Visible-Light Induced Divergent Dearomatization of Indole Derivatives: Controlled Access to Cyclobutane-Fused Polycycles and 2-Substituted Indolines

Weihui Zhuang,^a Yuan-Zheng Cheng,^b Xu-Lun Huang,^b Qiufeng Huang,^{*a} and Xiao Zhang^{*a}

 ^a Fujian Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
 ^b State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China

Email: <u>qiufenghuang@fjnu.edu.cn;zhangxiao@fjnu.edu.cn</u>

Table of Contents

1. General Information	S2
2. General Procedure for the Synthesis of Substrates	S3
3. Detailed Screening of Reaction Conditions	S10
4. Single Crystal X-ray Structure Determination	S12
5. General Procedure for Visible-Light Induced Divergent Dearomatizati	on of
Indole Derivatives	S36
5.1 General Procedure for Visible-Light Induced Dimerization of Indol	e
Derivatives	S36
5.2 General Procedure for Visible-Light Induced Reduction of Indole	
Derivatives	S44
6. Transformation of 3a	S52
7. Mechanistic Studies	S53
7.1 Control Experiment with Triplet Quencher	S53
7.2 Stern-Volmer Luminescence Quenching Studies	S53
8. Copies of NMR Spectra	S56

1. General Information

Unless stated otherwise, all reactions were carried out in flame-dried glassware under a dry argon atmosphere. All solvents were purified and dried according to standard methods prior to use.

¹H and ¹³C NMR spectra were recorded on an Agilent instrument (400 MHz and 100 MHz, respectively) or an Agilent instrument (600 MHz and 150 MHz, respectively) and internally referenced to tetramethylsilane signal or residual protio solvent signals. ¹⁹F NMR spectra were recorded on an Agilent instrument (376 MHz) and referenced relative to CFCl₃. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet or unresolved, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). The high resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS instrument or a High-Resolution LC-MS spectrometer Thermo Fisher Exactive. Melting points (M.p.) were determined in open capillaries without further correction.

2. General Procedure for the Synthesis of Substrates

Substrates **1a**, **1b**, **1i**, **1o**, **1q** were synthesized according to the literature procedures.^[1] Solvents are commercially available from Alfa Aesar, and used without further purification.

To a solution of *N*-unsubstituted indole derivatives (10 mmol) in DCE (40 mL) was added DMAP (1 mmol, 0.1 eq) at room temperature under argon. After stirring for 25 minutes, acetic anhydride (Ac₂O, 15 mmol, 1.5 eq) and triethylamine (Et₃N, 25 mmol, 2.5 eq) were added slowly, and then the reaction mixture was stirred at room temperature overnight. The mixture was quenched with H₂O, extracted with DCM, and dried over Na₂SO₄. After removal of Na₂SO₄ by filtration, the organic phase was concentrated *in vacuo* to give dark residue, which was purified by silica gel column chromatography (PE/EtOAc = 4/1) to afford the desired indole substrates **1a-1t**.

methyl 1-acetyl-1H-indole-2-carboxylate (1a), white solid, m.p. = 48-49 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.46 – 7.39 (m, 1H), 7.30 – 7.23 (m, 2H), 3.92 (s, 3H), 2.60 (s, 3H). ¹³C NMR and HRMS data for the desired product were in agreement with the previously reported literature data^[1].

ethyl 1-acetyl-1H-indole-2-carboxylate (**1b**), colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.43 (m, 1H), 7.32 – 7.24

(m, 2H), 4.40 (q, J = 7.2 Hz, 2H), 2.61 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 161.6, 138.3, 129.7, 127.8, 127.1, 123.7, 122.3, 118.1, 115.1, 61.6, 27.1, 14.1. **IR** (thin film): $v_{max}/cm^{-1} = 2982$, 2937, 1710, 1607, 1534, 1474, 1442, 1395, 1366, 1338, 1289, 1258, 1191, 1146, 1112, 1043, 1015, 988, 942, 906, 839, 806. **HRMS** data for the desired product were in agreement with the previously reported literature data^[1].

isopropyl 1-acetyl-1H-indole-2-carboxylate (1c), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.43 (m, 1H), 7.32 – 7.23 (m, 2H), 5.32 – 5.18 (m, 1H), 2.61 (s, 3H), 1.39 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 161.2, 138.3, 130.2, 127.7, 127.1, 123.7, 122.3, 117.9, 115.2, 69.4, 27.2, 21.7. IR (thin film): v_{max}/cm⁻¹ = 2981, 1709, 1608, 1535, 1473, 1443, 1367, 1291, 1258, 1197, 1146, 1102, 1039, 1000, 940, 917, 902, 861, 830. HRMS (ESI) calcd for C₁₄H₁₅NO₃Na [M+Na]⁺: 268.0944, Found: 268.0953.

tert-butyl 1-acetyl-1H-indole-2-carboxylate (1d), white solid, m.p. = 36-39 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.4, 1.2 Hz, 1H), 7.60 (dt, J = 7.6, 1.2 Hz, 1H), 7.42 (m, 1H), 7.31 – 7.21 (m, 2H), 2.62 (s, 3H), 1.62 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 161.0, 138.2, 131.2, 127.5, 127.1, 123.6, 122.2, 117.4, 115.1, 82.6, 28.0, 27.2. **IR** (thin film): v_{max}/cm^{-1} = 3005, 2980, 2934, 1704, 1608, 1535, 1474, 1442, 1366, 1292, 1264, 1218, 1197, 1160, 1141, 1034, 1000, 943, 867, 840. **HRMS** (**ESI**) calcd for C₁₅H₁₇NO₃Na [M+Na]⁺: 282.1101, Found: 282.1106.

methyl 1-acetyl-5-methoxy-1H-indole-2-carboxylate (1e), white solid, m.p. = 91-92 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 9.2 Hz, 1H), 7.23 (s, 1H), 7.09 – 6.99 (m, 2H), 3.93 (s, 3H), 3.84 (s, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

170.6, 162.0, 156.4, 133.4, 129.7, 127.8, 118.1, 117.5, 116.3, 103.6, 55.6, 52.4, 26.9. **IR** (thin film): $v_{max}/cm^{-1} = 3128$, 3085, 3006, 2958, 2838, 2494, 2316, 1702, 1615, 1586, 1534, 1482, 1452, 1435, 1380, 1357, 1297, 1273, 1196, 1165, 1116, 1053, 1030, 955, 863, 830, 805. **HRMS (ESI)** calcd for C₁₃H₁₃NO₄Na [M+Na]⁺: 270.0737, Found: 270.0740.

methyl 1-acetyl-5-methyl-1H-indole-2-carboxylate (1f), white solid, m.p. = 32-33 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.8 Hz, 1H), 7.38 (s, 1H), 7.28 – 7.22 (m, 2H), 3.93 (s, 3H), 2.59 (s, 3H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 162.1, 136.7, 133.3, 129.5, 129.3, 127.3, 122.0, 118.2, 114.8, 52.4, 27.0, 21.1. IR (thin film): v_{max}/cm⁻¹ = 2948, 2910, 1705, 1537, 1429, 1375, 1361, 1293, 1269, 1197, 1159, 1132, 1054, 1026, 958, 884, 861, 806. HRMS (ESI) calcd for C₁₃H₁₃NO₃Na [M+Na]⁺: 254.0788, Found: 254.0788.

methyl 1-acetyl-5-((trimethylsilyl)ethynyl)-1H-indole-2-carboxylate (1g), yellow solid, m.p. = 109-110 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dt, *J* = 8.8, 0.8 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.56 – 7.51 (m, 1H), 7.29 – 7.24 (m, 1H), 3.94 (s, 3H), 2.61 (s, 3H), 0.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 161.8, 137.9, 131.5, 130.1, 126.8, 126.2, 118.6, 117.7, 115.1, 104.8, 93.6, 52.6, 27.1, -0.03. IR (thin film): $v_{max}/cm^{-1} = 2953$, 2899, 2147, 1708, 1607, 1564, 1540, 1454, 1436, 1369, 1334, 1294, 1205, 1163, 1053, 1020, 955, 908, 829. HRMS (ESI) calcd for C₁₇H₁₉NO₃SiNa [M+Na]+: 336.1026, Found: 336.1024.

methyl 1-acetyl-5-fluoro-1H-indole-2-carboxylate (1h), white solid, m.p. = 96-97

^oC. ¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (dd, J = 9.2, 4.4 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.18 (td, J = 9.2, 2.8 Hz, 1H), 3.95 (s, 3H), 2.60 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.7, 161.8, 159.5 (d, J = 240.0 Hz), 134.8, 130.6, 127.8 (d, J = 10.0 Hz), 117.6 (d, J = 3.6 Hz), 116.7 (d, J = 9.6 Hz), 116.1 (d, J = 25.3 Hz), 107.3 (d, J = 23.5 Hz), 52.6, 27.0. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -118.92 ~ -118.98 (m, 1F). **IR** (thin film): v_{max}/cm⁻¹ = 1710, 1586, 1533, 1463, 1433, 1381, 1354, 1303, 1285, 1262, 1191, 1161, 1118, 1103, 1051, 1020, 960, 948, 851. **HRMS** (**EI**) calcd for C₁₂H₁₀NO₃**F** [M]⁺: 235.0639, Found: 235.0632.

ethyl 1-acetyl-5-fluoro-1H-indole-2-carboxylate (1i), white solid, m.p. = 50-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 9.2, 4.4 Hz, 1H), 7.29 – 7.22 (m, 2H), 7.17 (td, J = 9.2, 2.8 Hz, 1H), 4.41 (q, J = 7.2 Hz, 2H), 2.60 (s, 3H), 1.42 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 161.4, 159.4 (d, J = 240.0 Hz), 134.8, 131.1, 127.7 (d, J = 10.0 Hz), 117.4 (d, J = 4.0 Hz), 116.6 (d, J = 9.0 Hz), 116.0 (d, J= 25.0 Hz), 107.2 (d, J = 24 Hz), 61.8, 27.0, 14.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.99 ~ -119.05 (m, 1F). IR (thin film): v_{max}/cm^{-1} = 2995, 1703, 1589, 1532, 1446, 1363, 1292, 1198, 1158, 1109, 1006, 953, 855. HRMS data for the desired product were in agreement with the previously reported literature data^[1].

methyl 1-acetyl-5-chloro-1H-indole-2-carboxylate (1j), yellow solid, m.p. = 107-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 9.2 Hz, 1H), 7.59 (d, J = 2.0 Hz, 1H), 7.39 (dd, J = 8.8, 2.0 Hz, 1H), 7.24 (s, 1H), 3.95 (s, 3H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 161.7, 136.7, 130.4, 129.4, 128.12, 128.09, 121.7, 117.1, 116.5, 52.7, 27.0. **IR** (thin film): v_{max}/cm⁻¹ = 2955, 1707, 1570, 1527, 1429, 1382, 1361, 1339, 1298, 1279, 1261, 1197, 1128, 1066, 1051, 1031, 1016, 950, 915, 860, 818. **HRMS (EI)** calcd for C₁₂H₁₀NO₃Cl [M]⁺: 251.0344, Found: 251.0335.

methyl 1-acetyl-5-bromo-1H-indole-2-carboxylate (1k), yellow solid, m.p. = 106-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 9.0 Hz, 1H), 7.75 (d, J = 2.0 Hz, 1H), 7.52 (dd, J = 9.0, 2.0 Hz, 1H), 7.23 (s, 1H), 3.95 (s, 3H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 161.7, 137.0, 130.7, 130.2, 128.6, 124.8, 116.9, 116.8, 52.7, 27.0. IR (thin film): v_{max}/cm⁻¹ = 3324, 3127, 3002, 2950, 2920, 2849, 2468, 2322, 1710, 1572, 1526, 1433, 1379, 1363, 1336, 1296, 1263, 1187, 1128, 1086, 1047, 1015, 951, 905, 871, 855. HRMS (ESI) calcd for C₁₂H₁₀NO₃BrNa [M+Na]⁺: 317.9736, Found: 317.9724.

ethyl 1-acetyl-5-bromo-1H-indole-2-carboxylate (11), white solid, m.p. = 72-73 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 9.0 Hz, 1H), 7.73 (d, J = 2.0 Hz, 1H), 7.50 (dd, J = 9.0, 2.0 Hz, 1H), 7.22 (s, 1H), 4.41 (q, J = 7.1 Hz, 2H), 2.60 (s, 3H), 1.42 (t, J= 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 161.2, 136.9, 130.6, 128.6, 124.7, 116.8, 116.7, 61.9, 27.1, 14.1. IR (thin film): v_{max}/cm⁻¹ = 3116, 2982, 2937, 1702, 1569, 1531, 1478, 1435, 1401, 1381, 1358, 1335, 1295, 1276, 1260, 1194, 1156, 1104, 1049, 1027, 999, 910, 881, 860. HRMS (EI) calcd for C₁₃H₁₂NO₃Br [M]⁺: 308.9995, Found: 308.9988.

1,1'-(5-bromo-1H-indole-1,2-diyl)bis(ethan-1-one) (**1m**), yellow solid, m.p. = 130-131 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 9.2 Hz, 1H), 7.77 (d, *J* = 2.0 Hz, 1H), 7.53 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.26 (s, 1H), 2.63 (s, 3H), 2.51 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.0, 171.7, 138.2, 137.4, 131.4, 128.4, 125.1, 116.9, 116.7, 116.4, 27.6. **IR** (thin film): v_{max}/cm⁻¹ = 1711, 1667, 1569, 1521, 1437, 1364, 1345, 1297, 1262, 1198, 1170, 1124, 1056, 1034, 1018, 999, 951, 894, 820. **HRMS (EI)** calcd for C₁₂H₁₀NO₂Br [M]⁺: 278.9889, Found: 278.9883.

methyl 1-acetyl-6-methoxy-1H-indole-2-carboxylate (1n), white solid, m.p. = 98-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 2.4 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.31 (s, 1H), 6.92 (dd, J = 8.8, 2.4 Hz, 1H), 3.92 (s, 3H), 3.88 (s, 3H), 2.59 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 161.9, 160.8, 140.3, 127.8, 123.1, 120.6, 119.5, 114.3, 98.2, 55.6, 52.3, 27.3. IR (thin film): v_{max}/cm⁻¹ = 2994, 2964, 2940, 2831, 1705, 1611, 1531, 1490, 1424, 1378, 1360, 1316, 1284, 1220, 1199, 1114, 1051, 1025, 963, 936, 845, 831, 810. HRMS (EI) calcd for C₁₃H₁₃NO₄ [M]⁺: 247.0839, Found: 247.0834.

ethyl 1-acetyl-6-chloro-1H-indole-2-carboxylate (10), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 – 8.15 (m, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.27 (s, 1H), 7.24 (dd, J = 8.4, 1.6 Hz, 1H), 4.40 (q, J = 7.2 Hz, 2H), 2.60 (s, 3H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 161.3, 138.6, 133.9, 130.1, 125.4, 124.5, 123.0, 117.7, 115.4, 61.8, 27.1, 14.1. IR (thin film): v_{max} (cm⁻¹) = 3129, 2983, 2938, 2901, 1703, 1601, 1532, 1457, 1419, 1394, 1365, 1338, 1298, 1274, 1243, 1189, 1113, 1068, 1042, 1025, 998, 946, 927, 857, 803. HRMS data for the desired product were in agreement with the previously reported literature data^[1].

methyl 1-acetyl-4,6-difluoro-1H-indole-2-carboxylate (1p), yellow solid, m.p. = 113-114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.65 (m, 1H), 7.39 – 7.37 (m, 1H), 6.77 (td, *J* = 9.6, 2.4 Hz, 1H), 3.95 (s, 3H), 2.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 162.9 (dd, *J* = 245.0, 12.0 Hz), 161.3, 156.1 (dd, *J* = 253.0, 15.0 Hz), 139.6 (dd, *J* = 16.0, 11.0 Hz), 129.3 (d, *J* = 4.0 Hz), 113.7, 113.0 (d, *J* = 22.0 Hz), 99.3 (dd, *J* = 28.0, 22.0 Hz), 98.7 (dd, *J* = 29.0, 5.0 Hz), 52.7, 27.0. ¹⁹F NMR (376 MHz,

CDCl₃) δ -108.24 ~ -108.30 (m, 1F), -116.08 ~ -116.12 (m, 1F). **IR** (thin film): $v_{max}/cm^{-1} = 3316, 3132, 3062, 1705, 1634, 1589, 1527, 1492, 1453, 1439, 1382, 1365, 1337, 1224, 1175, 1140, 1121, 1076, 1049, 1027, 1010, 986, 941, 843, 811.$ **HRMS** (**EI**) calcd for C₁₂H₉NO₃F₂ [M]⁺: 253.0545, Found: 253.0537.

methyl 1-acetyl-1H-indole-3-carboxylate (1q), white solid, m.p. = 112-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42 (dd, J = 6.4, 2.0 Hz, 1H), 8.13 (dd, J = 6.8, 2.0 Hz, 1H), 8.09 (s, 1H), 7.42 – 7.34 (m, 2H), 3.94 (s, 3H), 2.68 (s, 3H). ¹³C NMR and HRMS data for the desired product were in agreement with the previously reported literature data^[1].

methyl 1-acetyl-1H-pyrrolo[2,3-b]pyridine-2-carboxylate (1r), yellow solid, m.p. = 50-51 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (dd, J = 4.8, 1.6 Hz, 1H), 7.94 (dd, J = 8.0, 1.6 Hz, 1H), 7.24 (dd, J = 8.0, 4.8 Hz, 1H), 7.04 (s, 1H), 3.93 (s, 3H), 3.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 162.6, 148.7, 146.3, 130.8, 130.7, 120.8, 119.2, 111.5, 52.7, 26.6. IR (thin film): v_{max}/cm⁻¹ = 3049, 2958, 1738, 1716, 1595, 1574, 1536, 1474, 1442, 1429, 1398, 1377, 1336, 1290, 1230, 1207, 1112, 1050, 997, 969, 911, 844. HRMS (EI) calcd for C₁₁H₁₀N₂O₃ [M]⁺: 218.0686, Found: 218.0677.

methyl 1-acetyl-4-bromo-1H-pyrrole-2-carboxylate (1s), white solid, m.p. = 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (s, 1H), 6.90 (s, 1H), 3.85 (s, 3H), 2.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 160.4, 125.1, 123.7, 99.8, 52.3, 24.4. IR (thin film): v_{max}/cm⁻¹ = 3145, 3045, 1701, 1679, 1595, 1579, 1544, 1473, 1425, 1401, 1377, 1351, 1328, 1300, 1236, 1203, 1188, 1099, 1040, 1013, 992, 937, 914, 831. HRMS (DART) calcd for C₈H₉NO₃Br [M+H]⁺: 245.9760, Found: 245.9759.

3. Detailed Screening of Reaction Conditions

Table 1. Optimization of the Reaction Conditions^a

entry	photocatalyst	solvent	additive	yield (%) $(2a)^{b}$	yield (%) $(3a)^{b}$
1	Ι	CH ₃ CN	_	0	0
2	II	CH ₃ CN	_	47	0
3	III	CH ₃ CN	_	$81(80)^{c}$	0
4	IV	CH ₃ CN	_	63	0
5	V	CH ₃ CN	_	26	10
6	III	CH_2Cl_2	_	54	0
7	III	acetone	_	70	0
8	III	DMSO	_	77	0
9	III	МеОН	_	trace	0
10	III	CH ₃ CN	NaHCO ₃	72	0
11	III	CH ₃ CN	NEt ₃	19	63
12	III	CH ₃ CN	DIPEA	trace	40
13^{d}	III	CH ₃ CN	DIPEA	trace	75
14^e	III	CH ₃ CN	DIPEA	trace	$88(80)^{c}$
15 ^f	—	CH ₃ CN	_	0	0

16^{g}	III	CH ₃ CN	—	0	0

^{*a*}Reaction conditions: A solution of **1a** (0.2 mmol), photocatalyst (2 mol%), and additive (2 equiv) in the indicated solvent (c = 0.1 M) was irradiated by 24W blue LEDs at room temperature under argon for 24 h. ^{*b*}Determined by ¹H NMR yield using CH₂Br₂ as an internal standard. ^{*c*}Isolated yield. ^{*d*}DIPEA (4 equiv) was used. ^{*e*}DIPEA (8 equiv) was used. ^{*f*}Without a photocatalyst. ^{*g*}Under dark. DIPEA = N,N-Diisopropylethylamine.

4. Single Crystal X-ray Structure Determination

X-Ray crystal structure of 2a (The crystal was obtained by slow evaporation of the solution of DCM at 0 °C) (CCDC 2039653):

Figure S1. X-ray structure of 2a

Table 1. Crystal data and structure refinement for d8v18928. Identification code d8v18928 Empirical formula C24 H22 N2 O6 Formula weight 434.43 Temperature 296(2) K 0.71073 Å Wavelength Monoclinic Crystal system Сc Space group Unit cell dimensions a = 18.1971(18) Å $\alpha = 90^{\circ}$. b = 12.7997(18) Å $\beta = 102.325(5)^{\circ}$. $\gamma = 90^{\circ}$. c = 9.1690(9) ÅVolume 2086.4(4) Å³ Ζ 4 Density (calculated) 1.383 Mg/m³ 0.100 mm⁻¹ Absorption coefficient F(000) 912 0.180 x 0.150 x 0.060 mm³ Crystal size Theta range for data collection 2.291 to 25.497°. Index ranges -22<=h<=22, -15<=k<=15, -11<=l<=11 Reflections collected 13796 Independent reflections 3806 [R(int) = 0.0588]Completeness to theta = 25.242° 99.8 % Absorption correction Semi-empirical from equivalents 0.7456 and 0.6118 Max. and min. transmission Full-matrix least-squares on F² Refinement method Data / restraints / parameters 3806 / 2 / 294 Goodness-of-fit on F² 1.059 Final R indices [I>2sigma(I)] R1 = 0.0666, wR2 = 0.1740R1 = 0.0899, wR2 = 0.1956 R indices (all data) Absolute structure parameter 0.6(9) 0.012(2) Extinction coefficient 0.256 and -0.242 e.Å-3 Largest diff. peak and hole

	х	У	Z	U(eq)
O(1)	4573(3)	933(4)	5370(6)	64(1)
O(2)	4808(3)	2660(5)	1889(5)	64(2)
O(3)	3811(3)	2007(5)	2584(5)	75(2)
O(4)	6389(3)	1725(5)	6773(6)	72(2)
O(5)	5449(3)	2413(4)	7666(5)	52(1)
O(6)	6755(4)	2204(5)	2708(9)	97(2)
N(1)	4169(3)	2585(4)	5368(5)	43(1)
N(2)	6099(3)	2940(4)	4274(6)	45(1)
C(1)	3730(4)	3455(5)	5680(7)	45(2)
C(2)	3105(4)	3487(7)	6298(9)	60(2)
C(3)	2768(5)	4462(7)	6402(10)	66(2)
C(4)	3052(4)	5348(7)	5945(9)	64(2)
C(5)	3664(4)	5318(6)	5272(9)	56(2)
C(6)	3998(4)	4370(5)	5147(7)	45(2)
C(7)	4657(3)	4119(5)	4489(7)	42(1)
C(8)	4681(4)	2909(5)	4423(7)	42(1)
C(9)	5551(4)	2946(5)	5240(7)	42(1)
C(10)	5453(4)	4135(5)	5544(7)	42(1)
C(11)	6055(4)	4657(5)	4969(7)	42(1)
C(12)	6258(4)	5722(6)	5064(8)	52(2)
C(13)	6836(4)	6034(7)	4408(9)	61(2)
C(14)	7214(4)	5317(7)	3702(9)	65(2)
C(15)	7009(4)	4277(6)	3598(8)	53(2)
C(16)	6417(3)	3962(6)	4228(7)	44(2)
C(17)	6298(4)	2089(7)	3505(9)	61(2)
C(18)	5936(5)	1062(7)	3594(10)	68(2)
C(19)	4187(4)	1571(6)	5858(7)	50(2)
C(20)	3758(5)	1263(7)	7014(9)	64(2)
C(21)	4458(4)	2492(5)	2827(7)	46(2)
C(22)	3510(8)	1657(9)	1050(9)	107(4)
C(23)	5845(4)	2261(6)	6608(7)	48(2)
C(24)	5635(5)	1754(7)	8976(8)	66(2)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for d8v18928. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(19)	1.223(9)
O(2)-C(21)	1.194(8)
O(3)-C(21)	1.307(8)
O(3)-C(22)	1.466(10)
O(4)-C(23)	1.188(9)
O(5)-C(23)	1.340(8)
O(5)-C(24)	1.447(9)
O(6)-C(17)	1.228(9)
N(1)-C(19)	1.371(9)
N(1)-C(1)	1.434(9)
N(1)-C(8)	1.462(8)
N(2)-C(17)	1.388(9)
N(2)-C(16)	1.434(9)
N(2)-C(9)	1.468(8)
C(1)-C(2)	1.375(10)
C(1)-C(6)	1.396(10)
C(2)-C(3)	1.402(12)
C(2)-H(2)	0.9300
C(3)-C(4)	1.351(12)
C(3)-H(3)	0.9300
C(4)-C(5)	1.383(10)
C(4)-H(4)	0.9300
C(5)-C(6)	1.374(10)
C(5)-H(5)	0.9300
C(6)-C(7)	1.488(9)
C(7)-C(8)	1.550(10)
C(7)-C(10)	1.561(8)
C(7)-H(7)	0.9800
C(8)-C(21)	1.530(8)
C(8)-C(9)	1.600(8)
C(9)-C(23)	1.531(10)
C(9)-C(10)	1.564(10)
C(10)-C(11)	1.474(9)
C(10)-H(10)	0.9800
C(11)-C(16)	1.371(9)
C(11)-C(12)	1.411(10)

Table 3. Bond lengths [Å] and angles [°] for d8v18928.

1.378(11)
0.9300
1.387(13)
0.9300
1.381(12)
0.9300
1.385(9)
0.9300
1.479(13)
0.9600
0.9600
0.9600
1.499(10)
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
0.9600
116.5(7)
116.7(6)
130.2(5)
119.3(5)
110.5(5)
123.4(5)
126.5(6)
110.1(5)
120.0(7)
130.6(7)
109.3(5)
117.8(7)
121.1
121.1
121.6(7)

C(4)-C(3)-H(3)	119.2
C(2)-C(3)-H(3)	119.2
C(3)-C(4)-C(5)	120.9(8)
C(3)-C(4)-H(4)	119.6
C(5)-C(4)-H(4)	119.6
C(6)-C(5)-C(4)	118.3(7)
C(6)-C(5)-H(5)	120.8
C(4)-C(5)-H(5)	120.8
C(5)-C(6)-C(1)	121.2(6)
C(5)-C(6)-C(7)	129.4(6)
C(1)-C(6)-C(7)	109.4(6)
C(6)-C(7)-C(8)	105.3(5)
C(6)-C(7)-C(10)	117.8(5)
C(8)-C(7)-C(10)	90.3(5)
C(6)-C(7)-H(7)	113.6
C(8)-C(7)-H(7)	113.6
С(10)-С(7)-Н(7)	113.6
N(1)-C(8)-C(21)	113.2(5)
N(1)-C(8)-C(7)	103.5(5)
C(21)-C(8)-C(7)	112.4(5)
N(1)-C(8)-C(9)	115.1(5)
C(21)-C(8)-C(9)	119.5(5)
C(7)-C(8)-C(9)	89.2(5)
N(2)-C(9)-C(23)	109.1(5)
N(2)-C(9)-C(10)	103.4(5)
C(23)-C(9)-C(10)	116.4(5)
N(2)-C(9)-C(8)	116.7(5)
C(23)-C(9)-C(8)	120.3(6)
C(10)-C(9)-C(8)	88.5(5)
C(11)-C(10)-C(7)	116.5(5)
C(11)-C(10)-C(9)	104.8(5)
C(7)-C(10)-C(9)	90.2(5)
С(11)-С(10)-Н(10)	114.2
С(7)-С(10)-Н(10)	114.2
C(9)-C(10)-H(10)	114.2
C(16)-C(11)-C(12)	120.7(6)
C(16)-C(11)-C(10)	110.9(6)
C(12)-C(11)-C(10)	128.4(6)

C(13)-C(12)-C(11)	117.9(7)
С(13)-С(12)-Н(12)	121.1
С(11)-С(12)-Н(12)	121.1
C(12)-C(13)-C(14)	120.8(8)
С(12)-С(13)-Н(13)	119.6
С(14)-С(13)-Н(13)	119.6
C(15)-C(14)-C(13)	121.1(7)
C(15)-C(14)-H(14)	119.4
C(13)-C(14)-H(14)	119.4
C(14)-C(15)-C(16)	118.3(8)
С(14)-С(15)-Н(15)	120.8
С(16)-С(15)-Н(15)	120.8
C(11)-C(16)-C(15)	121.1(7)
C(11)-C(16)-N(2)	109.7(5)
C(15)-C(16)-N(2)	129.2(6)
O(6)-C(17)-N(2)	119.5(8)
O(6)-C(17)-C(18)	120.4(7)
N(2)-C(17)-C(18)	120.1(6)
C(17)-C(18)-H(18A)	109.5
C(17)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(17)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(1)-C(19)-N(1)	119.2(6)
O(1)-C(19)-C(20)	120.6(7)
N(1)-C(19)-C(20)	120.1(7)
C(19)-C(20)-H(20A)	109.5
C(19)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
С(19)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
O(2)-C(21)-O(3)	124.3(6)
O(2)-C(21)-C(8)	123.5(6)
O(3)-C(21)-C(8)	112.0(5)
O(3)-C(22)-H(22A)	109.5
O(3)-C(22)-H(22B)	109.5

H(22A)-C(22)-H(22B)	109.5
O(3)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
O(4)-C(23)-O(5)	123.7(7)
O(4)-C(23)-C(9)	124.8(6)
O(5)-C(23)-C(9)	111.2(6)
O(5)-C(24)-H(24A)	109.5
O(5)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
O(5)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	74(4)	54(3)	69(3)	0(2)	26(3)	-5(3)
O(2)	67(3)	87(4)	40(3)	-4(3)	18(3)	5(3)
O(3)	81(4)	96(4)	42(3)	-9(3)	-1(3)	-44(3)
O(4)	72(4)	82(4)	64(3)	13(3)	17(3)	29(3)
O(5)	62(3)	57(3)	38(2)	5(2)	13(2)	3(2)
O(6)	115(5)	74(4)	132(6)	1(4)	94(5)	19(4)
N(1)	40(3)	50(3)	40(3)	1(2)	13(2)	-2(2)
N(2)	43(3)	51(3)	44(3)	-1(2)	18(2)	2(2)
C(1)	41(4)	59(4)	37(3)	-1(3)	12(3)	-4(3)
C(2)	52(4)	70(5)	61(4)	-6(4)	25(4)	-8(4)
C(3)	49(4)	76(6)	80(5)	-9(4)	31(4)	3(4)
C(4)	52(5)	66(5)	77(5)	-13(4)	22(4)	2(4)
C(5)	51(4)	48(4)	70(5)	-6(3)	17(4)	1(3)
C(6)	38(4)	57(4)	42(3)	-5(3)	11(3)	3(3)
C(7)	37(3)	51(4)	40(3)	1(3)	12(3)	-2(3)
C(8)	41(3)	49(3)	35(3)	-5(3)	11(3)	-4(3)
C(9)	43(4)	50(4)	37(3)	0(3)	14(3)	1(3)
C(10)	39(3)	52(4)	36(3)	-2(3)	11(3)	-3(3)
C(11)	36(3)	49(4)	38(3)	4(3)	2(3)	-6(3)
C(12)	48(4)	51(4)	54(4)	0(3)	0(3)	-8(3)
C(13)	55(4)	59(5)	63(4)	13(4)	-4(4)	-15(4)
C(14)	44(4)	93(6)	57(4)	17(4)	8(4)	-15(4)
C(15)	41(4)	68(5)	49(4)	5(3)	11(3)	-2(3)
C(16)	35(4)	56(4)	40(3)	9(3)	5(3)	-1(3)
C(17)	57(5)	67(5)	64(5)	3(4)	28(4)	14(4)
C(18)	83(6)	57(5)	71(5)	-4(4)	29(4)	6(4)
C(19)	52(4)	54(4)	45(4)	0(3)	12(3)	-12(3)
C(20)	65(5)	73(5)	57(4)	6(4)	23(4)	-12(4)
C(21)	52(4)	46(4)	37(3)	-4(3)	7(3)	2(3)
C(22)	152(10)	108(8)	45(4)	-6(5)	-12(5)	-65(8)
C(23)	50(4)	49(4)	46(4)	2(3)	14(3)	0(3)
C(24)	90(6)	63(5)	47(4)	10(4)	15(4)	-4(4)

Table 4. Anisotropic displacement parameters (Å²x 10³) for d8v18928. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	у	Z	U(eq)
H(2)	2913	2882	6637	71
H(3)	2337	4498	6795	79
H(4)	2834	5988	6084	77
H(5)	3844	5925	4913	67
H(7)	4640	4456	3523	51
H(10)	5450	4301	6587	50
H(12)	6009	6199	5553	63
H(13)	6975	6734	4440	74
H(14)	7612	5541	3291	78
H(15)	7261	3799	3117	63
H(18A)	6300	580	4131	102
H(18B)	5745	801	2604	102
H(18C)	5530	1139	4103	102
H(20A)	3248	1098	6537	95
H(20B)	3760	1830	7700	95
H(20C)	3989	661	7548	95
H(22A)	3529	2222	371	160
H(22B)	2998	1435	955	160
H(22C)	3806	1084	818	160
H(24A)	5529	1039	8693	99
H(24B)	5341	1960	9680	99
H(24C)	6160	1827	9423	99

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for d8v18928.

Table 6. Torsion angles [°] for d8v18928.

C(19)-N(1)-C(1)-C(2)	-14.7(12)
C(8)-N(1)-C(1)-C(2)	168.0(7)
C(19)-N(1)-C(1)-C(6)	169.5(6)
C(8)-N(1)-C(1)-C(6)	-7.7(7)
C(6)-C(1)-C(2)-C(3)	-1.5(10)
N(1)-C(1)-C(2)-C(3)	-176.9(7)
C(1)-C(2)-C(3)-C(4)	-1.5(12)
C(2)-C(3)-C(4)-C(5)	3.9(13)
C(3)-C(4)-C(5)-C(6)	-3.2(12)
C(4)-C(5)-C(6)-C(1)	0.2(11)
C(4)-C(5)-C(6)-C(7)	-179.7(6)
C(2)-C(1)-C(6)-C(5)	2.2(10)
N(1)-C(1)-C(6)-C(5)	178.4(7)
C(2)-C(1)-C(6)-C(7)	-178.0(6)
N(1)-C(1)-C(6)-C(7)	-1.7(7)
C(5)-C(6)-C(7)-C(8)	-170.5(7)
C(1)-C(6)-C(7)-C(8)	9.7(7)
C(5)-C(6)-C(7)-C(10)	90.8(9)
C(1)-C(6)-C(7)-C(10)	-89.0(7)
C(19)-N(1)-C(8)-C(21)	73.6(8)
C(1)-N(1)-C(8)-C(21)	-108.9(6)
C(19)-N(1)-C(8)-C(7)	-164.4(5)
C(1)-N(1)-C(8)-C(7)	13.2(6)
C(19)-N(1)-C(8)-C(9)	-68.9(7)
C(1)-N(1)-C(8)-C(9)	108.7(6)
C(6)-C(7)-C(8)-N(1)	-13.5(6)
C(10)-C(7)-C(8)-N(1)	105.5(5)
C(6)-C(7)-C(8)-C(21)	109.0(6)
C(10)-C(7)-C(8)-C(21)	-131.9(5)
C(6)-C(7)-C(8)-C(9)	-129.2(5)
C(10)-C(7)-C(8)-C(9)	-10.1(4)
C(17)-N(2)-C(9)-C(23)	65.7(8)
C(16)-N(2)-C(9)-C(23)	-114.0(6)
C(17)-N(2)-C(9)-C(10)	-169.9(6)
C(16)-N(2)-C(9)-C(10)	10.4(6)
C(17)-N(2)-C(9)-C(8)	-74.8(8)

_

C(16)-N(2)-C(9)-C(8)	105.5(6)
N(1)-C(8)-C(9)-N(2)	161.4(5)
C(21)-C(8)-C(9)-N(2)	21.5(9)
C(7)-C(8)-C(9)-N(2)	-94.1(6)
N(1)-C(8)-C(9)-C(23)	25.5(8)
C(21)-C(8)-C(9)-C(23)	-114.4(7)
C(7)-C(8)-C(9)-C(23)	130.0(6)
N(1)-C(8)-C(9)-C(10)	-94.4(6)
C(21)-C(8)-C(9)-C(10)	125.6(6)
C(7)-C(8)-C(9)-C(10)	10.1(4)
C(6)-C(7)-C(10)-C(11)	-135.4(6)
C(8)-C(7)-C(10)-C(11)	117.0(6)
C(6)-C(7)-C(10)-C(9)	117.9(6)
C(8)-C(7)-C(10)-C(9)	10.4(4)
N(2)-C(9)-C(10)-C(11)	-10.5(6)
C(23)-C(9)-C(10)-C(11)	109.1(6)
C(8)-C(9)-C(10)-C(11)	-127.6(5)
N(2)-C(9)-C(10)-C(7)	107.0(5)
C(23)-C(9)-C(10)-C(7)	-133.4(6)
C(8)-C(9)-C(10)-C(7)	-10.0(4)
C(7)-C(10)-C(11)-C(16)	-90.4(7)
C(9)-C(10)-C(11)-C(16)	7.3(7)
C(7)-C(10)-C(11)-C(12)	87.5(8)
C(9)-C(10)-C(11)-C(12)	-174.7(6)
C(16)-C(11)-C(12)-C(13)	-0.9(9)
C(10)-C(11)-C(12)-C(13)	-178.7(6)
C(11)-C(12)-C(13)-C(14)	-1.1(10)
C(12)-C(13)-C(14)-C(15)	1.8(11)
C(13)-C(14)-C(15)-C(16)	-0.5(11)
C(12)-C(11)-C(16)-C(15)	2.3(9)
C(10)-C(11)-C(16)-C(15)	-179.6(6)
C(12)-C(11)-C(16)-N(2)	-179.1(6)
C(10)-C(11)-C(16)-N(2)	-0.9(7)
C(14)-C(15)-C(16)-C(11)	-1.6(10)
C(14)-C(15)-C(16)-N(2)	-180.0(7)
C(17)-N(2)-C(16)-C(11)	173.8(6)
C(9)-N(2)-C(16)-C(11)	-6.5(7)
C(17)-N(2)-C(16)-C(15)	-7.6(10)

C(9)-N(2)-C(16)-C(15)	172.1(6)
C(16)-N(2)-C(17)-O(6)	-2.0(11)
C(9)-N(2)-C(17)-O(6)	178.3(8)
C(16)-N(2)-C(17)-C(18)	-179.2(7)
C(9)-N(2)-C(17)-C(18)	1.2(11)
C(1)-N(1)-C(19)-O(1)	175.3(6)
C(8)-N(1)-C(19)-O(1)	-7.7(9)
C(1)-N(1)-C(19)-C(20)	-6.7(10)
C(8)-N(1)-C(19)-C(20)	170.3(6)
C(22)-O(3)-C(21)-O(2)	0.0(12)
C(22)-O(3)-C(21)-C(8)	174.7(8)
N(1)-C(8)-C(21)-O(2)	-179.2(6)
C(7)-C(8)-C(21)-O(2)	63.9(9)
C(9)-C(8)-C(21)-O(2)	-38.6(10)
N(1)-C(8)-C(21)-O(3)	6.0(8)
C(7)-C(8)-C(21)-O(3)	-110.8(6)
C(9)-C(8)-C(21)-O(3)	146.6(6)
C(24)-O(5)-C(23)-O(4)	-10.0(11)
C(24)-O(5)-C(23)-C(9)	175.6(6)
N(2)-C(9)-C(23)-O(4)	-7.4(10)
C(10)-C(9)-C(23)-O(4)	-123.8(8)
C(8)-C(9)-C(23)-O(4)	131.4(8)
N(2)-C(9)-C(23)-O(5)	166.9(5)
C(10)-C(9)-C(23)-O(5)	50.5(8)
C(8)-C(9)-C(23)-O(5)	-54.3(8)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(24)-H(24B)O(2)#1	0.96	2.58	3.530(10)	168.2
C(18)-H(18C)O(1)	0.96	2.31	3.249(11)	167.4
C(15)-H(15)O(6)	0.93	2.24	2.785(10)	116.9
C(2)-H(2)O(6)#2	0.93	2.51	3.137(10)	125.1

Table 7. Hydrogen bonds for d8v18928 [Å and °].

#1 x,y,z+1 #2 x-1/2,-y+1/2,z+1/2

X-Ray crystal structure of **3a** (The crystal was obtained by slow evaporation of the solution of DCM and PE at room temperature) (CCDC 2039654):

Figure S2. X-ray structure of 3a

Table 1. Crystal data and structure refine	ement for $d8v20173$.			
Identification code	d8v20173			
Empirical formula	C12 H13 N O3			
Formula weight	219.23			
Temperature	193(2) K			
Wavelength	0.71073 Å			
Crystal system	Orthorhombic			
Space group	P c a 21			
Unit cell dimensions	a = 22.6211(9) Å	α= 90°.		
	b = 4.8921(2) Å	β= 90°.		
	c = 9.6732(3) Å	$\gamma = 90^{\circ}$.		
Volume	1070.48(7) Å ³			
Ζ	4			
Density (calculated)	1.360 Mg/m ³			
Absorption coefficient	0.098 mm ⁻¹			
F(000)	464	464		
Crystal size	0.160 x 0.140 x 0.100 m	0.160 x 0.140 x 0.100 mm ³		
Theta range for data collection	4.166 to 25.959°.	4.166 to 25.959°.		
Index ranges	-27<=h<=23, -6<=k<=5	-27<=h<=23, -6<=k<=5, -11<=l<=10		
Reflections collected	4898			
Independent reflections	1810 [R(int) = 0.0233]			
Completeness to theta = 25.242°	98.9 %			
Absorption correction	Semi-empirical from eq	uivalents		
Max. and min. transmission	0.7456 and 0.6534			
Refinement method	Full-matrix least-square	s on F ²		
Data / restraints / parameters	1810 / 1 / 148	1810 / 1 / 148		
Goodness-of-fit on F ²	1.050			
Final R indices [I>2sigma(I)]	R1 = 0.0278, wR2 = 0.0	R1 = 0.0278, $wR2 = 0.0692$		
R indices (all data)	R1 = 0.0299, wR2 = 0.0	R1 = 0.0299, $wR2 = 0.0715$		
Absolute structure parameter	-0.2(5)			
Extinction coefficient	0.029(9)	0.029(9)		
Largest diff. peak and hole	0.133 and -0.124 e.Å ⁻³	0.133 and -0.124 e.Å ⁻³		

	х	у	Z	U(eq)
0(1)	5006(1)	1694(3)	3900(2)	38(1)
O(2)	6776(1)	-311(3)	7422(2)	46(1)
O(3)	6175(1)	3201(3)	6974(2)	35(1)
N(1)	5988(1)	1648(3)	4338(2)	26(1)
C(1)	6168(1)	3632(4)	3356(2)	28(1)
C(2)	5823(1)	5219(4)	2484(2)	32(1)
C(3)	6111(1)	7016(5)	1597(2)	40(1)
C(4)	6724(1)	7235(5)	1589(3)	47(1)
C(5)	7060(1)	5645(5)	2471(3)	42(1)
C(6)	6782(1)	3847(4)	3357(2)	32(1)
C(7)	7048(1)	1959(5)	4407(2)	37(1)
C(8)	6506(1)	537(4)	5084(2)	29(1)
C(9)	6499(1)	1052(4)	6619(2)	28(1)
C(10)	6146(1)	3795(6)	8445(2)	43(1)
C(11)	5423(1)	706(4)	4532(2)	27(1)
C(12)	5336(1)	-1539(4)	5560(2)	34(1)

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for d8v20173. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(11)	1.223(2)
O(2)-C(9)	1.200(3)
O(3)-C(9)	1.326(2)
O(3)-C(10)	1.454(3)
N(1)-C(11)	1.372(2)
N(1)-C(1)	1.418(3)
N(1)-C(8)	1.479(2)
C(1)-C(2)	1.386(3)
C(1)-C(6)	1.392(3)
C(2)-C(3)	1.391(3)
C(2)-H(2)	0.9500
C(3)-C(4)	1.390(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.383(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.381(3)
C(5)-H(5)	0.9500
C(6)-C(7)	1.499(3)
C(7)-C(8)	1.554(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.507(3)
C(8)-H(8)	1.0000
C(10)-H(10A)	0.9800
C(10)-H(10B)	0.9800
C(10)-H(10C)	0.9800
C(11)-C(12)	1.495(3)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(9)-O(3)-C(10)	115.88(17)
C(11)-N(1)-C(1)	126.03(17)
C(11)-N(1)-C(8)	123.26(17)
C(1)-N(1)-C(8)	110.56(16)
C(2)-C(1)-C(6)	121.3(2)

Table 3. Bond lengths [Å] and angles [°] for d8v20173.

C(2)-C(1)-N(1)	129.04(17)
C(6)-C(1)-N(1)	109.68(18)
C(1)-C(2)-C(3)	117.8(2)
C(1)-C(2)-H(2)	121.1
C(3)-C(2)-H(2)	121.1
C(4)-C(3)-C(2)	121.3(2)
C(4)-C(3)-H(3)	119.4
C(2)-C(3)-H(3)	119.4
C(5)-C(4)-C(3)	120.1(2)
C(5)-C(4)-H(4)	119.9
C(3)-C(4)-H(4)	119.9
C(6)-C(5)-C(4)	119.3(2)
C(6)-C(5)-H(5)	120.3
C(4)-C(5)-H(5)	120.3
C(5)-C(6)-C(1)	120.2(2)
C(5)-C(6)-C(7)	129.03(18)
C(1)-C(6)-C(7)	110.79(18)
C(6)-C(7)-C(8)	104.13(15)
C(6)-C(7)-H(7A)	110.9
C(8)-C(7)-H(7A)	110.9
C(6)-C(7)-H(7B)	110.9
C(8)-C(7)-H(7B)	110.9
H(7A)-C(7)-H(7B)	108.9
N(1)-C(8)-C(9)	114.25(16)
N(1)-C(8)-C(7)	104.77(17)
C(9)-C(8)-C(7)	110.41(17)
N(1)-C(8)-H(8)	109.1
C(9)-C(8)-H(8)	109.1
C(7)-C(8)-H(8)	109.1
O(2)-C(9)-O(3)	124.20(19)
O(2)-C(9)-C(8)	122.62(18)
O(3)-C(9)-C(8)	113.14(17)
O(3)-C(10)-H(10A)	109.5
O(3)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
O(3)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5

O(1)-C(11)-N(1)	121.2(2)
O(1)-C(11)-C(12)	121.44(18)
N(1)-C(11)-C(12)	117.38(17)
C(11)-C(12)-H(12A)	109.5
C(11)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(11)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	26(1)	50(1)	37(1)	8(1)	-6(1)	-2(1)
O(2)	44(1)	52(1)	42(1)	3(1)	-11(1)	18(1)
O(3)	42(1)	37(1)	27(1)	-5(1)	-3(1)	13(1)
N(1)	23(1)	32(1)	24(1)	-2(1)	-1(1)	0(1)
C(1)	30(1)	29(1)	24(1)	-8(1)	4(1)	-5(1)
C(2)	36(1)	32(1)	28(1)	-4(1)	1(1)	-3(1)
C(3)	53(1)	34(1)	33(1)	-1(1)	5(1)	-4(1)
C(4)	60(2)	38(1)	43(2)	-2(1)	17(1)	-14(1)
C(5)	39(1)	43(1)	43(1)	-12(1)	14(1)	-10(1)
C(6)	31(1)	34(1)	31(1)	-13(1)	5(1)	-4(1)
C(7)	22(1)	52(1)	36(1)	-11(1)	2(1)	0(1)
C(8)	23(1)	30(1)	35(1)	-6(1)	-2(1)	4(1)
C(9)	22(1)	29(1)	33(1)	0(1)	-4(1)	2(1)
C(10)	52(1)	51(1)	27(1)	-8(1)	2(1)	7(1)
C(11)	27(1)	32(1)	23(1)	-5(1)	1(1)	0(1)
C(12)	31(1)	39(1)	31(1)	2(1)	1(1)	-3(1)

Table 4. Anisotropic displacement parameters (Å²x 10³) for d8v20173. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)
H(2)	5404	5082	2492	38
H(3)	5885	8116	984	48
H(4)	6912	8479	976	57
H(5)	7479	5788	2466	50
H(7A)	7278	2992	5103	44
H(7B)	7310	603	3959	44
H(8)	6531	-1476	4914	35
H(10A)	5856	5247	8608	65
H(10B)	6535	4395	8770	65
H(10C)	6027	2145	8947	65
H(12A)	5301	-755	6488	51
H(12B)	5676	-2781	5530	51
H(12C)	4975	-2552	5335	51

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for d8v20173.

Table 6. Torsion angles [°] for d8v20173.

C(11)-N(1)-C(1)-C(2)	6.6(3)
C(8)-N(1)-C(1)-C(2)	-177.6(2)
C(11)-N(1)-C(1)-C(6)	-173.46(19)
C(8)-N(1)-C(1)-C(6)	2.4(2)
C(6)-C(1)-C(2)-C(3)	0.7(3)
N(1)-C(1)-C(2)-C(3)	-179.37(19)
C(1)-C(2)-C(3)-C(4)	-0.4(3)
C(2)-C(3)-C(4)-C(5)	0.2(4)
C(3)-C(4)-C(5)-C(6)	-0.1(3)
C(4)-C(5)-C(6)-C(1)	0.3(3)
C(4)-C(5)-C(6)-C(7)	-179.2(2)
C(2)-C(1)-C(6)-C(5)	-0.6(3)
N(1)-C(1)-C(6)-C(5)	179.41(18)
C(2)-C(1)-C(6)-C(7)	178.96(19)
N(1)-C(1)-C(6)-C(7)	-1.0(2)
C(5)-C(6)-C(7)-C(8)	178.9(2)
C(1)-C(6)-C(7)-C(8)	-0.6(2)
C(11)-N(1)-C(8)-C(9)	-65.7(2)
C(1)-N(1)-C(8)-C(9)	118.31(19)
C(11)-N(1)-C(8)-C(7)	173.31(17)
C(1)-N(1)-C(8)-C(7)	-2.6(2)
C(6)-C(7)-C(8)-N(1)	1.9(2)
C(6)-C(7)-C(8)-C(9)	-121.53(18)
C(10)-O(3)-C(9)-O(2)	-2.8(3)
C(10)-O(3)-C(9)-C(8)	179.48(19)
N(1)-C(8)-C(9)-O(2)	157.98(19)
C(7)-C(8)-C(9)-O(2)	-84.2(3)
N(1)-C(8)-C(9)-O(3)	-24.3(3)
C(7)-C(8)-C(9)-O(3)	93.5(2)
C(1)-N(1)-C(11)-O(1)	-5.1(3)
C(8)-N(1)-C(11)-O(1)	179.55(19)
C(1)-N(1)-C(11)-C(12)	175.83(18)
C(8)-N(1)-C(11)-C(12)	0.5(3)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(12)-H(12A)O(1)#1	0.98	2.48	3.323(3)	144.5
C(10)-H(10A)O(1)#2	0.98	2.47	3.443(3)	170.0
C(7)-H(7B)O(2)#3	0.99	2.58	3.463(3)	147.9
C(2)-H(2)O(1)	0.95	2.33	2.875(3)	116.2

Table 7. Hydrogen bonds for d8v20173 [Å and °].

#1 -x+1,-y,z+1/2 #2 -x+1,-y+1,z+1/2 #3 -x+3/2,y,z-1/2
5. General Procedure for Visible-Light Induced Divergent Dearomatization of Indole Derivatives

5.1 General Procedure for Visible-Light Induced Dimerization of Indole Derivatives

A flame-dried sealed tube were added indole derivative **1** (0.4 mmol, 1.0 equiv), $Ir(ppy)_3$ (5.3 mg, 0.008 mmol), and CH₃CN (4 mL). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from two 24 W blue LEDs. The mixture was stirred at room temperature for the indicated time (monitored by TLC) under argon atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatograph (EtOAc/CH₂Cl₂ = 8/1 to 4/1) to afford the desired product **2a-2k**, **2m**, **2n**. The analytical data of the products are summarized below.

dimethyl-5,6-diacetyl-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-

5a,5b-dicarboxylate (**2a**), white solid, 24 hours, 35.7 mg, 80% yield, m.p. = 171-173 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.26 (m, 4H), 7.20 – 7.04 (m, 3H), 4.06 (d, *J* = 5.2 Hz, 1H), 3.94 (d, *J* = 5.2 Hz, 1H), 3.65 (s, 6H), 2.58 (s, 3H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 169.7, 168.3, 167.2, 145.4, 142.5, 131.7, 129.1, 124.9, 124.0, 123.9, 122.9, 118.5, 114.1, 73.3, 72.4, 53.5, 53.0, 52.9, 50.9, 25.5, 24.8. **IR** (thin film): v_{max}/cm⁻¹ = 3016, 2920, 2850, 1735, 1658, 1602,

1473, 1374, 1326, 1241, 1197, 1097, 1005, 931, 858. **HRMS (ESI)** calcd for C₂₄H₂₂N₂O₆Na [M+Na]⁺: 457.1370, Found: 457.1368.

diethyl-5,6-diacetyl-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5bdicarboxylate (2b), yellow solid, 42 hours, 90.5 mg, 88% yield, m.p. = 182-183 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 8.4 Hz, 1H), 7.39 – 7.25 (m, 4H), 7.21 – 7.03 (m, 3H), 4.25 – 4.08 (m, 2H), 4.11 – 3.99 (m, 3H), 3.93 (d, *J* = 5.2 Hz, 1H), 2.57 (s, 3H), 2.48 (s, 3H), 1.16 (dt, *J* = 14.8, 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 169.5, 168.0, 166.8, 145.5, 142.6, 131.6, 129.2, 129.0, 124.8, 124.0, 123.8, 122.8, 118.4, 114.0, 73.7, 72.7, 62.3, 62.1, 53.6, 51.0, 25.6, 25.1, 13.7. IR (thin film): v_{max}/cm⁻¹ = 2980, 2926, 1735, 1662, 1600, 1476, 1372, 1322, 1234, 1133, 1023, 954, 867, 812. HRMS (ESI) calcd for C₂₆H₂₆N₂O₆Na [M+Na]⁺: 485.1683, Found: 485.1684.

diisopropyl-5,6-diacetyl-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2c), yellow solid, 48 hours, 86.4 mg, 84% yield, m.p. = 155-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (d, *J* = 8.4 Hz, 1H), 7.40 – 7.28 (m, 4H), 7.22 – 7.04 (m, 3H), 5.03 – 4.88 (m, 2H), 3.99 (d, *J* = 4.8 Hz, 1H), 3.88 (d, *J* = 4.8 Hz, 1H), 2.56 (s, 3H), 2.49 (s, 3H), 1.14 (dt, *J* = 12.8, 6.2 Hz, 9H), 1.05 (d, *J* = 6.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 169.3, 167.5, 166.6, 145.6, 142.8, 131.7, 129.3, 128.9, 124.9, 123.7, 122.8, 118.3, 113.9, 73.7, 72.9, 70.1, 69.9, 54.1, 51.4, 25.5, 25.3, 21.4, 21.2. IR (thin film): v_{max}/cm⁻¹ = 2981, 2934, 1731, 1662, 1599, 1475, 1374, 1321, 1236, 1143, 1098, 1026, 981, 906, 829. HRMS (ESI) calcd for C₂₈H₃₁N₂O₆ [M+H]⁺: 491.2177, Found: 491.2179.

dimethyl-5,6-diacetyl-2,9-dimethoxy-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3b']diindole-5a,5b-dicarboxylate (2d), white solid, 36 hours, 89.8 mg, 90% yield, m.p. = 210-212 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 9.0 Hz, 1H), 7.25 (s, 1H), 6.91 – 6.78 (m, 3H), 6.71 (d, *J* = 2.4 Hz, 1H), 4.03 (d, *J* = 5.6 Hz, 1H), 3.91 (d, *J* = 5.2 Hz, 1H), 3.83 (s, 3H), 3.81 (s, 3H), 3.66 (s, 6H), 2.53 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 169.1, 168.3, 167.1, 156.5, 156.3, 139.2, 136.1, 133.1, 130.4, 119.2, 114.9, 113.5, 113.1, 110.8, 109.2, 73.5, 72.5, 55.7, 55.7, 53.2, 53.0, 52.9, 50.8, 25.2, 24.6. **IR** (thin film): v_{max}/cm⁻¹ = 3007, 2946, 2844, 1737, 1654, 1482, 1379, 1339, 1254, 1134, 1017, 935, 867, 804. **HRMS (ESI)** calcd for C₂₆H₂₆N₂O₈Na [M+Na]⁺: 517.1581, Found: 517.1574.

dimethyl-5,6-diacetyl-2,9-dimethyl-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2e), white solid, 48 hours, 86.1 mg, 92% yield, m.p. = 217-219 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.19 – 7.07 (m, 3H), 6.99 (s, 1H), 4.01 (d, *J* = 5.2 Hz, 1H), 3.89 (d, *J* = 5.2 Hz, 1H), 3.64 (s, 6H), 2.55 (s, 3H), 2.42 (s, 3H), 2.37 (s, 3H), 2.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 169.5, 168.4, 167.2, 143.2, 140.3, 133.9, 133.5, 131.9, 129.52, 129.45, 129.3, 125.4, 123.4, 118.2, 113.9, 73.4, 72.5, 53.5, 53.0, 52.9, 50.9, 25.4, 24.7, 20.8, 20.6. IR (thin film): v_{max} (cm⁻¹) = 3007, 2946, 1741, 1658, 1484, 1435, 1377, 1336, 1215, 1150, 1111, 1013, 889, 813. HRMS (ESI) calcd for C₂₆H₂₇N₂O₆ [M+H]⁺: 463.1864, Found: 463.1862.

dimethyl-5,6-diacetyl-2,9-bis((trimethylsilyl)ethynyl)-5,6,10b,10c-

tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2f), yellow solid, 48 hours, 97.2 mg, 79% yield, m.p. = 263-265 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, J = 8.4 Hz, 1H), 7.51 – 7.33 (m, 3H), 7.28 (s, 2H), 3.97 (d, J = 5.2 Hz, 1H), 3.86 (d, J = 5.2 Hz, 1H), 3.63 (s, 6H), 2.55 (s, 3H), 2.40 (s, 3H), 0.27 (s, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 169.6, 168.0, 166.8, 145.4, 142.3, 133.3, 133.1, 131.7, 129.1, 128.4, 126.5, 118.9, 118.5, 118.2, 113.8, 104.6, 103.7, 94.8, 93.7, 73.4, 72.7, 53.1, 50.4, 25.5, 24.7, -0.1. **IR** (thin film): v_{max}/cm⁻¹ = 3396, 2957, 2148, 1741, 1662, 1481, 1435, 1377, 1334, 1236, 1105, 1017, 841. **HRMS (ESI)** calcd for C_{34H39}N₂O₆Si₂ [M+H]⁺: 627.2341, Found: 627.2339.

dimethyl-5,6-diacetyl-2,9-difluoro-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3b']diindole-5a,5b-dicarboxylate (2g), yellow solid, 48 hours, 87.1 mg, 93% yield, m.p. = 228-229 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, J = 9.2, 4.8 Hz, 1H), 7.34 – 7.26 (m, 1H), 7.12 – 6.93 (m, 3H), 6.87 (d, J = 6.0 Hz, 1H), 4.06 (d, J = 5.2 Hz, 1H), 3.94 (d, J = 5.6 Hz, 1H), 3.68 (s, 3H), 3.67 (s, 3H), 2.55 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 169.3, 168.1, 166.9, 159.2 (d, J = 245.0 Hz), 159.1 (d, J = 241.0 Hz), 141.6, 138.7, 133.1 (d, J = 9.0 Hz), 130.3 (d, J = 245.0 Hz), 119.5 (d, J = 7.0 Hz), 115.5 (dd, J = 24.0, 18.0 Hz), 115.0 (d, J = 9.0 Hz), 114.9, 112.3 (d, J= 24.0 Hz), 110.1 (d, J = 24.0 Hz), 73.8, 72.8, 53.2, 53.1, 52.8, 50.3, 25.3, 24.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.57 ~ -118.70 (m, 1F), -118.71 ~ -118.90 (m, 1F). IR (thin film): v_{max}/cm⁻¹ = 3014, 2948, 2323, 2103, 1741, 1666, 1612, 1479, 1441, 1376, 1333, 1244, 1212, 1119, 1013, 947, 873, 816. **HRMS (ESI)** calcd for C₂₄H₂₀N₂O₆F₂Na [M+Na]⁺: 493.1182, Found: 493.1174.

diethyl-5,6-diacetyl-2,9-difluoro-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-

b']diindole-5a,5b-dicarboxylate (2h), yellow solid, 48 hours, 83.1 mg, 83% yield, m.p. = 177-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (dd, J = 9.2, 4.8 Hz, 1H), 7.32 – 7.25 (m, 1H), 7.10 – 6.94 (m, 3H), 6.87 (d, J = 7.2 Hz, 1H), 4.25 – 4.12 (m, 2H), 4.13 – 4.01 (m, 3H), 3.92 (d, J = 5.2 Hz, 1H), 2.54 (s, 3H), 2.45 (s, 3H), 1.21 (t, J = 6.8 Hz, 3H), 1.16 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 169.2, 167.8, 166.5, 160.4, 158.0, 141.7, 138.9, 133.1 (d, J = 9.0 Hz), 130.4, 119.5 (d, J = 7.0 Hz), 115.6, 115.4 (d, J = 7.0 Hz), 115.2, 114.9 (d, J = 7.0 Hz), 112.3 (d, J = 23.0 Hz), 110.1 (d, J = 24.0 Hz), 74.2, 73.0, 62.6, 62.4, 53.0, 50.5, 25.4, 24.9, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.69 ~ -119.04 (m, 2F). **IR** (thin film): v_{max}/cm⁻¹ = 2986, 1739, 1664, 1479, 1376, 1335, 1246, 1214, 1118, 1018, 949, 871, 816. **HRMS** (**ESI**) calcd for C₂₆H₂₄N₂O₆F₂Na [M+Na]⁺: 521.1495, Found: 521.1487.

dimethyl-5,6-diacetyl-2,9-dichloro-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2i), yellow solid, 48 hours, 80.2 mg, 79% yield, m.p. = 237-239 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.8 Hz, 1H), 7.37 – 7.23 (m, 4H), 7.14 (s, 1H), 4.04 (d, *J* = 5.2 Hz, 1H), 3.92 (d, *J* = 5.2 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 2.55 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 169.5, 168.0, 166.8, 144.1, 141.2, 133.1, 130.5, 129.1, 128.6, 125.2, 123.1, 119.5, 115.0, 73.6, 72.7, 53.2, 53.1, 52.9, 50.3, 25.4, 24.7. IR (thin film): v_{max}/cm⁻¹ = 2953, 1726, 1668, 1471, 1374, 1328, 1249, 1200, 1011, 886, 816. HRMS (ESI) calcd for C_{24H20}N₂O₆Cl₂Na [M+Na]⁺: 525.0591, Found: 525.0579.

dimethyl-5,6-diacetyl-2,9-dibromo-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2j), yellow solid, 48 hours, 72.3 mg, 61% yield, m.p. = 233-234 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, *J* = 8.8 Hz, 1H), 7.51 – 7.37 (m, 3H), 7.28 (s, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 4.04 (d, *J* = 5.2 Hz, 1H), 3.93 (d, *J* = 5.2 Hz, 1H), 3.67 (s, 3H), 3.65 (s, 3H), 2.54 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 169.5, 167.9, 166.7, 144.6, 141.7, 133.5, 132.1, 130.9, 128.0, 126.0, 120.0, 116.5, 116.0, 115.5, 73.5, 72.7, 53.2, 53.1, 52.9, 50.3, 25.4, 24.7. IR (thin film): v_{max}/cm⁻¹ = 2955, 2644, 2317, 1739, 1665, 1469, 1374, 1330, 1240, 1193, 1109, 1009, 890, 813. HRMS (ESI) calcd for C₂₄H₂₀N₂O₆Br₂Na [M+Na]⁺: 612.9580, Found: 612.9568.

diethyl-5,6-diacetyl-2,9-dibromo-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3b']diindole-5a,5b-dicarboxylate (2k), yellow solid, 48 hours, 78.5 mg, 63% yield, m.p. = 180-182 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, *J* = 8.8 Hz, 1H), 7.53 – 7.37 (m, 3H), 7.29 (s, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 4.24 – 4.12 (m, 2H), 4.12 – 4.01 (m, 3H), 3.91 (d, *J* = 5.2 Hz, 1H), 2.53 (s, 3H), 2.43 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H), 1.15 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 169.3, 167.6, 166.4, 144.7, 141.9, 133.4, 132.0, 131.0, 128.0, 126.0, 119.9, 116.4, 116.0, 115.4, 73.9, 72.9, 62.6, 62.5, 53.0, 50.4, 25.5, 25.0, 13.7. IR (thin film): v_{max}/cm⁻¹ = 3063, 2983, 2932, 2245, 1724, 1661, 1469, 1372, 1330, 1250, 1197, 1104, 1016, 913, 872, 812. HRMS (ESI) calcd for C₂₆H₂₄N₂O₆Br₂Na [M+Na]⁺: 640.9893, Found: 640.9878.

dimethyl-5,6-diacetyl-3,8-dimethoxy-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2m), white solid, 26 hours, 84.8 mg, 86% yield, m.p. = 227-229 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.19 – 6.89 (m, 3H), 6.63 (t, *J* = 8.8 Hz, 2H), 3.94 (d, *J* = 5.2 Hz, 1H), 3.86 (s, 3H), 3.84 (s, 4H), 3.65 (s, 3H), 3.65 (s, 3H), 2.56 (s, 3H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 169.6, 168.4, 167.3, 160.6, 160.5, 146.8, 143.7, 125.2, 124.1, 123.1, 121.2, 110.3, 107.7, 104.1, 102.5, 73.9, 73.3, 55.7, 55.4, 53.4, 53.0, 52.8, 50.7, 25.4, 24.8. **IR** (thin film): v_{max}/cm⁻¹ = 2961, 2840, 1734, 1661, 1603, 1495, 1438, 1377, 1311, 1222, 1172, 1105, 1009, 932, 865, 811. **HRMS (ESI)** calcd for C₂₆H₂₇N₂O₈ [M+H]⁺: 495.1762, Found: 495.1760.

diethyl-5,6-diacetyl-3,8-dichloro-5,6,10b,10c-tetrahydrocyclobuta[1,2-b:4,3-b']diindole-5a,5b-dicarboxylate (2n), yellow solid, 48 hours, 77.7 mg, 72% yield, m.p. = 214-217 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 7.32 (s, 1H), 7.22 – 7.02 (m, 4H), 4.17 (s, 2H), 4.13 – 4.01 (m, 2H), 3.98 (s, 1H), 3.87 (s, 1H), 2.56 (s, 3H), 2.44 (s, 3H), 1.18 (t, *J* = 8.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 169.4, 167.6, 166.5, 146.5, 143.8, 135.0, 129.9, 127.4, 125.6, 123.9, 123.6, 118.8, 114.7, 74.1, 73.2, 62.6, 62.4, 53.2, 50.5, 25.6, 25.0, 13.7. IR (thin film): v_{max}/cm⁻¹ = 3099, 2946, 1740, 1663, 1596, 1474, 1373, 1324, 1237, 1199, 1146, 1103, 1018, 883, 827. HRMS (ESI) calcd for C₂₆H₂₄N₂O₆Cl₂Na [M+Na]⁺: 553.0904, Found: 553.0896.

A flame-dried sealed tube were added indole derivative **1** (0.4 mmol, 1.0 equiv), $Ir(dFCF_3ppy)_2(dtbbpy)PF_6$ (8.9 mg, 0.008 mmol), and CH₃CN (4 mL). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from two 24 W blue LEDs. The mixture was stirred at room temperature for the indicated time (monitored by TLC) under argon atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatograph (EtOAc/CH₂Cl₂ = 8/1) to afford the desired product **2l**, **2o**. The analytical data of the products are summarized below.

1,1',1'',1'''-(2,9-dibromo-10b,10c-dihydrocyclobuta[1,2-b:4,3-b']diindole-

5,5a,5b,6-tetrayl)tetrakis(ethan-1-one) (2l), yellow solid, 48 hours, 51.4 mg, 46% yield, m.p. = 218-220 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 8.8 Hz, 1H), 7.52 – 7.34 (m, 4H), 7.25 (d, *J* = 9.2 Hz, 1H), 3.82 (d, *J* = 4.0 Hz, 1H), 3.75 (d, *J* = 4.0 Hz, 1H), 2.60 (s, 3H), 2.26 (s, 3H), 2.01 (s, 3H), 1.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 201.2, 198.7, 171.1, 169.7, 144.7, 141.5, 133.9, 132.6, 132.5, 131.2, 128.6, 126.6, 120.3, 116.6, 116.4, 115.6, 75.4, 75.0, 52.7, 48.9, 25.4, 24.8, 24.4, 24.0. IR (thin film): v_{max}/cm⁻¹ = 3128, 3081, 2922, 2323, 2110, 1723, 1663, 1471, 1430, 1374, 1328, 1258, 1184, 1079, 1028, 968, 900, 830. HRMS (ESI) calcd for C_{24H20}N₂O₄NaBr₂ [M+Na]⁺: 580.9682, Found: 580.9672.

20, white solid, 48 hours, 34.4 mg, 40% yield, m.p. = 260-262 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (dd, *J* = 4.8, 1.6 Hz, 2H), 7.54 (dd, *J* = 7.2, 1.6 Hz, 2H), 6.96 (dd, *J* = 7.2, 4.8 Hz, 2H), 3.81 (s, 2H), 3.58 (s, 6H), 2.79 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 167.7, 157.2, 148.1, 133.2, 123.9, 117.9, 69.7, 52.5, 48.5, 25.6. IR (thin film): v_{max}/cm⁻¹ = 2947, 1741, 1664, 1589, 1420, 1375, 1323, 1234, 1025, 898. HRMS (ESI) calcd for C₂₂H₂₀N4O₆Na [M+Na]⁺: 459.1275, Found: 459.1275.

5.2 General Procedure for Visible-Light Induced Reduction of Indole Derivatives

A flame-dried sealed tube were added indole derivative **1** (0.3 mmol, 1.0 equiv), Ir(ppy)₃ (3.9 mg, 0.006 mmol), N,N-diisopropylethylamine (^{*i*}Pr₂NEt, 2.4 mmol), and CH₃CN (3 mL). The reaction mixture was degassed via freeze-pump-thaw for 3 cycles. After the mixture was thoroughly degassed, the vial was sealed and positioned approximately 5 cm from two 24 W blue LEDs. The mixture was stirred at room temperature for the indicated time (monitored by TLC) under argon atmosphere. Afterwards, the reaction mixture was concentrated by rotary evaporation. Then the residue was purified by silica gel column chromatograph (PE/EtOAc = 2/1) to afford the desired product **3**. The analytical data of the products are summarized below. Two rotamers were observed by NMR for all compounds except **3q** and **3r** at room temperature.

methyl 1-acetylindoline-2-carboxylate (3a), white solid, 24 hours, 35.5 mg, 80% yield, m.p. = 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.21 and 7.17 (m, 3H), 7.02

(t, J = 7.6 Hz, 1H), 5.16 and 4.91 (a pair of d, J = 11.2 Hz, 1H), 3.76 and 3.73 (a pair of s, 3H), 3.61 and 3.47 (a pair of dd, J = 16.4, 11.2 Hz, 1H), 3.26 and 3.10 (a pair of d, J = 16.4 Hz, 1H), 2.48 and 2.16 (a pair of s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 171.7, 168.8, 168.3, 142.5, 141.1, 130.7, 128.3, 127.8, 127.7, 125.6, 124.1, 123.9, 123.3, 117.2, 113.7, 61.2, 60.1, 52.8, 52.3, 33.4, 31.3, 24.4, 23.6. ¹H **NMR** (600 MHz, DMSO-*d*₆, 110 °C) δ 7.86 (s, 1H), 7.24 – 7.16 (m, 2H), 7.04 – 6.99 (m, 1H), 5.18 (dd, J = 10.8, 2.4 Hz, 1H), 3.72 (s, 3H), 3.59 (dd, J = 16.8, 11.4 Hz, 1H), 3.17 (d, J = 16.2 Hz, 1H), 2.19 (s, 3H). ¹³**C NMR** (150 MHz, DMSO-*d*₆, 110 °C) δ 171.2, 167.8, 141.9, 129.1, 126.7, 124.1, 122.7, 115.0, 60.1, 51.7, 31.9, 22.8. **HRMS** data for the desired product were in agreement with the previously reported literature data^[2].

ethyl 1-acetylindoline-2-carboxylate (3b), white solid, 25 hours, 43.6 mg, 59% yield, m.p. = 58-60 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 and 7.28-7.13 (m, 3H), 7.06 – 6.97 (m, 1H), 5.13 and 4.88 (a pair of d, J = 11.2 Hz, 1H), 4.28 – 4.14 (m, 2H), 3.61 and 3.47 (a pair of dd, J = 16.8, 11.2 Hz, 1H), 3.25 and 3.08 (a pair of d, J = 16.4 Hz, 1H), 2.48 and 2.16 (a pair of s, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 168.9, 168.3, 142.6, 141.2, 130.7, 128.3, 127.8, 127.7, 125.6, 124.1, 123.9, 123.3, 117.2, 113.7, 62.0, 61.3, 60.2, 33.5, 31.4, 24.5, 23.6, 14.0. IR (thin film): v_{max}/cm⁻¹ = 2982, 2929, 1725, 1660, 1596, 1474, 1397, 1333, 1273, 1198, 1020, 937, 873. HRMS data for the desired product were in agreement with the previously reported literature data^[4].

isopropyl 1-acetylindoline-2-carboxylate (3c), yellow solid, 19 hours, 41.5 mg, 56% yield, m.p. = 80-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 and 7.25 – 7.12 (m, 3H), 7.02 (t, J = 8.4 Hz, 1H), 5.11 – 4.85 (m, 2H), 3.61 and 3.47 (a pair of dd, J = 16.8, 11.2 Hz, 1H), 3.22 and 3.05 (a pair of dd, J = 16.8, 4.0 Hz, 1H), 2.48 and 2.16 (a pair of s, 3H), 1.26 and 1.23 (a pair of d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 168.8, 168.3, 142.7, 130.7, 128.3, 127.8, 125.6, 124.1, 123.8, 123.2, 117.2,

113.6, 69.7, 68.8, 61.4, 60.4, 33.4, 31.3, 29.6, 24.5, 23.6, 21.6. **IR** (thin film): $v_{max}/cm^{-1} = 3041$, 2979, 2927, 2863, 1727, 1664, 1597, 1473, 1386, 1266, 1203, 1101, 1038, 1003, 936, 856, 822. **HRMS (ESI)** calcd for C₁₄H₁₇NO₃Na [M+Na]⁺: 270.1100, Found: 270.1099.

tert-butyl 1-acetylindoline-2-carboxylate (3d), white solid, 25 hours, 42.0 mg, 54% yield, m.p. = 102-105 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 and 7.24 – 7.12 (m, 3H), 7.01 (t, J = 7.2 Hz, 1H), 5.02 and 4.77 (a pair of d, J = 11.2 Hz, 1H), 3.59 and 3.45 (a pair of dd, J = 16.0, 11.2 Hz, 1H), 3.19 and 3.03 (a pair of d, J = 16.0 Hz, 1H), 2.48 and 2.16 (a pair of s, 3H), 1.46 (s, 9H). ¹³C NMR and HRMS data for the desired product were in agreement with the previously reported literature data^[3].

methyl 1-acetyl-5-methoxyindoline-2-carboxylate (3e), yellow solid, 14 hours, 50.8 mg, 69% yield, m.p. = 156-157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 and 7.09 (a pair of d, J = 8.8 Hz, 1H), 6.79 – 6.70 (m, 2H), 5.17 and 4.90 (a pair of dd, J = 10.8, 3.6 Hz, 1H), 3.77 and 3.73 (a pair of s, 3H), 3.76 (s, 3H), 3.59 and 3.45 (a pair of dd, J = 16.4, 10.8 Hz, 1H), 3.23 and 3.07 (a pair of dd, J = 16.4, 3.2 Hz, 1H), 2.44 and 2.14 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 168.2, 167.9, 156.4, 156.1, 136.2, 134.8, 132.4, 129.9, 117.8, 114.4, 112.5, 112.2, 111.7, 110.4, 61.5, 60.3, 55.6, 55.5, 52.9, 52.4, 33.5, 31.6, 24.1, 23.3. IR (thin film): v_{max}/cm⁻¹ = 3082, 3003, 2949, 2843, 1729, 1648, 1604, 1486, 1451, 1398, 1348, 1269, 1188, 1102, 1013, 922, 883, 816. HRMS (ESI) calcd for C₁₃H₁₅NO₄Na [M+Na]⁺: 272.0893, Found: 272.0891.

methyl 1-acetyl-5-methylindoline-2-carboxylate (3f), yellow solid, 19 hours, 40.1 mg, 57% yield, m.p. = 96-98 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 and 7.09 – 6.94

(m, 3H), 5.15 and 4.89 (a pair of dd, J = 11.2, 3.6 Hz, 1H), 3.75 and 3.72 (a pair of s, 3H), 3.58 and 3.43 (a pair of dd, J = 16.0, 10.8 Hz, 1H), 3.22 and 3.05 (a pair of dd, J = 16.8, 3.2 Hz, 1H), 2.45 and 2.15 (a pair of s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 168.5, 168.2, 140.2, 138.9, 133.6, 133.1, 130.9, 128.4, 128.3, 128.1, 126.3, 124.8, 116.9, 113.5, 61.4, 60.2, 52.8, 52.4, 33.4, 31.4, 24.3, 23.5, 20.9, 20.6. **IR** (thin film): $v_{max}/cm^{-1} = 2918$, 2857, 1731, 1657, 1485, 1434, 1389, 1343, 1265, 1202, 1004, 916, 816. **HRMS (ESI)** calcd for C₁₃H₁₅NO₃Na [M+Na]⁺: 256.0944, Found: 256.0942.

methyl 1-acetyl-5-((trimethylsilyl)ethynyl)indoline-2-carboxylate (3g), yellow solid, 19 hours, 66.2 mg, 74% yield, m.p. = 157-160 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 and 7.37 – 7.08 (m, 3H), 5.14 and 4.90 (a pair of d, J = 10.4 Hz, 1H), 3.76 and 3.73 (a pair of s, 3H), 3.56 and 3.43 (a pair of dd, J = 16.4, 11.2 Hz, 1H), 3.21 and 3.05 (a pair of d, J = 16.4 Hz, 1H), 2.46 and 2.15 (a pair of s, 3H), 0.23 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 168.8, 168.3, 142.6, 141.1, 132.1, 131.9, 130.9, 129.0, 128.5, 127.6, 118.4, 118.0, 116.8, 113.3, 104.9, 104.4, 93.9, 93.3, 61.4, 60.3, 52.9, 52.4, 33.1, 31.0, 29.6, 24.5, 23.6, -0.1. **IR** (thin film): v_{max}/cm⁻¹ = 2957, 2147, 1746, 1666, 1610, 1481, 1436, 1379, 1344, 1255, 1198, 1012, 925, 840. **HRMS (ESI**) calcd for C_{17H22}NO₃Si [M+H]⁺: 316.1364, Found: 316.1354.

methyl 1-acetyl-5-fluoroindoline-2-carboxylate (**3h**), white solid, 17 hours, 49.5 mg, 70% yield, m.p. = 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 and 7.14 – 6.80 (m, 3H), 5.19 and 4.94 (a pair of dd, J = 10.8, 1.6 Hz, 1H), 3.78 and 3.73 (a pair of s, 3H), 3.60 and 3.46 (a pair of dd, J = 16.8, 10.8 Hz, 1H), 3.25 and 3.08 (a pair of dd, J = 16.0, 2.4 Hz, 1H), 2.45 and 2.15 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 168.5, 168.0, 159.3 (d, J = 241.0 Hz), 138.6, 137.4, 132.9 (d, J = 8.0 Hz), 130.3 (d, J = 9.0 Hz), 118.0 (d, J = 8.0 Hz), 114.3 (d, J = 9.0 Hz), 114.0 (d, J = 23.0

Hz), 113.0 (d, J = 25.0 Hz), 111.5 (d, J = 24.0 Hz), 61.5, 60.5, 52.9, 52.4, 33.2, 31.3, 24.1, 23.3. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -118.97 and -120.04 (a pair of s, 1F). **IR** (thin film): $\nu_{max}/cm^{-1} = 3074$, 2954, 2854, 1732, 1661, 1604, 1478, 1445, 1394, 1349, 1215, 1177, 1132, 1039, 1003, 932, 891, 823. **HRMS (ESI)** calcd for C₁₂H₁₂NO₃FNa [M+Na]⁺: 260.0693, Found: 260.0688.

ethyl 1-acetyl-5-fluoroindoline-2-carboxylate (**3i**), yellow solid, 17 hours, 55.6 mg, 73% yield, m.p. = 103-104 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.17 and 7.14 – 6.81 (m, 3H), 5.16 and 4.91 (a pair of d, J = 10.0 Hz, 1H), 4.32 – 4.15 (m, 2H), 3.59 and 3.46 (a pair of dd, J = 16.4, 11.2 Hz, 1H), 3.23 and 3.06 (a pair of d, J = 16.4 Hz, 1H), 2.45 and 2.15 (a pair of s, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.9, 168.5, 167.9, 159.3 (d, J = 241.0 Hz), 138.7, 137.4, 132.93, 132.86, 130.4, 130.3, 117.9 (d, J = 7.0 Hz), 114.2 (d, J = 9.0 Hz), 113.9 (d, J = 23.0 Hz), 113.0 (d, J = 24.0 Hz), 111.4 (d, J = 24.0 Hz), 62.0, 61.5, 61.3, 60.5, 33.2, 31.3, 24.1, 23.3, 13.9. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -119.11 (q, J = 14.6 Hz) and -120.22 (1F). **IR** (thin film): $v_{max}/cm^{-1} = 3071$, 2981, 1727, 1660, 1604, 1476, 1390, 1251, 1208, 1176, 1133, 1016, 932, 890, 818. **HRMS (ESI)** calcd for C₁₃H₁₄NO₃FNa [M+Na]⁺: 274.0850, Found: 274.0848.

methyl 1-acetyl-5-chloroindoline-2-carboxylate (3j), yellow solid, 17 hours, 53.8 mg, 71% yield, m.p. = 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 and 7.22 – 7.06 (m, 3H), 5.16 and 4.92 (a pair of d, J = 10.0 Hz, 1H), 3.77 and 3.73 (a pair of s, 3H), 3.58 and 3.45 (a pair of dd, J = 16.4, 11.2 Hz, 1H), 3.23 and 3.07 (a pair of d, J = 16.4 Hz, 1H), 2.45 and 2.15 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 168.8, 168.1, 141.2, 139.9, 132.7, 130.3, 128.7, 128.5, 127.7, 125.8, 124.3, 118.0, 114.4, 61.4, 60.3, 52.9, 52.5, 33.1, 31.1, 24.3, 23.4. IR (thin film): $v_{max}/cm^{-1} = 3078$, 2950, 2851, 2307, 2063, 1789, 1727, 1662, 1592, 1463, 1384, 1346, 1215, 1166, 1072,

1001, 891, 824. **HRMS (ESI)** calcd for C₁₂H₁₂NO₃ClNa [M+Na]⁺: 276.0398, Found: 276.0395.

methyl 1-acetyl-5-bromoindoline-2-carboxylate (3k), yellow solid, 14 hours, 68.5 mg, 77% yield, m.p. = 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08 and 7.35 – 6.98 (m, 3H), 5.15 and 4.91 (a pair of d, J = 10.8 Hz, 1H), 3.76 and 3.73 (a pair of s, 3H), 3.58 and 3.45 (a pair of dd, J = 17.2, 12.4 Hz, 1H), 3.23 and 3.07 (a pair of d, J = 16.4 Hz, 1H), 2.44 and 2.14 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.3, 168.8, 168.1, 141.7, 140.4, 133.1, 130.7, 128.7, 127.2, 118.5, 116.3, 114.9, 61.3, 60.3, 52.9, 52.4, 33.0, 31.1, 24.3, 23.4. **IR** (thin film): $v_{max}/m^{-1} = 3080$, 2945, 1732, 1661, 1590, 1469, 1384, 1343, 1203, 1169, 1064, 1003, 931, 860, 817. **HRMS (ESI)** calcd for C₁₂H₁₂NO₃BrNa [M+Na]⁺: 319.9893, Found: 319.9887.

ethyl 1-acetyl-5-bromoindoline-2-carboxylate (3l), yellow solid, 14 hours, 76.3 mg, 81% yield, m.p. = 86-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 and 7.33 – 6.99 (m, 3H), 5.12 and 4.88 (a pair of d, J = 11.2 Hz, 1H), 4.30 – 4.14 (m, 2H), 3.58 and 3.45 (a pair of dd, J = 16.8, 11.6 Hz, 1H), 3.22 and 3.06 (a pair of d, J = 16.8 Hz, 1H), 2.44 and 2.14 (a pair of s, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 168.8, 141.7, 130.7, 130.6, 128.6, 127.2, 118.4, 116.1, 114.8, 62.1, 61.3, 60.4, 33.0, 31.0, 24.3, 23.4, 14.0. IR (thin film): v_{max}/cm⁻¹ = 3081, 2983, 2929, 1717, 1665, 1592, 1466, 1380, 1336, 1238, 1205, 1168, 1120, 1016, 933, 863, 821. HRMS (ESI) calcd for C₁₃H₁₄NO₃BrNa [M+Na]⁺: 334.0049, Found: 334.0041.

1,1'-(5-bromoindoline-1,2-diyl)bis(ethan-1-one) (**3m**), yellow solid, 16 hours, 32.9 mg, 39% yield, m.p. = 160-161 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 and 7.05 (a

pair of d, J = 8.8 Hz, 1H), 7.38 – 7.29 (m, 2H), 5.16 and 4.86 (a pair of dd, J = 11.6, 2.8 Hz, 1H), 3.64 and 3.39 (a pair of dd, J = 16.8, 11.6 Hz, 1H), 3.06 and 3.00 (a pair of d, J = 17.2 Hz, 1H), 2.46 and 2.22 (a pair of s, 3H), 2.18 and 2.07 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 204.8, 204.6, 168.7, 168.3, 141.9, 140.5, 133.3, 131.1, 130.7, 130.4, 128.9, 127.4, 118.6, 116.5, 116.1, 115.1, 68.1, 66.4, 32.0, 29.8, 26.4, 25.1, 24.2, 23.7. **IR** (thin film): v_{max}/cm⁻¹ = 3063, 2993, 2852, 1714, 1645, 1469, 1380, 1255, 1146, 1033, 984, 930, 826. **HRMS (ESI)** calcd for C₁₂H₁₂NO₂BrNa [M+Na]⁺: 303.9944, Found: 303.9937.

methyl 1-acetyl-6-methoxyindoline-2-carboxylate (**3n**), yellow solid, 14 hours, 23.5 mg, 32% yield, m.p. = 97-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.91 and 7.12 – 6.53 (m, 3H), 5.16 and 4.92 (a pair of d, J = 11.2 Hz, 1H), 3.80 (s, 3H), 3.77 and 3.73 (a pair of s, 3H), 3.55 and 3.40 (a pair of dd, J = 16.4, 11.2 Hz, 1H), 3.19 and 3.02 (a pair of d, J = 16.0 Hz, 1H), 2.47 and 2.16 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.8, 168.9, 168.4, 159.6, 143.7, 142.2, 125.8, 124.3, 122.8, 120.1, 110.3, 107.3, 103.2, 102.0, 62.1, 60.9, 55.5, 52.9, 52.4, 32.8, 30.7, 29.6, 24.4, 23.7. IR (thin film): v_{max}/cm⁻¹ = 2947, 2845, 1728, 1658, 1600, 1495, 1443, 1402, 1338, 1278, 1196, 1094, 1016, 945, 895, 849, 806. HRMS (ESI) calcd for C₁₃H₁₅NO₄Na [M+Na]⁺: 272.0893, Found: 272.0890.

ethyl 1-acetyl-6-chloroindoline-2-carboxylate (30), yellow solid, 25 hours, 52.0 mg, 65% yield, m.p. = 128-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.25 and 7.23 – 6.96 (m, 3H), 5.14 and 4.91 (a pair of d, J = 10.4 Hz, 1H), 4.31 – 4.15 (m, 2H), 3.56 and 3.42 (a pair of dd, J = 16.8, 11.2 Hz, 1H), 3.21 and 3.04 (a pair of d, J = 16.4 Hz, 1H), 2.47 and 2.15 (a pair of s, 3H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 168.9, 168.1, 143.6, 133.4, 126.9, 126.3, 124.8, 123.8, 123.2, 117.5, 114.1, 62.1, 61.8, 61.4, 60.7, 33.0, 30.9, 24.5, 23.5, 14.0. **IR** (thin film): v_{max}/cm⁻¹ = 2985,

2924, 1725, 1658, 1594, 1474, 1397, 1273, 1202, 1137, 1069, 1023, 940, 862. **HRMS** (**ESI**) calcd for C₁₃H₁₄NO₃ClNa [M+Na]⁺: 290.0554, Found: 290.0555.

methyl 1-acetyl-4,6-difluoroindoline-2-carboxylate (3p), white solid, 25 hours, 49.3 mg, 65% yield, m.p. = 97-99 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 and 6.79 – 6.45 (m, 2H), 5.19 and 4.99 (a pair of d, J = 10.8 Hz, 1H), 3.80 and 3.76 (a pair of s, 3H), 3.53 and 3.40 (a pair of dd, J = 16.0, 12.0 Hz, 1H), 3.29 and 3.09 (a pair of d, J = 16.4 Hz, 1H), 2.46 and 2.16 (a pair of s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 169.0, 168.2, 163.1 (dd, J = 243.0, 12.0 Hz), 157.8 (dd, J = 248.0, 15.0 Hz), 145.0, 110.2 (d, J = 24.0 Hz), 101.8, 101.5, 99.2, 98.9, 98.7, 98.2, 62.0, 61.0, 53.1, 52.6, 29.4, 27.1, 24.3, 23.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -109.21 and -109.53 (a pair of s, 1F), -113.55 and -115.79 (a pair of s, 1F). IR (thin film): $v_{max}/cm^{-1} = 3079$, 2969, 1737, 1669, 1625, 1489, 1441, 1391, 1315, 1213, 1170, 1005, 975, 896, 842. HRMS (ESI) calcd for C₁₂H₁₁NO₃F₂Na [M+Na]⁺: 278.0599, Found: 278.0594.

methyl 1-acetylindoline-3-carboxylate (3q), yellow solid, 24 hours, 50.9 mg, 76% yield, m.p. = 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.22 (m, 2H), 7.04 (t, *J* = 7.6 Hz, 1H), 4.50 (dd, *J* = 10.4, 5.6 Hz, 1H), 4.28 (dd, *J* = 10.0, 5.6 Hz, 1H), 4.14 (t, *J* = 10.4 Hz, 1H), 3.78 (s, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.4, 168.4, 142.4, 129.0, 127.6, 124.9, 123.6, 117.0, 52.7, 50.6, 45.1, 24.1. **IR** (thin film): v_{max}/cm⁻¹ = 2918, 1722, 1657, 1596, 1475, 1398, 1323, 1273, 1175, 1021, 930, 884, 848. **HRMS** data for the desired product were in agreement with the previously reported literature data^[5].

methyl 1-acetyl-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine-2-carboxylate (3r), yellow oil, 25 hours, 42.0 mg, 64% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J =5.2 Hz, 1H), 7.45 (dd, J = 7.2, 1.2 Hz, 1H), 6.91 (dd, J = 7.2, 4.8 Hz, 1H), 5.07 (dd, J =11.2, 4.0 Hz, 1H), 3.75 (s, 3H), 3.43 (dd, J = 17.2, 11.6 Hz, 1H), 3.05 (dd, J = 16.8, 4.0 Hz, 1H), 2.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.6, 170.1, 155.4, 146.6, 133.3, 123.2, 118.2, 57.9, 52.5, 29.0, 24.6. IR (thin film): v_{max}/cm⁻¹ = 2951, 1745, 1660, 1593, 1422, 1376, 1322, 1236, 1197, 1009, 855. HRMS (ESI) calcd for C₁₁H₁₃N₂O₃ [M+H]⁺: 221.0921, Found: 221.0916.

methyl 1-acetyl-4-bromo-2,3-dihydro-1H-pyrrole-2-carboxylate (3s), yellow oil, 17 hours, 40.1 mg, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.99 and 5.96 (a pair of s, 1H), 5.13 – 5.09 and 5.07 – 5.04 (a pair of m, 1H), 4.55 – 4.33 (m, 2H), 3.78 (s, 3H), 2.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 168.3, 125.1, 124.0, 117.4, 67.1, 66.0, 58.3, 57.7, 53.0, 52.6, 21.6, 21.1. IR (thin film): $v_{max}/cm^{-1} = 3057$, 2919, 2857, 1747, 1648, 1408, 1331, 1251, 1196, 1046, 997, 954, 863, 830. HRMS (ESI) calcd for C₈H₁₀NO₃BrNa [M+Na]⁺: 269.9736, Found: 269.9733.

6. Transformation of 3a

A solution of compound 3a (87.7 mg, 0.4 mmol) in THF (1 mL) was slowly added to a solution of LiOH·H₂O (50.4 mg, 1.2 mmol) in water (1 mL). The resulting mixture was vigorously stirred at room temperature for 1 h. THF was then evaporated under reduced pressure and the resulting aqueous solution was acidified with 2M HCl (pH = 6) until the amount of solid cristallized from the solvent. After filtration, product **5** was obtained as a white solid (63.3 mg, 77% yield).

1-acetylindoline-2-carboxylic acid (**5**), white solid, 63.3 mg, 77% yield, m.p. = 177-178 °C. ¹H NMR (600 MHz, DMSO-*d*₆, 110 °C) δ 7.88 (s, 1H), 7.22 – 7.12 (m, 2H), 6.97 (t, *J* = 4.8 Hz, 1H), 5.04 (dd, *J* = 7.2, 1.2 Hz, 1H), 3.55 (dd, *J* = 10.8, 7.6 Hz, 1H), 3.14 (d, *J* = 11.2 Hz, 1H), 2.15 (s, 3H). ¹³C NMR (150 MHz, DMSO-*d*₆, 110 °C) δ 172.1, 167.9, 142.1, 129.2, 126.6, 124.0, 122.6, 115.1, 60.3, 32.1, 22.8. IR (thin film): vmax/cm⁻¹ = 2801, 2670, 2502, 2118, 1720, 1615, 1576, 1480, 1406, 1322, 1209, 1093, 1034, 931, 834. HRMS data for the desired product were in agreement with the previously reported literature data^[6].

7. Mechanistic Studies

7.1 Control Experiment with Triplet Quencher

2,5-Dimethylhexa-2,4-diene is known as a triplet quencher.^[2] The model reaction $1a \rightarrow 2a$ are significantly inhibited in the presence of 1.0 equivalent of 2,5-dimethylhexa-2,4-diene.

Conclusion of this experiment: This experiment supports the involvement of excited triplet state intermediates.

7.2 Stern-Volmer Luminescence Quenching Studies

Stern-Volmer quenching experiments were conducted on a Hitachi F4600 Fluorescence Spectrophotometer. Stern-Volmer luminescence quenching experiments were run with freshly prepared solutions of 2.0×10^{-5} M Ir(ppy)₃ and the appropriate amount of quencher in CH₃CN (for Tables S1 and S2) at room temperature. After

degassing with argon for 5 min, the emission spectra of the samples were collected. The solutions were irradiated at 340 nm and luminescence was measured at 550 nm (CH₃CN as the solvent). The data summarized in the tables are the phosphorescence intensity measured three times for each sample. The data illustrated in the graphs are the average of three experiments.

Vial	1	2	3	Average	I ₀ /I	[1a']
0	4115	3964	3918	3999	1.00	0
1	3875	3858	3717	3817	1.04	0.00004
2	3871	3845	3725	3814	1.05	0.00006
3	3929	3906	3776	3870	1.03	0.00008
4	3790	3741	3711	3747	1.07	0.0001
5	3662	3591	3570	3608	1.11	0.0002
6	3034	3011	2984	3010	1.32	0.0004

Table S1: Luminescence quenching data for Ir(ppy)₃ and 1a in CH₃CN.

Table S2: Luminescence quenching	data for Ir(ppy)3 and	DIPEA in CH ₃ CN.
----------------------------------	-----------------------	------------------------------

Vial	1	2	3	Average	I ₀ /I	[2a]
0	4115	3964	3918	3999	1.00	0
1	3592	3650	3582	3608	1.11	0.00002
2	2998	2859	2732	2863	1.39	0.00004
3	3000	2908	2809	2906	1.38	0.00006
4	2581	2448	2371	2467	1.62	0.00008
5	2352	2290	2259	2300	1.73	0.0001
6	1880	1857	1839	1859	2.16	0.0002

Figure S3: Luminescence quenching of Ir(ppy)₃ with varying concentrations of **1a** (blue) and DIPEA (red) in CH₃CN.

References:

[1] Q. Miao, Z. Shao, C. Shi, L. Ma, F. Wang, R. Fu, H. Gao, Z. Li, *Chem. Commun.*, 2019, 55, 7331.

[2] R. Kuwano, K. Sato, T. Kurokawa, D. Karube, Y. Ito, J. Am. Chem. Soc., 2000, 112, 7614.

[3] T. Doi, M. Kameda, K. Maruoka, J. Am. Chem. Soc., 2003, 125, 5139.

- [4] A. Baeza, A. Pfaltz, Chem. Eur. J., 2010, 16, 2036.
- [5] C. N. Rao, D. Lentz, H.-U. Reissig, Angew. Chem. Int. Ed., 2015, 54, 2750.

[6] N. Mršić, T. Jerphagnon, A. J. Minnaard, B. L. Feringa, J. G. de Vries, *Tetrahedron: Asymmetry*, 2010, **21**, 7.

8. Copies of NMR Spectra

S72

0 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -12 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -2 11 (ppa)

 $\xleftarrow[-118.8]{-118.8}\\\xleftarrow[-118.8]{-118.9}$

S96

< -118.97< -120.04

