procedure B using allylamine **1h** (79.6 mg), CF_3SO_2Na (78 mg), **6h** was obtained as a yellow oil (69 mg, 0.155 mmol, 62%).

IR: v 704.3, 733.5, 896.0, 1264.4, 1421.9 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 8.28 (d, J = 8.8 Hz, 2H), 7.91 (d, J = 8.8 Hz, 2H), 7.35 –

7.26 (m, 5H), 4.02 (d, J = 10.2 Hz, 1H), 3.93 (d, J = 10.2 Hz, 1H), 2.70 (tq, J = 10.4, 5.6 Hz, 2H), 1.76 (s, 3H), 1.46 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 150.4, 146.0, 141.8, 128.8, 128.7, 128.6, 125.4, 124.9 (q, ¹*J*_{C-F}= 276.8 Hz), 124.6, 98.4, 80.4, 56.3, 45.2 (q, ²*J*_{C-F}= 27.0 Hz), 28.8, 27.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.31 (t, ¹*J*= 8.5 Hz); HRMS (ESI⁻): *m*/*z* calcd for [C₁₉H₁₉ClF₃N₂O₅S]⁻ ([M+Cl]⁻): 479.0655, found: 479.0647.

Following the general procedure B using allylamine **1h** (68.3 mg), CF_3SO_2Na (78 mg), **6i** was obtained as a yellow oil (60.5 mg, 0.151 mmol, 61%).

IR: v 704.1, 733.5, 896.0, 1164.5, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.89 - 7.74 (m, 2H), 7.63 - 7.56 (m, 1H), 7.53 -

7.45 (m, 2H), 7.36 – 7.28 (m, 5H), 3.85 (s, 2H), 2.70 (m, 2H), 1.77 (s, 3H), 1.43 (s, 3H); ¹³C {¹H} **NMR** (75 MHz, CDCl₃): δ 141.6, 139.7, 132.9, 129.0, 128.4, 128.0, 127.4, 125.0, 124.7 (q, ¹*J*_{C-F} = 276.2 Hz), 97.8, 79.7, 56.0, 44.6 (q, ²*J*_{C-F} = 27.0 Hz), 28.3, 27.2; ¹⁹F NMR (282 MHz, CDCl₃): δ - 60.23 (t, *J* = 8.5 Hz); **HRMS** (**ESI**⁺): *m*/*z* calcd for [C₂₁H₂₃F₃NaN₂O₃S]⁺ ([M+CH₃CN+Na]⁺): 463.1279, found: 463.1253.

2,2-diethyl-5-phenyl-3-tosyl-5-(2,2,2-trifluoroethyl)oxazolidine (6j)

Following a modified procedure using allylamine **1a** (71.8 mg), CF₃SO₂Na (2.5 equiv., 97.5 mg), LiClO₄ (0.4 M, 106 mg), pentan-3-one (2.5 mL) under constant current electrolysis at 15 mA at 35 °C. At the end of the electrolysis (2.8 F.mol⁻¹ were consumed)^{*}, BF₃.OEt₂ (31 μ L, 0.25

mmol, 1 equiv.) was added and the reaction mixture was further stirred overnight at room temperature. The same work-up than in procedure B afforded **6j** as a colorless oil (62.4 mg, 0.143 mmol, 57%).

IR: v 707.6, 943.4, 1006.3, 1093.1, 1142.0, 1150.1, 1262.6, 1339.0, 1462.5, 2920.3 cm⁻¹; ¹H {¹³C} **NMR** (300 MHz, CDCl₃): δ 7.64 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 7.18 (dd, J = 5.1, 1.9 Hz, 3H), 7.13 (dd, J = 6.6, 3.1 Hz, 2H), 3.86 (d, J = 9.9 Hz, 1H), 3.66 (d, J = 9.9 Hz, 1H), 2.78 – 2.62 (m, 1H), 2.62 – 2.48 (m, 1H), 2.37 (s, 3H), 2.07 (dt, J = 14.5, 7.3 Hz, 1H), 1.98 – 1.82 (m, 2H), 1.26 (dd, J = 14.2, 7.3 Hz, 1H), 0.96 (t, J = 7.3 Hz, 3H), 0.68 (t, J = 7.3 Hz, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 143.7, 141.1, 137.3, 129.7, 128.2, 128.0, 127.3, 125.2, 124.7 (q, ¹*J*_{C-F} = 276.7 Hz), 103.7, 79.7, 56.3, 45.3 (q, ²*J*_{C-F} = 27.0 Hz), 31.3, 30.8, 21.5, 8.60 8.2; ¹⁹F NMR (282 MHz, CDCl₃): δ -60.53 (t, J = 9.8 Hz); **HRMS (ESI**⁺): m/z calcd for [C₂₂H₂₇F₃NO₃S]⁺ ([M+H]⁺): 442.1664, found: 442.1663.

5-(2,2-difluoroethyl)-2,2-dimethyl-5-phenyl-3-tosyloxazolidine (6k)

Following the general procedure B using allylamine 1a (71.8 mg), CF₂HSO₂Na (69 mg), **6k** was obtained as a yellow gum (40.3 mg, 0.102 mmol, 41%).

IR: v 704.0, 733.3, 896.0, 1038.0, 1264.4, 1421.8 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.72 – 7.66 (m, 2H), 7.38 – 7.28 (m, 6H), 7.27 (s,

1H), 5.62 (tt, J = 56.1, 4.7 Hz, 1H), 3.78 (s, 2H), 2.44 (s, 3H), 2.42 – 2.28 (m, 2H), 1.75 (s, 3H), 1.45 (s, 3H); ¹³C {¹H} NMR (75 MHz, CDCl₃): δ 143.7, 142.2, 136.9, 129.6, 128.6, 127.9, 127.4, 124.8, 115.2 (t, ¹*J*_{C-F}= 237.7 Hz), 97.6, 80.3, 56.2, 45.6 (t, ²*J*_{C-F}= 21.0 Hz), 28.4, 27.2, 21.5; ¹⁹F NMR (282 MHz, CDCl₃): δ -113.74 (app. dq, J = 55.9, 14.7 Hz); HRMS (ESI⁺): m/z calcd for [C₂₂H₂₆F₂NaN₂O₃S]⁺ ([M+CH₃CN+Na]⁺): 459.1530, found: 459.1537.

^{*} In pentan-3-one, it was not possible to maintain 15 mA and to reach 3.2 F.mol⁻¹ probably due to the low conductivity of this solvent.

6. Characterization of side products 4 and 5

2-phenyl-1-tosyl-2-(2,2,2-trifluoroethyl)aziridine (4)

colorless oil.

IR: v 739.2, 878.3, 1057.0, 1278.4, 1419.7 cm⁻¹; ¹**H** {¹³**C**} **NMR** (300 MHz, CDCl₃): δ 7.82 – 7.76 (m, 2H), 7.48 – 7.27 (m, 7H), 3.35 (dqd, J = 15.1, 9.7, 1.6 Hz, 1H), 3.12 – 2.97 (m, 3H), 2.45 (s, 3H); ¹³**C** {¹**H**} **NMR** (75 MHz, CDCl₃): δ 144.7, 136.8, 136.7, 129.8, 128.8, 128.6 (*two overlapping peaks*), 127.9, 125.4 (q, ¹ J_{C}

F= 276.0 Hz), 49.9, 40.5 (q, ${}^{2}J{C-F}$ = 28.5 Hz), 38.8, 21.7; ¹⁹F NMR (282 MHz, CDCl₃): δ -62.05 (t, *J* = 8.5 Hz); HRMS (ESI⁺): *m*/*z* calcd for [C₁₇H₁₇F₃NO₂S]⁺ ([M+H]⁺): 356.0932, found: 356.0936.

2-phenyl-1-tosyl-2-(2,2,2-trifluoroethyl)aziridine (5)

colorless oil.

IR: v 705, 734, 1264, 3055 cm⁻¹; **¹H** {¹³C} **NMR** (500 MHz, CDCl₃): δ 7.66 (d, J = 8.0 Hz, 2H), 7.43 – 7.20 (m, 7H), 4.80 – 4.77 (m, 1H), 3.33 (dd, J = 13.3, 8.8 Hz, 1H), 3.20 (s, 1H), 3.11 (dd, J = 13.3, 4.7 Hz, 1H), 2.90 – 2.70 (m, 2H), 2.42 (s, 3H); ¹³C

{¹H} NMR (125 MHz, CDCl₃): δ 144.1, 141.4, 136.5, 130.1, 128.9, 128.2, 127.0, 125.7 (q, ¹*J*_{C-F} = 276.7 Hz), 125.0, 73.7, 53.1, 42.7 (q, ¹*J*_{C-F} = 26.2 Hz), 21.6; ¹⁹F NMR (282 MHz, CDCl₃): δ -59.04 (m); HRMS (ESI⁺): *m*/*z* calcd for [C₁₇H₁₉F₃NO₃S]⁺ ([M+H]⁺): 374.1038, found: 374.1040.

7. Cyclic voltammetry analyses

Cyclic voltammetry analyses were carried out in a 10 mL IKA ElectraSyn vial. Working electrode: GC: Counter electrode: Pt: Peference electrode: $\Delta g/\Delta gCl$ (3M ag

Working electrode: GC; Counter electrode: Pt; Reference electrode: Ag/AgCl (3M aq. KCl). Sweep rate: 200 mV.s^{-1} . 0.005 M analyte and 0.1 M LiClO₄ in CH₃CN (5 mL).

Figure S1: Cyclic voltammograms of 0.1 M LiClO₄ solutions in CH₃CN: none (grey line); **1a** 0.005 M (brown line); CF₃SO₂Na **2a** 0.005 M (blue line).

Figure S2: Cyclic voltammograms of 0.1 M LiClO₄ solutions in CH₃CN: none (grey line); CF₃SO₂Na **2a** 0.005 M (blue line); CF₃SO₂Na **2a** 0.005 M + BF₃.OEt₂ 0.005 M (purple line).

The comparison of the cyclic voltammetry profiles of CF_3SO_2Na and CF_3SO_2Na in the presence of $BF_3.OEt_2$ reveals an onset of oxidation little bit superior in the presence of the Lewis acid. E_{onset} (CF_3SO_2Na) = 0.97 V; E_{onset} ($CF_3SO_2Na+BF_3.OEt_2$) = 1.18 V. In both cases, these oxidations occur before the oxidation of allylamine 1a; E_{onset} (1a) = 1.67 V.

8. NMR spectra

