Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Orientation of α-CD component of [2]rotaxanes affects their specific molecular recognition behaviour

Takuya Iwamoto, Shinobu Miyagawa, Masaya Naito and Yuji Tokunaga

Table of contents

Experimental	1	
Figure S1 . ¹ H NMR spectral titration of compound 5b with α -CD.	3	
Figure S2. ¹ H NMR spectra of the [2]rotaxanes 1 and 2 and the dumble	cell-shaped	
molecule 6 .	4	
Figure S3. HPLC analysis of a mixture of the [2]rotaxanes 1 and 2.	5	
Figure S4. 2D NMR spectra of the [2]rotaxane 1.	6	
Figure S5. 2D NMR spectra of the [2]rotaxane 2.	10	
Figure S6. ¹ H NMR spectra of the [2]rotaxane 1 in the presence of	Bu ₄ NOAc;	
determination of the association constant for 1 and the AcO ⁻ anion using E	3indFit.	
	14	
Figure S7. ¹ H NMR spectra of the [2]rotaxane 2 in the presence of Bu ₄ NOAc	2.16	
Figure S8. ¹ H NMR spectra of the dumbbell-shaped molecule 6 in the p	presence of	
Bu ₄ NOAc; determination of the association constant of 6 and the AcO	anion by	
BindFit.	17	
Figure S9. UV-Vis absorption spectra of the dumbbell-shaped molecule	e 6 in the	
presence of Bu ₄ NOAc in CH ₃ CN/DMSO (9:1).	19	
Figure S10. UV-Vis absorption spectra of the [2]rotaxanes 1 and 2	2 and the	
dumbbell-shaped molecule 6 in the presence of Bu ₄ NOH in CH ₃ CN/DMS	O (9:1).	
	20	
Figure S11. UV-Vis absorption spectra of the [2]rotaxanes 1 and 2	2 and the	
dumbbell-shaped molecule 6 in the presence of Bu ₄ NOMs in CH ₃ CN/DM	SO (9:1).	
	21	
Figure S12. ¹ H NMR spectra of the [2]rotaxane 1 in the presence of	Bu4NOMs;	
determination of the association constant for 1 and the MsO ⁻ anion using BindFit.		
	22	

Figure S13. ¹H NMR spectra of the [2]rotaxane 2 in the presence of Bu₄NOMs;

determination of the association constant for 2 and the MsO⁻ anion using BindFit.

23

Figure S14. ¹H NMR spectra of the dumbbell-shaped molecule 6 in the presence of Bu₄NOMs; determination of the association constant for 6 and the MsO⁻ anion using BindFit.

Figure S15. UV–Vis absorption spectra of the [2]rotaxanes 1 and 2 and the dumbbell-shaped molecule 6 in CH₃CN/DMSO (9:1) and H₂O/DMSO (9:1).

25

Figure S16. UV–Vis absorption spectra of the [2]rotaxanes 1 and 2 and the dumbbell-shaped molecule 6 in the presence of Bu_4NOAc in $H_2O/DMSO$ (9:1).

	26
Figure S17. ¹ H and ¹³ C NMR spectra of compound 3.	27
Figure S18. ¹ H and ¹³ C NMR spectra of compound 4.	28
Figure S19. ¹ H and ¹³ C NMR spectra of compound 5a.	29
Figure S20. ¹ H and ¹³ C NMR spectra of compound 5b.	30
Figure S21. ¹ H and ¹³ C NMR spectra of the [2]rotaxane 1.	31
Figure S22. ¹ H and ¹³ C NMR spectra of the [2]rotaxane 2.	32
Figure S23 . ¹ H and ¹³ C NMR spectra of the dumbbell-shaped molecule 6.	33

Experimental 2,4-Dihydroxy-3´,5´-dimethylbenzophenone (3)

SOCl₂ (12.0 mL) and DMF (1 drop) were added to 3,5-dimethylbenzoic acid (3.00 g, 20.0 mmol) and then the mixture was heated under reflux overnight. Evaporation of the excess SOCl₂ and DMF gave the crude acid chloride, which was dissolved in nitrobenzene (70 mL) and added to a suspension of resorcinol (2.97 g, 27 mmol) and AlCl₃ (10.7 g, 80 mmol) in nitrobenzene (40 mL) at 0 °C. The mixture was heated at 65 °C overnight. After cooling, the mixture was treated with 10% HCl (aq) (80 mL) and filtered through Celite. The organic phase of the filtrate was separated, washed with water and sat. NaCl (aq), dried (Na₂SO₄), and concentrated (nitrobenzene was evaporated through distillation). The solid residue was washed with hexane to afford a pale-yellow solid (2.95 g, 54%). ¹H NMR (600 MHz, acetone-*d*₆) δ : 2.35 (s, 6H), 6.38–6.41 (m, 2H), 7.21 (br s, 2H), 7.23 (br s, 1H), 7.49 (d, *J* = 8.0 Hz, 1H), 9.70 (br s, 1H), 12.67 (s, 1H). ¹³C NMR (125 MHz, acetone-*d*₆) δ : 21.2, 103.7, 108.6, 113.3, 127.1, 133.6, 136.8, 138.7, 139.3, 165.8, 167.1, 201.0.

The ¹H and ¹³C NMR spectra of **3** were identical to those reported previously.¹

5-(*N-tert*-Butoxycarbonylamino)-1-pentyl *p*-Toluenesulfonylate (4)

A solution of 5-amino-1-pentanol (3.10 g, 30.0 mmol) and di-*tert*-butyl dicarbonate (7.20 g, 33.0 mmol) in tetrahydrofuran (THF; 20 mL) was stirred overnight at room temperature. After evaporation of the solvent, the residue was dissolved in EtOAc. The solution was washed with water and sat. NaCl (aq), dried (Na₂SO₄), and concentrated to afford the crude carbamate **S1**. Tosyl chloride (6.86 g, 36 mmol) was added portionwise to a solution of crude **S1**, Et₃N (4.55 g, 45.0 mmol), and *N*,*N*-dimethylaminopyridine (DMAP; 367 mg, 3.00 mmol) in CH₂Cl₂ (40 mL) at 0 °C. After stirring for 4 h at room temperature, the mixture was treated with water and the aqueous phase extracted with CH₂Cl₂. The combined extracts were washed with water and sat. NaCl (aq), dried (Na₂SO₄), and concentrated. The residue was chromatographed (SiO₂; hexane/EtOAc,

2:1) to give a white solid (8.96 g, 84%). ¹H NMR (500 MHz, CDCl₃) δ : 1.30–1.37 (m, 2H), 1.39–1.48 (m, 11H), 1.62–1.70 (m, 2H), 2.46 (s, 3H), 3.01–3.11 (m, 2H), 4.02 (t, *J* = 6.3 Hz, 2H), 4.48 (br s, 1H), 7.35 (d, *J* = 8.3 Hz, 2H), 7.79 (d, *J* = 8.3 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ : 21.6, 22.6, 28.3, 28.4, 29.3, 40.1, 70.3, 79.0, 127.8, 129.8, 133.0, 144.7, 155.9.

The ¹H and ¹³C NMR spectra of **4** were identical to those reported previously.²

References

- N. A. Serratore, C. B. Anderson, G. B. Frost, T.-G. Hoang, S. J. Underwood, P. M. Gemmel, M. A. Hardy, C. J. Douglas, *J. Am. Chem. Soc.*, 2018, **140**, 10025–10033.
- L. A. Webster, M. Thomas, M. Urbaniak, S. Wyllie, H. Ong, M. Tinti, A. H. Fairlamb, M. Boesche, S. Ghidelli-Disse, G. Drewes, I. H. Gilbert, *ACS Infect. Dis.*, 2018, 4, 1475–1486.

Figure S1. ¹H NMR spectra (600 MHz, D₂O) of mixtures of **5b** (1 mM) and α -CD (0– 10 eq). (a) **5b** at 25 °C, (b) mixture of **5b** and α -CD (1 eq) at 25 °C, (c) mixture of **5b** and α -CD (6 eq) at 25 °C, (d) mixture of **5b** and α -CD (10 eq) at 25 °C, (e) sample (d) at 5 °C, (f) sample (d) at 1 °C. Red circle: pseudorotoxanes; •: α -CD. Partial spectra of Figure S1 are shown in Figure 2.

Figure S2. ¹H NMR spectra (600 MHz, DMSO- d_6 , 25 °C) of (a) the dumbbell-shaped molecule **6**, (b) the [2]rotaxane **1**, and (c) the [2]rotaxane **2**.

Figure S3. HPLC analysis of the [2]rotaxanes **1** and **2**. Peaks at 45 and 50 min are assigned to the [2]rotaxanes **1** and **2**, respectively.

HPLC conditions Column: Wako Wakosil-II 5C18 HG Prep (20 mm × 250 mm) Eluent: Water/MeCN (4:1) Flow rate: 12 mL/min Temperature: ambient temp. Detection: 250 nm (UV)

Figure S4a. COSY spectrum (600 MHz, DMSO-*d*₆, 25 °C) of the [2]rotaxane 1.

Figure S4b. ROESY spectrum (600 MHz, DMSO-*d*₆, 25 °C) of the [2]rotaxane 1.

Figure S5a. COSY spectrum (600 MHz, DMSO-*d*₆, 25 °C) of the [2]rotaxane 2.

Figure S5b. ROESY spectrum (600 MHz, DMSO-*d*₆, 25 °C) of the [2]rotaxane 2.

Figure S6a. Partial ¹H NMR spectra [600 MHz, CD₃CN/DMSO- d_6 (9:1), 25 °C] of mixtures of the [2]rotaxane **1** (0.5 mM) and Bu₄NOAc (0–30 eq).

bindfit fitter search Fitter: NMR 1:1 Fit iry Save Mole Su Fits 10 ppm Hm Hn Details Time to fit SSR Fitted data Fitted para 0.2192 : 0.1387 34 9.5 ppm 9 ppm 8.5 ppm Paramete Parameter (bounds) 8 ppri 7.5 ppr K (0 → ∞) 7556.55 M⁻¹ ± 14.7925 1000.00 % M⁻¹ 7 ppm 6.5 ppr Bac Nex 6 ppm 5.5 ppm 1.75 0.15 ppr Hm residuals Hn residuals 0.1 ppm 0.05 ppm 0 ppm -0.05 ppm -0.1 ppm -0.15 ppm 0.25 0.75 1.25 1.5 1.75 sivalent total [G]o/[H]o 2.75 2.5 2.25

Figure S6b. Simulation of titrations of the [2]rotaxane **1** and Bu₄NOAc using BindFit. The NMR titration experiments were performed twice.

Figure S7. Partial ¹H NMR spectra [600 MHz, CD₃CN/DMSO- d_6 (9:1), 25 °C] of mixtures of the [2]rotaxane **2** (0.5 mM) and Bu₄NOAc (0–30 eq).

Figure S8a. Partial ¹H NMR spectra [600 MHz, CD₃CN/DMSO- d_6 (9:1), 25 °C] of the dumbbell-shaped molecule **6** (0.5 mM) in the presence of Bu₄NOAc (0–50 eq).

Figure S8b. Simulation of titrations of the dumbbell-shaped molecule **6** and Bu₄NOAc using BindFit. The NMR titration experiments were performed twice.

Figure S9. UV/Vis absorption spectra of the dumbbell-shaped molecule **6** [10 μ M in CH₃CN/DMSO (9:1), room temperature] in the presence of Bu₄NOAc (0–500 eq).

Figure S10. UV/Vis absorption spectra [10 μ M, CH₃CN/DMSO (9:1), room temperature] of (a) the [2]rotaxane **1** in the presence of Bu₄NOH (0–8 eq), (b) the [2]rotaxane **2** in the presence of Bu₄NOH (0–5 eq), and (c) the dumbbell-shaped molecule **6** in the presence of Bu₄NOH (0–26 eq).

Figure S11. UV/Vis absorption spectra [10 μ M in CH₃CN/DMSO (9:1), room temperature] of (a) the [2]rotaxane **1**, (b) the [2]rotaxane **2**, and (c) the dumbbell-shaped molecule **6** in the presence of Bu₄NOMs (0–300 eq).

Figure S12a. Partial ¹H NMR spectra [600 MHz, CD₃CN/DMSO- d_6 (9:1), 25 °C] of the [2]rotaxane **1** (0.5 mM) in the presence of Bu₄NOMs (0–550 eq).

Figure S12b. Simulation of titrations of the [2]rotaxane 1 and Bu₄NOMs using BindFit.

Figure S13a. Partial ¹H NMR spectra [600 MHz, CD₃CN/DMSO- d_6 (9:1), 25 °C] of the [2]rotaxane **2** (0.5 mM) in the presence of Bu₄NOMs (0–1250 eq).

Figure S13b. Simulation of titrations of the [2]rotaxane 2 and Bu₄NOMs using BindFit.

Figure S14a. Partial ¹H NMR spectra [600 MHz, CD₃CN/DMSO- d_6 (9:1), 25 °C] of the dumbbell-shaped molecule **6** (0.5 mM) in the presence of Bu₄NOMs (0–930 eq).

Figure S14b. Simulation of titrations of the dumbbell-shaped molecule 6 and Bu₄NOMs using BindFit.

Figure S15. UV/Vis absorption spectra of (a) the [2]rotaxanes **1**, **2**, and the dumbbell-shaped molecule **6** [10 μ M in CH₃CN/DMSO (9:1), room temperature] and (b) the [2]rotaxanes **1** and **2** [10 μ M in H₂O/DMSO (9:1), room temperature].

Figure S16. UV/Vis absorption spectra [10 μ M in H₂O/DMSO (9:1), room temperature] of (a) the [2]rotaxane **1** and (b) the [2]rotaxane **2** in the presence of Bu₄NOAc (0–150 eq).

Figure S17a. ¹H NMR (600 MHz, acetone- d_6) spectrum of compound 3.

Figure S17b. ¹³C NMR (125 MHz, acetone- d_6) spectrum of compound **3**.

Figure S18a. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 4.

Figure S18b. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 4.

Figure S19a. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 5a.

Figure S19b. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 5a.

Figure S20a. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound 5b.

Figure S20b. ¹³C NMR (125 MHz, CD₃OD) spectrum of compound 5b.

Figure S21a. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of the [2]rotaxane 1.

Figure S21b. ¹³C NMR (150 MHz, CD₃OD) spectrum of the [2]rotaxane 1.

Figure S22a. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of the [2]rotaxane 2.

Figure S22b. ¹³C NMR (150 MHz, CD₃OD) spectrum of the [2]rotaxane 2.

Figure S23a. ¹H NMR (600 MHz, DMSO- d_6) spectrum of the dumbbell-shaped molecule **6**.

Figure S23b. ¹³C NMR (125 MHz, DMSO- d_6) spectrum of the dumbbell-shaped molecule **6**.