Photocatalytic intermolecular *anti*-Markovnikov hydroamination of unactivated alkenes with *N*-hydroxyphthalimide

Zhi-Peng Ye,^a Yuan-Zhuo Hu,^a Peng-Ju Xia,^{*a,b} Hao-Yue Xiang,^{*a} Kai Chen^{*a,c} and Hua Yang^{*a}

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China ^bSchool of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. ^cState Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China

E-mail: <u>hyangchem@csu.edu.cn</u>, <u>kaichen@csu.edu.cn</u>, <u>xianghaoyue@csu.edu.cn</u>, <u>xiaojujuxia@163.com</u>.

1.	General experimental methods	S1
2.	General procedure : synthesis of compounds 3a-3s	S1
3.	Mechanistic studies	S2
4.	Characterization data of compounds	S5
5.	Computational details	S9
6.	References	\$26
7.	Copies of NMR Spectra	

1. General experimental methods

Unless otherwise noted, all the reagents were purchased from commercial suppliers and used without further purification. ¹H NMR spectra were recorded at 400 MHz. The chemical shifts were recorded in *ppm* relative to tetramethylsilane and with the solvent resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br s = broad singlet, p = quintet, h = sextet, hept = septet, m = multiplet), coupling constants (Hz), integration. ¹³C NMR data were collected at 100 MHz with complete proton decoupling.High resolution mass spectroscopy (HRMS) was recorded on TOF MS ES+ mass spectrometer and acetonitrile was used to dissolve the sample.Emission intensities were recorded using Perkin-Elemer LS 55 fluorescence spectrometer. Column chromatography was carried out on silica gel (200-300 mesh).

2. General procedure: synthesis of compounds 3a-3s

N-Hydroxyphthalimide (0.2 mmol, 1.0 equiv.), olefins (0.6 mmol, 3.0 equiv.), $P(OEt)_3$ (0.3 mmol, 1.5 equiv.), $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ (2 mol%) in MeCN (4 mL)was stirred at room temperature for 24h under irradiation of 30 W blue LEDs (distance app. 3 cm). Then, it was diluted with EtOAc (60 mL), and washed with brine (3×20 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The obtained crude product was then purified by flash chromatography using silica gel (EtOAc/PE = 1:9-1:4).

3. Mechanistic studies

3.1 Emission quenching experiments (Stern–Volmer Studies)

All fluorescence measurements were recorded using a Hitachi FL-7000 Fluorometer. Quenching studies were conducted in MeCN. All $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ solutions (concentration of 5 μ M) were excited at 304nm and the emission intensity was collected at 450nm (Figure S1(a)(b)). It was found that the wavelength of maximum emission of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6$ is at a wavelength of 450 nm, and that of P(OEt)₃ is at 409 nm (Figure S1 (c-d)). Considering NHPI also had UV-Vis absorption near 304 nm,¹a competition of absorption of the light source between the photocatalyst and substrates may lead to a quenching effect of photocatalyst at 450 nm.

Figure S1. (a)(b)Stern-Volmer experiment in MeCN; (c) the fluorescence emission spectrum of $[Ir(dFCF_3ppy)_2dtbbpy]PF_6(c = 5 \ \mu M)$ in the presence of $P(OEt)_3$ at difference concentration in MeCN; (d) the fluorescence emission spectrum of $P(OEt)_3$ (c = 50 μM)

3.2Trapping experiment

Figure S2. TEMPO/BPO trapping experiments

[a] Conditions: N-Hydroxyphthalimide2 (0.2 mmol, 1.0 equiv.), olefin 1a(0.6 mmol, 3.0 equiv.), P(OEt)₃(0.3 mmol, 1.5 equiv.), [Ir(dFCF₃ppy)₂dtbbpy]PF₆(2 mol%), MeCN (4 mL), 30 w blue LED, rt, argon atmosphere, 24 hours.

3.4 Time profile of the transformation with the light ON/OFF over time

The *N*-hydroxyphthalimide and phenyl vinyl sulfide were used as reactants under optimized reaction conditions and extra 3 equiv. of 1,3,5-trimethoxybenzenewas added as the internal standard. After irradiation for 2.5 h, an aliquot (100 μ L) of the reaction mixture was transferred into a nuclear magnetic tube charged with 0.6 mL of CDCl₃. The yield of product was determined by ¹H NMR. Then the reaction mixture was stirred for 2.5 h with light-off. All of the following yields were analyzed in the identical way after a 2.5 h light on or off.

Figure S2. Time profile of the transformation with the light ON/OFF over time.

4. Characterization data of compounds

N-cyclohexylphthalimide **3a**:²colorless oil (37.1 mg, 0.164 mmol, yield 82%); ¹H NMR (400 MHz,CDCl₃) δ 7.79 – 7.83 (m, 2H), 7.67 – 7.70 (m, 2H), 4.10 (tt, *J* = 12.4, 4.0 Hz, 1H), 2.15 – 2.25 (m, 2H), 1.83 – 1.87 (m, 2H), 1.67 – 1.73 (m, 2H), 1.27 – 1.38 (m, 4H);

HRMS (ESI): C₁₄H₁₅NNaO₂⁺ [M+Na]⁺ Calcd 252.0995, Found 252.0996.

N-(2-methylcyclohexy)phthalimide **3b**:³colorless oil (37.1 mg, 0.132 mmol, yield 66%);77:23 *trans:cis*;*

¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.83 (m, 2H), 7.69 – 7.71 (m, 2H), 4.28 (dt, J = 12.8, 4.0 Hz, 0.23H)*, 3.76 (td, J = 12.0, 4.0 Hz, 0.77 H), 2.81 (qd, J = 12.8, 4.0 Hz, 0.24 H)*, 2.31 – 2.39 (m, 0.78 H), 2.13 – 2.23 (m, 1H), 1.83–

1.93 (m, 2H), 1.70 – 1.73 (m, 2H), 1.04– 1.64 (m, 3H), 1.02 (d, *J* = 7.2 Hz, 0.71 H)*, 0.80 (d, *J* = 6.4 Hz, 2.38 H).

HRMS (ESI): $C_{15}H_{17}NO_2Na^+$ [M+Na]⁺ Calcd 266.1151, Found 266.1171.

N-(bicyclo[2.2.1]heptan-2-yl)phthalimide **3c**:³colorless oil (40.3mg, 0.166 mmol, yield 83%); 73:27 *exo:endo**;

¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.83 (m, 2H), 7.67 – 7.72 (m, 2H), 4.24 – 4.48 (m, 0.19H)*, 4.14 (dd, *J* = 8.4, 5.6 Hz, 0.81H), 2.52 – 2.57 (m, 0.29H), 2.41 – 2.42 (m, 2H), 2.23 – 2.28 (m, 2H), 1.27 – 1.75(m, 6H); HRMS (ESI): C₁₅H₁₅NNaO₂⁺ [M+Na]⁺ Calcd 264.0995, Found 264.0980.

3d

N-cyclopentylphthalimide 3d:³ colorless oil (32.7 mg, 0.152 mmol, yield 76%); ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.83 (m, 2H), 7.67 – 7.72 (m, 2H), 4.63 (p, *J* = 8.4 Hz, 1H), 2.06 – 2.15 (m, 2H), 1.89 – 2.01 (m, 4H), 1.60 – 1.70 (m, 2H);

HRMS (ESI): $C_{13}H_{13}NNaO_2^+$ [M+Na]⁺ Calcd 238.0838, Found 238.0849.

N-cyclooctylphthalimide 3e:³colorless oil (29.3 mg, 0.114 mmol, yield 57%);

¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.82 (m, 2H), 7.68 – 7.71 (m, 2H), 4.37 (tt, J = 10.4, 3.2 Hz, 1H), 2.28-2.36 (m, 2H), 1.74 – 1.84 (m, 6H), 1.53 – 1.61 (m, 6H);

HRMS (ESI): $C_{16}H_{19}NNaO_2^+$ [M+Na]⁺ Calcd 280.1308, Found 280.1305.

N-(hexyl)phthalimide **3f**:⁴colorless oil (28.6 mg, 0.124 mmol, yield 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.85 (m, 2H), 7.70 – 7.72 (m, 2H), 3.68 (t, *J* = 7.4 Hz, 2H), 1.65 – 1.69 (m, 2H), 1.26 – 1.34 (m, 6H), 0.88 (t, *J* = 6.8 Hz, 3H);

HRMS (ESI): $C_{14}H_{17}NNaO_2^+$ [M+Na]⁺ Calcd 254.1151, Found 254.1168.

N-(octyl)phthalimide 3g:⁵ colorless oil (36.8 mg, 0.142 mmol yield 71%); ¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.85 (m, 2H), 7.69 – 7.71 (m, 2H), 3.68 (t, J = 7.2 Hz, 2H), 1.64 – 1.69 (m, 2H), 1.32 – 1.33 (m, 10H), 0.87 (t, J = 7.2 Hz, 3H);

HRMS (ESI): $C_{16}H_{21}NNaO_2^+$ [M+Na]⁺ Calcd 282.1465, Found 282.1477.

O

3i

N-(dodecyl)phthalimide **3h**: colorless oil (37.8 mg, 0.120 mmol, yield 60%); ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.85 (m, 2H), 7.70 – 7.71 (m, 2H), 3.67 (t, *J* = 7.6 Hz, 2H), 1.65 – 1.69 (m, 2H), 1.28 – 1.34 (m, 18H), 0.86 – 0.89 (m, 3H);

3h ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.5, 133.8, 132.2, 123.1, 38.1, 31.9, 29.6 – 29.2 (m), 28.6. 22.7, 14.1;

HRMS (ESI): C₂₀H₂₉NO₂K⁺ [M+K]⁺ Calcd 354.1830, Found 354.1801.

N-(2-ethylbutyl)phthalimide**3i**:colorless oil (32.8 mg, 0.142 mmol, yield 71%);

¹H NMR (400 MHz,CDCl₃) δ 7.83 – 7.85 (m, 2H), 7.70 – 7.72 (m, 2H), 3.59 (d,*J* = 7.2 Hz, 2H), 1.75–1.82 (m, 1H), 1.34 (p, *J* = 7.2 Hz, 4H), 0.92 (t, *J* = 3.6 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 133.8, 132.1, 123.1, 41.6, 39.7, 23.3, 10.5; HRMS (ESI): $C_{14}H_{17}NNaO_2^+$ [M+Na]⁺ Calcd 254.1151, Found 254.1143.

3j

N-(3-methylbutan-2-yl)phthalimide**3**j:⁶colorless oil (23.4 mg, 0.108 mmol, yield 54%);

¹H NMR (400 MHz, CDCl₃) δ 7.81 – 7.83 (m, 2H), 7.69 – 7.72 (m, 2H), 3.91 – 3.99 (m, 1H), 2.35 – 2.44 (m, 1H), 1.47 (d, *J* = 6.8 Hz, 3H), 1.03 (d, *J* = 6.8 Hz, 3H), 0.83 (d, *J* = 6.4 Hz, 3H).

HRMS (ESI): C₁₃H₁₅NNaO₂⁺[M+Na]⁺ Calcd 240.0995, Found 240.0998.

N-(2-cyclohexylethyl)phthalimide **3k**: colorless oil (36.5 mg, 0.142 mmol, yield 71%);

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.85 (m, 2H), 7.70 – 7.72 (m, 2H),3.70 (t, J = 7.6 Hz, 2H),1.76 – 1.82 (m, 2H), 1.62 – 1.73 (m, 3H), 1.56 (q, J = 7.2 Hz, 2H), 1.24 –1.33 (m, 2H), 1.16 –1.22 (m, 2H), 0.90

-1.00 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 168.4, 133.8, 132.2, 123.1, 36.0, 35.9, 35.4, 33.0, 26.5, 26.2; HRMS (ESI): C₁₆H₁₉NNaO₂⁺ [M+Na]⁺ Calcd 280.1308, Found 280.1308.

N-(2-ethoxyethyl)phthalimide **3**I:³colorless oil (32.0 mg, 0.146 mmol, yield 73%);

¹H NMR (400 MHz, CDCl₃) δ 7.83 – 7.86 (m, 2H), 7.70 – 7.74 (m, 2H), 3.90 (t, *J* = 6.0 Hz, 2H), 3.68 (t, *J* = 6.0 Hz, 2H), 3.52 (q, *J* = 6.8 Hz, 2H), 1.15 (t, *J* = 7.2 Hz, 3H);

HRMS (ESI): C₁₂H₁₃NNaO₃⁺ [M+Na]⁺ Calcd 242.0788, Found 242.0804.

N-(2-propoxyethyl)phthalimide **3m**: colorless oil (31.7 mg, 0.136 mmol, yield 68%);

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.86 (m, 2H), 7.71 – 7.73 (m, 2H), 3.90 (t, *J* = 6.0 Hz, 2H), 3.68 (t, *J* = 6.0 Hz, 2H), 3.42 (t, *J* = 6.4 Hz, 2H), 1.54 (h, *J* = 7.2 Hz, 2H), 0.85 (t, *J* = 7.6 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 168.3, 133.9, 132.1, 123.2, 72.5, 67.3, 37.4, 22.8, 10.4. HRMS (ESI): $C_{13}H_{15}NNaO_2^+$ [M+Na]⁺ Calcd 256.0944, Found 256.0947.

N-(2-butoxyethyl)phthalimide 3n:³ colorless oil (34.6 mg, 0.140 mmol, yield 70%);

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.86 (m, 2H), 7.71 – 7.74 (m, 2H), 3.89 (t, *J* = 5.6 Hz, 2H), 3.67 (t, *J* = 6.0 Hz, 2H), 3.45 (t, *J* = 6.8 Hz, 2H), 1.46 – 1.55 (m, 2H), 1.25 – 1.34 (m, 2H), 0.85 (t, *J* = 7.2 Hz,

HRMS (ESI): $C_{14}H_{17}NNaO_3^+$ [M+Na]⁺ Calcd 270.1101, Found 270.1113.

N-(2-isobutoxyethyl)phthalimide 30:³ colorless oil (32.1 mg, 0.130 mmol, yield 65%);

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.86 (m, 2H), 7.71 – 7.74 (m, 2H), 3.90 (t, *J* = 6.4 Hz, 2H), 3.67 (t, *J* = 6.0 Hz, 2H), 3.21 (d, *J* = 6.8 Hz, 2H), 1.76 – 1.83 (m, 1H), 0.83 (d, *J* = 6.8 Hz, 6H); HRMS (ESI): C₁₄H₁₇NNaO₃⁺ [M+Na]⁺ Calcd 270.1101, Found 270.1115.

N-(2-(cyclohexyloxy)ethyl)phthalimide **3p**:³ colorless oil (40.4 mg, 0.148 mmol, yield 74%); ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.86 (m, 2H), 7.70 – 7.73 (m, 2H), 3.87 (t, *J* = 6.0 Hz, 2H), 3.69 (t, *J* = 6.0 Hz, 2H), 3.24 – 3.30 (m, 1H), 1.79 – 1.84 (m, 2H), 1.66 – 1.68 (m, 2H), 1.47 – 1.49 (m, 2H), 1.17 – 1.22 (m, 4H);

HRMS (ESI): C₁₆H₁₉NNaO₃⁺ [M+Na]⁺ Calcd 296.1257, Found 296.1235.

N-(2-(phenylthio)ethyl)phthalimide3q:³ colorless oil (40.8 mg, 0.144 mmol, yield 72%);

¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.82 (m, 2H), 7.68 – 7.70 (m, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.23 – 7.26 (m, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 3.93 (t, *J* = 7.2 Hz, 2H), 3.23 (t, *J* = 7.2 Hz, 2H);

HRMS (ESI): $C_{16}H_{13}NNaO_2S^+$ [M+Na]⁺ Calcd 306.0559, Found 306.0562.

N-(5-bromopentyl)phthalimide 3r:³ colorless oil (38.4 mg, 0.130 mmol, yield 65%);

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.86 (m, 2H), 7.70 – 7.73 (m, 2H), 3.70 (t, *J* = 7.2 Hz, 2H), 3.40 (t, *J* = 6.8 Hz, 2H), 1.88 – 1.95 (m, 2H), 1.68 – 1.76 (m, 2H), 1.47 – 1.54 (m, 2H).

HRMS (ESI): C₁₃H₁₄NBrNaO₂⁺ [M+Na]⁺ Calcd 318.0100, Found 318.0097.

N-(3-(trimethylsilyl)propyl)phthalimide **3s**: colorless oil (19.8 mg, 0.076 mmol, yield 38%);

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.88 (m, 2H), 7.71 – 7.75 (m, 2H), 3.68 (t, J = 7.2 Hz, 2H), 1.65 – 1.72 (m, 2H), 0.52 – 0.57 (m, 2H), 0 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 170.2, 135.6, 134.0, 124.9, 42.9, 25.1, 15.6, 0.0; HRMS (ESI): C₁₄H₁₉NNaO₂Si⁺ [M+Na]⁺ Calcd 284.1077, Found 284.1072.

5. Computational details

All calculations were carried out using DFT as implemented in Gaussian16 software package.⁷The hybrid PBE functional⁸in conjugation with def2-TZVP basis set for iridium and def2-SVP basis sets for other atoms was applied for the optimization of all stationary points.^{9,10}Frequency calculations were performed at the same level to verify the stationary points are minima (0 imaginary frequency) or saddle points (only 1 imaginary frequency). Single point energy calculations were carried out with Truhlar's M06 functional¹¹ with def2-TZVPP basis set for all atoms. Time-dependent DFT (TD-DFT) calculations were performed for the excited state structures. Solvation effects of acetonitrile for all calculations were considered using Truhlar's SMD solvent model.¹² Broken symmetry functional was chosen for open shell systems. Computed structures were illustrated by CYLView software.¹³

3.1	Comparison	of experimental	and calculated	redox potentials.

$E_{1/2}^{red}$ in V vs. SCE ^a	*[Ir(III)]/[Ir(II)]	[Ir(III)]/[Ir(II)]	Ph ₃ P ^{+•} /Ph ₃ P	$(EtO)_{3}P^{+}/(EtO)_{3}P$
Experiment	$+1.21^{14}$	-1.37 ¹⁵	$+0.98^{16}$	$+1.57^{16}$
Calculation	+1.22	-1.35	+1.04	+1.60

^a[**Ir**(**III**)] = [Ir(dFCF₃ppy)₂dtbbpy]⁺, [**Ir**(**II**)] = [Ir(dFCF₃ppy)₂dtbbpy].

As shown above, the calculated redox potentials, at M06/def2-TZVPP-SMD(CH₃CN)//PBE/def2SVP(C,H,N,O,P)-def2-TZVP(Ir)-SMD(CH₃CN) theoretical level, are in good agreement with the experimental data, which also suggests our computational level is reliable.

5.2Calculated singlet-triplet energy gaps.

		[Ir(III)]	NHPI	P(OEt) ₃
ΔE_{ST} (kcal/	mol) ^a	59.2	59.6	82.1
vas	<u>.</u>	rep	orted	

 $^{a} \varDelta E_{ST} was$

at

 $M06/def2-TZVPP-SMD(CH_{3}CN)//PBE/def2SVP(C,H,N,O,P)-def2-TZVP(Ir)-SMD(CH_{3}CN) \qquad theoretical level.$

As the singlet-triplet energy gap of NHPI or $P(OEt)_3$ is even larger than that of $[Ir(dFCF_3ppy)_2dtbbpy]^+$, triplet energy transfer from sensitizer Ir(III) to substrates seems to be impossible.

5.3Possible electron transfer patterns from *[Ir(III)] to NHPI.

As shown below, single electron transfer from NHPI to the excited [Ir(III)] catalyst is an endergonic process, as large as 26.9 kcal/mol. However, in the presence of $P(OEt)_3$, a concerted proton-coupled electron transfer seems to be feasible, with an exergonicity of 6.7 kcal/mol.

5.4The optimized structures of important stationary points

Structure	Eele	Eele(SP)	E ₀	Е	Н	G
Ir(III)	-2937.67088	-2942.20156	-2936.98260	-2936.93193	-2936.93098	-2937.07213
*[Ir(III)]	-2937.57078	-2942.10204	-2936.88614	-2936.83489	-2936.83394	-2936.97730
[Ir(II)]	-2937.78218	-2942.31333	-2937.09769	-2937.04669	-2937.04574	-2937.18836
PPh ₃	-1034.55290	-1035.78995	-1034.27669	-1034.26081	-1034.25986	-1034.32304
•+PPh3	-1034.75533	-1035.99358	-1034.47978	-1034.46395	-1034.46301	-1034.52620
[NHPIP(OEt) ₃]	-1390.83188	-1392.78836	-1390.49560	-1390.47167	-1390.47072	-1390.55488
[PINOHP(OEt) ₃] ^{+•}	-1390.62582	-1392.58473	-1390.29027	-1390.26538	-1390.26443	-1390.35214
NHPI	-587.18788	-588.12760	-587.06743	-587.05795	-587.05700	-587.10241
**NHPI	-586.93849	-587.87318	-586.81834	-586.80912	-586.80818	-586.85371
NHPI(triplet)	-587.09728	-588.03034	-586.97889	-586.96987	-586.96892	-587.01411
$P(OEt)_3$	-803.63166	-804.64976	-803.41780	-803.40389	-803.40294	-803.46136
•+ P (OEt) ₃	-803.40687	-804.42488	-803.19217	-803.17798	-803.17704	-803.23661
P(OEt) ₃ (triplet)	-803.51379	-804.51474	-803.30171	-803.28719	-803.28624	-803.34772
⁺ HP(OEt) ₃	-804.05951	-805.08622	-803.83351	-803.81950	-803.81856	-803.87632
PINO	-586.55817	-587.49149	-586.44913	-586.44053	-586.43958	-586.48378
$O=P(OEt)_3$	-878.77046	-879.94720	-878.55098	-878.53628	-878.53534	-878.59581
TS1	-1390.18958	-1392.13900	-1389.86585	-1389.84221	-1389.84126	-1389.92453
Ι	-1390.19559	-1392.16515	-1389.86971	-1389.84640	-1389.84545	-1389.92556
TS2	-1390.17948	-1392.15031	-1389.85632	-1389.83325	-1389.83231	-1389.91183
II	-511.46338	-512.27037	-511.36045	-511.35254	-511.35159	-511.39450
cyclohexene	-234.19574	-234.54029	-234.04942	-234.04392	-234.04297	-234.07803
III	-745.73811	-746.87869	-745.48403	-745.47015	-745.46920	-745.52574
TS3	-1332.92825	-1335.00031	-1332.55624	-1332.53244	-1332.53150	-1332.61369
3 a	-746.40164	-747.54448	-746.13291	-746.11928	-746.11833	-746.17372

5.5Table of energies and other thermodynamic parameters.

Notes: E_{ele} , E_0 , E, H, and G were the electronic energies, sum of electronic and zero-point energies, sum of electronic and thermal energies, sum of electronic and thermal enthalpies, and sum of electronic and thermal free energies, respectively, which were given at the PBE/def2SVP(C,H,N,O,P)-def2-TZVP(Ir)-SMD(CH₃CN) level. Eele(SP) were single point electronic energies at the M06/def2-TZVPP-SMD(acetonitrile) level.

5.6 Coordinates of all stationary points.			y points.	С	-1.100172	4.818411	11.581809
[Ir(II]	[Ir(III)]				-0.990713	3.451804	11.393183
0 imaginary frequency				С	-0.149750	2.755069	12.254920
Ir	1.338313	5.859245	14.884365	С	0.563847	3.374317	13.273065
С	0.449100	4.756112	13.462788	С	-0.468157	6.928757	12.853949
С	-0.403434	5.497471	12.594605	С	-1.218830	7.876142	12.138876

С	-1.173064	9.211533	12.495659	Н	-1.833386	7.552823	11.303323
С	-0.372301	9.599384	13.572942	Н	-1.756822	9.947119	11.938187
С	0.345337	8.627208	14.248976	Н	0.981842	8.889341	15.093467
Ν	0.300734	7.333950	13.905282	Н	0.954563	8.023992	19.525335
Ν	2.063139	7.086190	16.491880	Н	2.687846	10.040949	21.882270
С	1.249063	7.211371	17.561077	Н	1.362429	9.902459	20.711822
С	1.635850	7.948923	18.681143	Н	2.081717	8.435333	21.434776
С	2.879757	8.582298	18.730250	Н	4.998130	9.358819	21.340951
С	3.349283	9.402332	19.927924	Н	4.468333	7.741367	20.813707
С	2.304503	9.440206	21.044434	Н	5.446151	8.762002	19.728771
С	4.641110	8.775528	20.478325	Н	3.972511	11.447546	20.310950
С	3.627332	10.840581	19.459896	Н	2.717170	11.308296	19.054023
С	3.699127	8.428669	17.602590	Н	4.406648	10.879527	18.684476
С	3.262099	7.682665	16.520898	Н	4.688002	8.886290	17.549350
С	-0.056909	6.525574	17.455611	Н	-1.529244	4.597655	15.241134
Ν	-0.251593	5.808882	16.328588	Н	-3.343475	4.646053	16.909413
С	-1.414899	5.164781	16.167042	Н	-0.848435	7.189397	19.336808
С	-2.425643	5.199532	17.113048	Н	-5.441770	6.595605	19.451425
С	-2.258063	5.931959	18.297173	Н	-4.457110	7.586359	18.345251
С	-1.039743	6.598985	18.443888	Н	-4.983586	5.954997	17.859135
С	-3.362513	5.976845	19.348568	Н	-3.802109	6.839721	21.278986
С	-4.631718	6.561399	18.706814	Н	-2.084776	6.450505	21.067987
С	-2.976582	6.838342	20.552155	Н	-2.787493	7.884582	20.266693
С	-3.637577	4.543284	19.832433	Н	-4.436194	4.554278	20.590042
Ν	2.428792	4.310957	15.674378	Н	-2.739547	4.099981	20.289429
С	3.652702	4.092567	15.113063	Н	-3.963997	3.886270	19.012744
С	3.971428	5.003538	14.022847	Н	5.440162	2.884221	15.156554
С	5.164792	5.005912	13.282465	Н	4.656673	1.457016	17.024954
С	5.401285	5.906036	12.258229	Н	1.013864	3.759665	17.084747
С	4.399039	6.828856	11.976795	Н	6.336950	5.886560	11.699786
С	3.199342	6.872398	12.675479	Н	-1.543405	2.949371	10.599571
С	2.963800	5.961538	13.711465	Н	1.204100	2.754164	13.902405
С	4.464897	3.056951	15.603079	Н	3.887247	7.555136	15.634970
С	4.024013	2.262273	16.645540	Н	2.464927	7.627072	12.389604
С	2.764394	2.505754	17.199018	F	-1.908001	5.483841	10.753774
С	2.002333	3.540135	16.682695	F	-0.029275	1.440487	12.089013

С	-0.288655	11.042385	13.981928	C	-0.014264	6.516462	17.412011
F	-1.498766	11.537288	14.258796	Ν	-0.231958	5.783353	16.259512
F	0.224266	11.794811	13.003542	С	-1.423523	5.172436	16.093661
F	0.474786	11.211958	15.062633	С	-2.431289	5.209919	17.026793
F	4.606651	7.702370	10.994955	С	-2.241374	5.932260	18.245817
F	6.129087	4.123327	13.551171	С	-1.031781	6.568860	18.405960
С	2.249442	1.658235	18.327350	С	-3.353600	5.965897	19.289662
F	3.080991	1.688688	19.373185	С	-4.614271	6.579116	18.657894
F	2.134983	0.378415	17.959510	С	-2.970250	6.794126	20.516882
F	1.051684	2.064519	18.751206	С	-3.654534	4.527446	19.742677
				Ν	2.436598	4.295922	15.660551
*[Ir(I]	II)]			С	3.686226	4.114042	15.151712
0 imag	ginary frequen	cy		С	4.021900	5.041533	14.077464
Ir	1.355124	5.828133	14.831940	C	5.223484	5.060481	13.360789
С	0.392673	4.727167	13.478058	С	5.467494	5.987789	12.356511
С	-0.472163	5.489381	12.630855	C	4.473820	6.918619	12.061266
С	-1.185549	4.818320	11.631743	C	3.260258	6.942463	12.732679
С	-1.092837	3.443838	11.457135	С	3.014098	5.998574	13.740085
С	-0.254547	2.725177	12.306678	С	4.510760	3.111411	15.678853
С	0.483537	3.337647	13.308623	C	4.050794	2.317567	16.716674
С	-0.518275	6.923698	12.891463	С	2.768255	2.533259	17.223182
С	-1.306739	7.870245	12.224109	C	1.991223	3.537714	16.667497
С	-1.253563	9.201250	12.604711	Н	-1.959453	7.556206	11.414141
С	-0.412567	9.577562	13.652773	Н	-1.869598	9.940631	12.088747
С	0.347563	8.603404	14.281224	Н	1.017545	8.845324	15.106759
Ν	0.299216	7.321715	13.904761	Н	0.957691	8.066909	19.457196
Ν	2.091806	7.039482	16.429376	Н	2.704354	10.102741	21.795284
С	1.238120	7.181047	17.508531	Н	1.389892	9.963348	20.609800
С	1.652809	7.957613	18.627024	Н	2.062596	8.500438	21.379074
С	2.892339	8.553098	18.682236	Н	5.009472	9.354985	21.295126
С	3.370082	9.392783	19.863088	Н	4.434562	7.736622	20.818617
С	2.316852	9.489459	20.967779	Н	5.449098	8.688729	19.707253
С	4.639686	8.753633	20.449641	Н	4.051906	11.432497	20.202839
С	3.692500	10.812130	19.366660	Н	2.797410	11.294611	18.944057
С	3.751427	8.354638	17.556909	Н	4.474330	10.809818	18.592574
С	3.313701	7.608449	16.489567	Н	4.749848	8.790338	17.513116

Н	-1.553162	4.613332	15.164901	C	0.425752	4.791078	13.429988
Н	-3.356571	4.673332	16.815746	С	-0.404332	5.568855	12.568720
Н	-0.831819	7.140318	19.310286	С	-1.110831	4.928222	11.538337
Н	-5.434154	6.598266	19.393156	С	-1.034757	3.563403	11.321237
Н	-4.427261	7.613196	18.328887	С	-0.215830	2.828795	12.174305
Н	-4.960843	6.003102	17.786929	С	0.505502	3.409216	13.207956
Н	-3.800364	6.790258	21.239314	С	-0.435386	6.996283	12.856653
Н	-2.084900	6.384784	21.027312	С	-1.165149	7.977080	12.163935
Н	-2.763612	7.843234	20.254833	С	-1.092711	9.302009	12.553934
Н	-4.465148	4.527827	20.488440	С	-0.286702	9.645479	13.642944
Н	-2.767332	4.065765	20.203423	С	0.412071	8.642375	14.294315
Н	-3.972361	3.889835	18.904261	Ν	0.343757	7.360448	13.915416
Н	5.507771	2.962818	15.273142	Ν	2.079972	7.076019	16.450371
Н	4.691894	1.536241	17.130221	С	1.224881	7.204980	17.529239
Н	0.983888	3.746896	17.028494	С	1.623837	8.005655	18.639004
Н	6.415349	5.981060	11.817393	С	2.842824	8.646591	18.675305
Н	-1.664196	2.947265	10.672209	С	3.298835	9.516688	19.844632
Н	1.123470	2.718273	13.938154	С	2.252778	9.586926	20.958339
Н	3.956492	7.462266	15.619274	С	4.595952	8.933444	20.428897
Н	2.522948	7.696152	12.453792	С	3.564471	10.942217	19.333043
F	-1.987688	5.482025	10.807251	С	3.698536	8.470422	17.545494
F	-0.165383	1.414643	12.140213	С	3.271336	7.692709	16.489835
С	-0.320772	11.016847	14.082787	С	-0.021065	6.518037	17.441321
F	-1.532474	11.525447	14.314457	Ν	-0.244233	5.786407	16.289449
F	0.246055	11.767091	13.134459	C	-1.407207	5.130543	16.153011
F	0.401294	11.156533	15.194157	C	-2.402861	5.126705	17.107088
F	4.706086	7.803269	11.103864	С	-2.211344	5.855300	18.320425
F	6.184547	4.182060	13.622657	С	-1.021524	6.536381	18.456467
С	2.237409	1.684342	18.346809	С	-3.300777	5.847496	19.390707
F	3.056139	1.718304	19.400353	С	-4.597205	6.418210	18.792694
F	2.129943	0.406731	17.973827	C	-2.919815	6.684653	20.612781
F	1.034702	2.091630	18.750721	С	-3.542818	4.399017	19.846566
				Ν	2.382856	4.288616	15.676377
[Ir(II)]			C	3.612186	4.038140	15.141080
0 imag	ginary frequen	cy		C	3.971638	4.934552	14.050851
Ir	1.342083	5.853673	14.871033	С	5.174724	4.899373	13.327904

С	5.451437	5.784872	12.300816	Н	0.933311	3.802051	17.066360
С	4.477146	6.732222	11.998642	Н	6.394161	5.736286	11.756210
С	3.270583	6.812714	12.679327	Н	-1.594713	3.091070	10.514377
С	2.991615	5.917879	13.721758	Н	1.126059	2.762059	13.830964
С	4.391118	2.988146	15.655935	Н	3.907041	7.549890	15.611825
С	3.913776	2.215404	16.698835	Н	2.559572	7.584923	12.379147
С	2.651365	2.496677	17.228867	F	-1.897997	5.630367	10.716920
С	1.921889	3.542502	16.687583	F	-0.128233	1.513010	11.980051
Н	-1.786569	7.686915	11.321182	С	-0.175764	11.074402	14.088222
Н	-1.661170	10.063404	12.015558	F	-1.379586	11.599846	14.340137
Н	1.052120	8.858462	15.149728	F	0.387464	11.837231	13.144010
Н	0.932590	8.104204	19.474177	F	0.558843	11.200271	15.194814
Н	2.624442	10.222381	21.776622	F	4.724583	7.593036	11.011483
Н	1.305856	10.022303	20.603690	F	6.113016	3.991407	13.615394
Н	2.037569	8.593423	21.381025	С	2.099982	1.676979	18.358754
Н	4.950830	9.557344	21.264714	F	2.920413	1.690819	19.415149
Н	4.431996	7.913577	20.810706	F	1.951144	0.395511	18.003805
Н	5.400462	8.889236	19.679709	F	0.909970	2.120510	18.767411
Н	3.906506	11.585629	20.159374				
Н	2.648878	11.386023	18.911615	PPh ₃			
Н	4.339486	10.960058	18.552313	0 imag	inary frequen	cy	
Н	4.682259	8.937760	17.491247	Р	-2.618839	2.041031	0.152469
Н	-1.529889	4.574302	15.219740	С	-1.666780	2.694355	1.587862
Н	-3.315603	4.562337	16.913631	С	-2.154771	2.388485	2.867942
Н	-0.823368	7.109317	19.360652	С	-0.517531	3.487967	1.475855
Н	-5.401037	6.405836	19.545996	С	-1.497695	2.846366	4.008522
Н	-4.454153	7.459568	18.464222	Н	-3.062016	1.785319	2.972116
Н	-4.942075	5.834204	17.926386	С	0.132812	3.956976	2.618265
Н	-3.732906	6.650273	21.353866	Н	-0.125850	3.742725	0.487944
Н	-2.009130	6.305157	21.101284	С	-0.352397	3.634981	3.885673
Н	-2.754529	7.740853	20.349824	Н	-1.887958	2.595300	4.998084
Н	-4.334537	4.368145	20.612094	Н	1.027410	4.576609	2.515547
Н	-2.629137	3.966029	20.283102	Н	0.158737	4.002903	4.778827
Н	-3.858166	3.753955	19.012901	С	-1.897827	2.979763	-1.259110
Н	5.370246	2.788930	15.229132	С	-2.463342	4.232033	-1.545959
Н	4.520243	1.399758	17.098379	С	-0.851932	2.511251	-2.065213

С	-1.981003	5.006638	-2.599360	С	-0.923080	2.447820	-2.439274
Н	-3.293245	4.603980	-0.937136	С	-1.870957	5.084433	-2.544373
С	-0.377818	3.281774	-3.128051	Н	-2.696525	4.733494	-0.586866
Н	-0.402714	1.535943	-1.862068	С	-0.684998	3.231432	-3.562941
С	-0.937524	4.531062	-3.395414	Н	-0.542779	1.425343	-2.396059
Н	-2.429233	5.981707	-2.806466	С	-1.155597	4.544999	-3.616398
Н	0.437491	2.902711	-3.749644	Н	-2.243607	6.109578	-2.592294
Н	-0.564428	5.132905	-4.227843	Н	-0.121823	2.814894	-4.400563
С	-1.889513	0.364776	-0.075057	Н	-0.965583	5.153889	-4.503190
С	-2.573770	-0.516997	-0.926339	С	-1.635723	0.287698	-0.078509
С	-0.724977	-0.081400	0.563499	С	-2.286259	-0.426321	-1.103922
С	-2.093705	-1.805920	-1.151007	С	-0.763805	-0.374549	0.804971
Н	-3.495163	-0.189863	-1.418047	С	-2.041136	-1.785619	-1.253892
С	-0.251767	-1.376754	0.348310	Н	-2.983375	0.078241	-1.777222
Н	-0.181744	0.588069	1.235037	С	-0.532710	-1.736115	0.643373
С	-0.931436	-2.239897	-0.510989	Н	-0.256286	0.174855	1.600241
Н	-2.635676	-2.478569	-1.820627	С	-1.167576	-2.440123	-0.381861
Н	0.657148	-1.711736	0.854731	Н	-2.541155	-2.340257	-2.050410
Н	-0.558800	-3.253538	-0.678390	Н	0.153648	-2.249811	1.319606
				Н	-0.982170	-3.509970	-0.501311

•+PPh3

0 imaginary frequency

[NHPI---P(OEt)3]

Р	-1.981498	2.024508	0.097034	0 imagi	nary frequenc	ey	
С	-1.398054	2.739229	1.618687	С	1.877004	-6.045288	-1.685900
С	-1.843269	2.184783	2.834955	С	2.594605	-6.562719	-0.603731
С	-0.544182	3.857395	1.618792	С	3.662781	-7.425169	-0.789619
С	-1.411871	2.733070	4.036357	С	4.000906	-7.757890	-2.107533
Н	-2.526102	1.331749	2.840156	С	3.283113	-7.240873	-3.189697
С	-0.125208	4.396435	2.830069	С	2.201863	-6.372558	-2.992394
Н	-0.195223	4.289959	0.679121	С	0.794924	-5.168342	-1.159889
С	-0.555838	3.837255	4.034937	С	1.997107	-6.037457	0.654763
Η	-1.752119	2.302208	4.980127	Н	4.218383	-7.827816	0.059816
Η	0.548118	5.256050	2.832806	Н	4.839033	-8.433069	-2.294184
Н	-0.223465	4.267385	4.982440	Н	3.571060	-7.519755	-4.205811
С	-1.634308	2.993273	-1.354844	Н	1.636239	-5.967091	-3.833844
С	-2.121342	4.313747	-1.415778	Ν	0.930390	-5.243174	0.228531

0	0.218632	-4.473163	1.069938	С	4.549358	-6.402020	-2.471118
Н	-0.589309	-5.001562	1.300958	С	3.910245	-5.209388	-2.119559
0	-0.043063	-4.530767	-1.746592	С	1.814414	-4.227207	-0.969725
0	2.309944	-6.232182	1.802728	С	0.853444	-6.351308	-0.444784
Р	-2.218075	-6.515360	1.670463	Н	2.317361	-8.706572	-1.251190
0	-1.921002	-7.591036	2.860017	Н	4.511295	-8.558032	-2.452629
0	-2.559961	-7.548627	0.452248	Н	5.506736	-6.364526	-2.995122
0	-3.748867	-6.089085	2.052105	Н	4.346640	-4.237396	-2.356751
С	-0.571235	-7.867148	3.246453	Ν	0.700001	-4.924730	-0.359801
Н	0.061083	-6.978666	3.071222	0	-0.272499	-4.356017	0.171851
Н	-0.596422	-8.045404	4.331809	Н	-1.784673	-5.707470	1.084919
С	-0.015509	-9.065344	2.513034	0	1.898787	-3.036045	-1.014119
Н	0.028891	-8.880326	1.428938	0	0.047080	-7.124474	-0.000171
Н	1.003607	-9.283996	2.865749	Р	-2.693291	-6.684323	1.530301
Н	-0.640854	-9.954196	2.684906	0	-2.195501	-7.375687	2.839773
С	-2.858453	-7.009787	-0.837522	0	-2.913559	-7.778076	0.434430
Н	-3.941639	-6.810382	-0.893466	0	-4.097443	-6.065919	1.844661
Н	-2.338847	-6.043622	-0.975727	С	-0.856676	-7.885969	3.104780
С	-2.432643	-7.994014	-1.897391	Н	-0.124572	-7.217146	2.629471
Н	-2.934542	-8.962503	-1.753404	Н	-0.751910	-7.798495	4.193183
Н	-2.697257	-7.613071	-2.894877	С	-0.714789	-9.307496	2.633123
Н	-1.344908	-8.157503	-1.865725	Н	-0.790853	-9.375700	1.539008
С	-3.968681	-5.070044	3.026965	Н	0.274786	-9.683836	2.931822
Н	-3.869897	-5.510529	4.033658	Н	-1.479956	-9.951649	3.089383
Н	-3.195244	-4.285531	2.933831	С	-3.153176	-7.486569	-0.971007
С	-5.344705	-4.487184	2.826866	Н	-4.215228	-7.221522	-1.072382
Н	-6.114905	-5.267296	2.920302	Н	-2.541640	-6.617792	-1.259629
Н	-5.542008	-3.714665	3.584651	С	-2.793198	-8.706202	-1.770521
Н	-5.433475	-4.028418	1.830898	Н	-3.389962	-9.573312	-1.453431
				Н	-3.000052	-8.514265	-2.833273
[PINO	$\text{HP}(\text{OEt})_3]^+$			Н	-1.725960	-8.944619	-1.659784
0 imag	ginary frequen	cy		С	-4.343348	-5.040677	2.847263
С	2.696174	-5.305463	-1.454767	Н	-4.058274	-5.453599	3.825738
С	2.130110	-6.553107	-1.146681	Н	-3.700600	-4.174769	2.625601
С	2.761936	-7.739675	-1.493865	С	-5.800404	-4.678870	2.792661
С	3.984929	-7.646005	-2.163539	Н	-6.430605	-5.553753	3.006827

Н	-6.008182	-3.908310	3.548953	Н	1.804345	0.505297	0.002394
Н	-6.070128	-4.277502	1.805461	Ν	-0.732861	-2.840005	0.007844
				0	-0.709422	-4.111461	0.011895
NHPI				Н	0.247087	-4.381302	0.014582
0 imag	ginary frequen	су		0	1.547278	-2.594720	0.007617
С	-0.018227	-0.662633	0.003474	0	-3.048410	-2.520817	0.003666
С	-1.418156	-0.662608	0.001993				
С	-2.138453	0.518410	-0.001164	NHPI((triplet)		
С	-1.412501	1.718475	-0.002869	С	0.004255	-0.712299	0.003813
С	-0.016404	1.717619	-0.001423	С	-1.449462	-0.704337	0.002225
С	0.706816	0.516380	0.001799	С	-2.147094	0.519890	-0.001126
С	0.436443	-2.076374	0.007002	С	-1.427106	1.693941	-0.002891
С	-1.903808	-2.076161	0.004454	С	0.007935	1.686208	-0.001398
Н	-3.230374	0.513849	-0.002272	С	0.718004	0.510110	0.001897
Н	-1.948005	2.670474	-0.005358	С	0.469117	-2.046790	0.007155
Н	0.520807	2.668579	-0.002803	С	-1.989248	-2.031705	0.004420
Н	1.798617	0.510204	0.002966	Н	-3.239209	0.524933	-0.002267
Ν	-0.731702	-2.821349	0.007424	Н	-1.950691	2.652332	-0.005480
0	-0.716162	-4.171881	0.010199	Н	0.540257	2.639973	-0.002930
Н	0.236382	-4.384044	0.011645	Н	1.809779	0.507733	0.003018
0	1.535455	-2.582640	0.009190	Ν	-0.762496	-2.814593	0.007374
0	-3.025059	-2.516411	0.004181	0	-0.661519	-4.089730	0.009835
				Н	0.337997	-4.214630	0.011066
•+NHP	ľ			0	1.511430	-2.704119	0.009572
0 imag	ginary frequen	cy		0	-3.096281	-2.537030	0.004154
С	-0.010424	-0.674080	0.002607				
С	-1.427681	-0.674369	0.001267	P(OEt)3		
С	-2.145098	0.513067	-0.001440	0 imag	inary frequen	cy	
С	-1.416054	1.704092	-0.002624	Р	-2.815952	2.002048	0.274987
С	-0.011346	1.703460	-0.001293	0	-2.097392	0.539914	-0.048683
С	0.713489	0.511226	0.001252	0	-1.893153	2.605387	1.477711
С	0.489734	-2.043527	0.005920	0	-2.120428	2.826787	-0.973637
С	-1.963170	-2.042080	0.003759	С	-2.623777	-0.634637	0.556809
Н	-3.236118	0.511328	-0.002365	Н	-2.054188	-0.850160	1.477497
Н	-1.947544	2.657747	-0.004492	Н	-3.674794	-0.467907	0.859468
Н	0.521864	2.656035	-0.002152	С	-2.528915	-1.790023	-0.409770

Н	-1.484843	-1.957617	-0.714597	Н	0.757061	3.767774	3.109043
Н	-2.902639	-2.712545	0.059342	Н	0.171147	2.110721	3.407950
Н	-3.125499	-1.593197	-1.313309	C	-2.630444	2.800312	-2.409630
С	-0.466400	2.670440	1.414042	Н	-2.892743	1.785252	-2.739842
Н	-0.080534	1.771178	0.906727	Н	-3.550545	3.382544	-2.259397
Н	-0.177915	3.544262	0.807608	С	-1.680929	3.477362	-3.355842
С	0.080103	2.777933	2.815593	Н	-0.762312	2.887776	-3.484052
Н	-0.192350	1.894141	3.411885	Н	-2.169833	3.575287	-4.336037
Н	1.177604	2.852848	2.789366	Н	-1.416794	4.482780	-2.998862
Н	-0.313835	3.671662	3.322605				
С	-2.624276	2.629434	-2.288071	POE	t ₃ (triplet)		
Н	-2.266986	1.659152	-2.675073	Р	-1.483822	1.594686	0.016280
Н	-3.729828	2.584392	-2.268103	0	-2.043206	0.158807	-0.775143
С	-2.158404	3.761312	-3.170029	0	-0.878224	2.842742	1.044390
Н	-1.059205	3.806049	-3.196648	0	-1.592312	2.570634	-1.287407
Н	-2.522944	3.617956	-4.198039	С	-2.401598	-0.966196	0.005097
Н	-2.535146	4.726092	-2.798767	Н	-1.528277	-1.333413	0.575420
				Н	-3.179090	-0.691631	0.741962
⁺ P(OE	t) ₃			С	-2.909568	-2.046515	-0.920679
0 imag	ginary frequen	cy		Н	-2.134240	-2.334127	-1.646577
Р	-2.461538	1.864356	0.126055	Н	-3.191554	-2.939913	-0.343488
0	-2.566255	0.356099	-0.312390	Н	-3.793751	-1.700937	-1.477193
0	-1.357424	1.966619	1.243716	С	-0.292604	2.481060	2.281862
0	-1.960934	2.692260	-1.115975	Н	-1.040557	1.998537	2.938210
С	-2.902151	-0.773370	0.551062	Н	0.521712	1.749475	2.124658
Н	-2.214779	-0.754234	1.408541	С	0.242773	3.733526	2.935410
Н	-3.931432	-0.627907	0.908176	Н	-0.566032	4.458946	3.109776
С	-2.760285	-2.025653	-0.265169	Н	0.703714	3.489762	3.904384
Н	-1.729579	-2.147909	-0.626528	Н	1.003762	4.210291	2.299522
Н	-3.010501	-2.889500	0.367688	С	-2.761893	2.597243	-2.103374
Н	-3.444863	-2.016532	-1.124994	Н	-2.886190	1.623029	-2.602320
С	-0.868849	3.196737	1.862134	Н	-3.652074	2.760588	-1.469386
Н	-0.679009	3.926424	1.062285	С	-2.609266	3.707497	-3.112041
Н	-1.665588	3.575300	2.517587	Н	-1.723575	3.541117	-3.743500
С	0.378107	2.855202	2.626312	Н	-3.494561	3.747676	-3.764005
Н	1.158775	2.467201	1.957082	Н	-2.501262	4.682017	-2.612944

				С	-0.019235	1.721774	0.000000
⁺ HP (Ol	Et) ₃			С	0.703818	0.525656	0.000000
0 imagi	nary frequen	cy		С	0.475913	-2.050910	-0.000000
Р	-2.676887	1.950730	0.282885	С	-1.914498	-2.050910	-0.000000
0	-2.413575	0.495295	-0.233892	Н	-3.234029	0.519222	-0.000000
0	-1.795211	2.389452	1.491606	Н	-1.953957	2.674141	0.000000
0	-2.357993	2.900646	-0.913483	Н	0.515373	2.674141	0.000000
С	-2.742912	-0.739312	0.467781	Н	1.795444	0.519222	-0.000000
Н	-2.070517	-0.819836	1.333763	Ν	-0.719292	-2.859999	0.000000
Н	-3.780798	-0.668537	0.827276	0	-0.719292	-4.105397	0.000000
С	-2.563028	-1.879508	-0.492962	0	1.583358	-2.505760	-0.000000
Н	-1.525751	-1.930198	-0.853213	0	-3.021942	-2.505760	-0.000000
Н	-2.796652	-2.821966	0.023008				
Н	-3.237530	-1.779184	-1.355084	O=P (C)Et) ₃		
С	-0.345350	2.562069	1.453853	0 imag	inary frequen	ey	
Н	0.102217	1.602381	1.157804	0	-0.025344	-4.512670	0.148633
Н	-0.121268	3.314431	0.684642	Р	-0.013131	-5.977641	-0.060165
С	0.102964	2.995958	2.819349	0	-0.536698	-6.534159	-1.464338
Н	-0.141770	2.236839	3.575642	0	-0.917985	-6.819259	0.968090
Н	1.193574	3.135563	2.808776	0	1.458594	-6.586568	0.006698
Н	-0.365494	3.948889	3.103405	С	-1.867934	-6.243411	-1.914254
С	-2.737976	2.695807	-2.306322	Н	-2.579065	-6.827450	-1.307696
Н	-2.407347	1.689846	-2.600202	Н	-2.076587	-5.173860	-1.748205
Н	-3.835031	2.744571	-2.366160	С	-1.972075	-6.597734	-3.374112
С	-2.083430	3.770841	-3.125159	Н	-1.756223	-7.664389	-3.534625
Н	-0.988433	3.715631	-3.045554	Н	-2.990819	-6.393852	-3.734845
Н	-2.361602	3.634340	-4.180184	Н	-1.266396	-6.003642	-3.973071
Н	-2.416056	4.768678	-2.805951	С	-1.054835	-6.412318	2.337358
Н	-3.985520	2.074246	0.761987	Н	-0.187716	-6.790720	2.903329
				Н	-1.037755	-5.312203	2.384972
PINO				С	-2.344139	-6.967804	2.883466
0 imagi	nary frequen	cy		Н	-2.357157	-8.066060	2.821336
С	-0.018028	-0.660077	-0.000000	Н	-2.455466	-6.681415	3.939642
С	-1.420557	-0.660077	-0.000000	Н	-3.207081	-6.575709	2.325128

S20

С

Η

1.721171

1.019556

-7.987118

-8.563419

-0.162300

0.462375

-0.000000

0.000000

С

С

-2.142403

-1.419350

0.525656

1.721774

Η	1.535955	-8.253912	-1.214822
С	3.149604	-8.258290	0.230155
Η	3.323673	-7.998306	1.284670
Η	3.375993	-9.326003	0.094534
Η	3.844566	-7.676098	-0.392763

TS1

1 imaginary frequency, 110.9i

С	-0.228871	-0.964902	0.798885
С	-1.335282	-0.876184	-0.054150
С	-1.869963	0.349554	-0.419354
С	-1.260978	1.499158	0.097445
С	-0.155695	1.410555	0.949680
С	0.378966	0.169323	1.314450
С	0.105550	-2.395151	0.999259
С	-1.756471	-2.245480	-0.435601
Н	-2.732729	0.412515	-1.085498
Н	-1.654495	2.482691	-0.168645
Н	0.297139	2.326246	1.336250
Н	1.241973	0.094200	1.979005
Ν	-0.873065	-3.104444	0.261484
0	-0.899018	-4.380462	0.170729
0	0.995834	-2.912864	1.621869
0	-2.634382	-2.618399	-1.169722
Р	0.377468	-5.435654	-1.535274
0	-0.816992	-6.069101	-2.445575
0	0.602757	-6.662185	-0.489546
0	1.629911	-5.754347	-2.553729
С	-2.189567	-6.060978	-2.045659
Н	-2.297392	-6.648801	-1.118316
Н	-2.504630	-5.029386	-1.823481
С	-3.009704	-6.660020	-3.160157
Н	-2.694539	-7.692874	-3.371325
Н	-4.072998	-6.673848	-2.877868
Н	-2.905695	-6.070081	-4.083280
С	1.396393	-6.468866	0.684414

Η	2.444043	-6.714739	0.441177
Η	1.355209	-5.410620	0.992644
С	0.874448	-7.362589	1.781085
Η	0.888606	-8.417833	1.469205
Η	1.498971	-7.260919	2.681184
Η	-0.158815	-7.089913	2.042994
С	1.882179	-4.878114	-3.649632
Η	1.175477	-5.109571	-4.464989
Η	1.700765	-3.830907	-3.345850
С	3.307867	-5.060105	-4.106404
Η	3.489191	-6.101760	-4.410855
Η	3.515864	-4.407913	-4.967535
Η	4.011887	-4.806647	-3.299847

Ι

0 imaginary frequency

С	0.269428	-1.299167	0.386714
С	-0.638203	-1.201749	-0.723238
С	-0.904393	0.050374	-1.307968
С	-0.288160	1.175141	-0.788379
С	0.605319	1.079232	0.313371
С	0.886417	-0.144790	0.897169
С	0.393433	-2.678843	0.795105
С	-1.120280	-2.512493	-1.061709
Н	-1.589810	0.126459	-2.156255
Н	-0.488374	2.154994	-1.229454
Н	1.076012	1.986344	0.700745
Η	1.576103	-0.219207	1.742283
Ν	-0.456262	-3.328476	-0.123943
0	-0.750023	-4.654448	0.001328
0	1.036360	-3.262350	1.670851
0	-1.859921	-2.973933	-1.944892
Р	-0.088740	-5.702863	-1.030791
0	-1.152321	-6.252120	-2.013487
0	0.424810	-6.877341	-0.155305
0	1.092021	-5.063267	-1.804857

С	-2.610859	-6.177338	-1.868020	Ν	0.070652	-3.254222	-0.690109
Н	-2.883725	-6.742066	-0.965784	Ο	-0.533773	-4.642889	-0.316157
Н	-2.855572	-5.114077	-1.740536	Ο	0.954283	-3.155710	1.470562
С	-3.219628	-6.766051	-3.106829	Ο	-1.317773	-2.856904	-2.529844
Н	-2.928428	-7.818223	-3.235403	Р	0.043368	-5.896766	-1.073267
Н	-4.314779	-6.718979	-3.017491	Ο	-1.044357	-6.558898	-1.977072
Н	-2.922164	-6.199189	-4.000550	О	0.479377	-6.959464	-0.011523
С	1.354265	-6.708035	0.967957	Ο	1.281210	-5.589875	-1.965930
Н	2.355015	-6.916137	0.565356	С	-2.473152	-6.578249	-1.690504
Н	1.307888	-5.660656	1.306765	Н	-2.753993	-7.639925	-1.688860
С	0.962489	-7.672529	2.050026	Н	-2.641725	-6.171117	-0.683069
Н	0.982041	-8.709317	1.684778	С	-3.201796	-5.786162	-2.740530
Н	1.678663	-7.585694	2.880214	Н	-3.034854	-6.214113	-3.739890
Н	-0.042126	-7.446755	2.435151	Н	-4.281278	-5.814552	-2.530091
С	1.016577	-4.282627	-3.046015	Н	-2.860837	-4.740136	-2.734762
Н	1.249939	-4.989238	-3.853491	С	1.345373	-6.654869	1.121503
Н	-0.013829	-3.917622	-3.163492	Н	2.376815	-6.837440	0.786957
С	2.010640	-3.160740	-2.961088	Н	1.233178	-5.589022	1.373529
Н	3.029201	-3.543590	-2.804763	С	0.957966	-7.548982	2.265666
Н	1.993644	-2.602992	-3.908943	Н	1.047581	-8.609258	1.988387
Н	1.757858	-2.465154	-2.147672	Н	1.628815	-7.357064	3.115813
				Н	-0.074434	-7.351377	2.588211
TS2				С	1.247419	-4.869378	-3.237701
1 imag	ginary frequen	cy, 2044.4i		Н	1.155417	-5.636868	-4.019209
С	0.077709	-1.198048	0.309111	Н	0.357661	-4.220948	-3.255131
С	-0.693777	-1.142624	-0.885580	С	2.520464	-4.082086	-3.365097
С	-1.148845	0.107176	-1.352891	Н	3.401557	-4.738027	-3.312259
С	-0.883362	1.232174	-0.584311	Н	2.530019	-3.570084	-4.338560
С	-0.159560	1.159937	0.627443	Н	2.591261	-3.323431	-2.572651
С	0.328102	-0.067124	1.079223				
С	0.455656	-2.593678	0.520516	II			
С	-0.780614	-2.452236	-1.482849	0 imag	ginary frequen	cy	
Н	-1.712847	0.181453	-2.285342	С	-0.019176	-0.639295	0.016605

С	-0.019176	-0.639295	0.016605
С	-1.419409	-0.639295	0.016607
С	-2.147650	0.544793	0.018227
С	-1.422302	1.736437	0.010532

-0.922043

1.199959

2.002605

Η

Η

Η

-1.249131

0.028971

0.908154

2.205961

2.070454

-0.141887

С	-0.016283	1.736437	0.010532	С	-2.671527	1.447648	0.991688
С	0.709065	0.544792	0.018227	С	-3.930103	0.634231	0.679379
С	0.427007	-2.056167	0.021257	С	-3.624263	-0.858393	0.624847
С	-1.865593	-2.056167	0.021265	Н	-0.702361	1.767291	-0.044001
Н	-3.239303	0.539717	0.020610	Н	-0.812253	-0.835162	0.793054
Н	-1.952809	2.691214	0.002351	Н	-2.915405	-0.877119	-1.415349
Н	0.514224	2.691214	0.002351	Н	-2.328226	-2.244468	-0.444479
Н	1.800718	0.539716	0.020607	Н	-2.405684	1.281904	2.059547
Ν	-0.719292	-2.858576	0.246967	Н	-2.869181	2.528104	0.904363
0	1.538560	-2.504884	-0.115065	Н	-4.708083	0.842820	1.430789
0	-2.977143	-2.504885	-0.115072	Н	-4.336666	0.954823	-0.295688
				Н	-3.283501	-1.201756	1.618871
Cyclo	hexene			Н	-4.537908	-1.429749	0.396053
0 imag	ginary frequen	cy		С	0.919132	-0.611982	-3.126124
С	-3.151736	-0.744594	-0.009488	С	1.691650	-1.283987	-2.180766
С	-1.683991	-0.529575	-0.241912	С	2.929777	-1.818832	-2.501434
С	-0.987651	0.466648	0.320921	С	3.376867	-1.657290	-3.818251
С	-1.604343	1.500986	1.217767	С	2.601409	-0.982928	-4.767408
С	-3.129162	1.492109	1.143109	С	1.352305	-0.446565	-4.432455
С	-3.671820	0.067212	1.174192	С	-0.340002	-0.167418	-2.463675
Н	0.088094	0.545921	0.125566	С	0.943636	-1.283480	-0.893902
Н	-1.170032	-1.234787	-0.905377	Н	3.530245	-2.344237	-1.755871
Н	-3.708497	-0.480323	-0.929151	Н	4.347321	-2.064089	-4.111635
Н	-3.348832	-1.819630	0.143886	Н	2.978966	-0.874180	-5.786717
Н	-1.270815	1.325643	2.258736	Н	0.742204	0.081119	-5.168593
Н	-1.211304	2.498779	0.956959	Ν	-0.248948	-0.600824	-1.140434
Н	-3.554803	2.090093	1.964564	0	-1.266814	0.439846	-2.945026
Н	-3.449345	1.977957	0.204016	0	1.266012	-1.761672	0.167796
Н	-3.353814	-0.417796	2.114464				
Н	-4.773411	0.068925	1.181123	TS3			
				1 imag	inary frequen	cy, -1681.5i	
III				С	0.943577	0.456184	0.436072
0 imag	ginary frequen	cy		С	0.444911	0.589640	-1.004799

С	-2.553504	-1.166701	-0.415693
С	-1.262743	-0.389803	-0.118611
С	-1.519147	1.061147	0.132367

С

С

С

0.088728

1.155309

1.663484

2.013903

3.021869

2.878148

-1.366663

-1.035551

0.397118

С	2.077730	1.442139	0.701262	Н	-4.081177	8.604293
Н	-0.368282	2.117950	-2.362642	Н	-4.280280	6.111350
Н	1.284627	0.320189	-1.676665	Ν	-2.123568	4.099453
Н	0.106974	0.645509	1.125829	0	-1.897291	2.904687
Н	1.277967	-0.579304	0.605442	Н	-0.992820	2.414103
Н	1.994807	2.866558	-1.744469	0	-3.452242	3.443084
Н	0.794823	4.044256	-1.231356	0	-0.939689	5.349271
Н	2.507878	3.565184	0.563273			
Н	0.862430	3.191274	1.087923	3 a		
Н	2.950366	1.172628	0.079334	0 imag	inary frequen	cy
Н	2.404884	1.353192	1.749113	С	-2.282282	-1.337174
С	-1.698763	-2.029660	-2.512851	С	-1.193555	-0.300770
С	-2.490327	-1.667362	-1.424984	С	-1.765141	1.116468
С	-3.714215	-2.272227	-1.184490	С	-2.529884	1.454289
С	-4.126650	-3.264531	-2.081638	С	-3.618274	0.425839
С	-3.331748	-3.628037	-3.174079	С	-3.043280	-0.986151
С	-2.096769	-3.011726	-3.407047	Н	-0.945806	1.834669
С	-0.465609	-1.200273	-2.476756	Н	-0.459640	-0.336980
С	-1.781402	-0.597089	-0.668597	Н	-2.977969	-1.366512
Н	-4.329740	-1.984285	-0.329716	Н	-1.824773	-2.336311
Н	-5.085353	-3.765113	-1.927892	Н	-1.823709	1.487238
Н	-3.682740	-4.406322	-3.855501	Н	-2.963228	2.463971
Н	-1.471219	-3.291257	-4.257298	Н	-4.131148	0.670115
Ν	-0.586863	-0.370269	-1.356839	Н	-4.385636	0.472624
0	0.475975	-1.207453	-3.233113	Н	-2.359979	-1.063959
0	-2.138312	-0.030921	0.336019	Н	-3.844123	-1.723324
С	-3.015124	5.792185	-1.812593	С	0.261160	-1.091776
С	-2.249379	6.371066	-0.795449	С	1.380715	-1.208052
С	-2.126984	7.746364	-0.675702	С	2.624939	-1.543830
С	-2.801508	8.538122	-1.613099	С	2.713696	-1.762973
С	-3.566830	7.959465	-2.630094	С	1.589422	-1.646420
С	-3.684229	6.568922	-2.745140	С	0.337698	-1.306544
С	-2.949245	4.313973	-1.674806	С	-0.902722	-0.722471
С	-1.658518	5.287738	0.033359	С	0.955457	-0.915844
Н	-1.527260	8.192317	0.120348	Н	3.498710	-1.633176
Н	-2.729386	9.626198	-1.550091	Н	3.676186	-2.029557

-3.346154

-3.537362 -0.556877

-0.053804

-0.623983

-2.336177 0.997300

-0.222167

-0.506303 -0.575829

0.700858 0.993244

1.053021

-0.740645 0.316052

-1.076845 -0.140482

1.550299

0.619244

1.937563

0.199432 1.918122

1.223690

-3.846479

-3.025585

-3.536586

-4.916497

-5.740872 -5.213756

-2.991621

-1.629528 -2.887707

-5.359108

Н	1.692220	-1.824021	-6.813840	0	-2.047141	-0.530867	-3.332227
Н	-0.543771	-1.213858	-5.851714	0	1.623844	-0.910762	-0.623104
Ν	-0.412272	-0.636312	-1.689321	Н	-2.439054	1.186428	-1.445448

6. References

(1) S. Coseri, G. Biliuta and B. C. Simionescu, Selective oxidation of cellulose, mediated by N-hydroxyphthalimide, under a metal-free environment, *Polym. Chem.*, 2018, **9**, 961–967.

(2) S.-L. Liu, Q.-Y. Deng, W.-W. Fang, J.-F. Gong, M.-P. Song, M.-Z. Xu and T. Tu, Efficient and scalable Pd-catalyzed double aminocarbonylations under atmospheric pressure at low catalyst loadings, *Org. Chem. Front.*, 2014, **1**, 1261–1265.

(3) S. W. Lardy and V. A. Schmidt, Intermolecular Radical Mediated Anti-Markovnikov Alkene Hydroamination Using *N*-Hydroxyphthalimide, *J. Am. Chem. Soc.* 2018, **140**, 12318–12322.

(4) S. N. Rao, D. C. Mohan and S, Adimurthy, L-Proline: An Efficient Catalyst for Transamidation of Carboxamides with Amines, *Org. Lett.* 2013, **15**, 1496–1499.

(5) B. Martin, H. Sekljic and C. Chassaing, Microwave-Assisted Solid-Phase Synthesis of Phthalimides, *Org. Lett.* 2003, **5**, 1851–1853.

(6)D. Padula, G. Mazzeo, E. Santoro, P. Scafato, S. Belviso and S. Superchi, Amplification of the chiroptical response of UVtransparent amines and alcohols by *N*-phthalimide derivatization enabling absolute configuration determination through ECD computational analysis, *Org. Biomol. Chem.*, 2020, **18**, 2094–2102.

(7) Gaussian 16 Rev. A.03, M. J. Frisch, G. W, Trucks, H. B, Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J. LSonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N, Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M, Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O.Farkas, J. B. Foresman, D. J. Fox, Gaussian Inc. Wallingford CT, 2016.

(8)M. Ernzerhof, G. E. Scuseria, Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional, *J. Chem. Phys.*, 1999, **110**, 5029–5036.

(9)F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy,*Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305.

(10)F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn,*Phys. Chem. Chem. Phys.*, 2006, **8**, 1057–1065.

(11)Y. Zhao, D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215–241.

(12)A. V. Marenich, C. J. Cramer, D. G. Truhlar, Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions, *J. Phys. Chem. B*, 2009, **113**, 6378–6396.

(13) CYLview, 1.0b, C. Y. Legault, Universit éde Sherbrooke, 2009.

(14)S. Ladouceur, D. Fortin, E. Zysman-Colman, Enhanced Luminescent Iridium(III) Complexes Bearing Aryltriazole Cyclometallated Ligands,*Inorg. Chem.*, 2011, **50**, 11514–11526.

(15) W.-G. Xu, H.-M. Jiang, J. Leng, H.-W, Ong and J. Wu, Visible - Light - Induced Selective Defluoroborylation of Polyfluoroarenes, gem–Difluoroalkenes, and Trifluoromethylalkenes, *Angew. Chem. Int. Ed.*, 2020, **59**, 4009–4016.

(16) G. Pandey, D. Pooranchand, U. T. Bhalerao, Photoinduced single electron transfer activation of organophosphines: Nucleophilic trapping of phosphine radical cation, *Tetrahedron*, 1991, **47**, 1745–1752.

7. Copies of NMR Spectra

Product 3a:¹H NMR.

Product 3b:¹H NMR.

Product 3c:¹H NMR.

0.0 2.0 0, (9, 5 9. 0 8, 5 8.0 5.5 5.0 4.5 3.0 2.5 0, 5 7.5 7.0 6.5 6, 0 4.0 3.5 1.5 1.0

Product3g:¹H NMR.

9, 5 9.0 8.5

7.5

7.0

6.5

6.0

5, 0

4.5

5.5

3, 5

4.0

3.0

2.5

2.0

0, 5

Product 3j:¹H NMR.

Product 31:¹H NMR.

Product 30:¹H NMR.

Product 3q:¹H NMR.

Product 3r:¹H NMR.

