Supporting Information

One-Pot Stepwise Approach to Axially Chiral

Quinoline-3-Carbaldehydes Enabled by Iminium-Allenamine

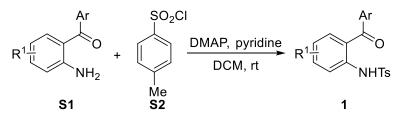
Cascade Catalysis

You-Dong Shao,^b Dan-Dan Han,^b Meng-Meng Dong,^b Xin-Ru Yang^b and Dao-Juan Cheng^{a,b,*}

 ^a School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
 ^b School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China E-mail: chengdaojuan0614@163.com

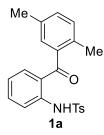
Table of Contents

General Information	S2
Preparation and Analytic Data of 2-(Tosylamino)aryl Ketones 1	S2
General Procedure for the Atroposelective Aza-Michael-aldol-aromatization Sequence	S11
Procedure for the Scale-up Experiment	S11
Procedure for the Stepwise Synthesis	S12
Procedure for the Transformations of Products 3	S13
Analytic Data for the Products	S15
Investigation on the Racemization Barrier of 3aa	S33
References	S35
NMR Spectra of 2-Aminoaryl Ketones 1	S36
NMR Spectra of Products	S59
HPLC Traces	S101
X-ray Crystallographic Information	S138

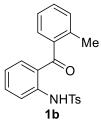

General Information

¹H and ¹³C NMR spectra were recorded on a Bruker AC-400 FT (400 MHz for ¹H NMR and 100 MHz for ¹³C NMR, respectively) using tetramethylsilane as an internal reference. Chemical shifts (δ) and coupling constants (*J*) were expressed in ppm and Hz, respectively. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer (Micromass). ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Thermo Scientific UltiMate 3000 instrument equipped with an isostatic pump, using a chiral stationary phase column (Daicel Co. CHIRALPAK). The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical Rotation was measured on an Anton Paar MCP 100/150 polarimeter. X-ray crystallography analysis of single crystal was performed on a SuperNova, Dual, Cu at zero, Eos diffractometer.

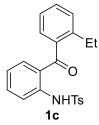
Chloroform was distilled over calcium hydride. Other solvents and chemicals were purchased from the Sinopharm Chemical Reagent Co., Adamas, Acros, Alfa Aesar, and TCI, and used as received. 2-Alkynals 2 were prepared according to the literature.¹ Catalysts C1-6 and C8-9 were purchased from Daicel Chiral Technologies (China) CO., LTD. and used directly.


Preparation and Analytic Data of 2-(Tosylamino)aryl Ketones 1

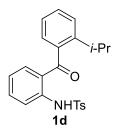
2-(Tosylamino)aryl ketones 1 were prepared from the corresponding 2-aminoaryl ketones $S1^2$ and 4-toluenesulfonyl chloride S2 via the following procedure. The new compounds were characterized in this report.



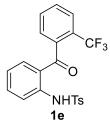
To a solution of **S1** (1.0 mmol) in dichloromethane (5.0 mL) were added pyridine (0.5 mL), DMAP (24.4 mg, 0.20 mmol) and 4-toluenesulfonyl chloride **S2** (286.0 mg, 1.5 mmol) at 0 °C successively. The mixture was then allowed to stir at room temperature for 24 h. Dilute the reaction with 50 mL of dichloromethane. The reaction mixture was washed twice with a saturated aqueous solution of $CuSO_4$ (2 × 30 mL) and once with brine (30 mL). The organic


layer was dried with anhydrous Na_2SO_4 and concentrated in vacuo. The crude product was then purified by chromatography on silica gel (petroleum ether/ethyl acetate) to give **1**.

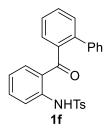
N-(2-(2,5-Dimethylbenzoyl)phenyl)-4-methylbenzenesulfonamide **1a** was obtained as a white solid in 90% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 106-107 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.06 (br., s, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.52-7.44 (m, 1H), 7.30-7.24 (m, 1H), 7.23-7.15 (m, 3H), 7.11 (d, *J* = 8.0 Hz, 1H), 6.98 (t, *J* = 7.6 Hz, 1H), 6.71 (s, 1H), 2.35 (s, 3H), 2.29 (s, 3H), 2.04 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.4, 143.8, 140.2, 138.5, 136.6, 134.9, 134.8, 134.5, 132.8, 131.2, 130.8, 129.7, 128.3, 127.3, 124.3, 123.0, 120.7, 21.5, 20.9, 19.0; HRMS (ESI) calcd for C₂₂H₂₂NO₃S (M+H)⁺ 380.1315, found 380.1316.

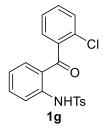


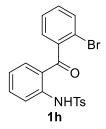
4-Methyl-*N*-(2-(2-methylbenzoyl)phenyl)benzenesulfonamide **1b** was obtained as a white solid in 92% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 99-100 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.03 (br., s, 1H), 7.80 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.53-7.45 (m, 1H), 7.40-7.33 (m, 1H), 7.28-7.14 (m, 5H), 7.02-6.94 (m, 1H), 6.88 (dd, *J* = 7.6, 1.2 Hz, 1H), 2.36 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 143.9, 140.3, 138.5, 136.5, 136.1, 134.9, 134.5, 130.9, 130.5, 129.7, 128.0, 127.3, 125.2, 124.3, 123.0, 120.7, 21.5, 19.6; HRMS (ESI) calcd for C₂₁H₁₈NO₃S (M–H)⁻ 364.1013, found 364.1036.



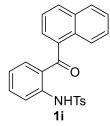
N-(2-(2-Ethylbenzoyl)phenyl)-4-methylbenzenesulfonamide 1c was obtained as a yellowish


oil in 93% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃): δ 11.12 (br., s, 1H), 7.80 (d, J = 8.4 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H), 7.52-7.44 (m, 1H), 7.43-7.37 (m, 1H), 7.32-7.24 (m, 2H), 7.23-7.13 (m, 3H), 6.97 (t, J = 7.6 Hz, 1H), 6.83 (d, J =7.2 Hz, 1H), 2.47 (q, J = 7.6 Hz, 2H), 2.36 (s, 3H), 1.08 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.3, 143.9, 142.4, 140.4, 138.2, 136.5, 134.9, 134.7, 130.5, 129.7, 129.4, 127.8, 127.3, 125.1, 124.2, 122.9, 120.5, 26.2, 21.5, 15.7; HRMS (ESI) calcd for C₂₂H₂₀NO₃S (M-H)⁻ 378.1169, found 378.1187.

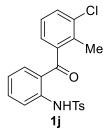

N-(2-(2-Isopropylbenzoyl)phenyl)-4-methylbenzenesulfonamide **1d** was obtained as a white solid in 89% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 8:1); m.p. 104-105 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.27 (br., s, 1H), 7.80 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.51-7.45 (m, 1H), 7.44-7.38 (m, 2H), 7.28-7.20 (m, 3H), 7.19-7.13 (m, 1H), 6.99-6.92 (m, 1H), 6.82 (dd, *J* = 7.6, 1.2 Hz, 1H), 2.80-2.69 (m, 1H), 2.38 (s, 3H), 1.13 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 202.8, 146.6, 143.9, 140.6, 138.0, 136.6, 135.1, 134.9, 130.4, 129.7, 127.3, 127.0, 126.1, 125.2, 123.9, 122.7, 120.1, 30.4, 24.0, 21.6; HRMS (ESI) calcd for C₂₃H₂₄NO₃S (M+H)⁺ 394.1471, found 394.1482.


4-Methyl-*N*-(2-(2-(trifluoromethyl)benzoyl)phenyl)benzenesulfonamide **1e** was obtained as a white solid in 92% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 8:1); m.p. 109-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.09 (br., s, 1H), 7.82-7.72 (m, 4H), 7.65-7.55 (m, 2H), 7.52-7.46 (m, 1H), 7.28-7.22 (m, 2H), 7.15 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.11-7.05 (m, 1H), 6.98-6.92 (m, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1, 144.1, 140.9, 137.5 (q, *J* = 2.1 Hz), 136.4, 135.6, 134.9, 131.4. 130.1, 129.7, 127.9, 127.8 (q, *J* = 32.2 Hz), 127.3, 126.8 (q, *J* = 4.5 Hz), 123.4 (q, *J* = 272.3 Hz), 122.6, 122.4, 119.6, 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -58.15; HRMS (ESI) calcd for C₂₁H₁₅F₃NO₃S (M−H)⁻ 418.0730, found 418.0749.

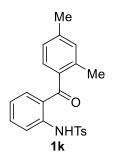
N-(2-(Biphenylcarbonyl)phenyl)-4-methylbenzenesulfonamide **1f** was obtained as a yellowish oil in 90% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃): δ 11.05 (br., s, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.61 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.58-7.52 (m, 1H), 7.46 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.41-7.35 (m, 1H), 7.35-7.27 (m, 2H), 7.24-7.15 (m, 7H), 7.12 (dd, *J* = 7.6, 1.2 Hz, 1H), 6.86-6.79 (m, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.0, 143.9, 141.1, 140.3, 139.8, 138.5, 136.7, 134.8, 134.5, 130.7, 130.3, 129.7, 128.7, 128.6, 128.5, 127.5, 127.3, 126.9, 123.3, 122.3, 119.0, 21.6; HRMS (ESI) calcd for C₂₆H₂₂NO₃S (M+H)⁺ 428.1315, found 428.1319.

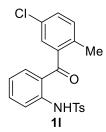


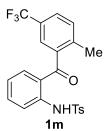
N-(2-(2-Chlorobenzoyl)phenyl)-4-methylbenzenesulfonamide **1g** was obtained as a yellow solid in 94% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 116-117 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.08 (br., s, 1H), 7.80 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.53-7.47 (m, 1H), 7.46-7.38 (m, 2H), 7.37-7.31 (m, 1H), 7.27-7.19 (m, 3H), 7.17-7.11 (m, 1H), 7.02-6.94 (m, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 198.7, 144.1, 140.6, 138.2, 136.5, 135.5, 134.6, 131.4, 130.9, 130.0, 129.8, 128.7, 127.4, 126.8, 122.9, 122.7, 120.0, 21.5; HRMS (ESI) calcd for C₂₀H₁₅ClNO₃S (M–H)⁻ 384.0467, found 384.0487.



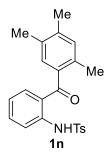
N-(2-(2-Bromobenzoyl)phenyl)-4-methylbenzenesulfonamide **1h** was obtained as a yellow solid in 92% yield. $R_f = 0.30$ (petroleum ether/ethyl acetate = 5:1); m.p. 84-85 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.10 (br., s, 1H), 7.82 (dd, *J* = 8.4, 0.8 Hz, 1H), 7.77 (d, *J* = 8.0 Hz,


2H), 7.59 (dd, J = 8.0, 1.6 Hz, 1H), 7.53-7.46 (m, 1H), 7.42-7.31 (m, 2H), 7.23 (d, J = 8.0 Hz, 3H), 7.12 (dd, J = 7.6, 2.0 Hz, 1H), 7.01-6.93 (m, 1H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 144.0, 140.8, 140.2, 136.6, 135.5, 134.7, 133.1, 131.4, 129.8, 128.6, 127.4, 127.3, 122.9, 122.3, 119.9, 119.2, 21.5; HRMS (ESI) calcd for C₂₀H₁₅BrNO₃S (M–H)⁻ 427.9962, found 427.9958.


N-(2-(1-Naphthoyl)phenyl)-4-methylbenzenesulfonamide **1i** was obtained as a yellow solid in 94% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 117-118 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.00 (br., s, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.92-7.82 (m, 2H), 7.74 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.54-7.47 (m, 2H), 7.45-7.37 (m, 2H), 7.27-7.22 (m, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 7.10 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.97-6.89 (m, 1H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.3, 144.0, 140.2, 136.5, 136.2, 134.9, 134.7, 133.5, 131.5, 130.5, 129.8, 128.5, 127.4, 127.4, 126.6, 125.4, 125.2, 124.2, 123.2, 121.3, 21.6; HRMS (ESI) calcd for C₂₄H₁₈NO₃S (M–H)⁻ 400.1013, found 400.1038.


N-(2-(3-Chloro-2-methylbenzoyl)phenyl)-4-methylbenzenesulfonamide **1j** was obtained as a yellow solid in 89% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 105-106 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.09 (br., s, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.54-7.43 (m, 2H), 7.23 (d, *J* = 7.6 Hz, 3H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.02-6.94 (m, 1H), 6.84 (d, *J* = 7.6 Hz, 1H), 2.37 (s, 3H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.1, 144.0, 140.6, 136.5, 135.8, 135.4, 134.5, 133.6, 131.0, 129.7, 127.3, 126.5, 125.7, 123.3, 123.0, 120.4, 21.5, 17.0; HRMS (ESI) calcd for C₂₁H₁₇CINO₃S (M–H)⁻ 398.0623, found 398.0646.

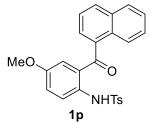
N-(2-(2,4-Dimethylbenzoyl)phenyl)-4-methylbenzenesulfonamide **1k** was obtained as a white solid in 91% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 103-104 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.92 (br., s, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.50-7.44 (m, 1H), 7.29-7.23 (m, 1H), 7.17 (d, *J* = 8.0 Hz, 2H), 7.06 (s, 1H), 7.01-6.93 (m, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 2.36 (s, 3H), 2.34 (s, 3H), 2.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.9, 143.9, 141.0, 140.0, 136.6, 136.4, 135.6, 134.5, 134.3, 131.8, 129.7, 128.7, 127.3, 125.8, 125.0, 123.0, 121.0, 21.5, 21.4, 19.7; HRMS (ESI) calcd for C₂₂H₂₀NO₃S (M–H)⁻ 378.1169, found 378.1187.



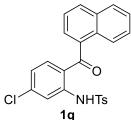
N-(2-(5-Chloro-2-methylbenzoyl)phenyl)-4-methylbenzenesulfonamide **11** was obtained as a yellowish oil in 90% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃): δ 10.82 (br., s, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.57-7.49 (m, 1H), 7.33 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.25-7.15 (m, 4H), 7.07-7.00 (m, 1H), 6.77 (d, *J* = 2.4 Hz, 1H), 2.37 (s, 3H), 2.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.4, 144.2, 140.2, 139.8, 136.2, 135.3, 134.6, 134.2, 132.4, 131.1, 130.4, 129.8, 127.6, 127.3, 124.1, 123.5, 121.4, 21.6, 19.0; HRMS (ESI) calcd for C₂₁H₁₇ClNO₃S (M–H)[–] 398.0623, found 398.0636.

4-Methyl-N-(2-(2-methyl-5-(trifluoromethyl)benzoyl)phenyl)benzenesulfonamide 1m was

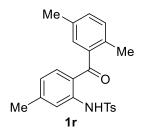
obtained as a yellowish oil in 91% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃): δ 10.92 (br., s, 1H), 7.83 (dd, J = 8.4, 1.2 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.62 (dd, J = 8.4, 2.0 Hz, 1H), 7.57-7.51 (m, 1H), 7.40 (d, J = 8.0 Hz, 1H), 7.24-7.16 (m, 3H), 7.14 (s, 1H), 7.06-6.98 (m, 1H), 2.35 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.5, 144.2, 140.5, 140.3, 139.0, 136.3, 135.5, 134.2, 131.6, 129.7, 128.0 (q, J = 32.7 Hz), 127.3, 126.9 (q, J = 3.6 Hz), 124.4 (q, J = 3.8 Hz), 123.7 (q, J = 270.5 Hz), 123.6, 123.3, 121.1, 21.4, 19.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.46; HRMS (ESI) calcd for C₂₂H₁₇F₃NO₃S (M–H)⁻ 432.0887, found 432.0902.

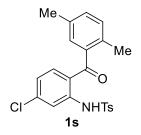


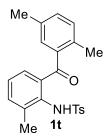
4-Methyl-*N*-(2-(2,4,5-trimethylbenzoyl)phenyl)benzenesulfonamide **1n** was obtained as a yellow solid in 90% yield. $R_f = 0.55$ (petroleum ether/ethyl acetate = 5:1); m.p. 97-98 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.95 (br., s, 1H), 7.79 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.51-7.44 (m, 1H), 7.31-7.26 (m, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.02-6.95 (m, 2H), 6.64 (s, 1H), 2.34 (s, 3H), 2.26 (s, 3H), 2.18 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 143.8, 140.0, 139.6, 136.5, 136.0, 134.5, 134.4, 133.8, 133.4, 132.3, 129.6, 129.6, 127.3, 125.0, 123.1, 121.0, 21.5, 19.7, 19.2, 19.1; HRMS (ESI) calcd for C₂₃H₂₂NO₃S (M–H)⁻ 392.1326, found 392.1338.



(2-Amino-5-fluorophenyl)(2-methyl-5-(trifluoromethyl)phenyl)methanone **10** was obtained as a yellowish oil in 91% yield. $R_f = 0.20$ (petroleum ether/ethyl acetate 8:1); ¹H NMR (400 MHz, CDCl₃): δ 10.43 (br., s, 1H), 7.87 (dd, J = 9.2, 4.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 3H), 7.41 (d, J = 8.4 Hz, 1H), 7.32-7.25 (m, 1H), 7.20 (d, J = 8.0 Hz, 2H), 7.02 (s, 1H), 6.83 (dd, J = 8.4, 2.8 Hz, 1H), 2.34 (s, 3H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.1 (d, ⁴ $J_{C-F} = 2.1$ Hz), 158.1 (d, ¹ $J_{C-F} = 245.1$ Hz), 144.4, 140.6, 138.1, 136.3, 136.2, 135.9, 131.8, 129.8, 128.1 (q, J = 32.9 Hz), 127.4 (q, J = 3.5 Hz), 127.2, 125.7 (d, ³ $J_{C-F} = 5.8$ Hz), 124.6, 124.5,


124.4 (q, J = 3.8 Hz), 123.6 (q, J = 270.5 Hz), 122.6 (d, ${}^{2}J_{C-F} = 22.4$ Hz), 119.6 (d, ${}^{2}J_{C-F} = 23.5$ Hz), 21.4, 19.6; 19 F NMR (376 MHz, CDCl₃) δ -62.49, -116.35; HRMS (ESI) calcd for C₂₂H₁₆F₄NO₃S (M–H)⁻ 450.0793, found 450.0806.

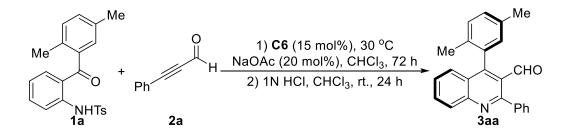

N-(2-(1-Naphthoyl)-4-methoxyphenyl)-4-methylbenzenesulfonamide **1p** was obtained as a white solid in 93% yield. $R_f = 0.30$ (petroleum ether/ethyl acetate 5:1); m.p. 104-105 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.13 (br., s, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.89 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 9.2 Hz, 1H), 7.70 (dd, *J* = 8.4, 1.20 Hz, 1H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.55-7.49 (m, 1H), 7.47-7.39 (m, 1H), 7.38-7.32 (m, 1H), 7.13-7.07 (m, 3H), 6.88 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.69 (d, *J* = 3.2 Hz, 1H), 3.56 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.3, 155.7, 143.7, 136.1, 135.5, 133.6, 132.4, 132.0, 130.6, 129.7, 128.6, 128.5, 128.2, 127.6, 127.4, 126.6, 125.4, 125.2, 123.9, 119.9, 118.9, 55.6, 21.5; HRMS (ESI) calcd for C₂₅H₂₂NO₄S (M+H)⁺ 432.1264, found 432.1272.


N-(2-(1-Naphthoyl)-5-chlorophenyl)-4-methylbenzenesulfonamide **1q** was obtained as a yellow solid in 94% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 109-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.15 (br., s, 1H), 7.99 (d, *J* = 8.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 2.0 Hz, 1H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.55-7.50 (m, 1H), 7.47-7.39 (m, 2H), 7.27-7.22 (m, 2H), 7.21-7.15 (m, 2H), 6.88 (dd, *J* = 8.4, 2.0 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.5, 144.3, 141.5, 141.3, 136.3, 135.9, 135.8, 133.6, 131.7, 130.4, 129.9, 128.6, 127.5, 127.4, 127.2, 126.7, 125.0, 124.3, 123.2, 123.1, 120.6, 21.6; HRMS (ESI) calcd for C₂₄H₁₇ClNO₃S (M–H)⁻ 434.0623, found 434.0642.

N-(2-(2,5-Dimethylbenzoyl)-5-methylphenyl)-4-methylbenzenesulfonamide **1r** was obtained as a white solid in 90% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 110-111 °C; ¹H NMR (400 MHz, CDCl₃): δ 10.18 (br., s, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.61 (s, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 7.18-7.12 (m, 2H), 7.11-7.07 (m, 1H), 6.78 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.72 (d, *J* = 2.0 Hz, 1H), 2.37 (s, 3H), 2.36 (s, 3H), 2.28 (s, 3H), 2.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.1, 146.4, 143.8, 140.4, 138.8, 136.6, 134.8, 134.7, 132.5, 130.9, 130.7, 129.8, 129.6, 128.1, 127.9, 127.3, 124.0, 121.7, 121.0, 22.1, 21.5, 20.9, 19.0; HRMS (ESI) calcd for C₂₃H₂₂NO₃S (M–H)⁻ 392.1326, found 392.1323.

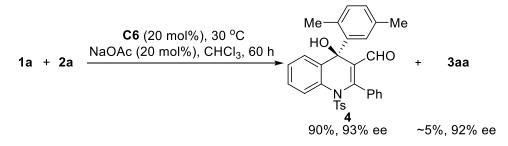


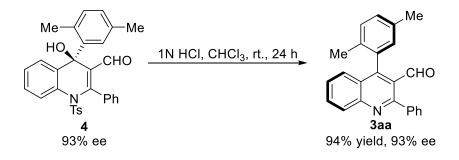
N-(5-Chloro-2-(2,5-dimethylbenzoyl)phenyl)-4-methylbenzenesulfonamide **1s** was obtained as a yellow solid in 89% yield. $R_f = 0.40$ (petroleum ether/ethyl acetate = 5:1); m.p. 108-109 °C; ¹H NMR (400 MHz, CDCl₃): δ 11.20 (br., s, 1H), 7.82 (d, *J* = 2.0 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.27-7.22 (m, 3H), 7.21-7.16 (m, 1H), 7.15-7.09 (m, 1H), 6.93 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.74 (s, 1H), 2.38 (s, 3H), 2.29 (s, 3H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 201.6, 144.3, 141.5, 141.2, 138.1, 136.3, 135.6, 135.1, 132.8, 131.4, 130.9, 129.8, 128.2, 127.3, 123.1, 122.1, 120.1, 21.6, 20.9, 19.0; HRMS (ESI) calcd for C₂₂H₁₉ClNO₃S (M–H)⁻ 412.0780, found 412.0795.


N-(2-(2,5-Dimethylbenzoyl)-6-methylphenyl)-4-methylbenzenesulfonamide **1t** was obtained as a colorless oil in 82% yield. $R_f = 0.60$ (petroleum ether/ethyl acetate = 5:1); ¹H NMR (400 MHz, CDCl₃): δ 9.25 (br., s, 1H), 7.54-7.41 (m, 3H), 7.16-7.05 (m, 3H), 7.04-6.94 (m, 3H), 6.22 (s, 1H), 2.66 (s, 3H), 2.23 (s, 6H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 200.1, 143.4, 139.9, 136.4, 136.3, 135.9, 135.7, 135.4, 133.7, 133.1, 131.8, 131.2, 130.8, 130.8, 129.3, 128.0, 125.9, 21.4, 20.9, 19.9, 19.8; HRMS (ESI) calcd for C₂₃H₂₄NO₃S (M+H)⁺ 394.1471, found 394.1484.

General Procedure for the Atroposelective Aza-Michael-aldol-aromatization Sequence

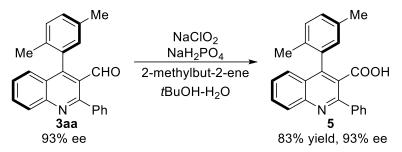
To a flame dried sealed tube equipped with a magnetic stirring bar were added 2-(tosylamino)aryl ketones **1** (0.10 mmol), catalyst **C6** (9.3 mg, 0.020 mmol), NaOAc (1.6 mg, 0.020 mmol), 2-alkynals **2** (0.12 mmol) and anhydrous chloroform (1.0 mL) successively. The mixture was stirred at 30 °C or 50 °C for 60-120 h. After full conversion of the first step as detected by TLC, chloroform (1.0 mL) and 1N HCl (1.5 mL) were added to the reaction mixture for the second step, and the resulting solution was stirred at room temperature for another 24-72 h. Then the reaction was diluted with ethyl acetate (10 mL) and neutralized with saturated NaHCO₃ solution (10 mL). The organic layer is separated, and the aqueous layer is extracted with ethyl acetate (2 × 10 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethyl acetate = 30:1 to 5:1) to give **3**.


Procedure for the Scale-up Experiment

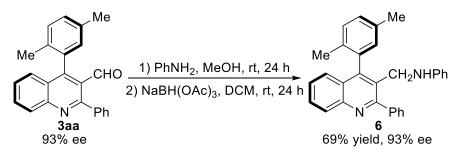

To a flame dried sealed tube (120 mL) equipped with a magnetic stirring bar were added N-(2-(2,5-dimethylbenzoyl)phenyl)-4-methylbenzenesulfonamide **1a** (379.1 mg, 1.0 mmol), catalyst **C6** (69.8 mg, 0.15 mmol), NaOAc (16.4 mg, 0.20 mmol), 3-phenylpropiolaldehyde **2a** (156.1 mg, 1.20 mmol) and anhydrous chloroform (10.0 mL) successively. The mixture was stirred at 30 °C for 72 h. After full conversion of the first step as detected by TLC, 1N HCl (15.0 mL) were added to the reaction mixture for the second step, and the resulting solution was stirred at room temperature for another 24 h. Then the reaction was diluted with ethyl acetate (30 mL) and neutralized with saturated NaHCO₃ solution (20 mL). The organic layer is separated, and the aqueous layer is extracted with ethyl acetate (2 × 30 mL). The

combined organic phases were washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethyl acetate = 20:1 to 5:1) to give **3aa** as a yellow oil in 92% yield (311.4 mg) and 93% ee.

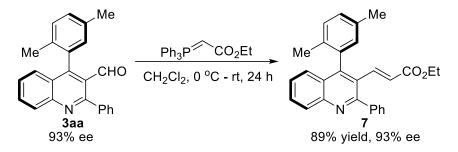
Procedure for the Stepwise Synthesis

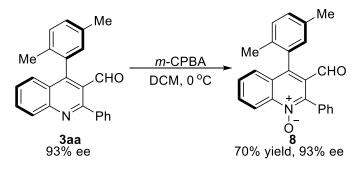


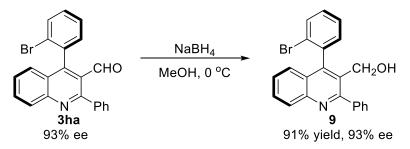
To a flame dried sealed tube equipped with a magnetic stirring bar were added **1a** (75.8 mg, 0.20 mmol), catalyst **C6** (18.6 mg, 0.040 mmol), NaOAc (3.3 mg, 0.040 mmol), **2a** (31.2 mg, 0.24 mmol) and anhydrous chloroform (2.0 mL) successively. The mixture was stirred at 30 °C for 60 h. Solvent was evaporated, the crude mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 70:30) to give **4** in 90% yield (91.6 mg) and 93% ee along with **3aa** (3.4 mg, 5% yield, 92% ee).



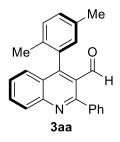
To a stirred solution of aldehyde **4** (50.9 mg, 0.10 mmol) in CHCl₃ (1.0 mL), 1N HCl (1.5 mL) were added, and the resulting solution was stirred at room temperature for 24 h. Then the reaction was diluted with ethyl acetate (10 mL) and neutralized with saturated NaHCO₃ solution (10 mL). The organic layer is separated, and the aqueous layer is extracted with ethyl acetate (2×10 mL). The combined organic phases were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethyl acetate = 20:1 to 5:1) to give **3aa** in 94% yield (31.7 mg) and 93% ee.

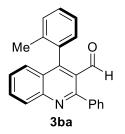

Procedure for the Transformations of Products 3


To a suspension of compound **3aa** (33.7 mg, 0.10 mmol) and 2-methylbut-2-ene (911.7 mg, 1.3 mmol) in *t*BuOH (3.0 mL) were added a saturated solution of NaClO₂ (33.5 mg, 0.37 mmol) and NaH₂PO₄ (56.0 mg, 0.50 mmol). The mixture was stirred at room temperature for 3 h. The mixture was quenched with saturated NH₄Cl (10 mL) and extracted with EtOAc (4 \times 10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethyl acetate = 70:30) to give **5** as a yellow solid in 83% yield (29.3 mg) and 93% ee.³


To a suspension of (*S*)-**3aa** (33.7 mg, 0.10 mmol) in methanol (3.0 mL) were added aniline (10.0 uL, 0.11 mmol) and 4-toluenesulfonic acid monohydrate (3.8 mg, 0.020 mmol). After stirring at room temperature for 24 h, the mixture was concentrated in vacuo. Then, DCM (2.0 mL), NaBH(OAc)₃ (63.6 mg, 0.30 mmol) and CH₃COOH (17.0 uL, 0.30 mmol) were added successively. The mixture was stirred at room temperature for another 24 h, quenched with sat. NaHCO₃ (10 mL) and extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethyl acetate = 90:10) to give **6** as a yellow solid in 69% yield (28.6 mg) and 93% ee.

To a stirred solution of aldehyde (*S*)-**3aa** (33.7 mg, 0.10 mmol) in CH_2Cl_2 (2.0 mL) was added ethyl 2-(triphenylphosphoranylidene)acetate (41.8 mg, 0.12 mmol) at 0 °C. The resultant mixture was allowed to warm to rt and stirred for 24 h. The crude mixture was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 90:10) to give **7** as a yellow oil in 89% yield (36.2 mg) and 93% ee.⁴

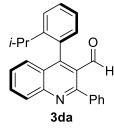

m-CPBA (40.6 mg, 85%, 0.20 mmol) was added to a solution of (*S*)-**3aa** (33.7 mg, 0.10 mmol) in CH₂Cl₂ (2.0 mL) at 0 °C. After stirring for 24 h, the reaction mixture was quenched with sat. Na₂SO₃ (5 mL) and stirred at this temperature for 10 minutes. Then, saturated aqueous NaHCO₃ solution (5 mL) was added. After being extracted with CH₂Cl₂ (3 × 10 mL), the organic phases were combined and washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethylacetate = 70:30) to give **8** as a yellowish oil in 70% yield (24.7 mg) and 93% ee.²


To a suspension of (S)-**3ha** (38.7 mg, 0.10 mmol) in methanol (3.0 mL) was added NaBH₄ (7.6 mg, 0.20 mmol) at 0 $^{\circ}$ C, After stirring at this temperature for 20 minutes, the mixture was

quenched with sat. NH₄Cl (10 mL) at 0 °C and extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo to give a crude residue which was purified by flash column chromatography (petroleum ether/ethyl acetate = 70:30) to give **9** as a white solid in 91% yield (35.4 mg) and 93% ee.²

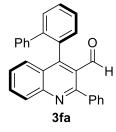
Analytic Data for the Products

4-(2,5-Dimethylphenyl)-2-phenylquinoline-3-carbaldehyde **3aa** was obtained as a yellowish oil in 96% yield (32.3 mg) and 94% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 6.98 min, t_r (minor) = 7.56 min]. [α]_D²⁵ = -9.00 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.84-7.77 (m, 1H), 7.69-7.63 (m, 2H), 7.53-7.43 (m, 5H), 7.28-7.20 (m, 2H), 6.98 (s, 1H), 2.36 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 159.2, 152.4, 148.7, 139.6, 135.3, 134.3, 133.2, 132.1, 130.0, 129.9, 129.8, 129.7, 129.6, 129.0, 128.5, 127.5, 127.2, 126.5, 126.2, 21.1, 19.5; HRMS (ESI) calcd for C₂₄H₂₀NO (M+H)⁺ 338.1539, found 338.1541.

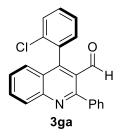


2-Phenyl-4-*o*-tolylquinoline-3-carbaldehyde **3ba** was obtained as a yellow solid in 95% yield (30.7 mg) and 93% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.42 min, t_r (major) = 9.68 min]. m.p. 111-112 °C; $[\alpha]_D^{25} = -6.34$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.88-7.78 (m, 1H), 7.72-7.61 (m, 2H), 7.57-7.46 (m, 4H), 7.46-7.30 (m, 4H), 7.16 (d, J = 7.6 Hz, 1H), 2.02 (s, 3H); ¹³C NMR (100

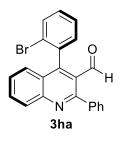
MHz, CDCl₃): δ 192.2, 159.4, 151.9, 148.7, 139.4, 136.2, 134.6, 132.1, 130.1, 129.9, 129.1, 129.0, 128.8, 128.6, 127.5, 127.1, 126.4, 126.2, 125.8, 20.0; HRMS (ESI) calcd for C₂₃H₁₈NO (M+H)⁺ 324.1383, found 324.1389.


4-(2-Ethylphenyl)-2-phenylquinoline-3-carbaldehyde **3ca** was obtained as a yellowish oil in 86% yield (29.0 mg) and 97% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.50 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 6.30 min, t_r (major) = 8.28 min]. [α]_D²⁵ = -17.85 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.25 (d, *J* = 8.8 Hz, 1H), 7.87-7.79 (m, 1H), 7.66 (d, *J* = 6.4 Hz, 2H), 7.57-7.40 (m, 7H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.2 Hz, 1H), 2.39-2.25 (m, 2H), 1.02 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 159.3, 152.1 148.5, 142.1, 139.4, 133.9, 132.1, 129.8, 129.8, 129.2, 129.1, 129.0, 128.5, 128.3, 127.4, 127.3, 126.6, 125.8, 26.4, 14.7; HRMS (ESI) calcd for C₂₄H₂₀NO (M+H)⁺ 338.1539, found 338.1545.

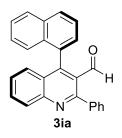
4-(2-Isopropylphenyl)-2-phenylquinoline-3-carbaldehyde **3da** was obtained as a yellowish oil in 81% yield (28.4 mg) and 99% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.50 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 4.87 min, t_r (major) = 7.65 min]. [α]_D²⁵ = -20.63 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.27 (d, *J* = 8.8 Hz, 1H), 7.88-7.79 (m, 1H), 7.70-7.62 (m, 2H), 7.58-7.41 (m, 7H), 7.36-7.29 (m, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 2.53-2.39 (m, 1H), 1.13 (d, *J* = 7.2 Hz, 3H), 1.04 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 159.2, 152.3, 148.3, 147.0, 139.3, 133.1, 132.1, 129.8, 129.7, 129.2, 129.1, 129.0, 128.5, 127.4, 127.3, 126.8, 126.7, 125.8, 125.7, 31.0, 24.1, 23.7; HRMS (ESI) calcd for $C_{25}H_{22}NO$ (M+H)⁺ 352.1696, found 352.1704.

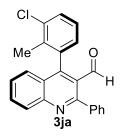


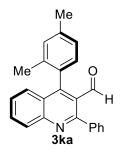
2-Phenyl-4-(2-(trifluoromethyl)phenyl)quinoline-3-carbaldehyde **3ea** was obtained as a yellowish oil in 85% yield (32.2 mg) and 98% ee (step 1, 30 °C, 60 h; step 2, rt, 48 h). $R_f = 0.50$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 8.44 min, t_r (minor) = 9.07 min]. $[\alpha]_D^{25} = -5.14$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.29 (d, J = 8.8 Hz, 1H), 7.91-7.81 (m, 2H), 7.74-7.63 (m, 4H), 7.59-7.47 (m, 4H), 7.35-7.29 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 159.7, 148.3, 148.1, 138.4, 134.4 (q, J = 2.0 Hz), 132.2, 131.6, 130.8, 130.2, 130.1, 129.6, 129.4, 128.8 (q, J = 30.4 Hz), 128.7, 128.6, 127.5, 127.4, 127.0, 126.6, 126.4 (q, J = 4.9 Hz), 125.9, 123.7 (q, J = 272.3 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -59.64; HRMS (ESI) calcd for C₂₃H₁₅F₃NO (M+H)⁺ 378.1100, found 378.1108.

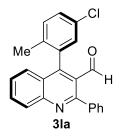


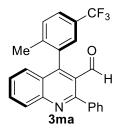
4-(Biphenyl-2-yl)-2-phenylquinoline-3-carbaldehyde **3fa** was obtained as a white solid in 64% yield (24.7 mg) and 98% ee (step 1, 50 °C, 120 h; step 2, rt, 24 h). $R_f = 0.30$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.90 min, t_r (major) = 10.01 min]. m.p. 106-107 °C; $[\alpha]_D^{25} = -7.67$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.77 (s, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.83-7.76 (m, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.63-7.57 (m, 1H), 7.56-7.48 (m, 3H), 7.47-7.37 (m, 5H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.10-6.95 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 159.3, 151.4, 148.5, 142.0, 140.4, 139.2, 133.7, 131.9, 130.2, 130.1, 129.8, 129.7, 129.1, 129.0, 128.9, 128.5, 127.9, 127.5, 127.4, 127.3, 127.1, 126.8, 126.5; HRMS (ESI) calcd for C₂₈H₂₀NO (M+H)⁺ 386.1539,

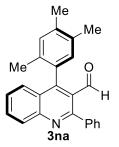

found 386.1543.


4-(2-Chlorophenyl)-2-phenylquinoline-3-carbaldehyde **3ga** was obtained as a yellow solid in 93% yield (32.0 mg) and 90% ee (step 1, 30 °C, 72 h; step 2, rt, 48 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, tr (minor) = 9.55 min, tr (major) = 10.26 min]. m.p. 116-117 °C; $[\alpha]_D^{25} = +52.15$ (c = 1.2, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 7.88-7.82 (m, 1H), 7.73-7.67 (m, 2H), 7.61-7.48 (m, 6H), 7.48-7.42 (m, 2H), 7.33-7.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 159.6, 148.8, 148.1, 138.8, 134.5, 132.8, 132.1, 130.8, 130.0, 130.0, 129.9, 129.7, 129.3, 128.7, 127.6, 126.9, 126.7, 126.2, 125.9; HRMS (ESI) calcd for C₂₂H₁₅CINO (M+H)⁺ 344.0837, found 344.0842.

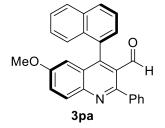

4-(2-Bromophenyl)-2-phenylquinoline-3-carbaldehyde **3ha** was obtained as a yellowish oil in 94% yield (36.4 mg) and 93% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). $R_f = 0.30$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, tr (minor) = 14.34 min, tr (major) = 15.28 min]. $[\alpha]_D^{25} = +42.08$ (c = 1.2, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 8.27 (d, *J* = 8.0 Hz, 1H), 7.88-7.81 (m, 1H), 7.76 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.72-7.67 (m, 2H), 7.58-7.47 (m, 5H), 7.45-7.37 (m, 2H), 7.30 (dd, *J* = 7.6, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 159.6, 149.7, 148.9, 138.9, 136.6, 132.9, 132.2, 130.8, 130.1, 130.1, 129.9, 129.3, 128.7, 127.7, 127.4, 126.9, 126.0, 125.8, 122.7; HRMS (ESI) calcd for C₂₂H₁₅BrNO (M+H)⁺ 388.0332, found 388.0341.


4-(Naphthalen-1-yl)-2-phenylquinoline-3-carbaldehyde **3ia** was obtained as a yellow solid in 92% yield (33.0 mg) and 92% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (20:80), 1.0 mL/min, λ = 254 nm, t_r (major) = 6.88 min, t_r (minor) = 8.25 min]. m.p. 84-85 °C; [α]_D²⁵ = +44.75 (c = 1.2, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.92 (s, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.85-7.77 (m, 1H), 7.73-7.67 (m, 2H), 7.66-7.58 (m, 1H), 7.56-7.47 (m, 4H), 7.44 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.40-7.30 (m, 3H), 7.26-7.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 192.0, 159.2, 151.0, 148.5, 139.4, 133.3, 132.4, 132.1, 132.1, 129.8, 129.8, 129.1, 129.0, 128.5, 128.5, 127.7, 127.4, 127.4, 127.4, 126.9, 126.9, 126.4, 125.5, 125.1; HRMS (ESI) calcd for C₂₆H₁₈NO (M+H)⁺ 360.1383, found 360.1389.

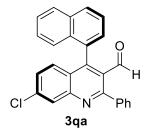

4-(3-Chloro-2-methylphenyl)-2-phenylquinoline-3-carbaldehyde **3ja** was obtained as a yellow solid in 89% yield (31.8 mg) and 93% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.41 min, t_r (minor) = 6.86 min]. m.p. 118-119 °C; $[\alpha]_D^{25} = -7.13$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 7.90-7.81 (m, 1H), 7.73-7.63 (m, 2H), 7.58-7.47 (m, 5H), 7.40 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 7.2 Hz, 1H), 7.05 (d, J = 7.6 Hz, 1H), 2.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 159.6, 150.4, 148.7, 139.0, 136.8, 135.3, 134.6, 132.2, 130.0, 129.9, 129.6, 129.3, 128.7, 127.7, 127.5, 127.0, 126.7, 126.2, 126.0, 17.6; HRMS (ESI) calcd for C₂₃H₁₇CINO (M+H)⁺ 358.0993, found 358.0996.


4-(2,4-Dimethylphenyl)-2-phenylquinoline-3-carbaldehyde **3ka** was obtained as a yellowish oil in 91% yield (30.7 mg) and 92% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 7.17 min, t_r (minor) = 7.81 min]. [α]_D²⁵ = -8.33 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.27 (d, *J* = 8.4 Hz, 1H), 7.87-7.80 (m, 1H), 7.70-7.63 (m, 2H), 7.57-7.43 (m, 5H), 7.21 (s, 1H), 7.16 (d, *J* = 8.4 Hz, 1H), 7.05 (d, *J* = 8.0 Hz, 1H), 2.45 (s, 3H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 159.2, 152.4, 148.4, 139.3, 138.6, 136.0, 132.1, 131.4, 130.9, 129.8, 129.7, 129.1, 129.0, 128.5, 127.4, 127.1, 126.6, 126.5, 126.4, 21.3, 19.9; HRMS (ESI) calcd for C₂₄H₂₀NO (M+H)⁺ 338.1539, found 338.1545.

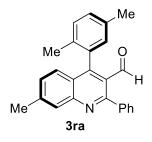
4-(5-Chloro-2-methylphenyl)-2-phenylquinoline-3-carbaldehyde **3la** was obtained (step 1, 30 °C, 60 h; step 2, rt, 48 h) as a yellow solid in 90% yield (30.7 mg) and 91% ee. $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.58 min, t_r (minor) = 6.94 min]. m.p. 99-100 °C; $[\alpha]_D^{25} = -9.40$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.28 (d, *J* = 8.8 Hz, 1H), 7.90-7.81 (m, 1H), 7.72-7.63 (m, 2H), 7.58-7.48 (m, 4H), 7.45-7.37 (m, 2H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.14 (d, *J* = 2.0 Hz, 1H), 1.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.8, 159.6, 149.7, 148.7, 138.8, 136.7, 135.0, 132.3, 131.6, 131.4, 130.0, 129.9, 129.4, 128.7, 128.7, 128.6, 127.8, 126.9, 126.2, 125.9, 19.4; HRMS (ESI) calcd for C₂₃H₁₇CINO (M+H)⁺ 358.0993, found 358.0999.


4-(2-Methyl-5-(trifluoromethyl)phenyl)-2-phenylquinoline-3-carbaldehyde **3ma** was obtained as a white solid in 92% yield (36.0 mg) and 93% ee (step 1, 30 °C, 60 h; step 2, rt, 72 h). R_f = 0.50 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (08:92), 1.0 mL/min, λ = 254 nm, t_r (minor) = 5.34 min, t_r (major) = 5.76 min]. m.p. 123-124 °C; [α]_D²⁵ = -8.50 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.29 (d, *J* = 8.4 Hz, 1H), 7.90-7.83 (m, 1H), 7.74-7.65 (m, 3H), 7.60-7.47 (m, 5H), 7.39 (s, 1H), 7.35 (d, *J* = 8.8 Hz, 1H), 2.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 159.8, 149.2, 148.8, 140.8, 138.7, 136.0, 132.3, 130.4, 130.1, 130.0, 129.4, 128.7, 128.4 (q, *J* = 32.5 Hz), 127.9, 126.7, 126.2, 125.9, 125.4 (q, *J* = 3.7 Hz), 124.1 (q, *J* = 270.4 Hz), 20.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.13; HRMS (ESI) calcd for C₂₄H₁₇F₃NO (M+H)⁺ 392.1257, found 392.1263.

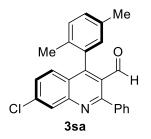
2-Phenyl-4-(2,4,5-trimethylphenyl)quinoline-3-carbaldehyde **3na** was obtained as a yellowish oil in 91% yield (32.0 mg) and 93% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (major) = 6.90 min, t_r (minor) = 7.64 min]. [α]_D²⁵ = -61.35 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 7.86-7.79 (m, 1H), 7.69-7.61 (m, 2H), 7.55-7.44 (m, 5H), 7.15 (s, 1H), 6.93 (s, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 159.1, 152.7, 148.5, 139.5, 137.2, 133.9, 133.4, 132.0, 131.5, 131.4, 130.3, 129.7, 128.9, 128.4, 127.3, 127.2, 126.6, 126.4, 19.6, 19.4, 19.3; HRMS (ESI) calcd for C₂₅H₂₂NO (M+H)⁺ 352.1696, found 352.1698.



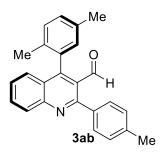
6-Fluoro-4-(2-methyl-5-(trifluoromethyl)phenyl)-2-phenylquinoline-3-carbaldehyde **30a** was obtained as a white solid in 80% yield (32.7 mg) and 91% ee (step 1, 30 °C, 72 h; step 2, rt, 72 h). R_f = 0.50 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (05:95), 1.0 mL/min, λ = 254 nm, t_r (major) = 4.94 min, t_r (minor) = 5.17 min]. m.p. 131-132 °C; [α]_D²⁵ = -11.13 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.30 (dd, *J* = 9.2, 5.2 Hz, 1H), 7.74-7.67 (m, 3H), 7.66-7.60 (m, 1H), 7.59-7.47 (m, 4H), 7.37 (s, 1H), 6.93 (dd, *J* = 9.6, 2.8 Hz, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.5, 161.2 (d, ¹*J*_{C-F} = 249.2 Hz), 159.1 (d, ⁴*J*_{C-F} = 2.7 Hz), 148.4 (d, ³*J*_{C-F} = 5.9 Hz), 145.9, 140.7, 138.3, 135.5, 132.6 (d, ³*J*_{C-F} = 9.1 Hz), 126.8, 125.7 (q, *J* = 3.6 Hz), 125.3 (q, *J* = 3.6 Hz), 124.0 (q, *J* = 270.5 Hz), 122.6 (d, ²*J*_{C-F} = 25.9 Hz), 109.9 (d, ²*J*_{C-F} = 23.0 Hz), 20.0; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.18. -109.35; HRMS (ESI) calcd for C₂₄H₁₆F₄NO (M+H)⁺ 410.1163, found 410.1173.



6-Methoxy-4-(naphthalen-1-yl)-2-phenylquinoline-3-carbaldehyde **3pa** was obtained as a yellow solid in 86% yield (33.3 mg) and 89% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.30 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (20:80), 1.0 mL/min, λ = 254 nm, t_r (major) = 7.68 min, t_r (minor) = 9.19 min]. m.p. 113-114 °C; [α]_D²⁵ = -19.00 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.90 (s, 1H), 8.20 (d, *J* = 9.2 Hz, 1H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.71-7.60 (m, 3H), 7.52-7.41 (m, 6H), 7.39-7.31 (m, 1H), 7.30-7.22 (m, 1H), 6.54 (d, *J* = 2.8 Hz, 1H), 3.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 158.4, 156.8, 149.1, 144.8, 139.4, 133.3, 132.7, 131.9, 131.2, 129.8, 129.1, 128.8, 128.5, 128.4, 128.0, 127.6, 127.6, 126.9, 126.3, 125.4, 125.2, 124.6, 104.9, 55.3; HRMS (ESI)

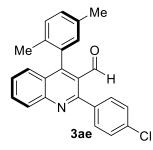

calcd for $C_{27}H_{20}NO_2$ (M+H)⁺ 390.1489, found 390.1496.

7-Chloro-4-(naphthalen-1-yl)-2-phenylquinoline-3-carbaldehyde **3qa** was obtained as a yellow solid in 90% yield (35.4 mg) and 92% ee (step 1, 30 °C, 60 h; step 2, rt, 36 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 7.51 min, t_r (minor) = 8.69 min]. m.p. 116-117 °C; $[\alpha]_D^{25} = +11.47$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.90 (s, 1H), 8.28 (d, J = 2.0 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.4 Hz, 1H), 7.72-7.66 (m, 2H), 7.62 (t, J = 8.0 Hz, 1H), 7.56-7.47 (m, 4H), 7.42 (d, J = 6.8 Hz, 1H), 7.38-7.29 (m, 2H), 7.28-7.23 (m, 1H), 7.20 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 191.7, 160.4, 150.9, 149.0, 139.0, 138.4, 133.4, 132.0, 131.9, 129.9, 129.4, 129.4, 128.8, 128.8, 128.7, 128.6, 128.6, 127.7, 127.6, 127.2, 126.5, 125.4, 125.3, 125.2; HRMS (ESI) calcd for C₂₆H₁₇ClNO (M+H)⁺ 394.0993, found 394.0994.

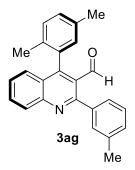

4-(2,5-Dimethylphenyl)-7-methyl-2-phenylquinoline-3-carbaldehyde **3ra** was obtained as a yellow solid in 93% yield (32.8 mg) and 94% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.37 min, t_r (major) = 6.68 min]. m.p. 171-172 °C; $[\alpha]_D^{25} = +6.80$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 8.03 (s, 1H), 7.68-7.61 (m, 2H), 7.54-7.45 (m, 3H), 7.37-7.29 (m, 2H), 7.27-7.20 (m, 2H), 6.97 (s, 1H), 2.58 (s, 3H), 2.36 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 159.5, 152.3, 148.9, 143.0, 139.7, 135.3, 134.5, 133.1, 130.0, 129.8, 129.7, 129.7, 129.5, 128.9, 128.4, 126.9, 125.7, 124.3, 22.0, 21.0, 19.5; HRMS (ESI) calcd for C₂₅H₂₂NO (M+H)⁺ 352.1696, found 352.1703.

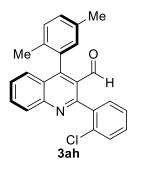

7-Chloro-4-(2,5-dimethylphenyl)-2-phenylquinoline-3-carbaldehyde **3sa** was obtained as a yellow solid in 89% yield (33.0 mg) and 95% ee (step 1, 30 °C, 60 h; step 2, rt, 36 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.34 min, t_r (major) = 6.18 min]. m.p. 171-172 °C; $[\alpha]_D^{25} = +10.75$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 8.24 (d, J = 2.0 Hz, 1H), 7.69-7.59 (m, 2H), 7.57-7.47 (m, 3H), 7.46-7.34 (m, 2H), 7.30-7.20 (m, 2H), 6.95 (s, 1H), 2.37 (s, 3H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 191.9, 160.4, 152.2, 148.9, 139.0, 138.2, 135.4, 133.8, 133.0, 130.1, 129.8, 129.5, 129.3, 128.7, 128.5, 128.5, 128.4, 126.5, 124.7, 21.0, 19.4; HRMS (ESI) calcd for C₂₄H₁₉ClNO (M+H)⁺ 372.1150, found 372.1157.

4-(2,5-Dimethylphenyl)-8-methyl-2-phenylquinoline-3-carbaldehyde **3ta** was obtained as a yellowish oil in 54% yield (19.0 mg) and 95% ee (step 1, 30 °C, 96 h; step 2, rt, 72 h). R_f = 0.60 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 5.16 min, t_r (minor) = 5.41 min]. [α]_D²⁵ = -9.71 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.04 (d, *J* = 2.0 Hz, 1H), 7.75-7.70 (m, 2H), 7.67 (d, *J* = 6.8 Hz, 1H), 7.54-7.47 (m, 3H), 7.39-7.33 (m, 1H), 7.29-7.20 (m, 3H), 6.96 (s, 1H), 2.89 (s, 3H), 2.37 (s, 3H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.8, 157.5, 152.3, 147.6, 139.9, 137.9, 135.2, 134.8, 133.1, 132.0, 130.3, 129.9, 129.7, 129.4, 128.9, 128.9, 128.3, 127.2, 127.0, 126.1, 126.0, 125.0, 21.0, 19.5, 18.1; HRMS (ESI) calcd for C₂₅H₂₂NO (M+H)⁺ 352.1696, found 352.1706.


3-(2,5-Dimethylphenyl)-2-*p*-tolylquinoline-3-carbaldehyde **3ab** was obtained as a yellow solid in 90% yield (31.6 mg) and 94% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 5.77 min, t_r (major) = 8.89 min]. m.p. 106-107 °C; $[\alpha]_D^{25} = -17.67$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.24 (d, *J* = 8.4 Hz, 1H), 7.85-7.76 (m, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.50-7.41 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.28-7.16 (m, 2H), 6.96 (s, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 159.2, 152.2, 148.6, 139.1, 136.5, 135.3, 134.4, 133.1, 132.0, 130.0, 129.8, 129.7, 129.7, 129.5, 129.3, 127.3, 127.1, 126.5, 126.2, 21.4, 21.0, 19.5; HRMS (ESI) calcd for C₂₅H₂₂NO (M+H)⁺ 352.1696, found 352.1702.

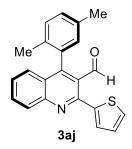
4-(2,5-Dimethylphenyl)-2-(4-methoxyphenyl)quinoline-3-carbaldehyde **3ac** was obtained as a yellow solid in 89% yield (32.7 mg) and 92% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.30 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 8.61 min, t_r (major) = 13.89 min]. m.p. 150-151 °C; [α]_D²⁵ = -21.56 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.85-7.76 (m, 1H), 7.68-7.59 (m, 2H), 7.50-7.39 (m, 2H), 7.30-7.19 (m, 2H), 7.09-7.01 (m, 2H), 6.96 (s, 1H), 3.88 (s, 3H), 2.37 (s, 3H), 1.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 160.5, 158.7, 152.1, 148.6, 135.2, 134.4, 133.1, 131.9, 131.7, 131.4, 129.9, 129.6, 129.5, 127.1, 127.1, 126.4, 126.0, 114.0, 55.4, 21.0, 19.5; HRMS (ESI) calcd for C₂₅H₂₂NO₂ (M+H)⁺ 368.1645, found 368.1651.


4-(2,5-Dimethylphenyl)-2-(4-fluorophenyl)quinoline-3-carbaldehyde **3ad** was obtained as a white solid in 91% yield (32.3 mg) and 92% ee (step 1, 30 °C, 72 h; step 2, rt, 48 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 6.58 min, t_r (major) = 9.18 min]. m.p. 127-128 °C; $[\alpha]_D^{25} = -11.22$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.00 (s, 1H), 8.22 (d, J = 8.4 Hz, 1H), 7.88-7.78 (m, 1H), 7.69-7.59 (m, 2H), 7.54-7.41 (m, 2H), 7.30-7.26 (m, 1H), 7.25-7.14 (m, 3H), 6.99 (s, 1H), 2.38 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 163.3 (d, ¹ $_{JC-F} = 247.2$ Hz), 157.9, 153.2, 148.5, 135.7 (d, ⁴ $_{JC-F} = 3.3$ Hz), 135.4, 133.9, 133.1, 132.3, 131.6 (d, ³ $_{JC-F} = 8.4$ Hz), 130.1, 129.8, 129.7, 127.6, 127.1, 126.2, 126.1, 115.5 (d, ² $_{JC-F} = 21.7$ Hz), 21.0, 19.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.22; HRMS (ESI) calcd for C₂₄H₁₉FNO (M+H)⁺ 356.1445, found 356.1448.

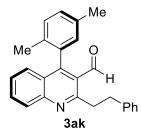

2-(4-Chlorophenyl)-4-(2,5-dimethylphenyl)quinoline-3-carbaldehyde **3ae** was obtained as a yellowish oil in 87% yield (32.3 mg) and 93% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 7.17 min, t_r (major) = 10.50 min]. [α]_D²⁵ = -20.90 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.89-7.79 (m, 1H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.54-7.41 (m, 4H), 7.32-7.22 (m, 2H), 6.99 (s, 1H), 2.38 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 157.7, 153.4, 148.5, 138.1, 135.4, 135.1, 133.7, 133.1, 132.3, 131.0, 130.1, 129.8, 129.8, 129.8, 128.6, 127.7, 127.0, 126.2, 126.1, 21.0, 19.5; HRMS (ESI) calcd for C₂₄H₁₉ClNO (M+H)⁺ 372.1150, found 372.1155.

2-(4-Bromophenyl)-4-(2,5-dimethylphenyl)quinoline-3-carbaldehyde **3af** was obtained as a yellowish oil in 85% yield (35.3 mg) and 94% ee (step 1, 30 °C, 72 h; step 2, rt, 48 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.12 min, t_r (major) = 10.49 min]. [α]_D²⁵ = -23.15 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.99 (s, 1H), 8.22 (d, *J* = 8.4 Hz, 1H), 7.90-7.77 (m, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.56-7.40 (m, 4H), 7.31-7.21 (m, 2H), 6.99 (s, 1H), 2.38 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.1, 157.7, 153.5, 148.6, 138.7, 135.5, 133.7, 133.1, 132.3, 131.6, 131.3, 130.1, 129.9, 129.9, 129.8, 127.7, 127.0, 126.2, 126.1, 123.5, 21.0, 19.5; HRMS (ESI) calcd for C₂₄H₁₉BrNO (M+H)⁺ 416.0645, found 416.0651.

4-(2,5-Dimethylphenyl)-2-(*m*-tolyl)quinoline-3-carbaldehyde **3ag** was obtained as a yellowish oil in 93% yield (32.6 mg) and 93% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). R_f = 0.40 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 5.26 min, t_r (major) = 6.52 min]. [α]_D²⁵ = -12.60 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 7.87-7.78 (m, 1H), 7.55-7.43 (m, 3H), 7.42-7.35 (m, 2H), 7.32-7.20 (m, 3H), 6.97 (s, 1H), 2.46 (s, 3H), 2.37 (s, 3H), 1.97 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.3, 159.5, 152.2, 148.5, 139.3, 138.3, 135.3, 134.4, 133.1, 132.0, 130.3, 130.0, 129.9, 129.8, 129.6, 129.5, 128.3, 127.4, 127.2, 127.1, 126.5, 126.2, 21.6, 21.0, 19.5; HRMS (ESI) calcd for C₂₅H₂₂NO (M+H)⁺ 352.1696, found 352.1707.

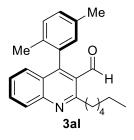


2-(2-Chlorophenyl)-4-(2,5-dimethylphenyl)quinoline-3-carbaldehyde **3ah** was obtained as a yellowish oil as a mixture of rotamers in a 1.4:1 ratio in 90% yield (33.5 mg) and 97% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 6.17 min, t_r (major) = 8.49 min]. $[\alpha]_D^{25} = -35.60$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.94-9.85 (1H; minor rotamer: 9.91, major rotamer: 9.87), 8.25 (d, *J* = 8.4 Hz, 1H), 7.89-7.81 (m, 1H), 7.65-7.57 (m, 1H), 7.57-7.48 (m, 2H), 7.47-7.38 (m, 3H), 7.31-7.24 (m, 2H), 7.15-6.94 (1H; minor rotamer: 7.13, major rotamer: 2.06, minor rotamer: 1.91); ¹³C NMR (100 MHz, CDCl₃): δ 191.4, 156.2, 148.7, 139.4, 135.6, 133.2, 133.2, 132.3, 131.9, 130.4, 130.3, 130.3, 130.2, 129.9, 129.9, 129.3, 127.9, 127.3, 127.3, 126.9, 126.5, 126.3, 21.0, 19.5; HRMS (ESI) calcd for $C_{24}H_{19}$ CINO (M+H)⁺ 372.1150, found 372.1158.

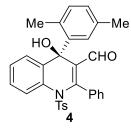


4-(2,5-Dimethylphenyl)-2-(naphthalen-2-yl)quinoline-3-carbaldehyde **3ai** was obtained as a yellowish oil in 95% yield (36.9 mg) and 93% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). R_f = 0.30 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, λ = 254 nm, t_r (minor) = 8.39 min, t_r (major) = 13.31 min]. [α]_D²⁵ = -27.00 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 8.13 (s, 1H), 8.01-7.88 (m, 3H), 7.87-7.75 (m, 2H), 7.59-7.41 (m, 4H), 7.30-7.23 (m, 2H), 7.00 (s, 1H), 2.37 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.2, 159.1, 152.5, 148.6, 136.9, 135.3, 134.2, 133.4, 133.1, 133.1, 132.1, 130.0, 129.8, 129.7, 129.6, 129.6, 128.6, 128.1, 127.8, 127.5, 147.

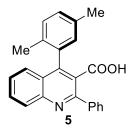
127.1, 127.1, 126.8, 126.6, 126.4, 126.2, 21.0, 19.5; HRMS (ESI) calcd for $C_{28}H_{22}NO$ (M+H)⁺ 388.1696, found 388.1700.

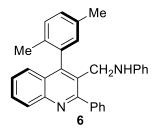


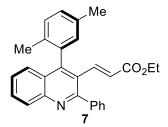
4-(2,5-Dimethylphenyl)-2-(thiophen-2-yl)quinoline-3-carbaldehyde **3aj** was obtained as a yellow solid in 92% yield (31.6 mg) and 93% ee (step 1, 30 °C, 72 h; step 2, rt, 24 h). $R_f = 0.40$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.90 min, t_r (major) = 7.99 min]. m.p. 46-47 °C; $[\alpha]_D^{25} = -39.70$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 10.17 (s, 1H), 8.18 (d, J = 8.4 Hz, 1H), 7.83-7.74 (m, 1H), 7.59-7.52 (m, 1H), 7.48-7.42 (m, 1H), 7.41-7.34 (m, 2H), 7.28-7.20 (m, 2H), 7.18-7.11 (m, 1H), 6.94 (s, 1H), 2.36 (s, 3H), 1.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 192.4, 151.4, 148.6, 142.5, 135.3, 134.3, 133.2, 131.9, 130.5, 130.0, 129.6, 129.6, 129.5, 129.4, 128.0, 127.4, 127.1, 126.5, 126.0, 21.0, 19.5; HRMS (ESI) calcd for C₂₂H₁₈NOS (M+H)⁺ 344.1104, found 344.1113.

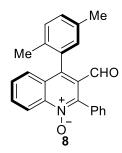


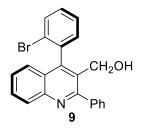
4-(2,5-Dimethylphenyl)-2-phenethylquinoline-3-carbaldehyde **3ak** was obtained as a yellowish oil in 85% yield (31.1 mg) and 97% ee (step 1, 30 °C, 60 h; step 2, rt, 24 h). $R_f = 0.50$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.35 min, t_r (major) = 6.20 min]. [α]_D²⁵ = -8.86 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.91 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.86-7.77 (m, 1H), 7.48-7.42 (m, 1H), 7.39 (dd, J = 8.4, 1.6 Hz, 3H), 7.33-7.24 (m, 4H), 7.24-7.17 (m, 1H), 6.99 (s, 1H), 3.74-3.61 (m, 2H), 3.21-3.05 (m, 2H), 2.37 (s, 3H), 1.92 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.4, 160.7, 155.8, 148.7, 142.0, 135.6, 133.3, 133.2, 132.2, 130.5, 130.2, 129.9, 129.2, 128.8, 128.3, 126.9, 126.7, 125.9, 125.8, 125.3, 39.5, 35.7, 20.9, 19.5; HRMS (ESI)


calcd for $C_{26}H_{24}NO(M+H)^+$ 366.1852, found 366.1861.


4-(2,5-Dimethylphenyl)-2-hexylquinoline-3-carbaldehyde **3al** was obtained as a yellowish oil in 91% yield (31.4 mg) and 98% ee (step 1, 30 °C, 72 h; step 2, rt, 48 h). R_f = 0.60 (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, λ = 254 nm, t_r (minor) = 4.48 min, t_r (major) = 5.53 min]. [α]_D²⁵ = -17.64 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.96 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.84-7.76 (m, 1H), 7.46-7.33 (m, 2H), 7.28-7.20 (m, 2H), 6.99 (s, 1H), 3.45-3.28 (m, 2H), 2.37 (s, 3H), 1.92 (s, 3H), 1.84-1.69 (m, 3H), 1.55-1.46 (m, 2H), 1.39-1.31 (m, 3H), 0.90 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 193.3, 162.1, 155.8, 148.5, 135.6, 133.4, 133.2, 132.2, 130.4, 130.2, 129.9, 129.0, 126.7, 126.6, 125.7, 125.1, 37.6, 31.8, 30.0, 29.6, 22.7, 20.9, 19.4, 14.1; HRMS (ESI) calcd for C₂₄H₂₈NO (M+H)⁺ 346.2165, found 346.2168.


4-(2,5-Dimethylphenyl)-4-hydroxy-2-phenyl-1-tosyl-1,4-dihydroquinoline-3-carbaldehyde **4** was obtained as a yellowish oil in 90% yield (91.6 mg) and 93% ee. $R_f = 0.20$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (major) = 6.39 min, t_r (minor) = 6.90 min]. [α]_D²⁵ = -16.78 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 9.04 (d, *J* = 8.4 Hz, 1H), 8.16-8.08 (m, 1H), 7.80-7.72 (m, 3H), 7.65-7.56 (m, 2H), 7.56-7.52 (m, 2H), 7.49 (t, *J* = 8.0 Hz, 2H), 7.32 (s, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.97 (s, 1H), 2.39 (s, 3H), 2.35 (s, 3H), 1.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.7, 159.9, 156.9, 142.1, 140.5, 139.8, 136.5, 136.0, 132.7, 131.9, 131.9, 130.9, 130.7, 130.5, 130.3, 129.0, 128.9, 128.6, 127.8, 127.4, 127.2, 125.9, 124.0, 21.3, 21.0, 19.5, 17.7; HRMS (ESI) calcd for C₃₁H₂₈NO₄S (M+H)⁺ 510.1734, found 510.1740.

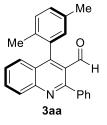

4-(2,5-Dimethylphenyl)-2-phenylquinoline-3-carboxylic acid **5** was obtained as a yellow solid in 83% yield (29.3 mg) and 93% ee. $R_f = 0.20$ (petroleum ether/ethyl acetate 1:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (05:95), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.09 min, t_r (major) = 10.81 min]. m.p. 232-233 °C; $[\alpha]_D^{25} = -68.85$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 1H), 7.73-7.59 (m, 3H), 7.44 (t, J = 7.6 Hz, 1H), 7.37-7.25 (m, 4H), 7.07 (s, 2H), 6.91 (s, 1H), 2.24 (s, 3H), 1.89 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 147.4, 146.8, 139.3, 134.8, 134.8, 133.6, 130.7, 129.9, 129.7, 129.3, 128.9, 128.9, 128.7, 128.3, 127.2, 126.3, 125.7, 20.9, 19.4; HRMS (ESI) calcd for C₂₄H₂₀NO₂ (M+H)⁺ 354.1489, found 354.1498.


N-((4-(2,5-Dimethylphenyl)-2-phenylquinolin-3-yl)methyl)aniline **6** was obtained as a yellow solid in 69% yield (28.6 mg) and 93% ee. $R_f = 0.30$ (petroleum ether/ethyl acetate 5:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (10:90), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 5.07 min, t_r (major) = 7.37 min]. m.p. 186-187 °C; $[\alpha]_D^{25} = +4.45$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.25 (d, *J* = 8.4 Hz, 1H), 7.82-7.75 (m, 2H), 7.74-7.66 (m, 1H), 7.53-7.39 (m, 4H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.28-7.25 (m, 1H), 7.21-7.16 (m, 1H), 7.05 (s, 1H), 7.00 (t, *J* = 8.0 Hz, 2H), 6.61 (t, *J* = 7.2 Hz, 1H), 6.20 (d, *J* = 8.0 Hz, 2H), 4.30 (d, *J* = 13.2 Hz, 1H), 4.05 (d, *J* = 13.2 Hz, 1H), 2.36 (s, 3H), 1.94 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.5, 147.3, 135.6, 135.5, 132.9, 130.9, 130.4, 129.8, 129.5, 129.3, 128.9, 128.8, 128.7, 128.6, 128.1, 126.8, 126.7, 126.1, 117.7, 113.3, 43.6, 21.0, 19.4; HRMS (ESI) calcd for C₃₀H₂₇N₂ (M+H)⁺ 415.2169, found 415.2172.

Ethyl (*E*)-3-(4-(2,5-dimethylphenyl)-2-phenylquinolin-3-yl)acrylate **7** was obtained as a yellow solid in 89% yield (36.2 mg) and 93% ee. $R_f = 0.30$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak IC, isopropanol/hexane (03:97), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 11.56 min, t_r (major) = 12.31 min]. m.p. 102-103 °C; $[\alpha]_D^{25} = -11.30$ (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.20 (d, J = 8.4 Hz, 1H), 7.76-7.69 (m, 1H), 7.68-7.61 (m, 2H), 7.53 (d, J = 16.4 Hz, 1H), 7.51-7.39 (m, 4H), 7.35 (dd, J = 8.4, 1.6 Hz, 1H), 7.26-7.17 (m, 2H), 6.96 (s, 1H), 5.38 (d, J = 16.4 Hz, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 1.90 (s, 3H), 1.15 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 166.3, 159.3, 149.0, 147.2, 141.3, 140.4, 135.7, 135.6, 132.7, 130.4, 130.3, 129.8, 129.5, 129.5, 129.5, 128.7, 128.4, 127.0, 126.6, 126.5, 125.2, 124.5, 60.3, 21.0, 19.2, 14.1; HRMS (ESI) calcd for C₂₈H₂₆NO₂ (M+H)⁺ 408.1958, found 408.1965.

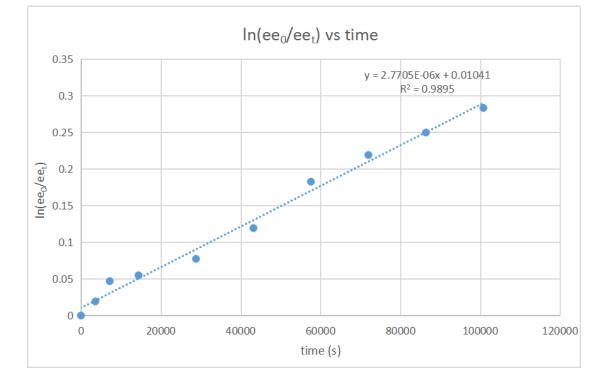
4-(2,5-Dimethylphenyl)-3-formyl-2-phenylquinoline 1-oxide **8** was obtained as a yellowish oil in 70% yield (24.7 mg) and 93% ee. $R_f = 0.30$ (petroleum ether/ethyl acetate 3:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (30:70), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 8.91 min, t_r (major) = 11.81 min]. [α]_D²⁵ = -12.70 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 9.70 (s, 1H), 8.91 (d, J = 8.8 Hz, 1H), 7.90 (t, J = 8.0 Hz, 1H), 7.66-7.44 (m, 7H), 7.31-7.20 (m, 2H), 7.01 (s, 1H), 2.37 (s, 3H), 2.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 189.7, 144.9, 142.9, 140.6, 135.6, 133.7, 133.0, 132.8, 131.2, 130.3, 130.2, 130.0, 129.5, 129.4, 128.8, 128.7, 128.2, 128.0, 120.6, 21.0, 19.5; HRMS (ESI) calcd for C₂₄H₂₀NO₂ (M+H)⁺ 354.1489, found 354.1497.

(4-(2-Bromophenyl)-2-phenylquinolin-3-yl)methanol **9** was obtained as a white solid in 91% yield (35.4 mg) and 93% ee. $R_f = 0.20$ (petroleum ether/ethyl acetate 10:1). The ee value was determined by chiral stationary phase HPLC analysis [Daicel Chiralpak AD-H, isopropanol/hexane (20:80), 1.0 mL/min, $\lambda = 254$ nm, t_r (minor) = 7.90 min, t_r (major) = 10.86 min]. m.p. 169-170 °C; [α]_D²⁵ = +21.60 (c = 1.0, EtOAc); ¹H NMR (400 MHz, CDCl₃): δ 8.22 (d, J = 8.4 Hz, 1H), 7.85-7.77 (m, 3H), 7.76-7.70 (m, 1H), 7.54-7.43 (m, 5H), 7.43-7.35 (m, 2H), 7.27-7.22 (m, 1H), 4.54 (d, J = 12.0 Hz, 1H), 4.38 (d, J = 12.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 160.9, 148.2, 147.2, 140.3, 137.4, 133.1, 131.5, 130.2, 130.0, 129.6, 129.2, 129.0, 128.6, 128.4, 127.7, 127.0, 126.2, 125.9, 123.4, 60.2; HRMS (ESI) calcd for C₂₂H₁₇BrNO (M+H)⁺ 390.0488, found 390.0495.


Investigation on the Racemization Barrier of 3aa

The reaction was conducted at 1 mg/mL concentration in a sealed tube and heated at the specified temperature. The change in enantiomeric excess over time was determined by HPLC. The barrier to rotation for **3aa** was obtained by kinetic of racemization of an enantiomer.

This data was plotted as (In[ee₀/ee₁]) versus time (seconds). The gradient of this graph gives the racemization constant ($k_{racemization} = 2 \times k_{enantiomerization}$) at the specified temperature. The barrier to rotation, $\Delta G^{\neq}_{enantiomerization}$, was calculated using the following Eyring equation, R = Gas constant = 8.3145 J·K⁻¹·mol⁻¹, h = Planck constant = 6.62608 x 10⁻³⁴ J·s, k_B = Boltzmann constant = 1.38066 x 10⁻²³ J·K⁻¹, and T₁ = temperature racemization study was conducted at, in Kelvin.


$$\Delta G^{\neq}$$
enantiomerization = $RT_1 \ln \frac{k_B T_1}{h k_{enantiomerization}}$

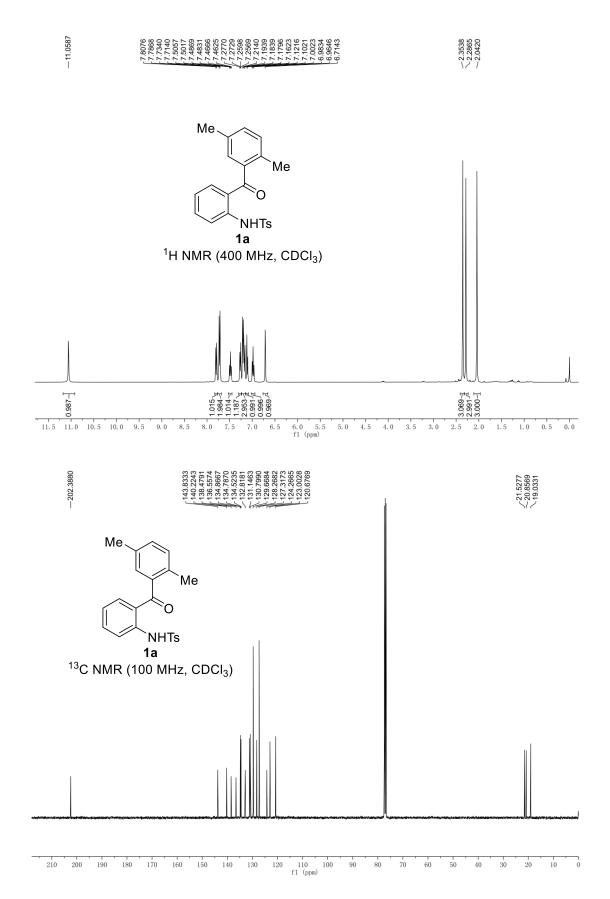
Racemization of 3aa in i-PrOH at 140 °C

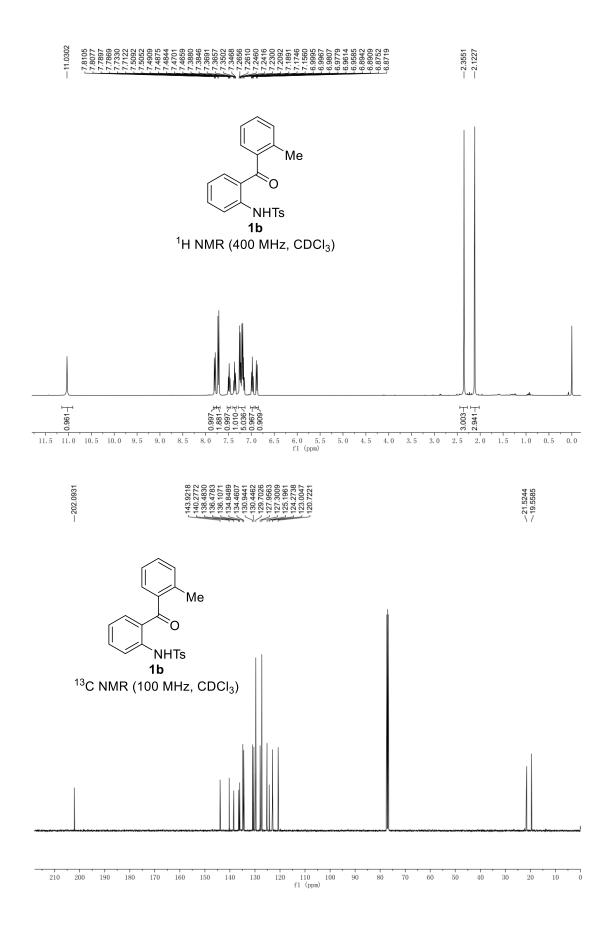
Time (seconds)	Enantiomeric Excess (ee)	First Order Racemization (ln[ee0/eet])
0	92.58	0.00000
3600	90.82	0.01919
7200	88.34	0.04688
14400	87.64	0.05484
28800	85.70	0.07722
43200	82.18	0.11916
57600	77.14	0.18245
72000	74.38	0.21889
86400	72.14	0.24946
100800	69.76	0.28301

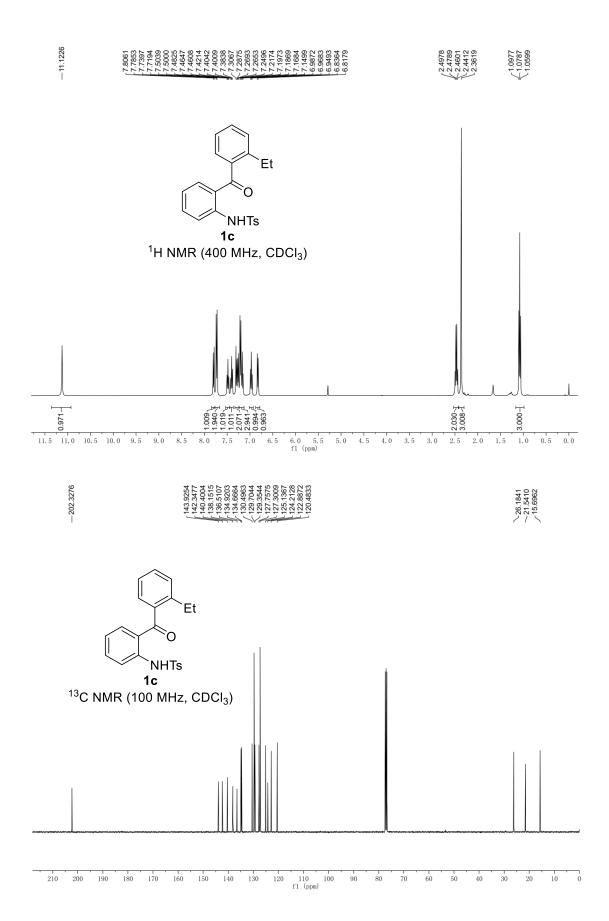
Table S1. Investigation on the racemization barrier of 3aa

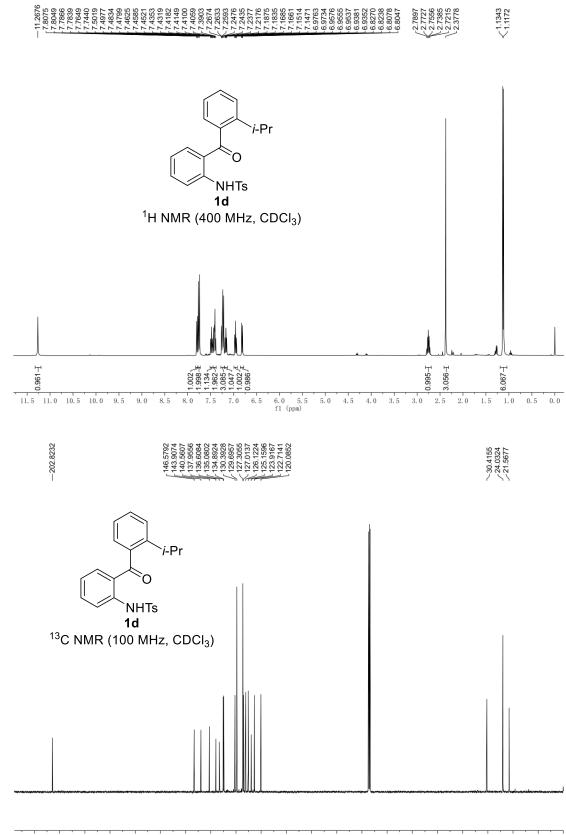
$$\begin{split} &k_{racemization} \; (140 \; ^{o}C) = 2.7705 \; \times \; 10^{-6} \; s^{-1} \\ &k_{enantiomerization} \; (140 \; ^{o}C) = 1.38525 \; \times \; 10^{-6} \; s^{-1} \\ &\Delta G^{\neq}_{enantiomerization} = 148.654 \; KJ/mol = 35.51 \; kcal/mol \end{split}$$

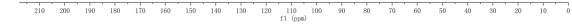
References


1 F. Romanov-Michailidis, C. Besnard and A. Alexakis, *N*-Heterocyclic Carbene-Catalyzed Annulation of α -Cyano-1,4-diketones with Ynals, *Org. Lett.*, 2012, **14**, 4906.

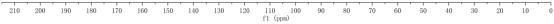

2 Y.-D. Shao, M.-M. Dong, Y.-A. Wang, P.-M. Cheng, T. Wang and D.-J. Cheng, Organocatalytic Atroposelective Friedländer Quinoline Heteroannulation, *Org. Lett.*, 2019, **21**, 4831.

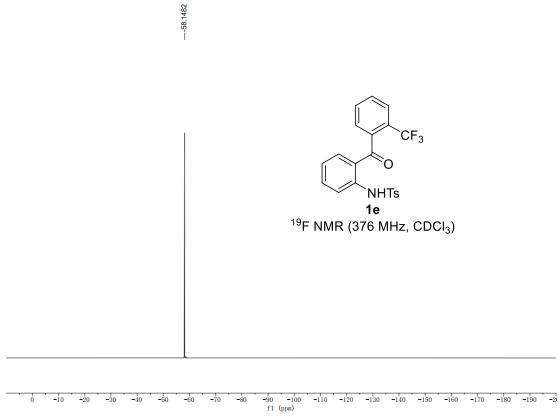

3 G. Liao, H.-M. Chen, Y.-N. Xia, B. Li, Q.-J. Yao and B.-F. Shi, Synthesis of Chiral Aldehyde Catalysts by Pd-Catalyzed Atroposelective C-H Naphthylation, *Angew. Chem., Int. Ed.*, 2019, **58**, 11464.

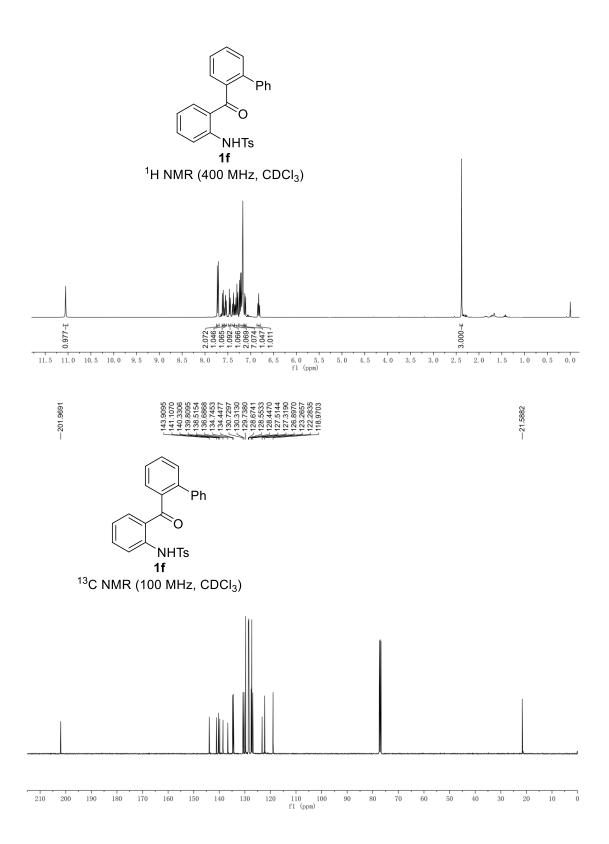

4 T. Katsina, S. P. Sharma, R. Buccafusca, D. J. Quinn, T. S. Moody and S. Arseniyadis, Sequential Palladium-Catalyzed Allylic Alkylation/retro-Dieckmann Fragmentation Strategy for the Synthesis of α -Substituted Acrylonitriles, *Org. Lett.*, 2019, **21**, 9348.

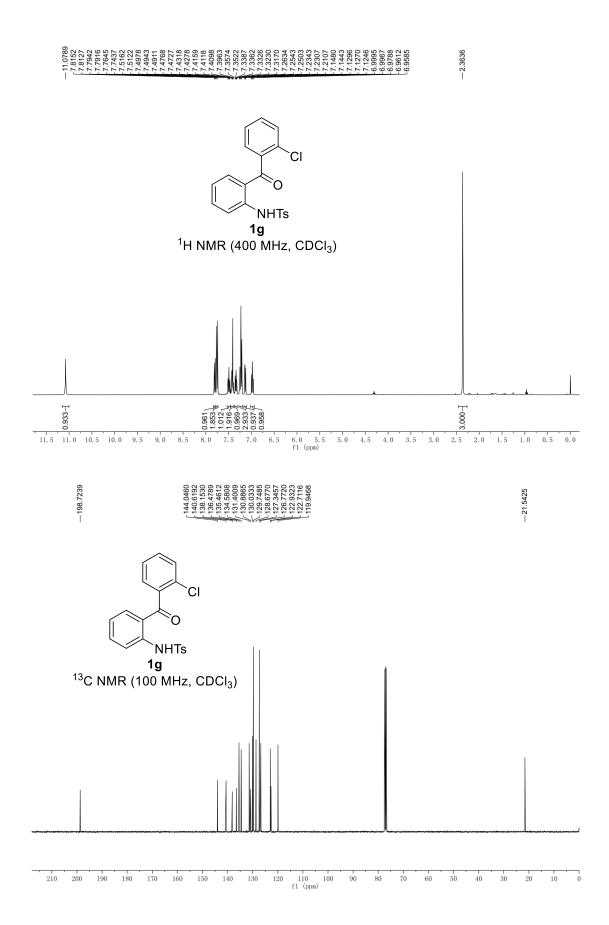

NMR Spectra of 2-Aminoaryl Ketones 1

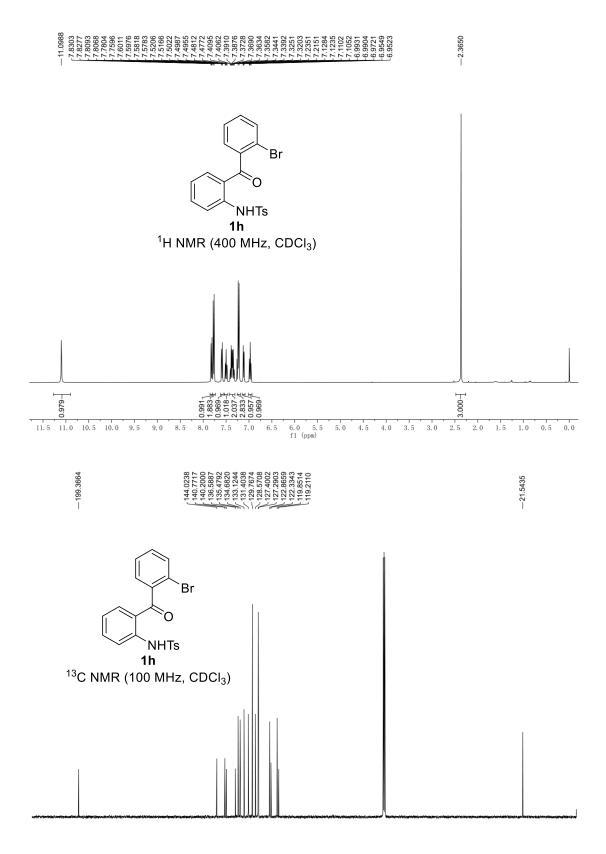


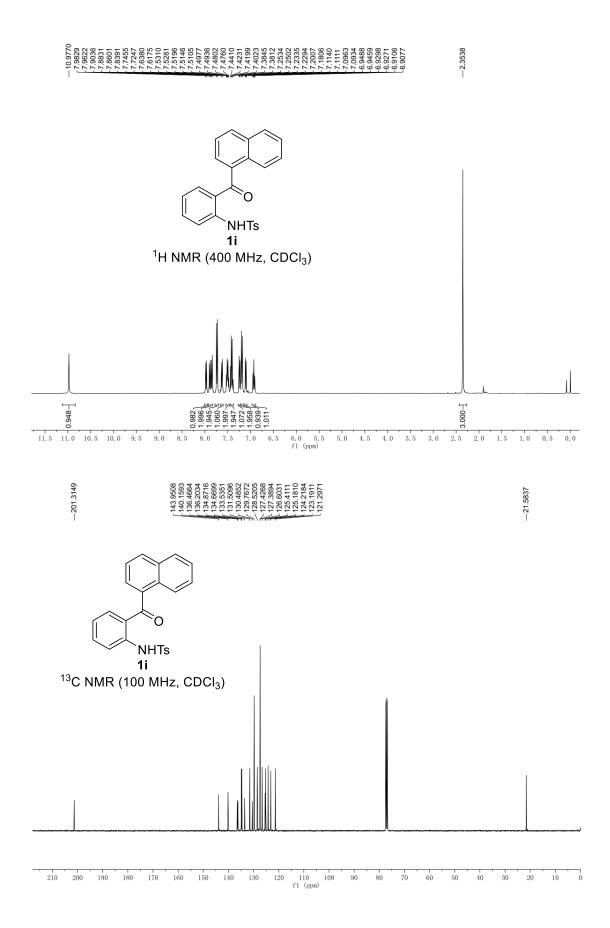


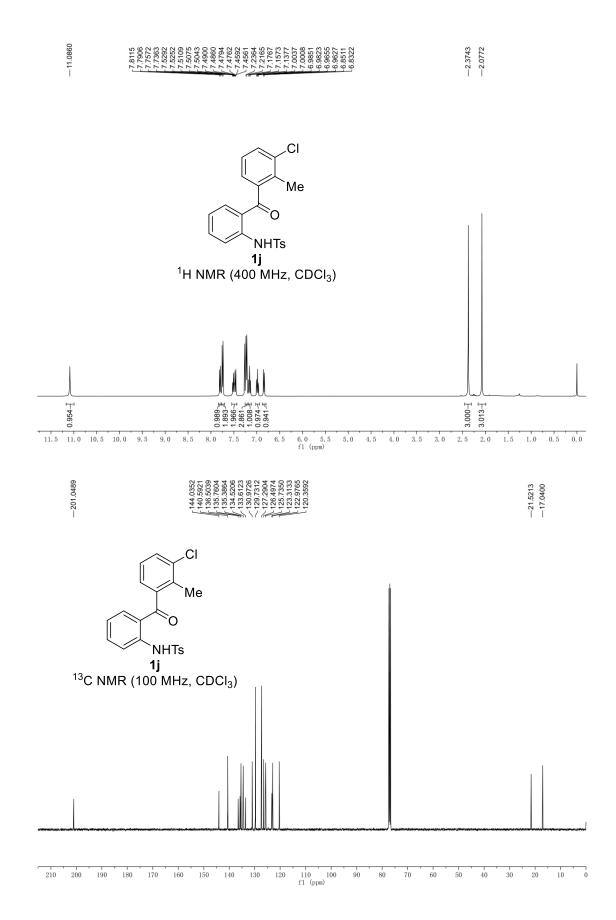


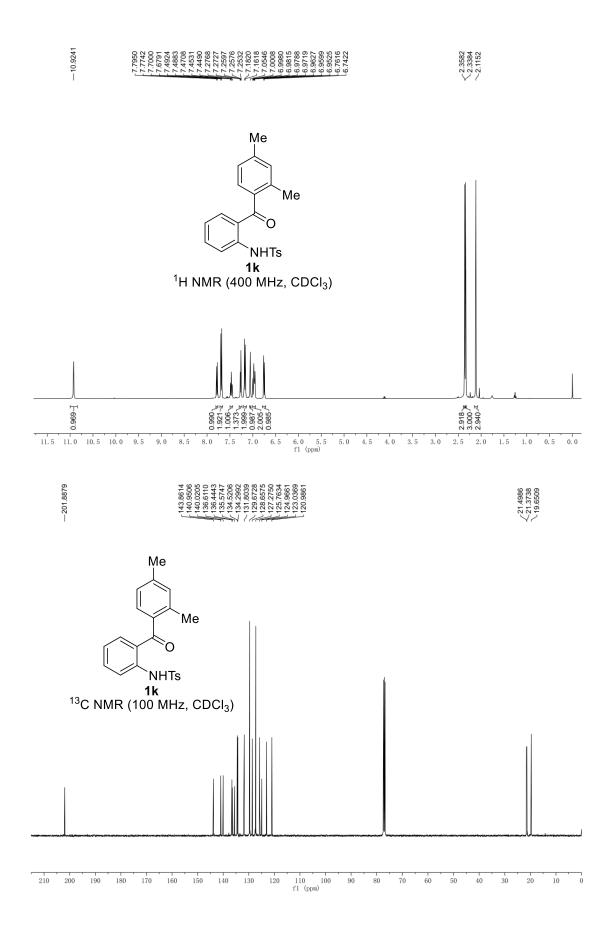


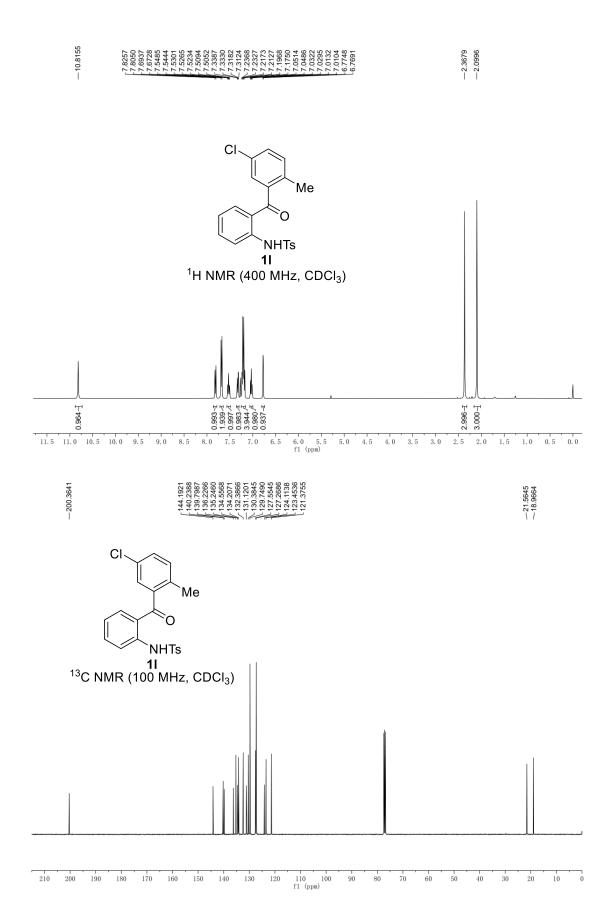


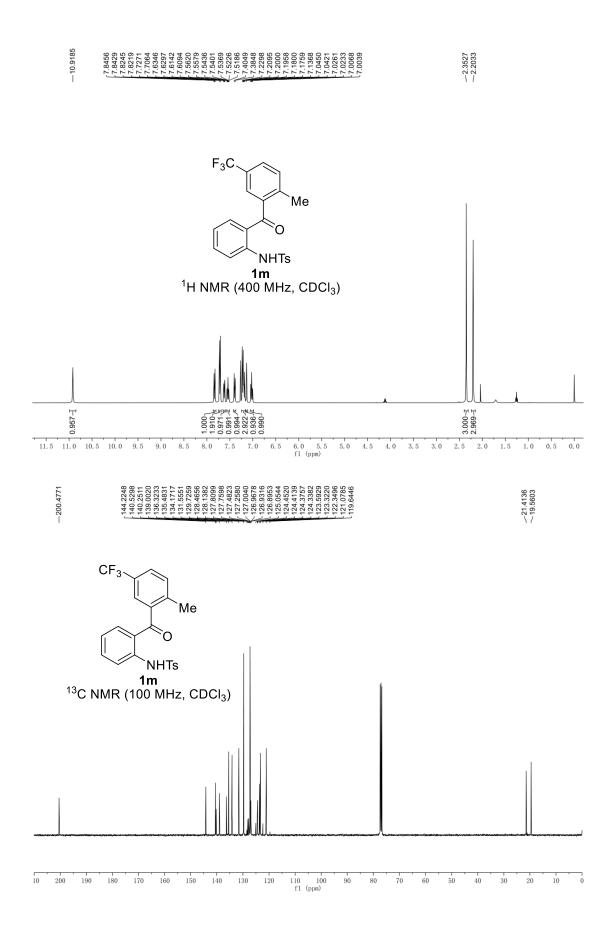


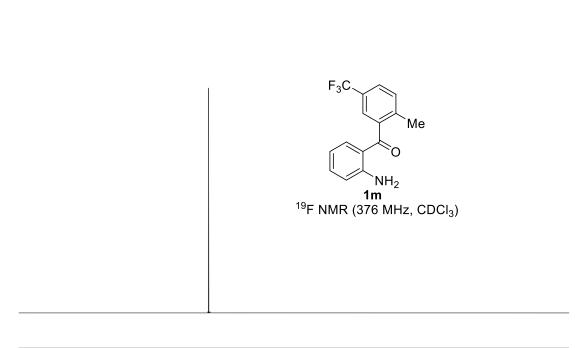

-11,0544 -11,0544 -7,7288 -7,7084 -7,5980 -7,5980 -7,5980 -7,5980 -7,5980 -7,5980 -7,5980 -7,5980 -7,5980 -7,5980 -7,5946 -7,5946 -7,5346 -7,5446 -7,5



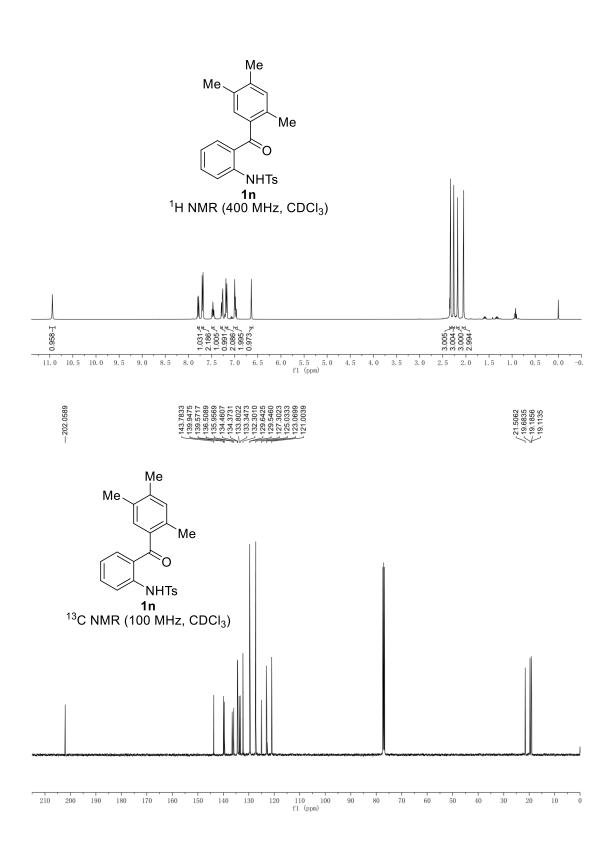


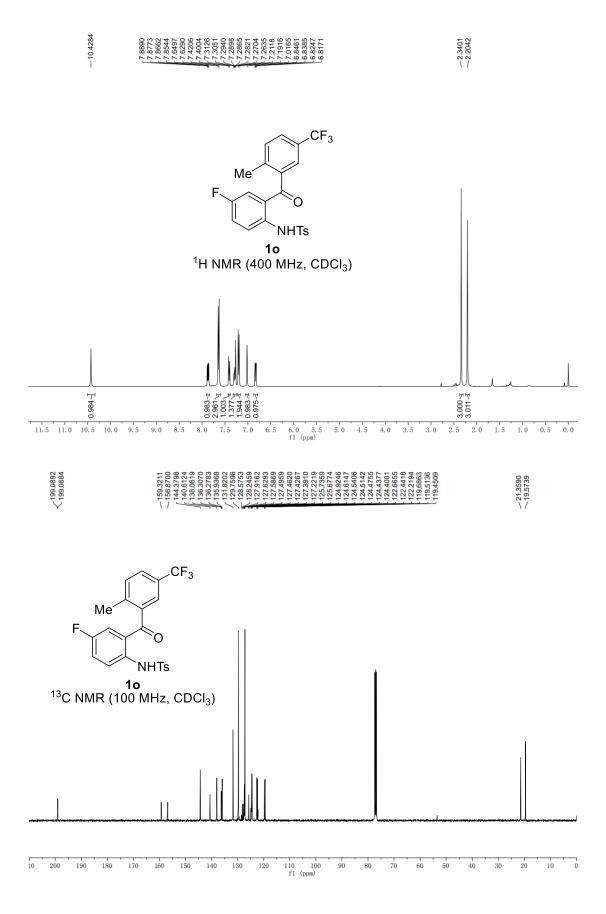


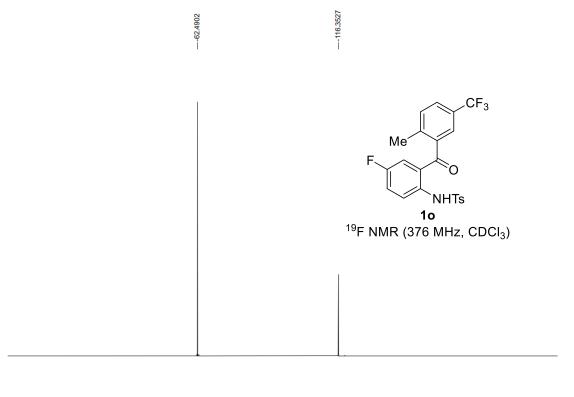

120 110 100 f1 (ppm) 140 130



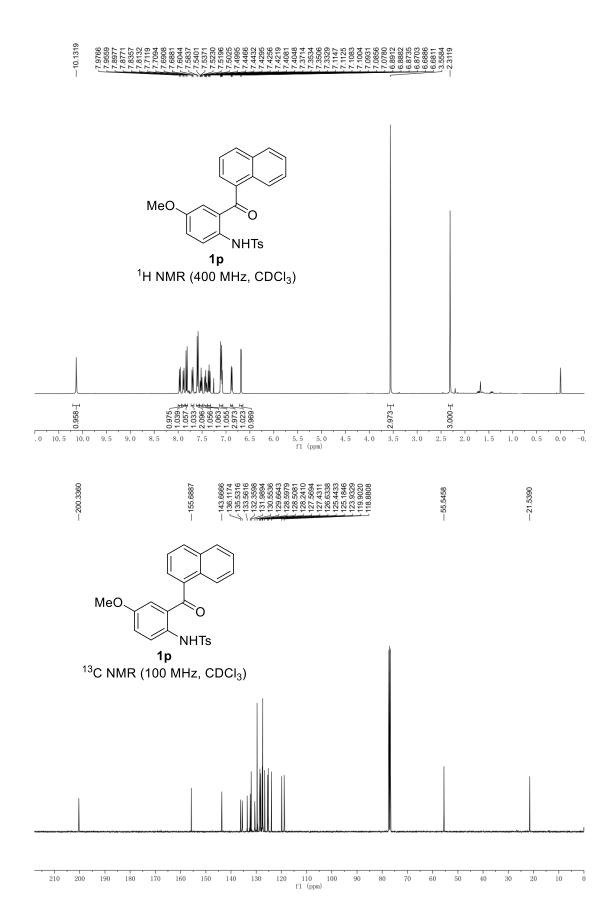


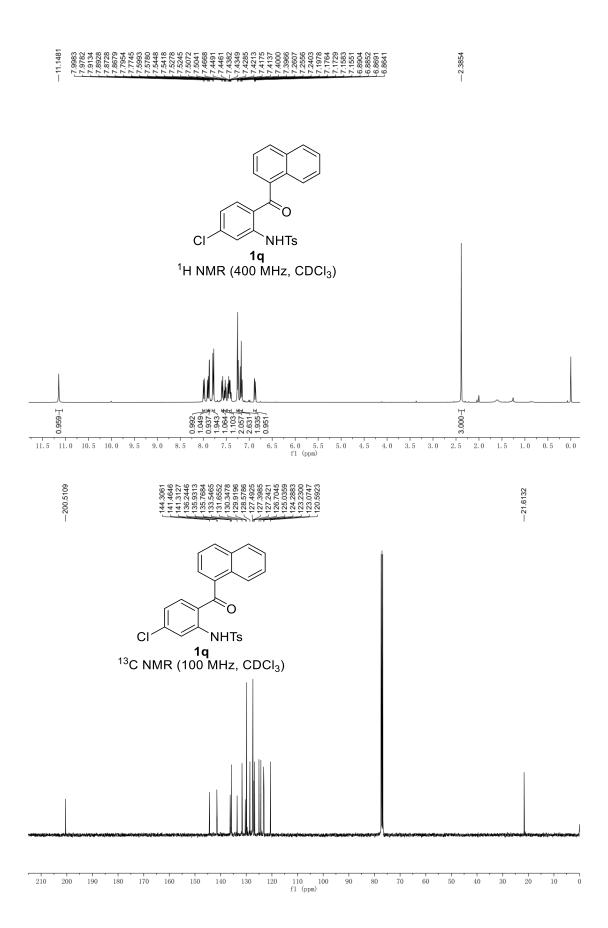


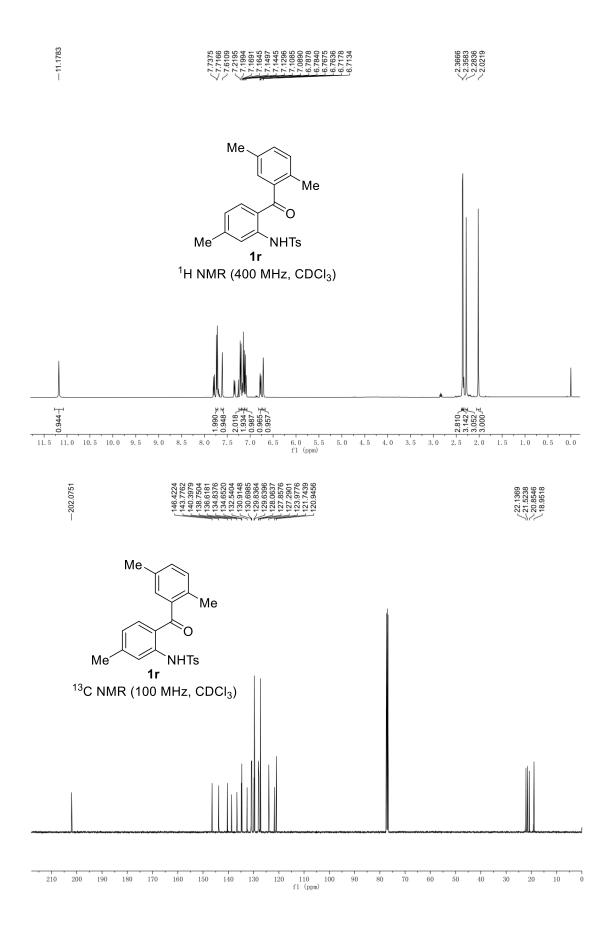


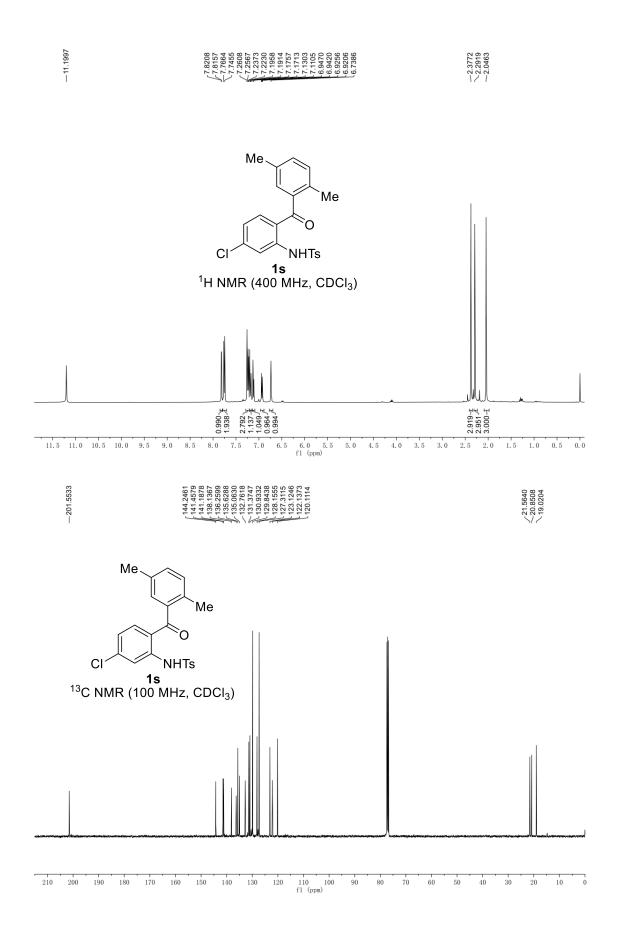


0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

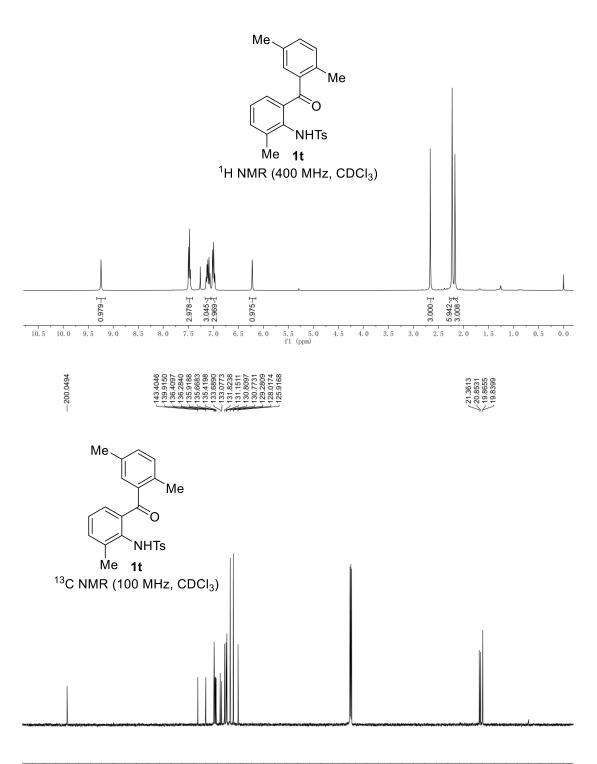


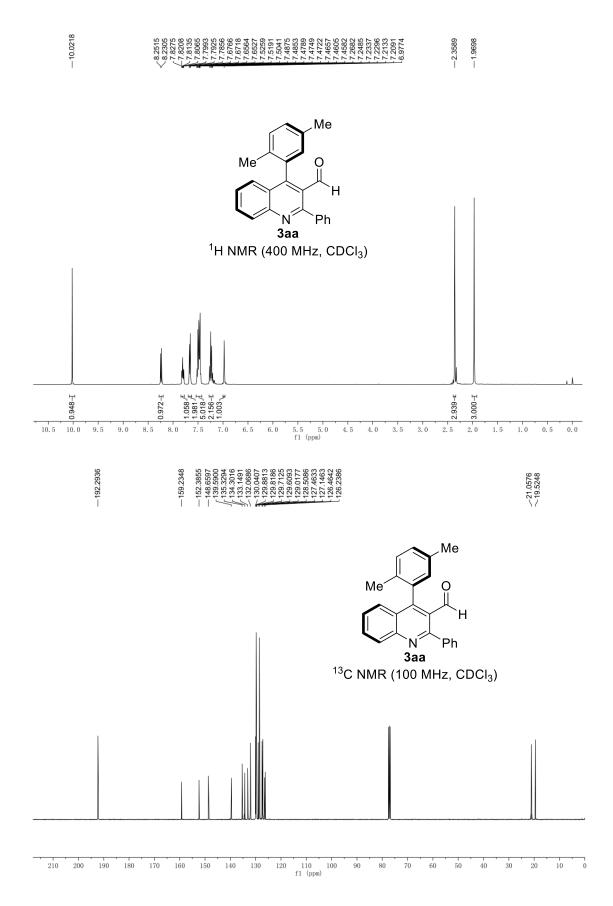


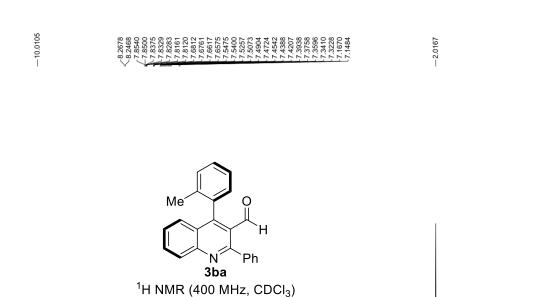


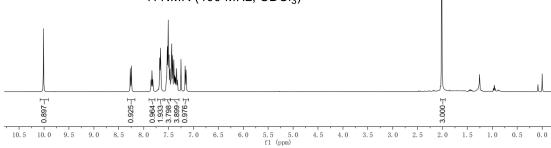


0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)



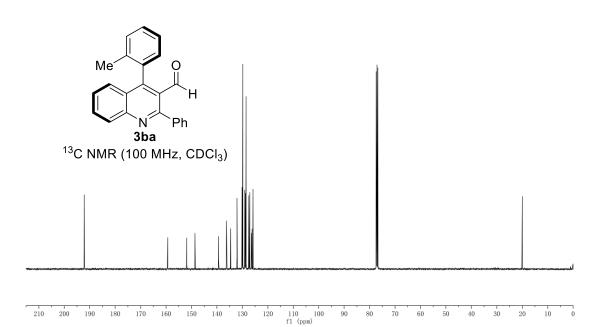


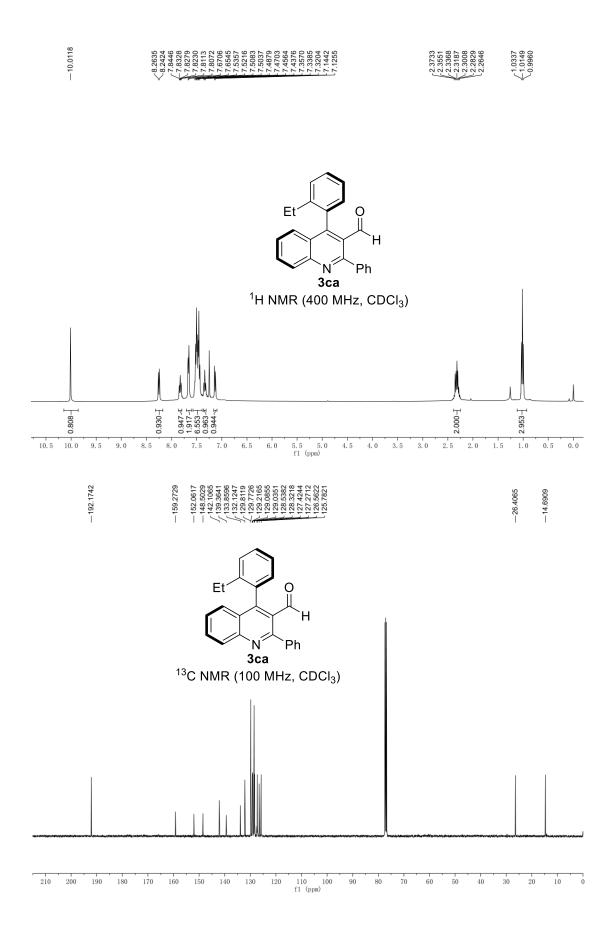


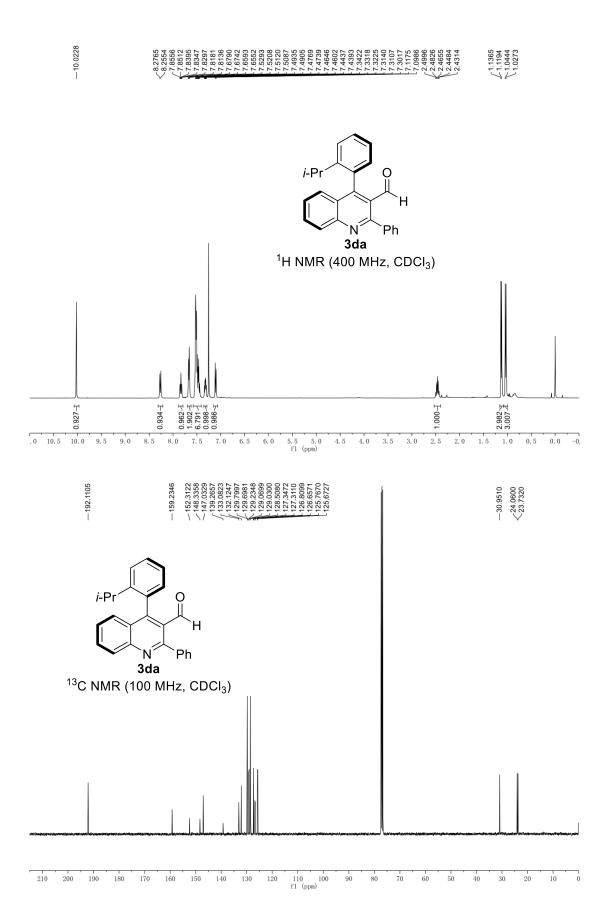


210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

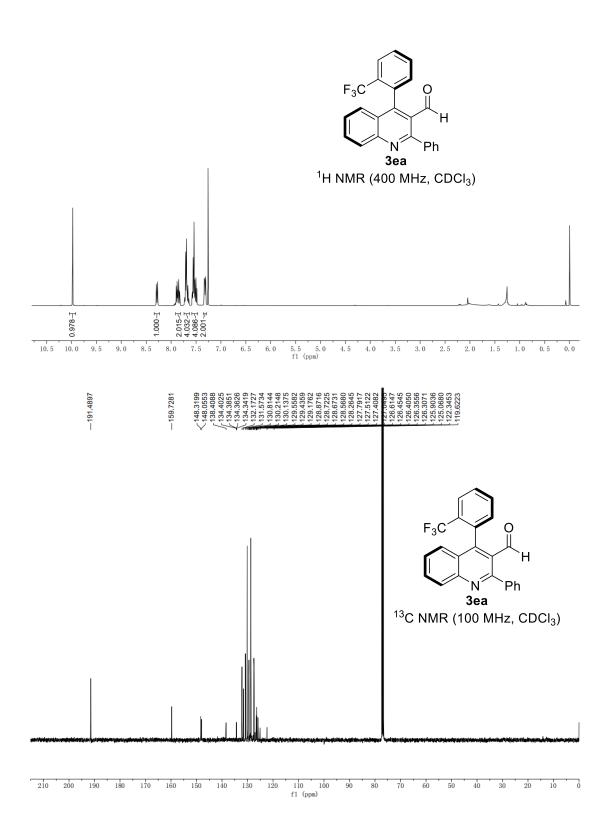
NMR Spectra of Products

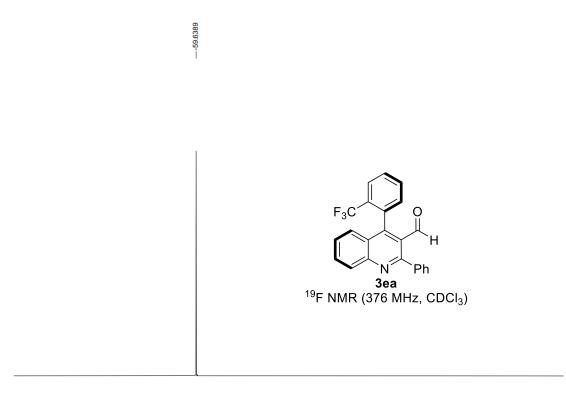


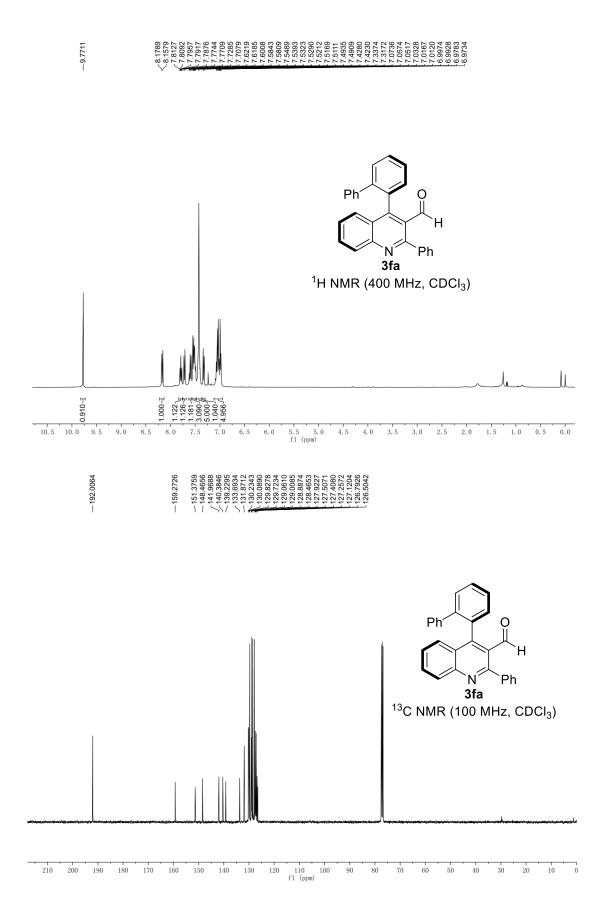


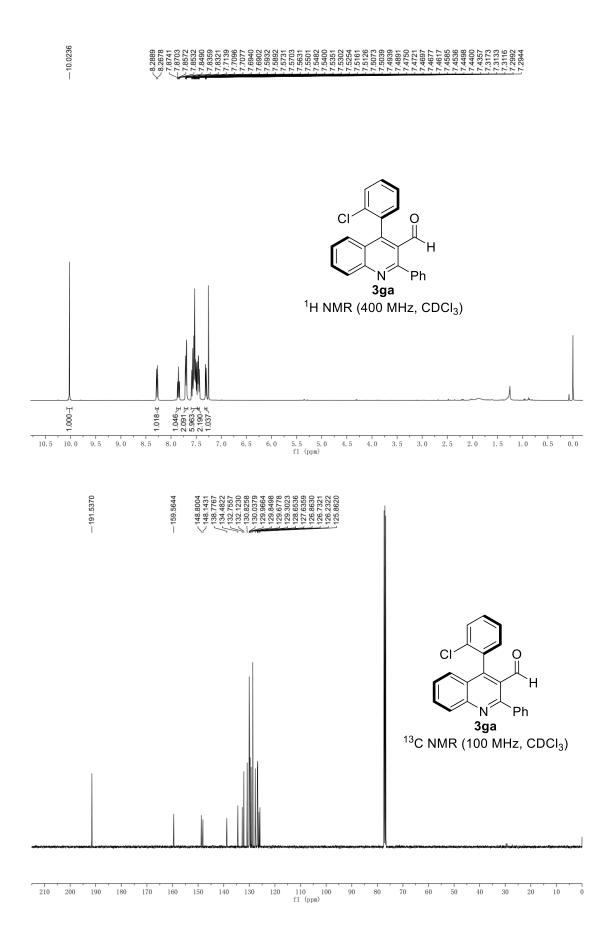


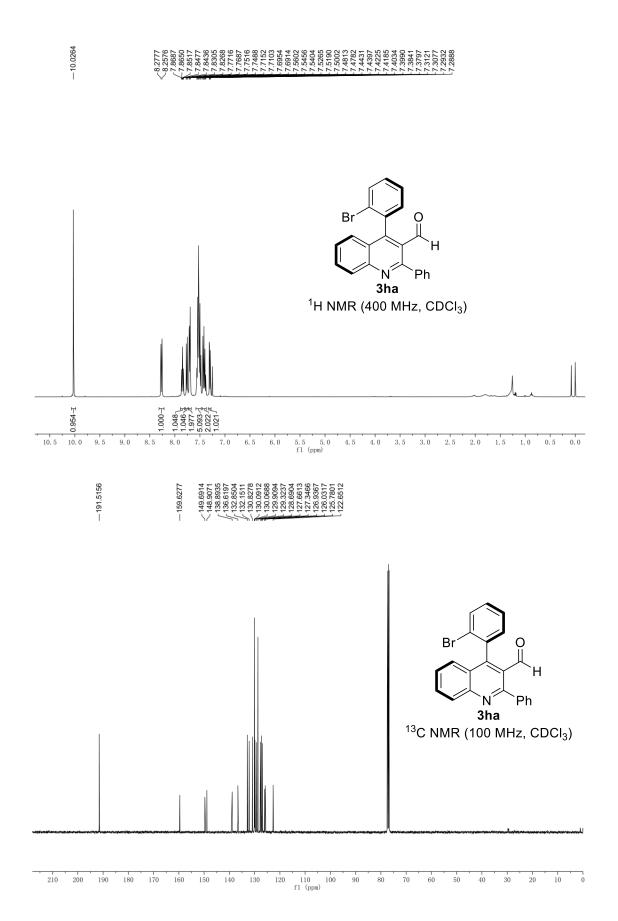
-192.1809

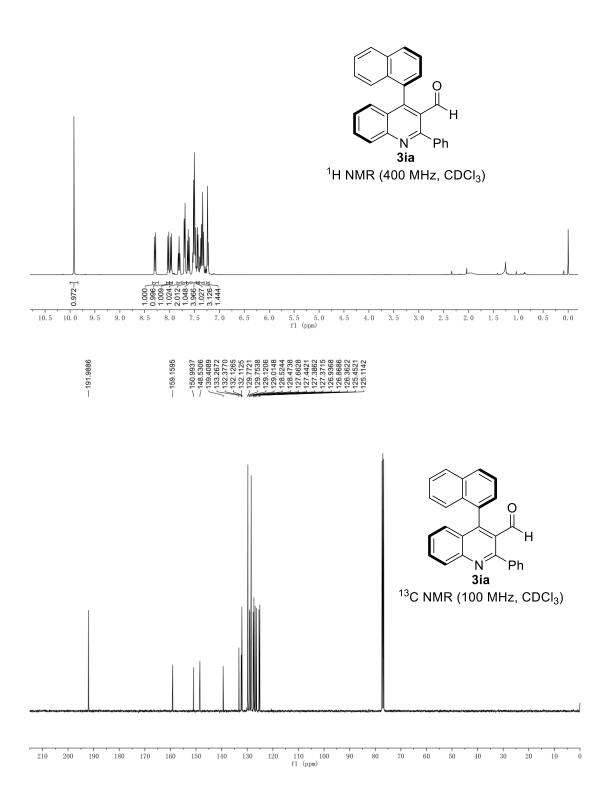


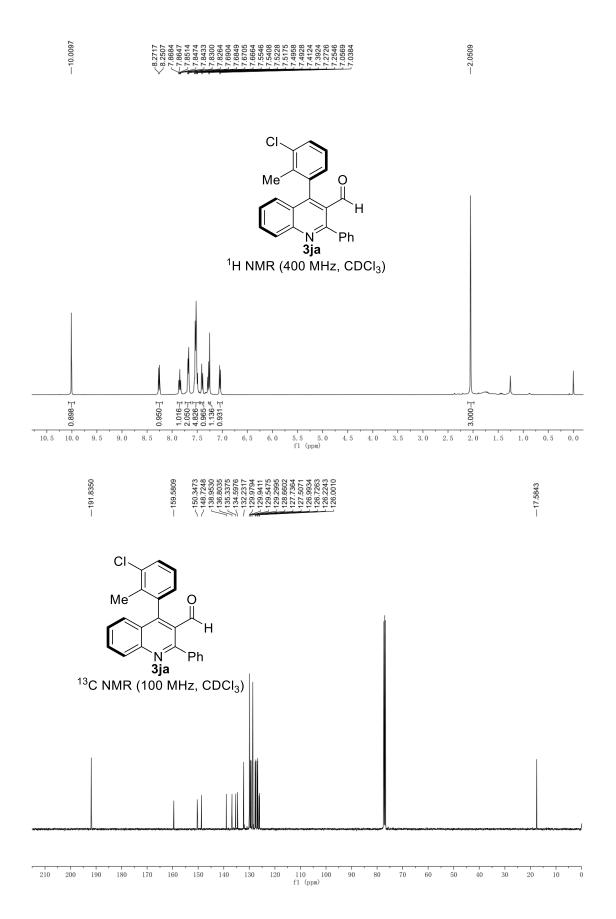


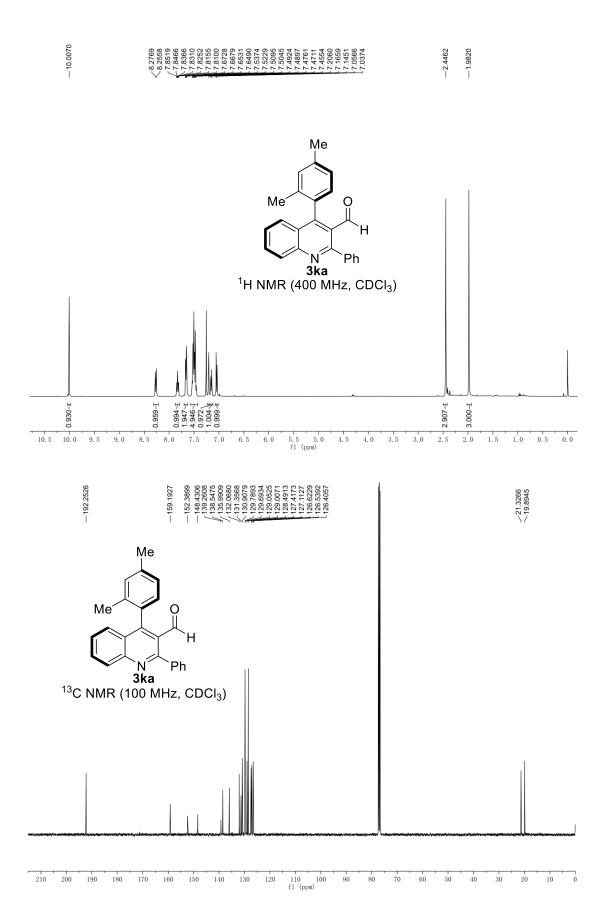


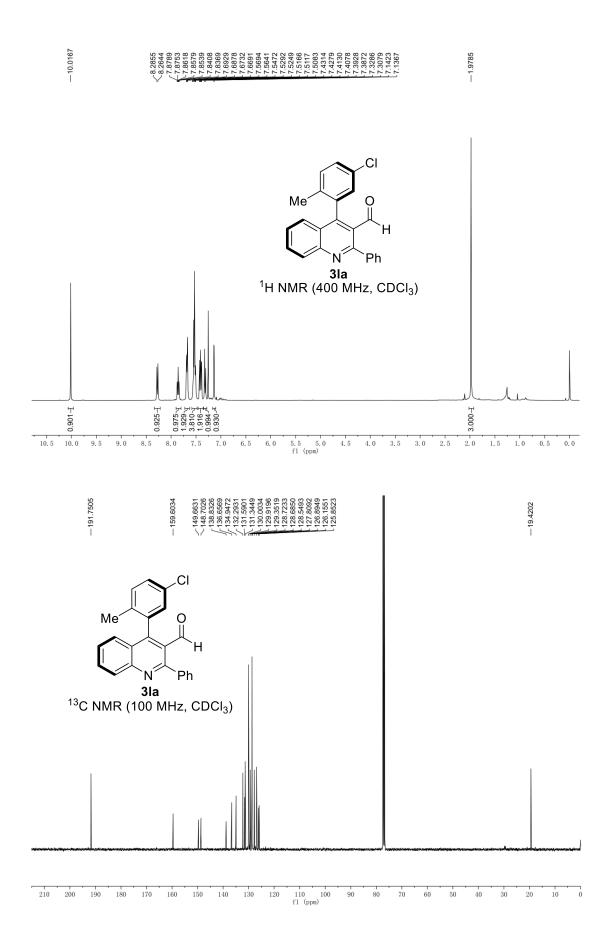


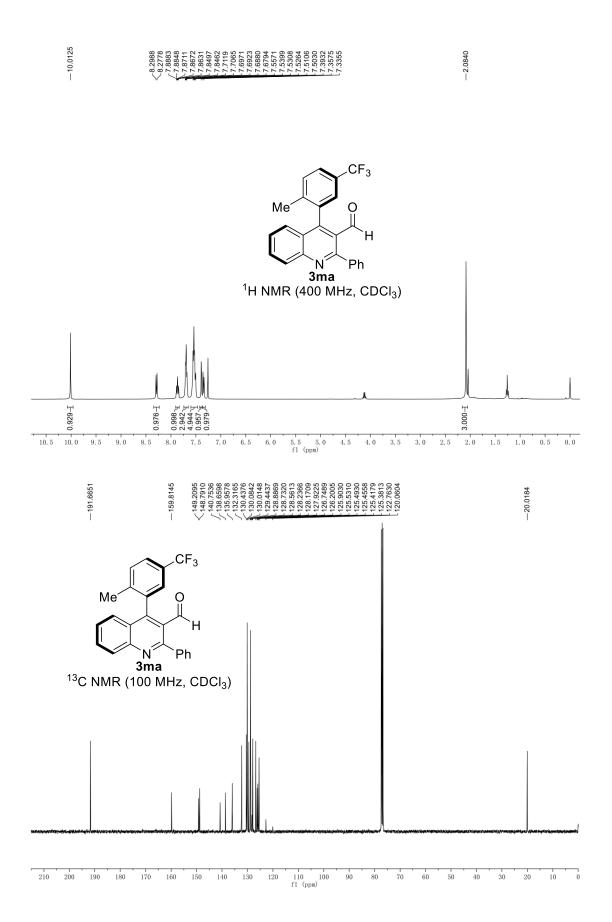


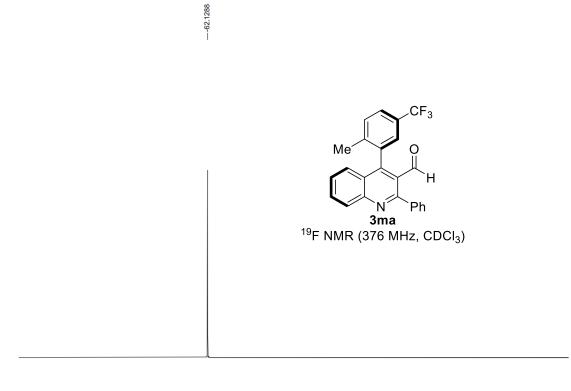

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

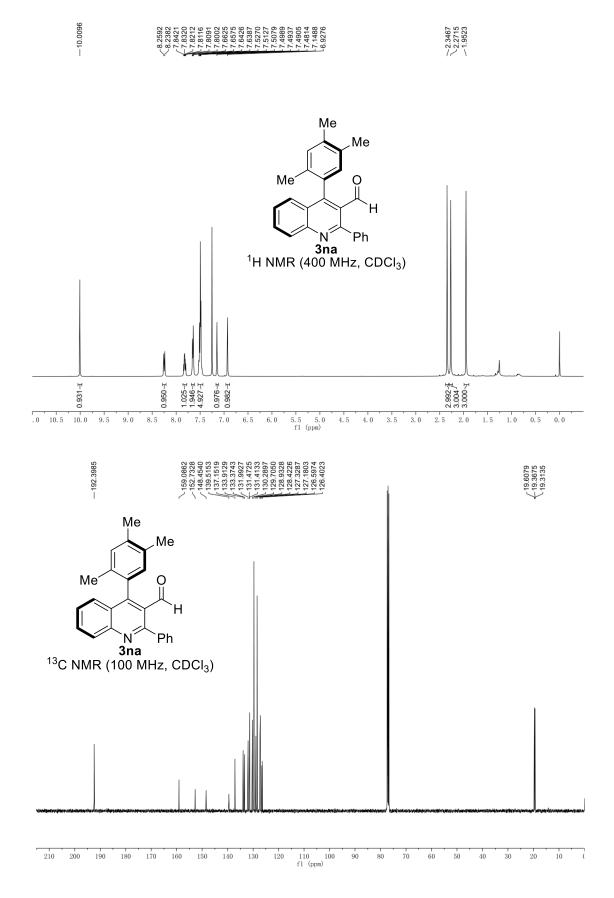


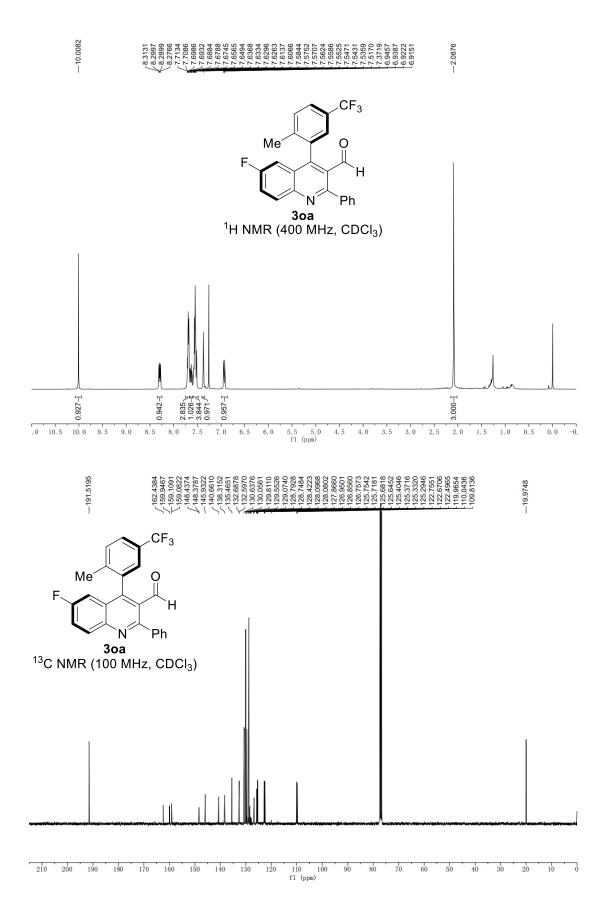


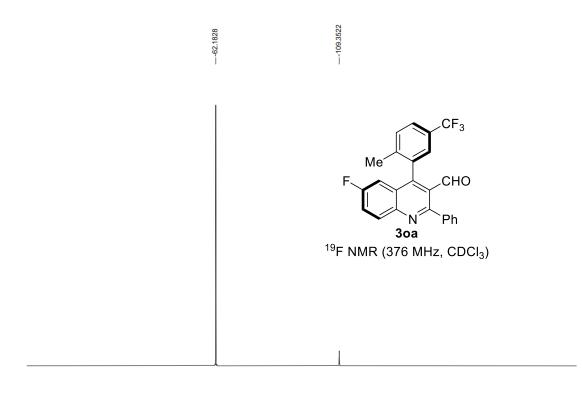




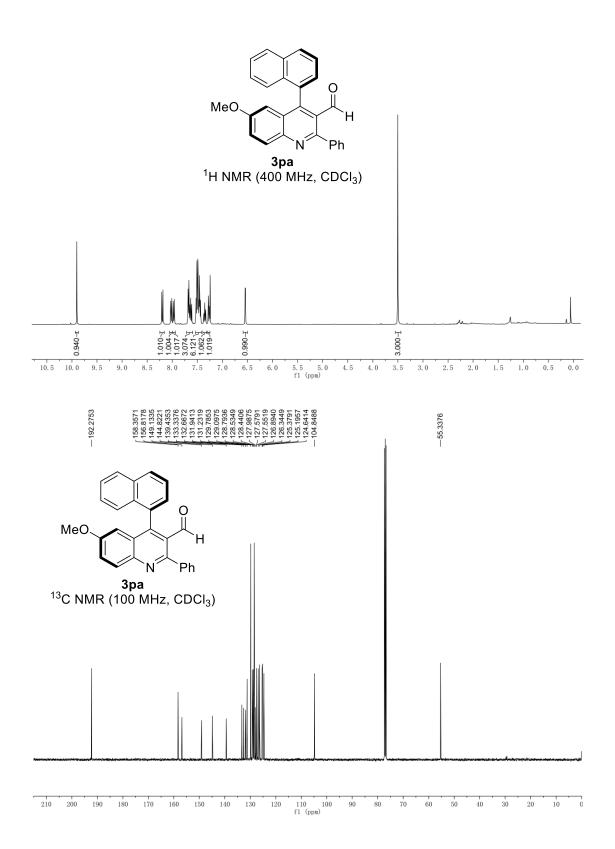


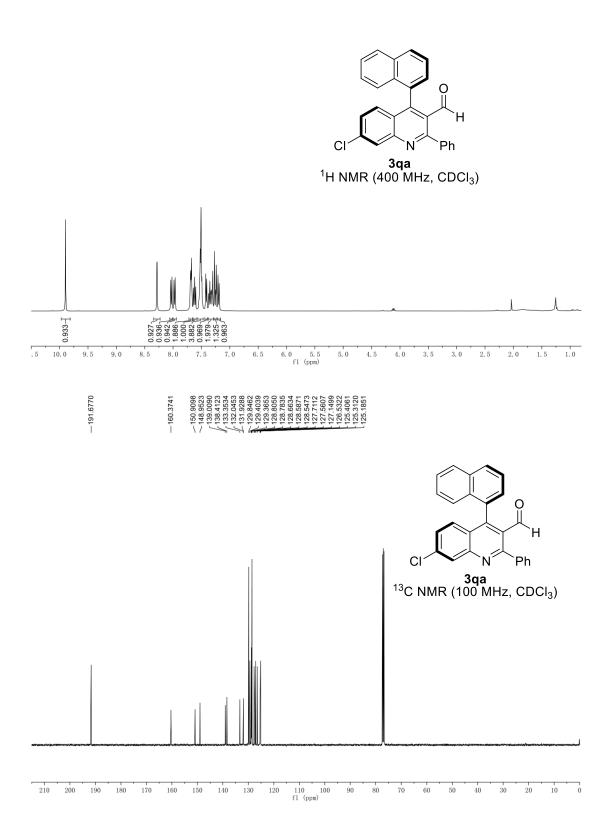




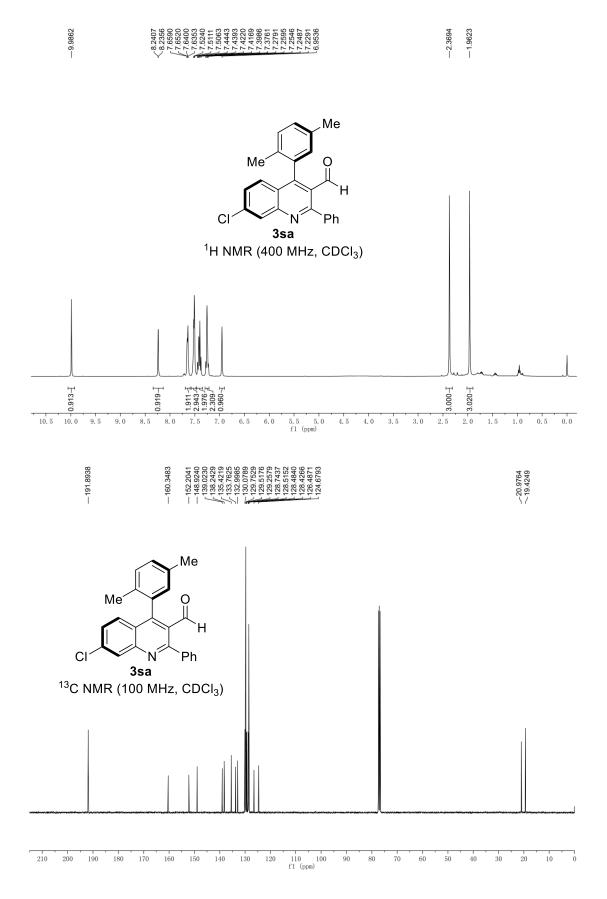


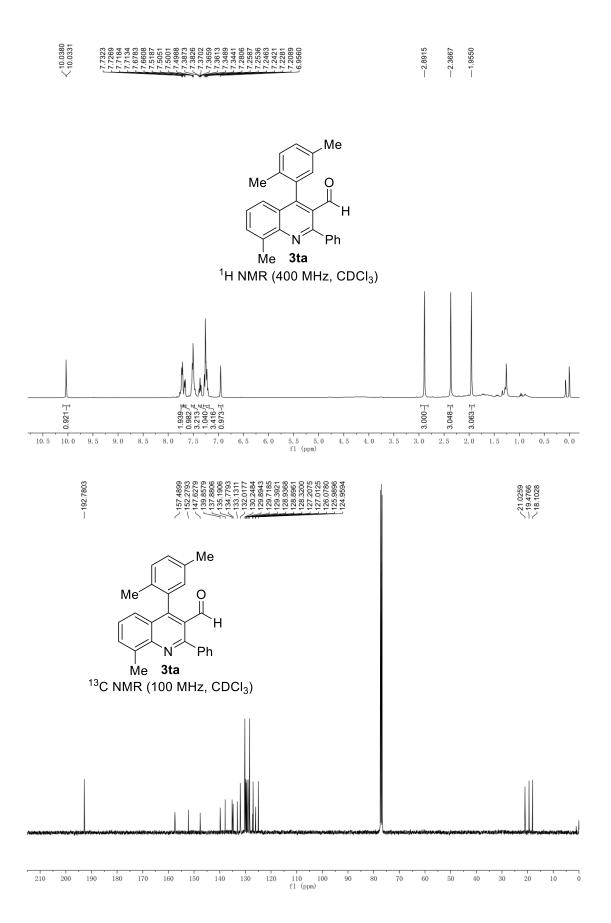
0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2(f1 (ppm)

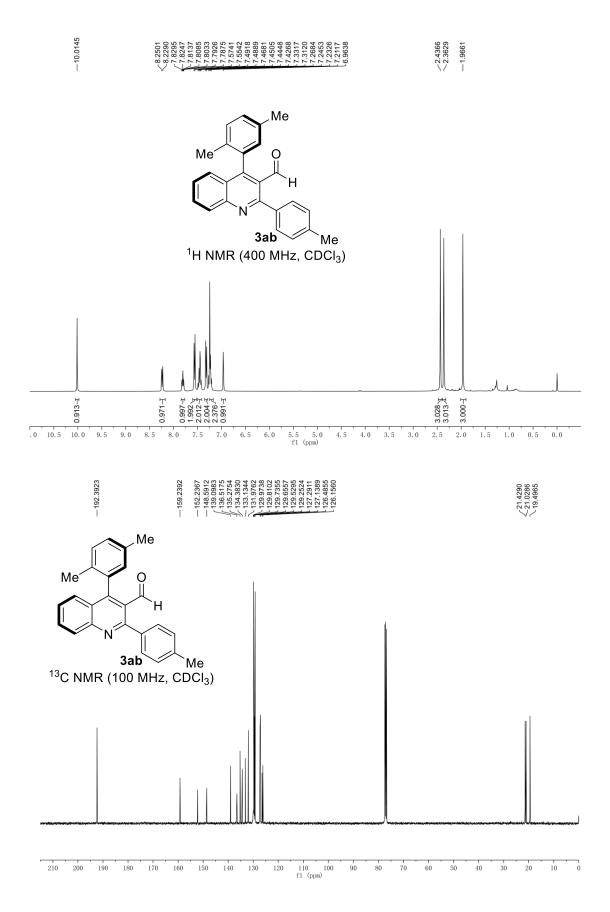


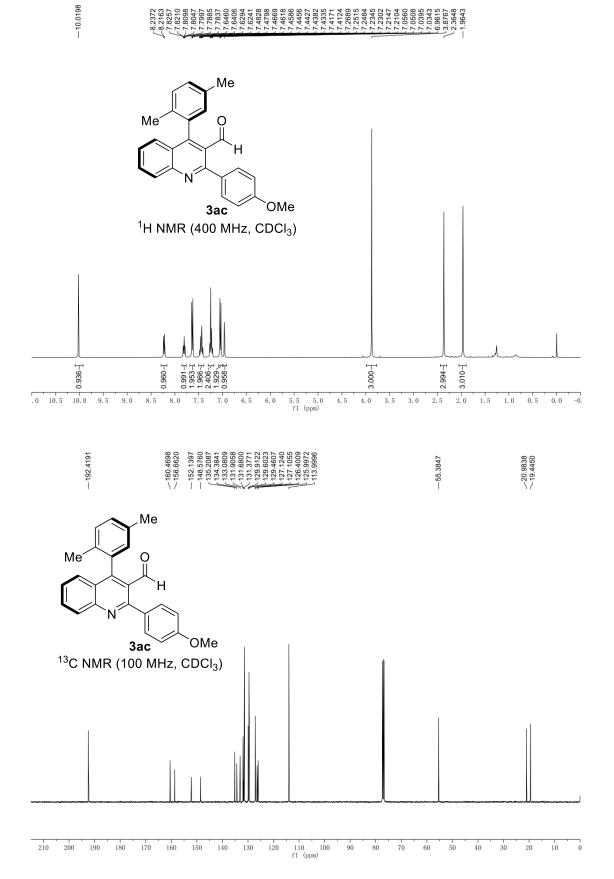


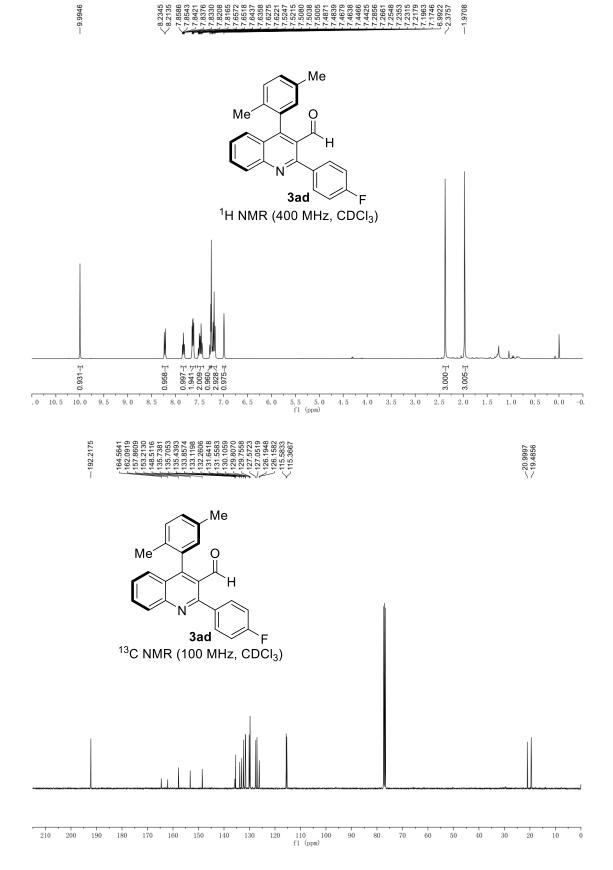


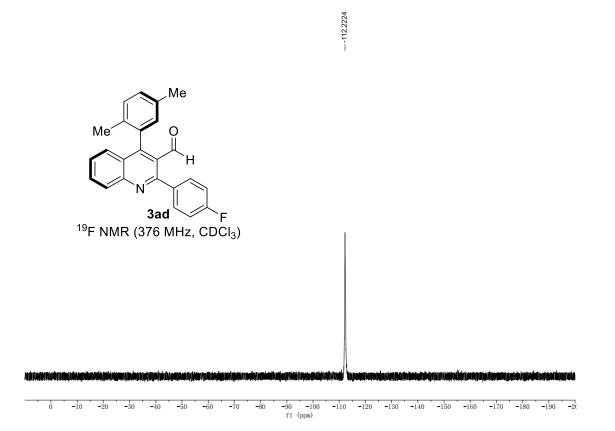

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -20 fl (ppm)

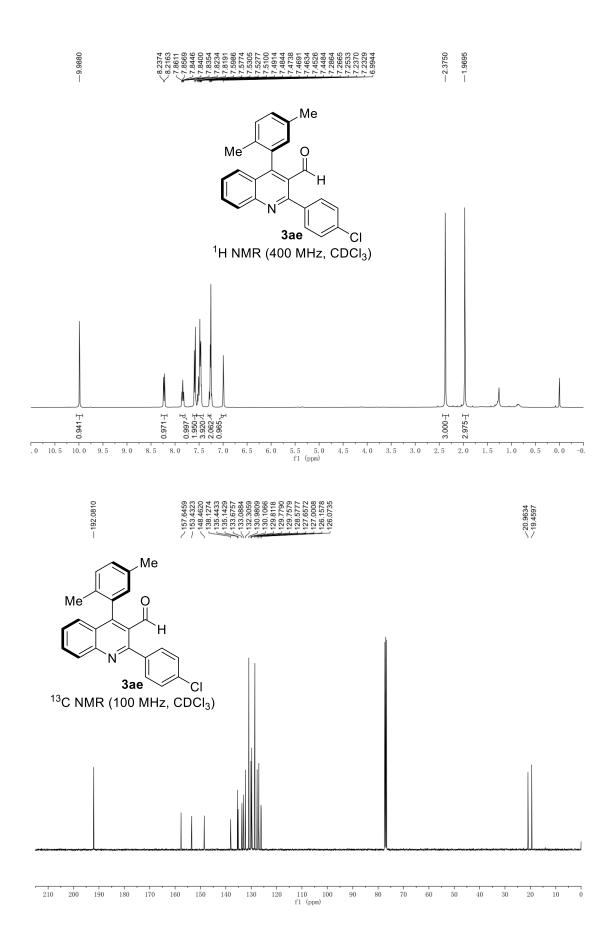


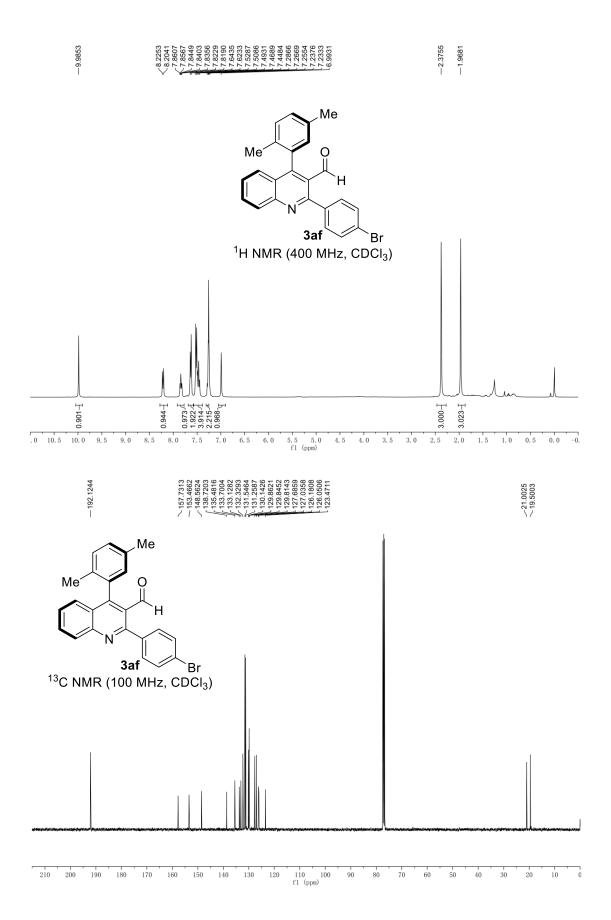




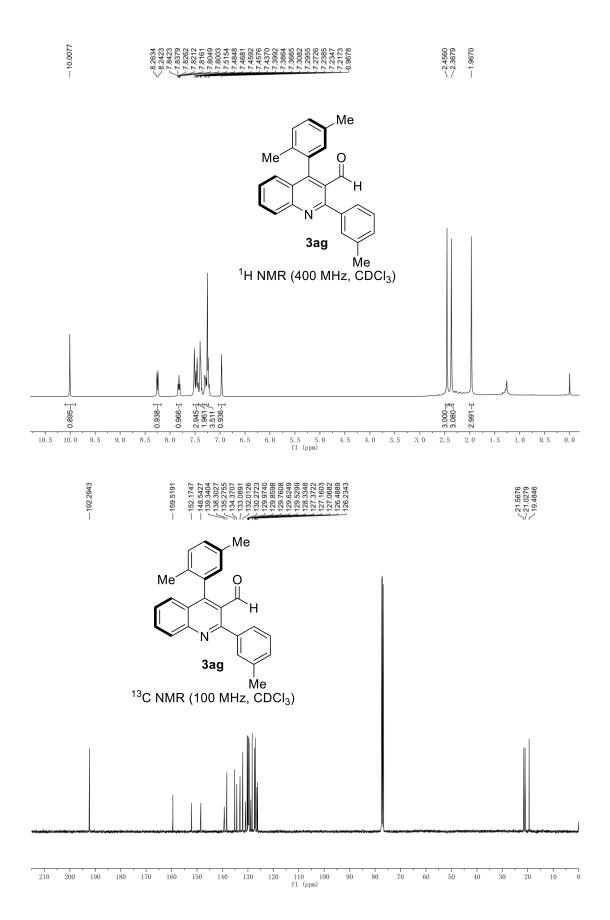


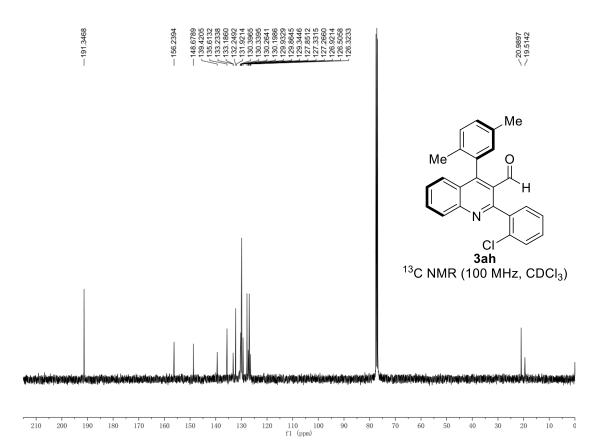


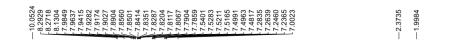

8.2372 8.2163 7.8257 8210

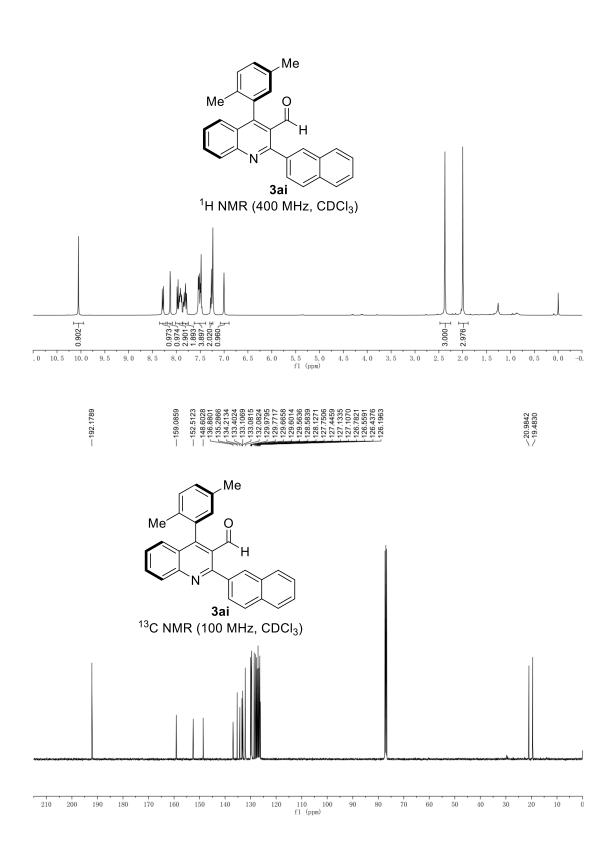


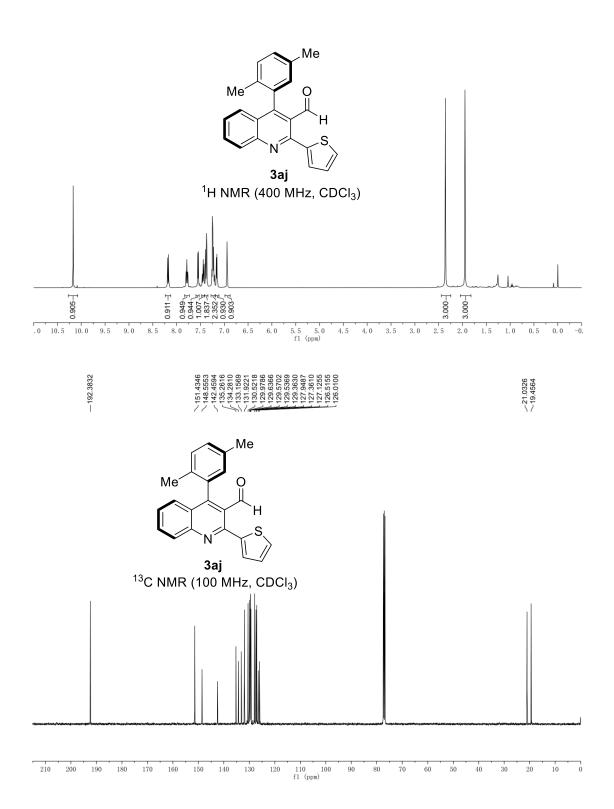
2.8.2345
 2.8.2345
 2.8.2345
 2.8.2345
 2.8.2345
 2.8.2330
 2.7.8165
 2.7.8165
 2.7.6517
 2.7.5038
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.4638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.44638
 7.725345
 7.725435
 7.725435
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.72548
 7.74848
 7.

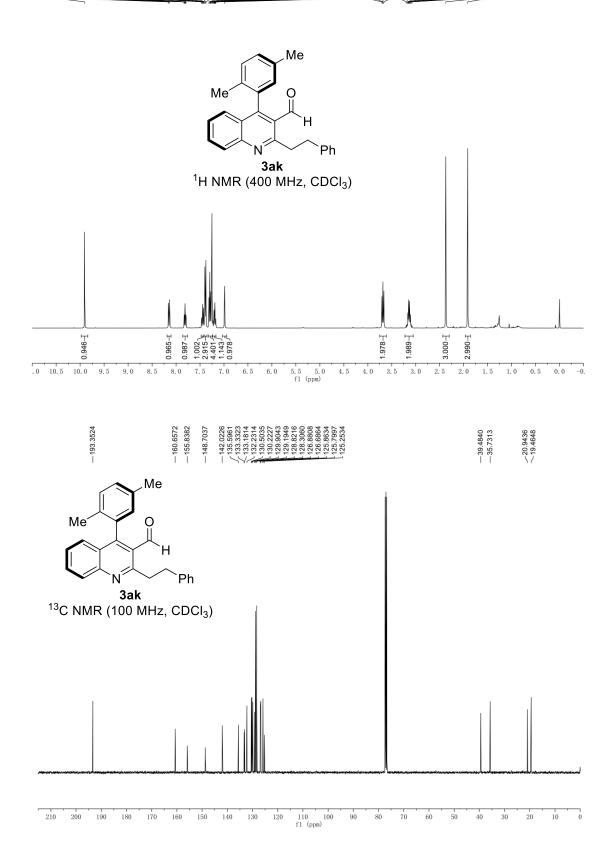


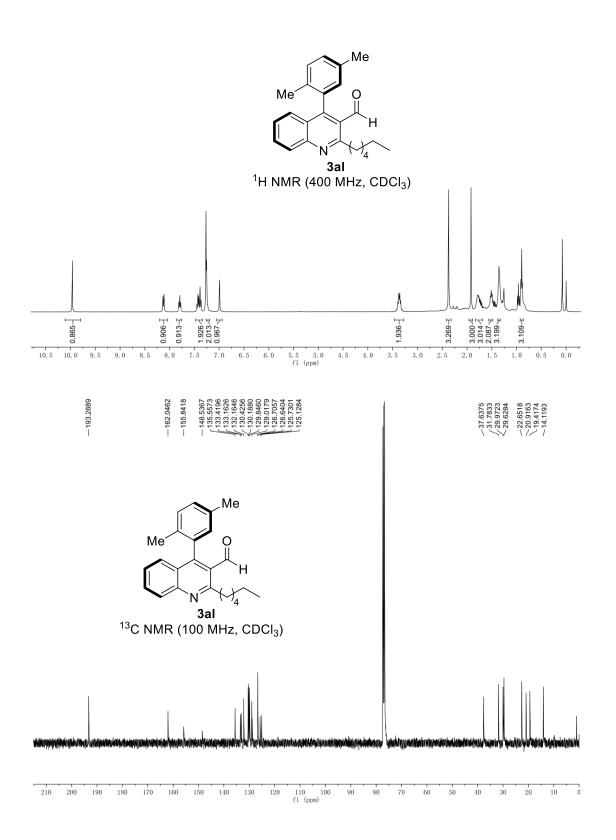


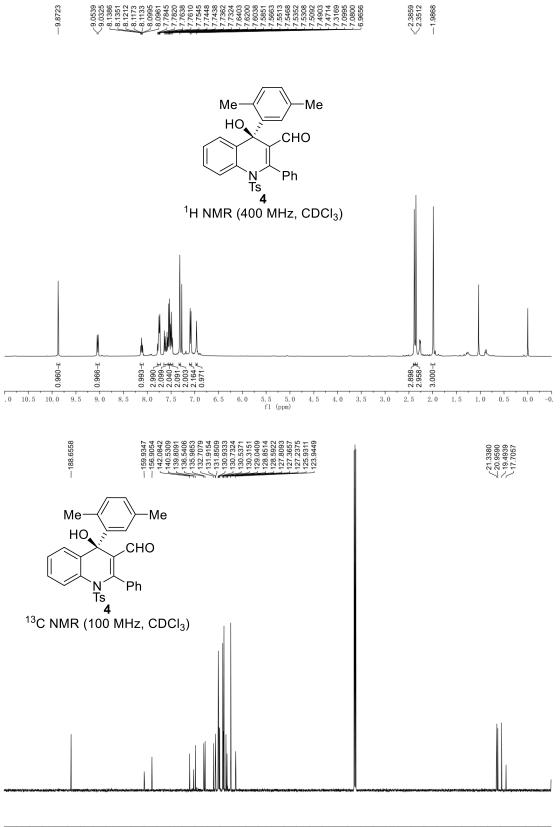

S87



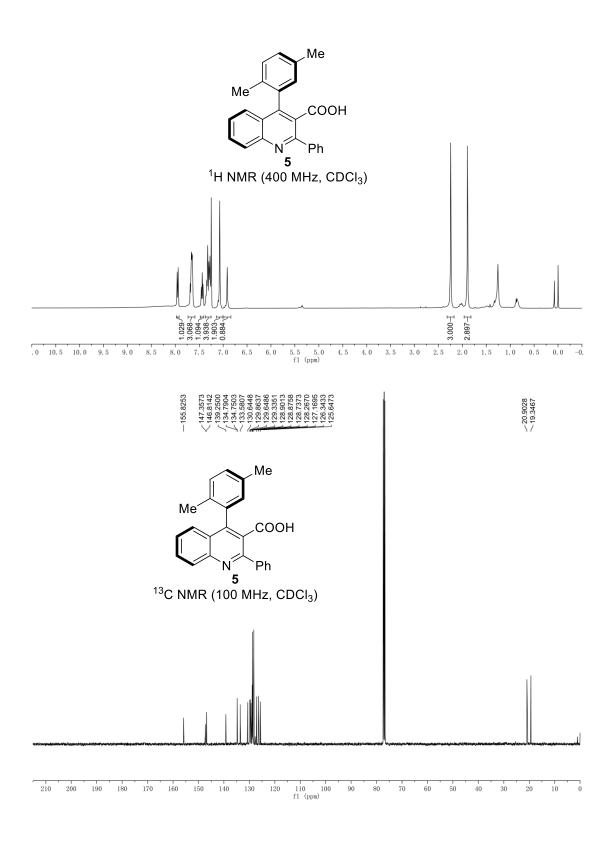


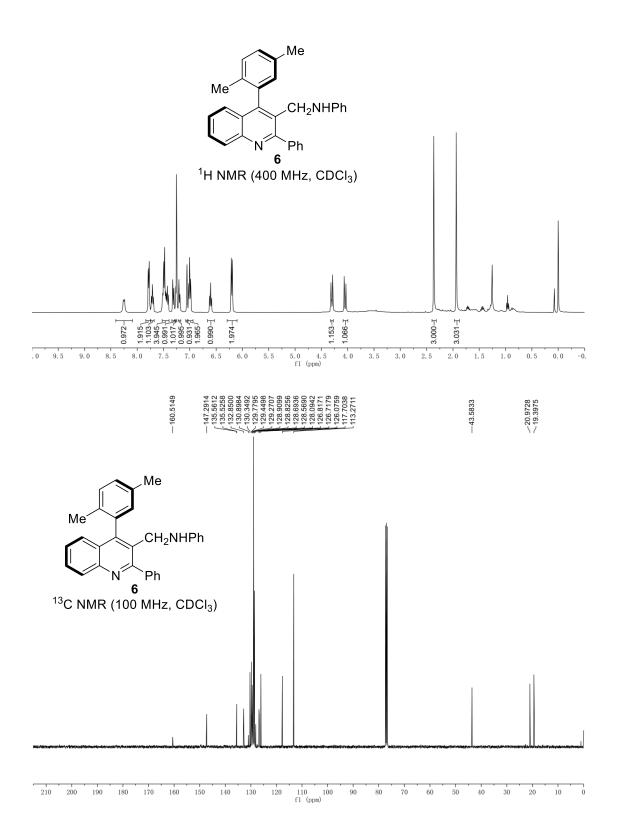


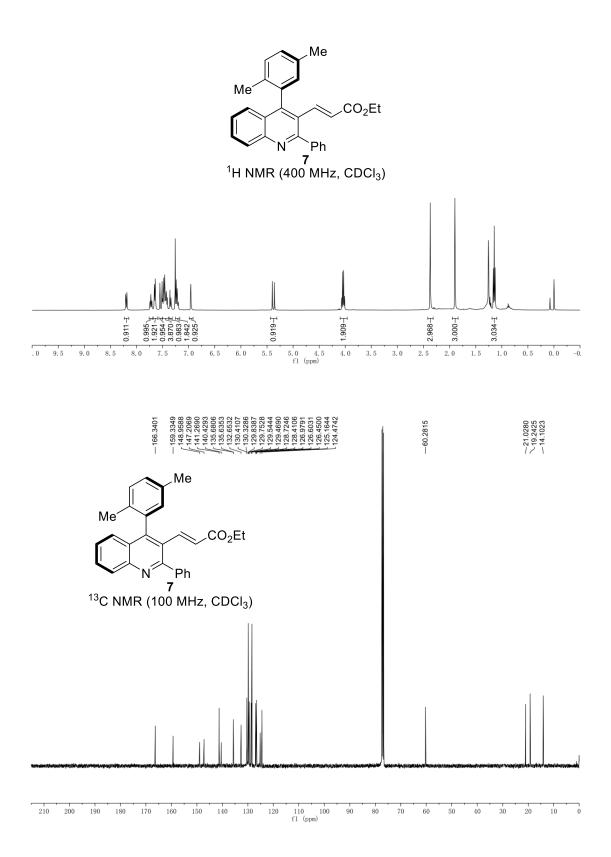


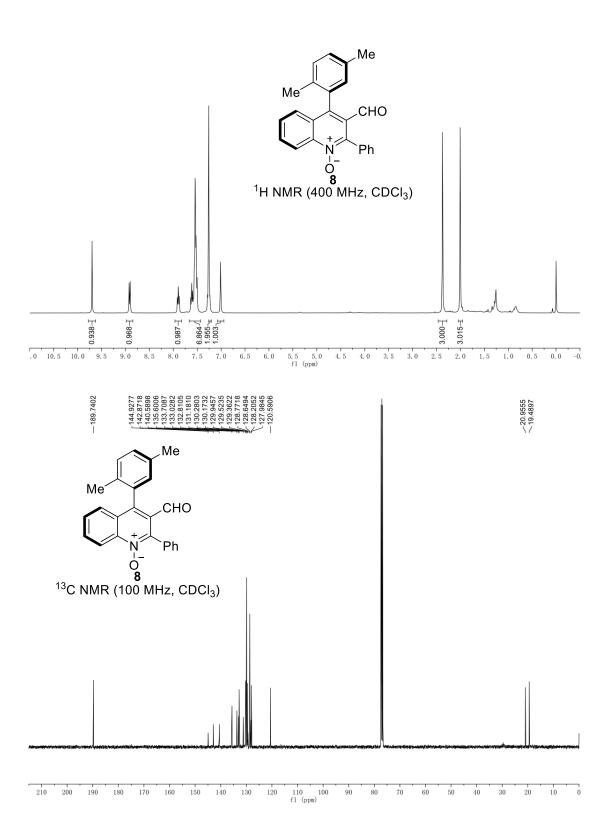

8.1898 6.112 6

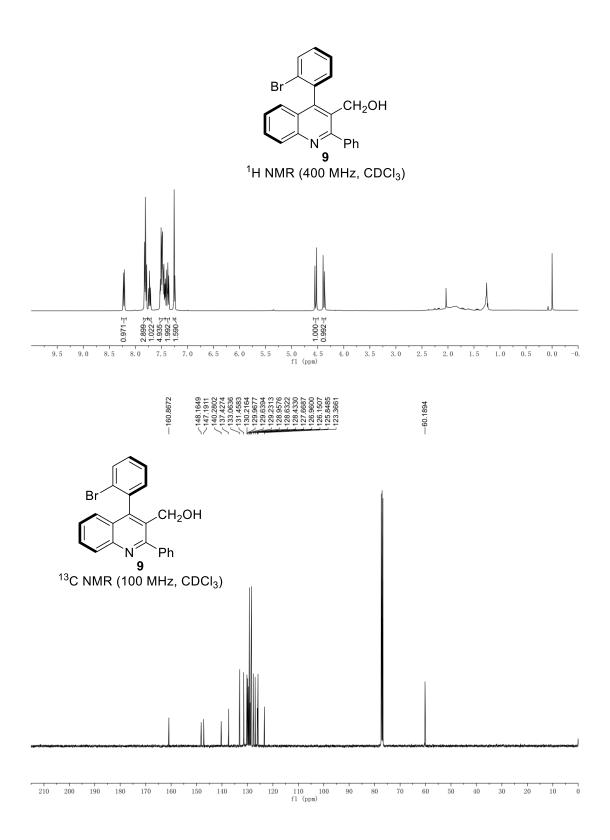




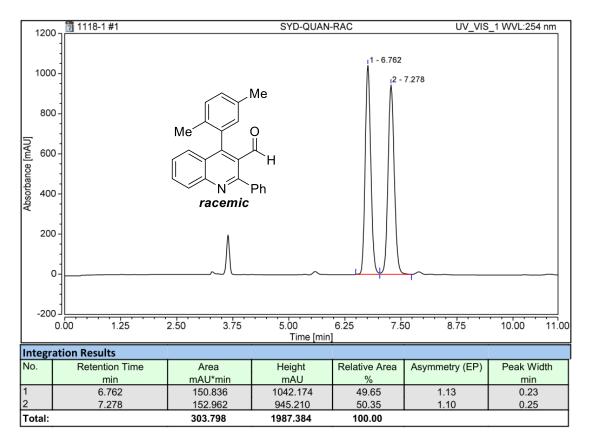


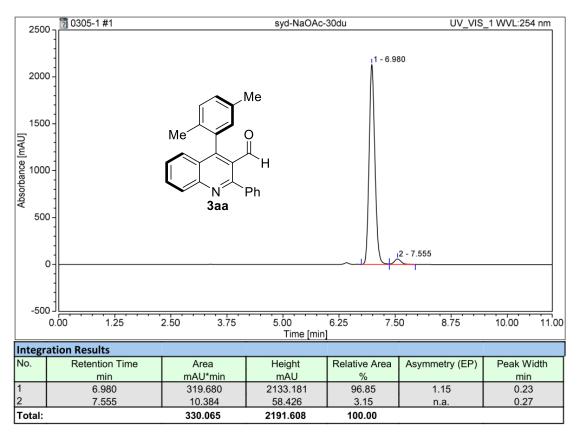


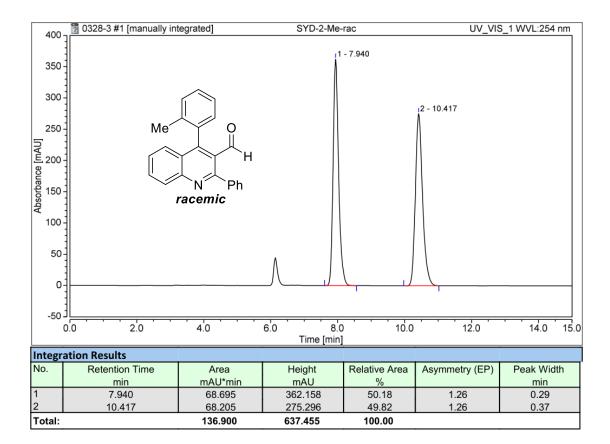

8.2624
8.2624
8.2624
8.2624
8.2624
8.771773
8.7771733
8.77783
8.77431
8.77453
8.77453
8.77453
8.77453
8.77453
8.77453
8.77453
8.77453
8.77453
8.7745
8.7745
8.7745
8.7745
8.7745
8.771
8.725
8.7725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.725
8.7

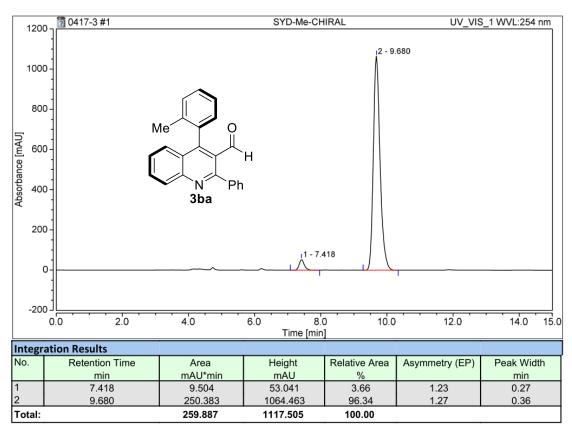


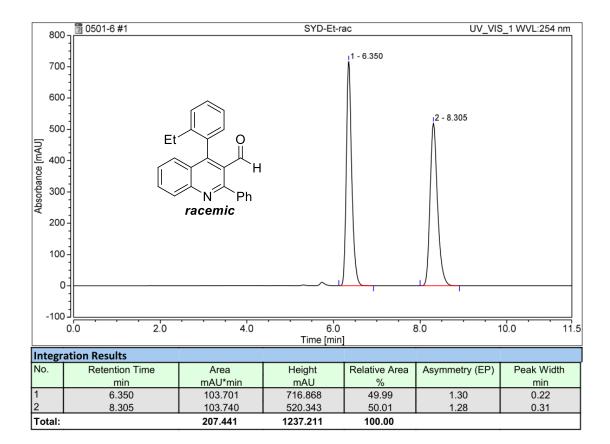
8 2084 8 2084 7 777257 7 77257 7 772653 7 772653 7 772653 7 772047 7 772047 7 772047 7 75521 7 74573 7 74733 7 7473

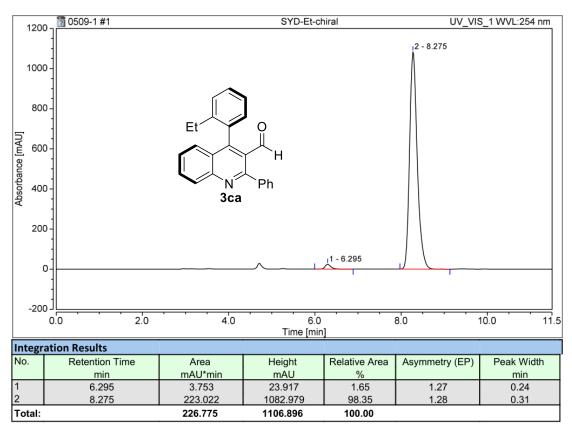


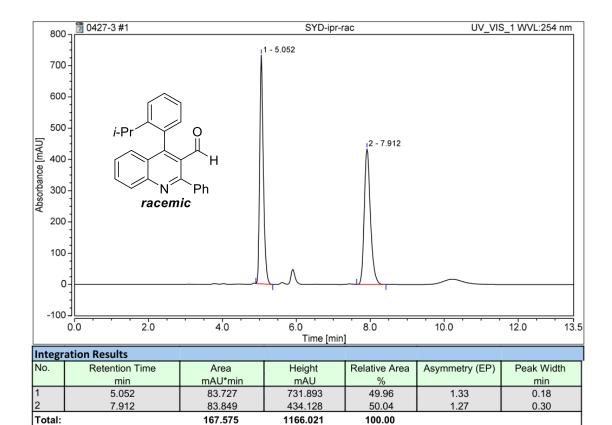

--2.3738 --2.0040

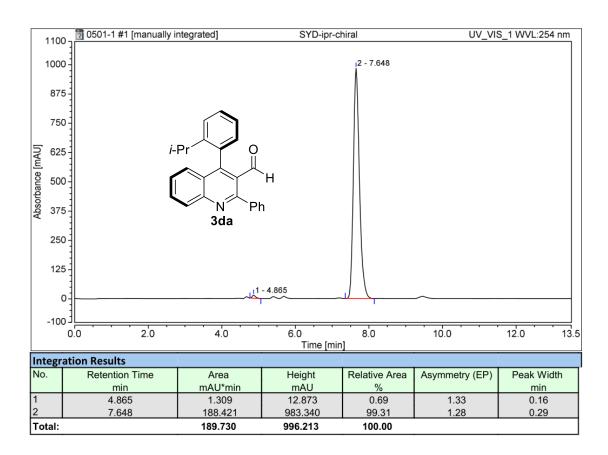


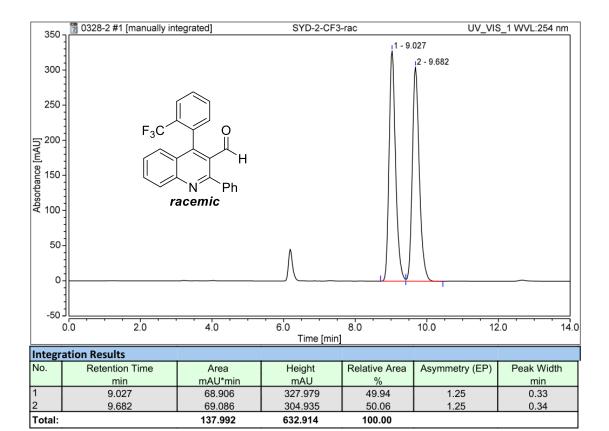


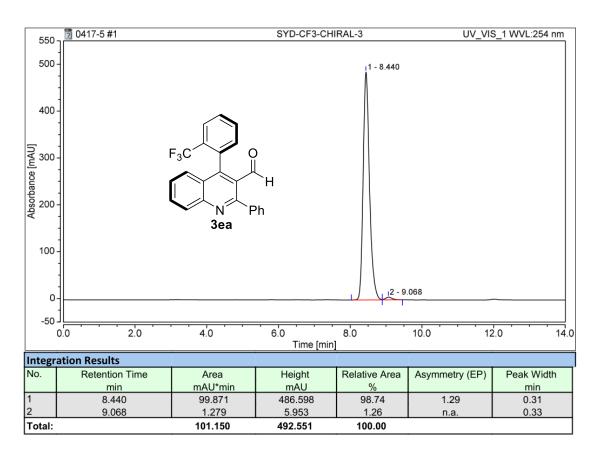

HPLC Traces

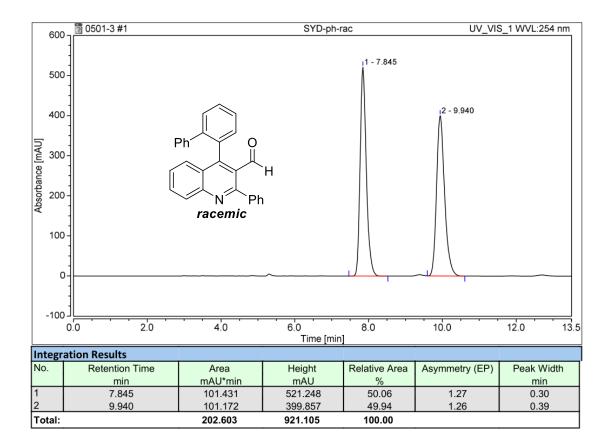


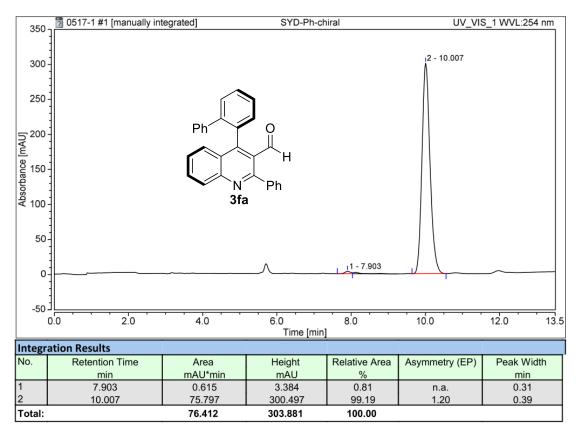


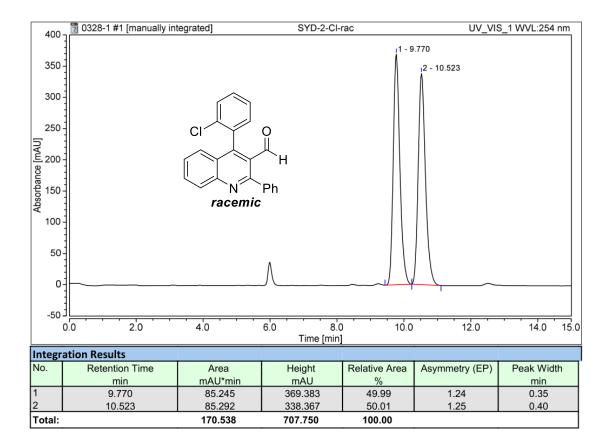


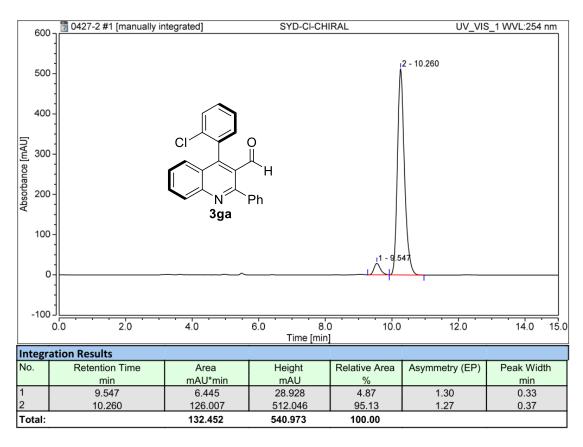


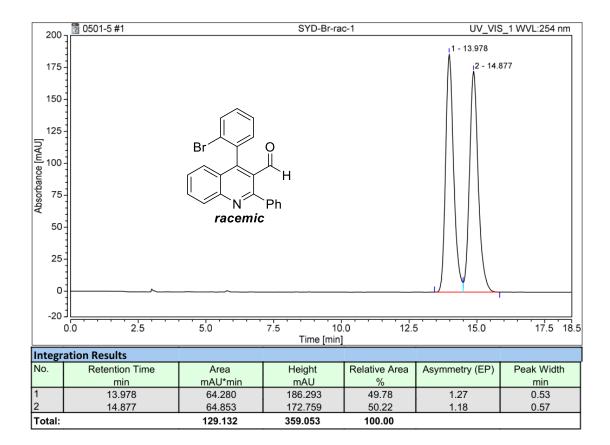


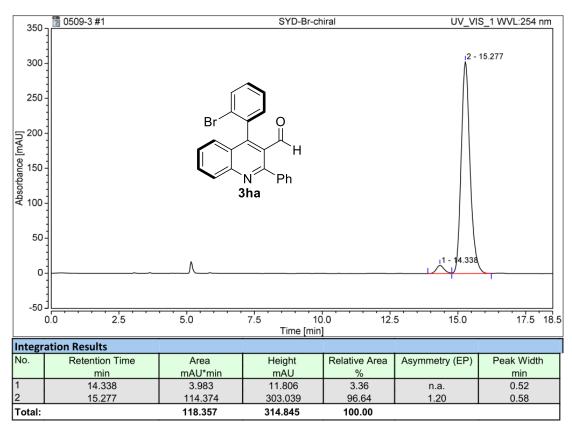


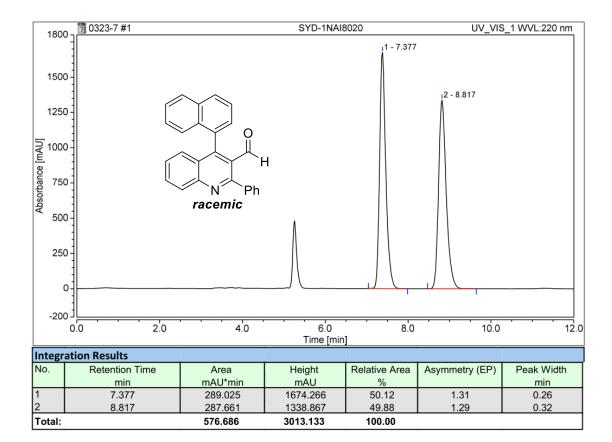


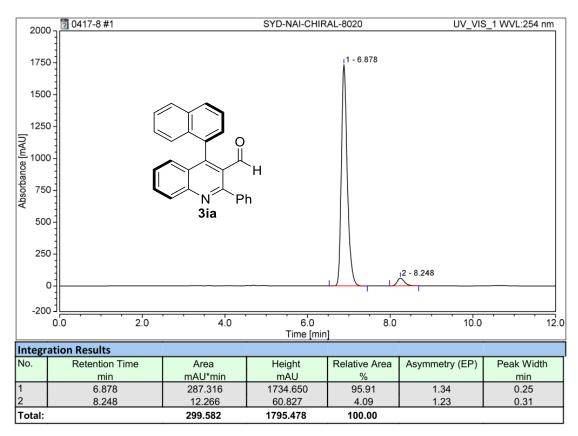


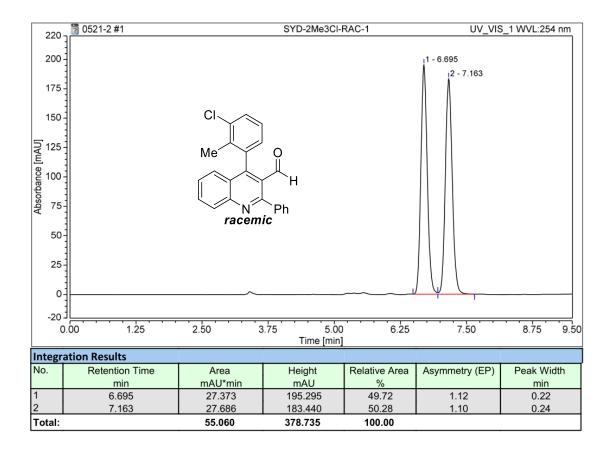


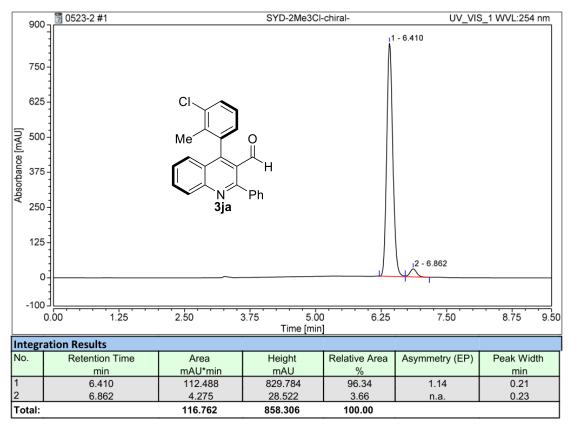


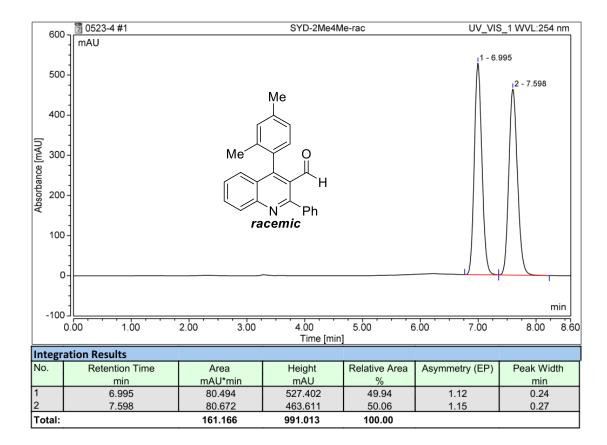


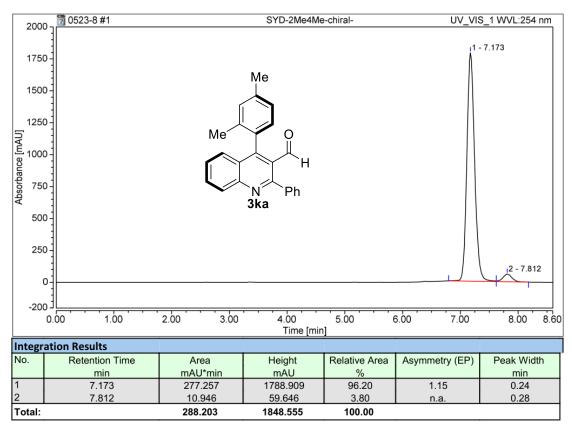


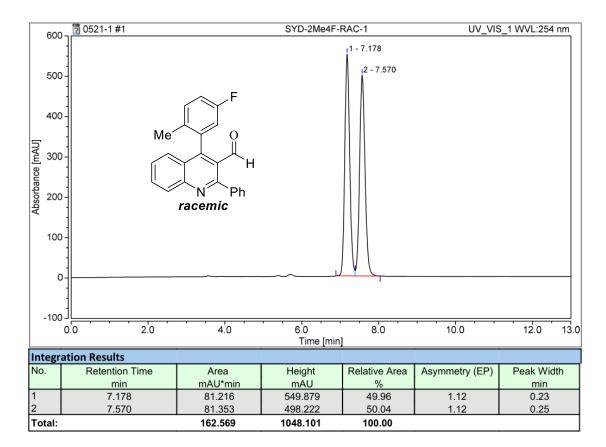


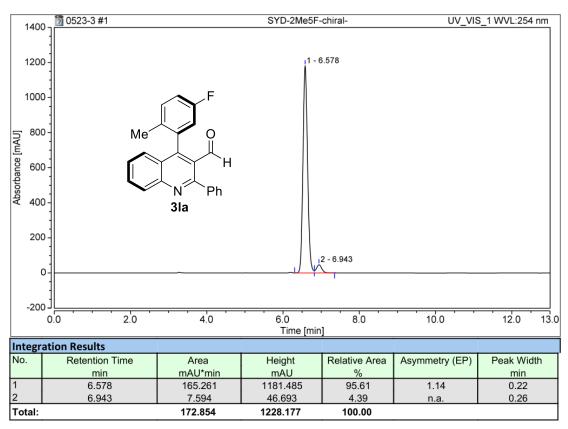


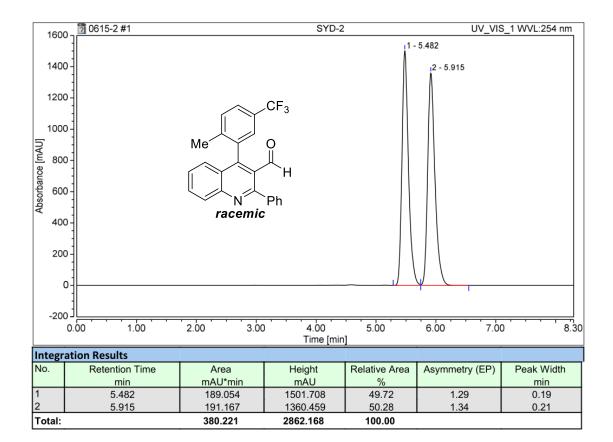


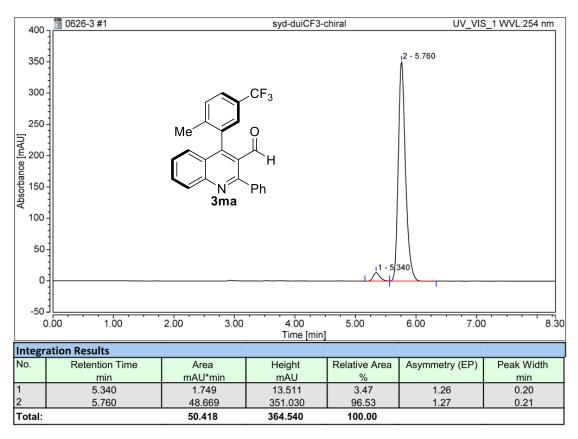


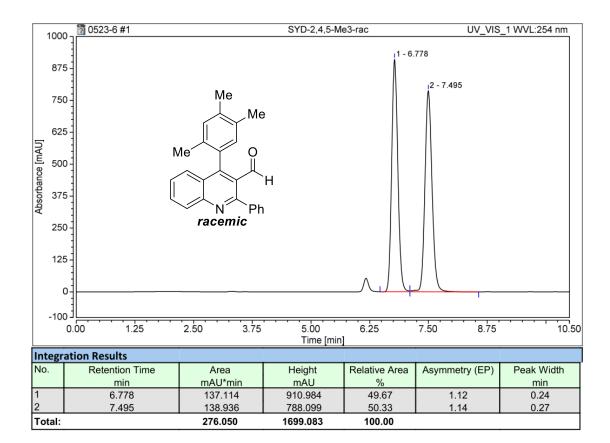


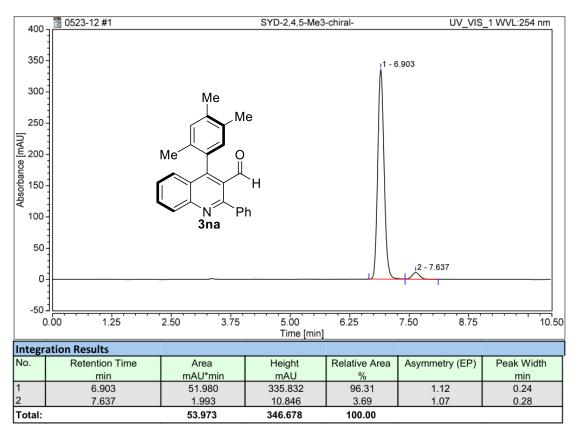


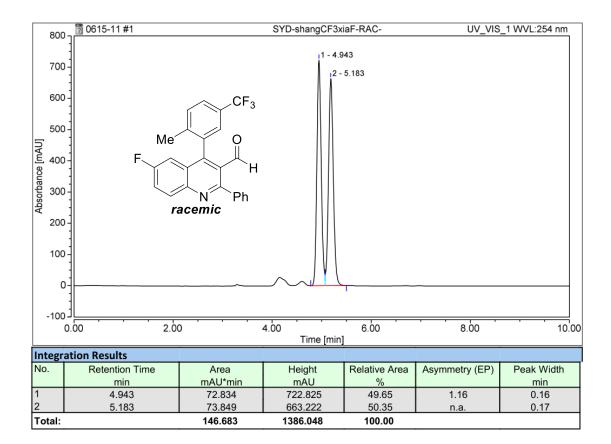


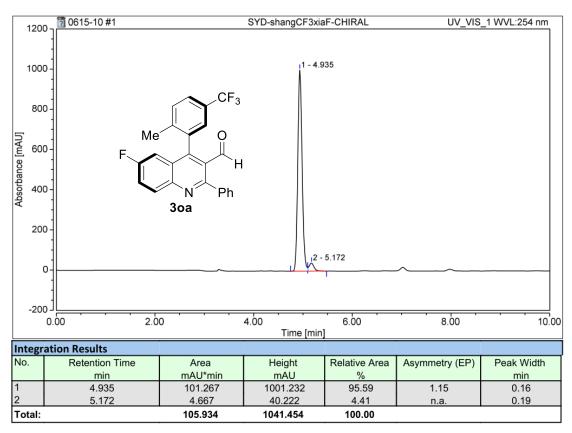


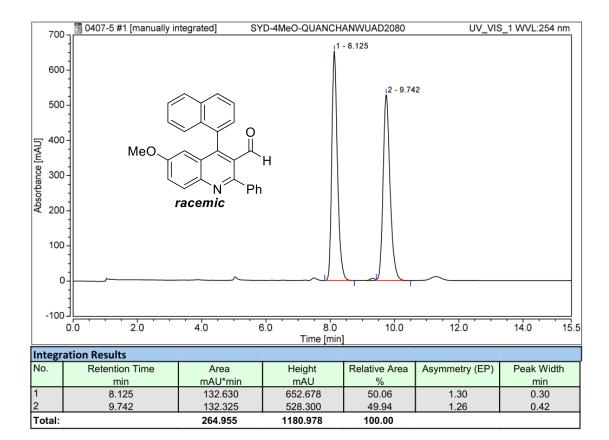


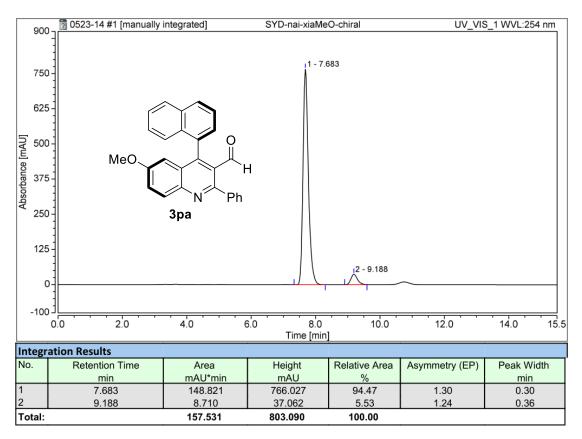


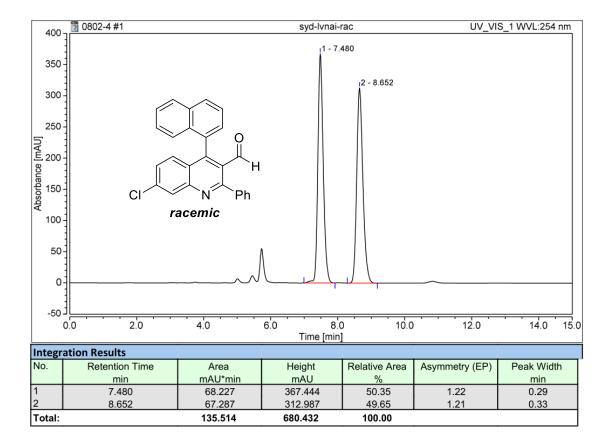


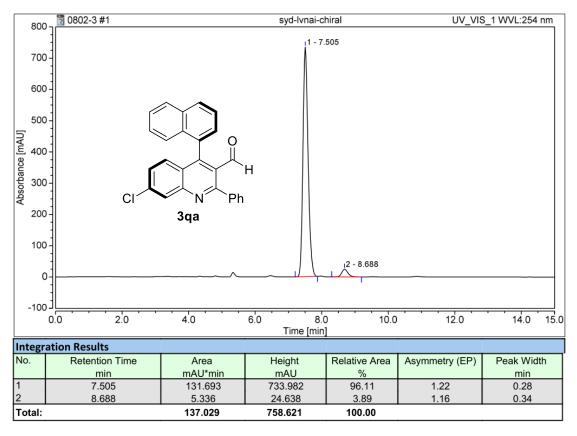


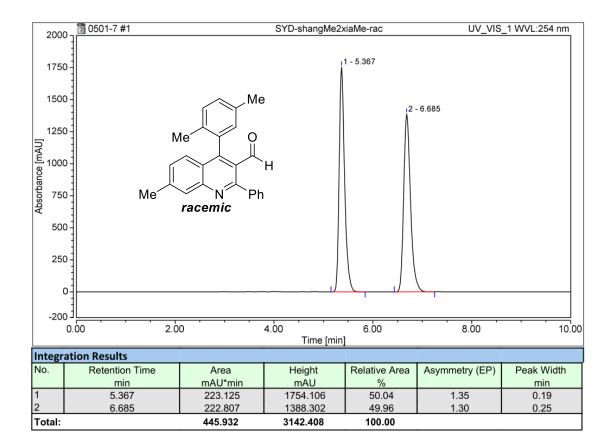


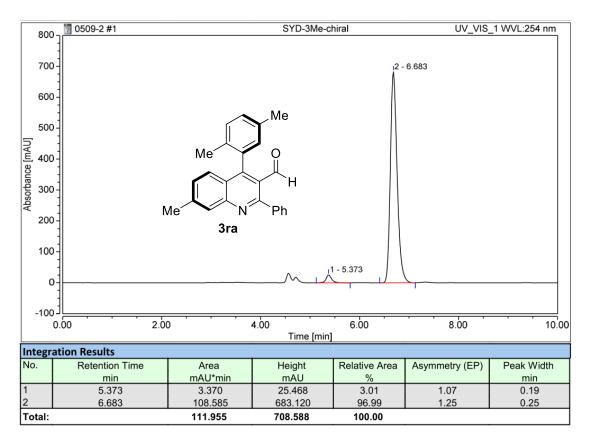


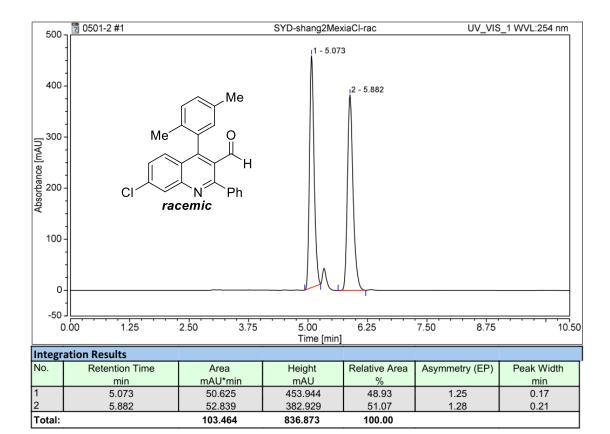


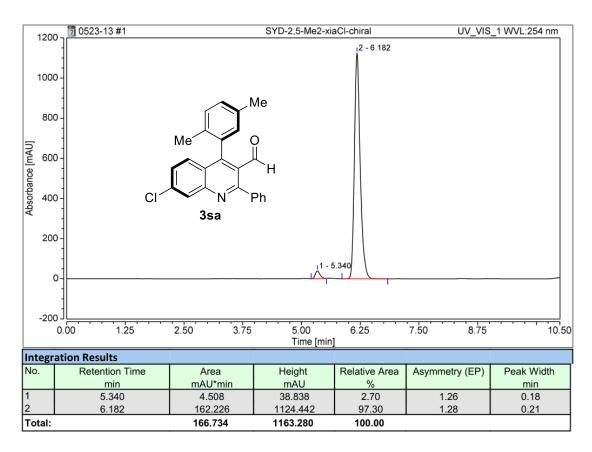


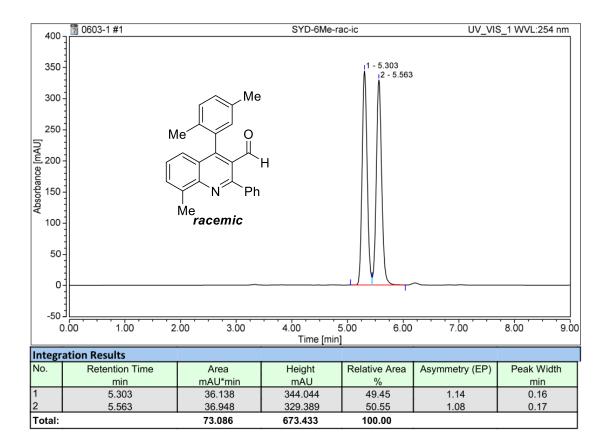


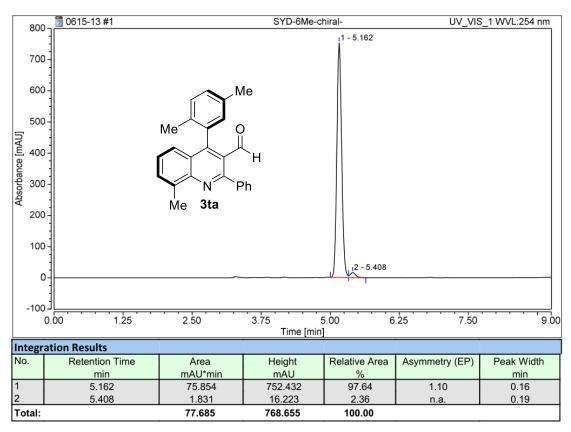


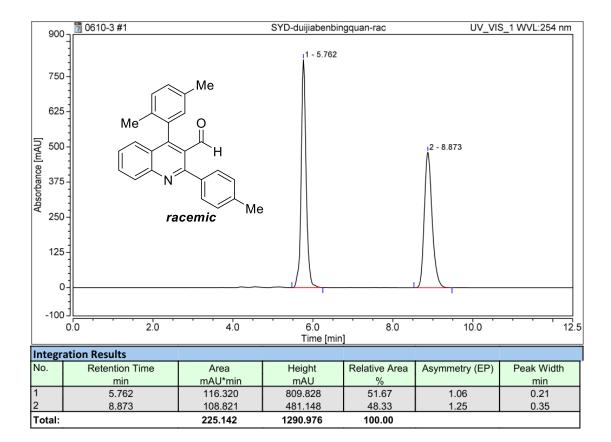


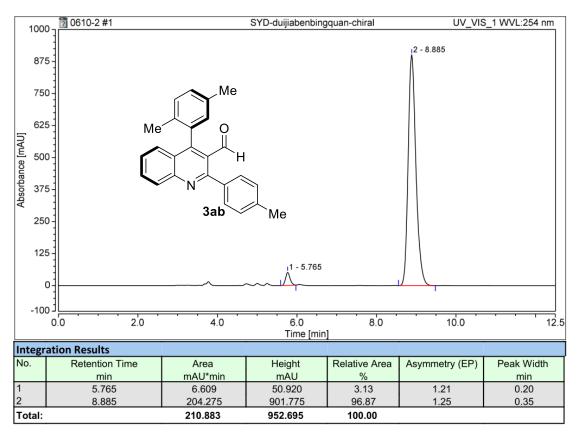


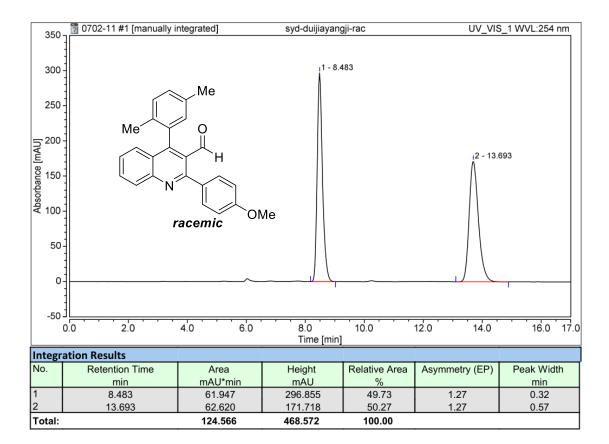


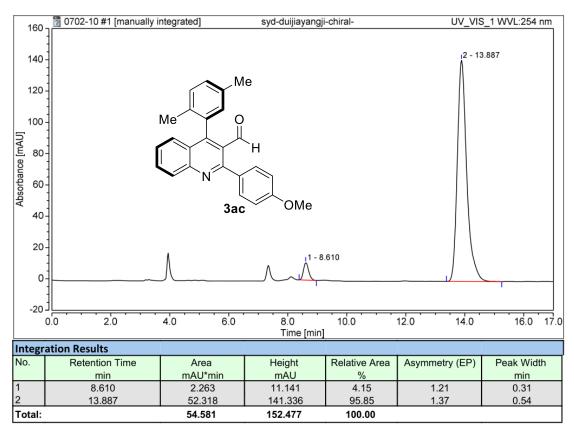


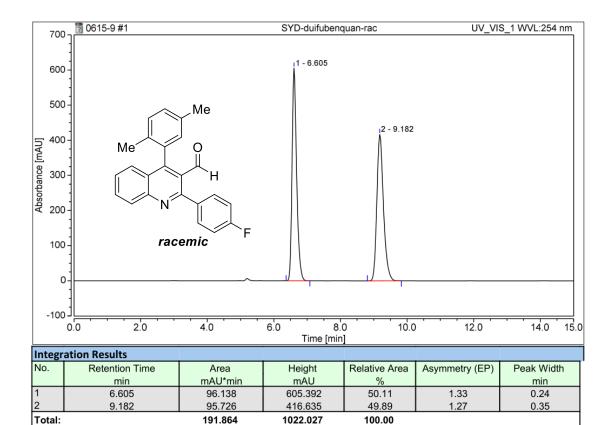


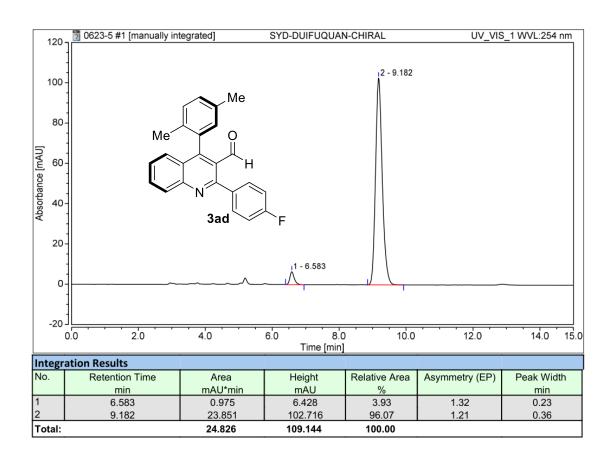


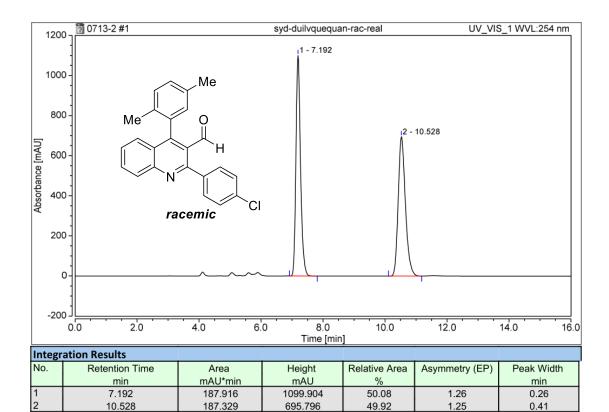


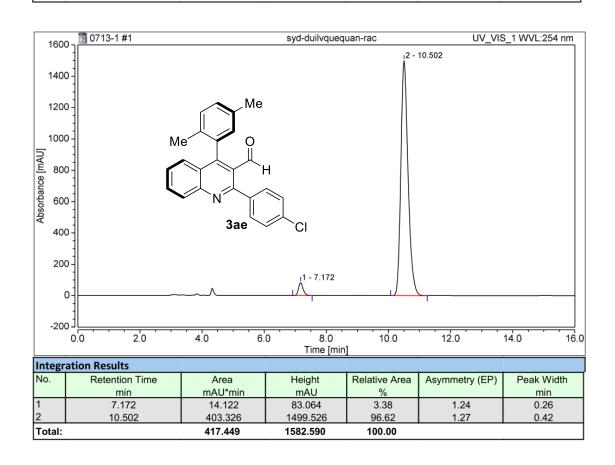


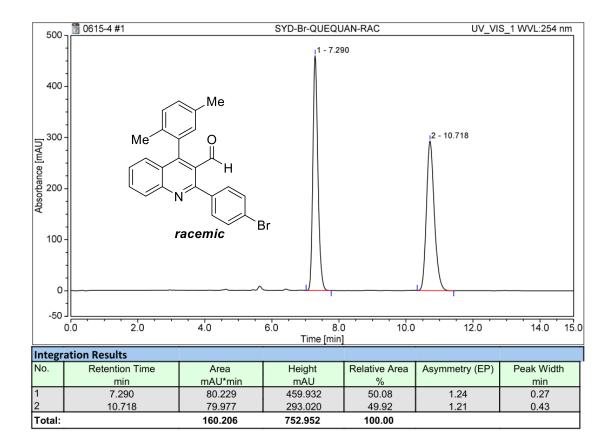


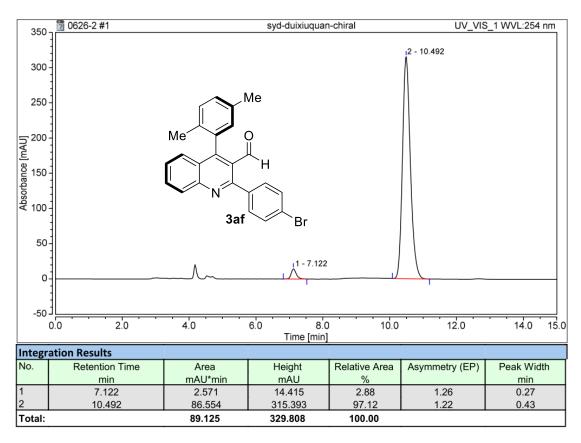


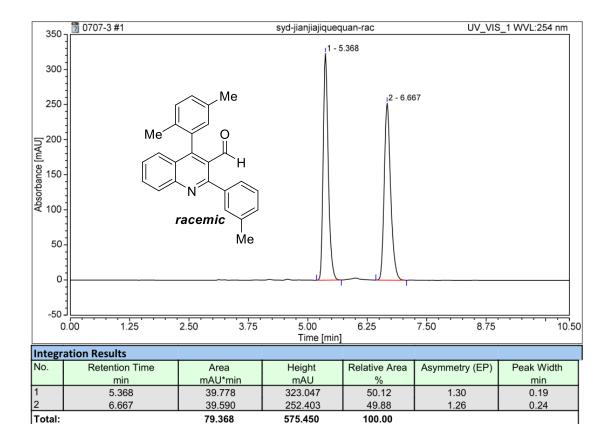


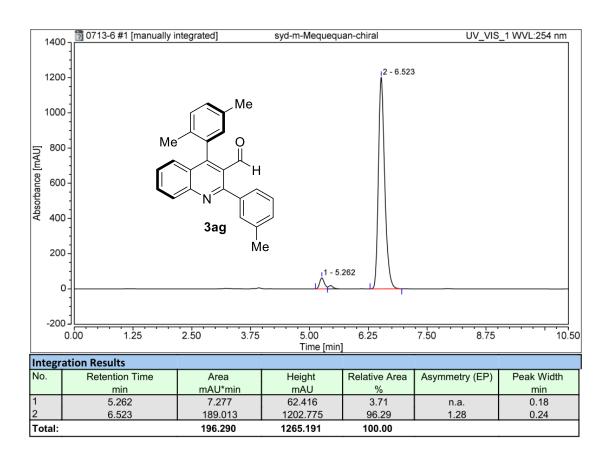


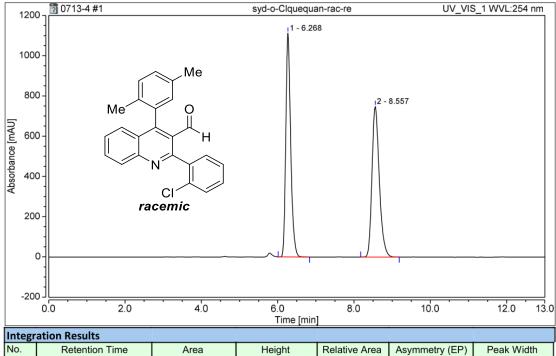


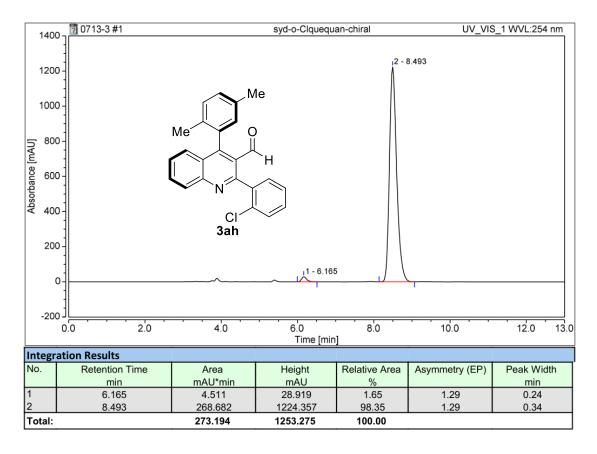

1795.700

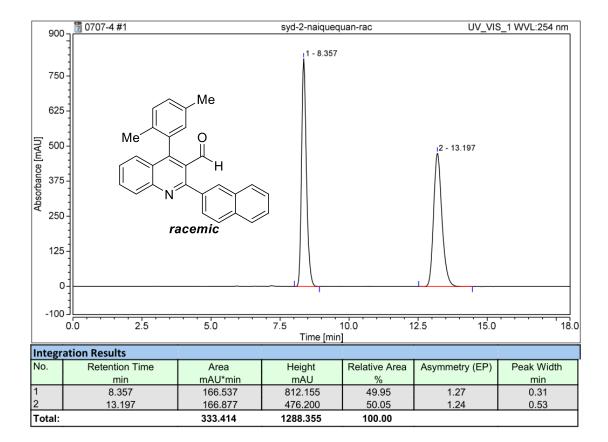

100.00

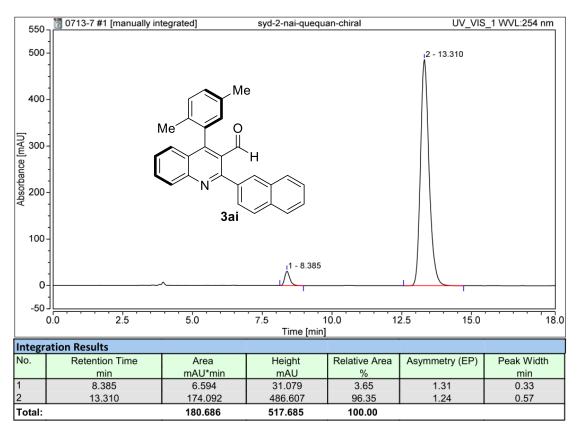

375.246

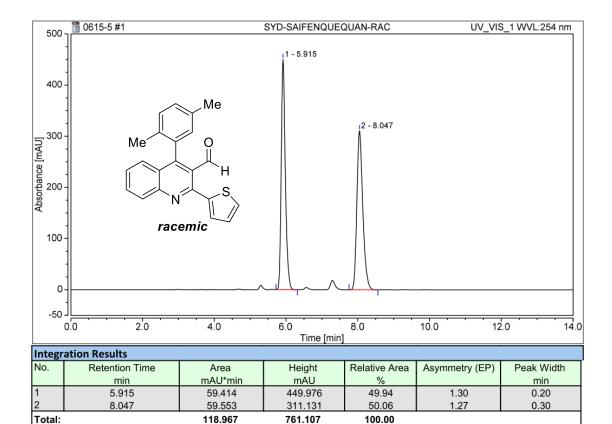

Total:

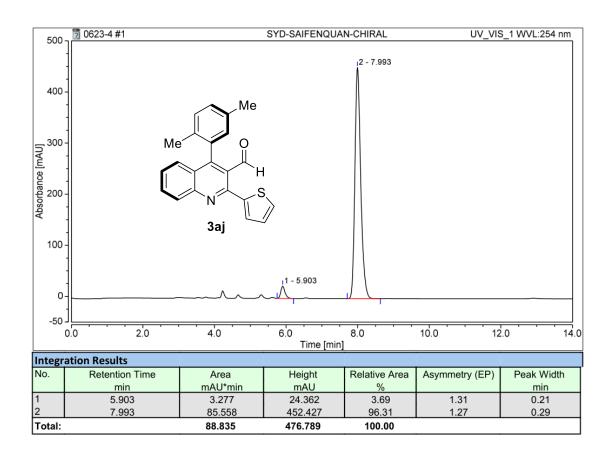


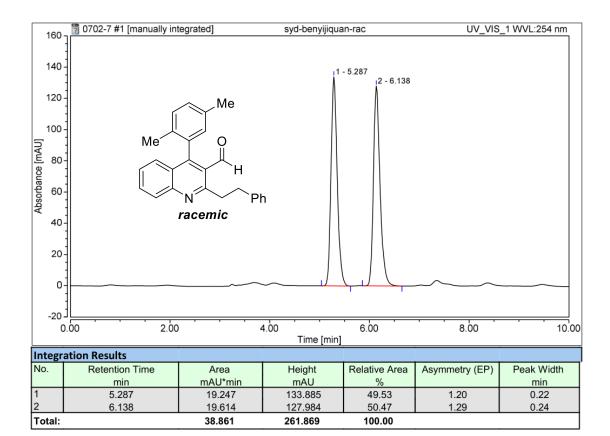


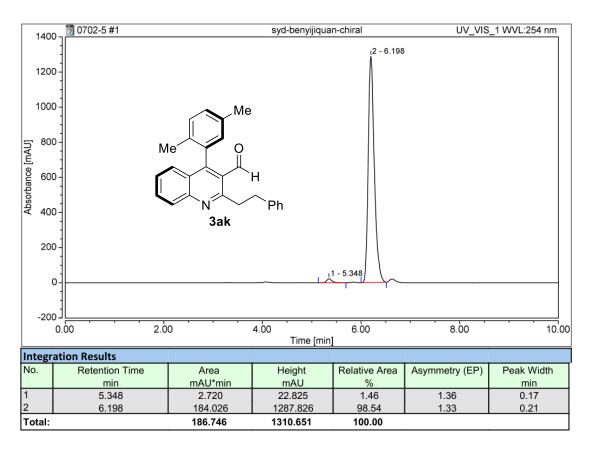


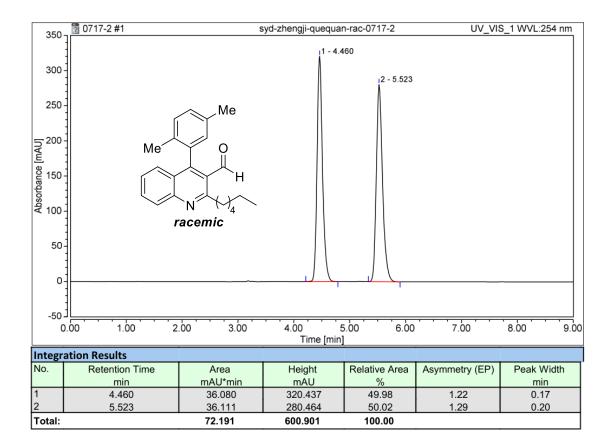


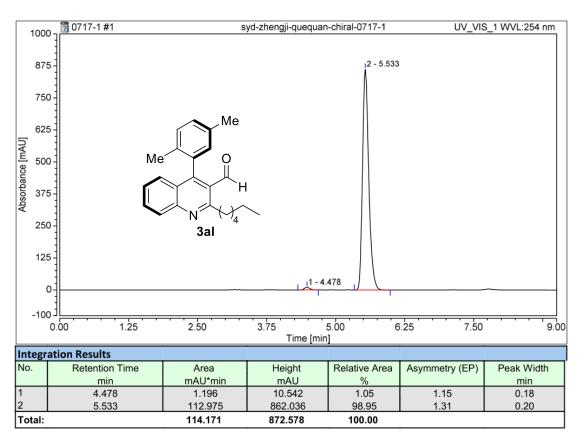


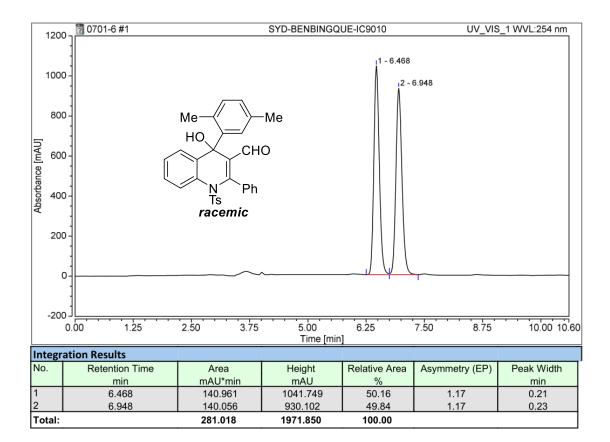

No.	Retention Time	Area	Height	Relative Area	Asymmetry (EP)	Peak Width
	min	mAU*min	mAU	%		min
1	6.268	165.352	1113.171	49.77	1.30	0.22
2	8.557	166.861	749.501	50.23	1.27	0.34
Total:		332.214	1862.672	100.00		

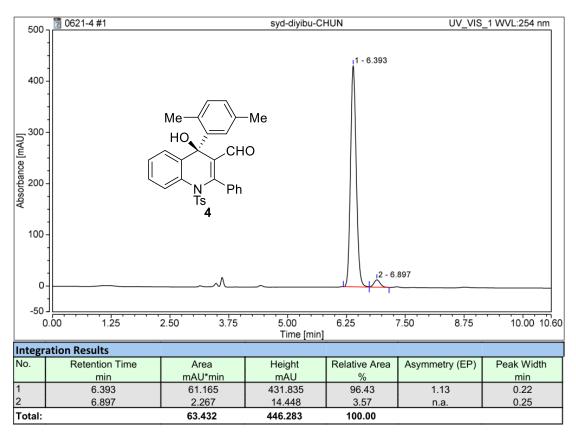


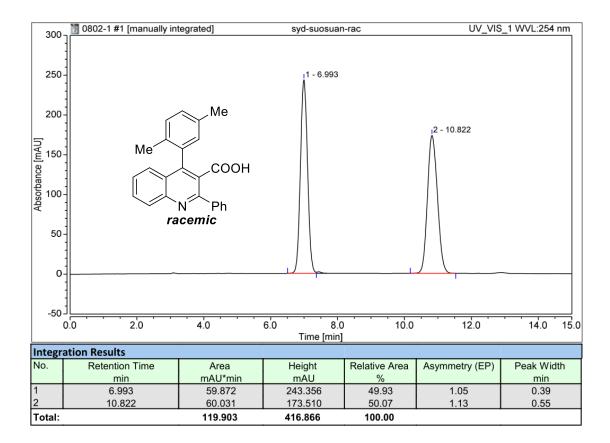


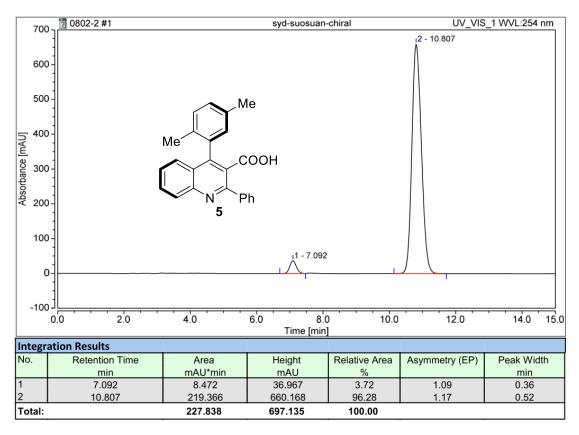


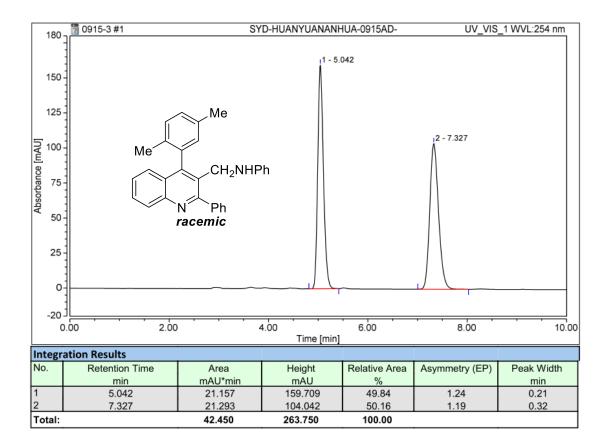


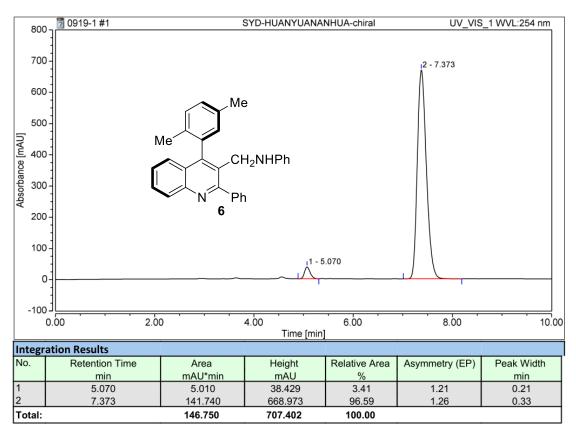


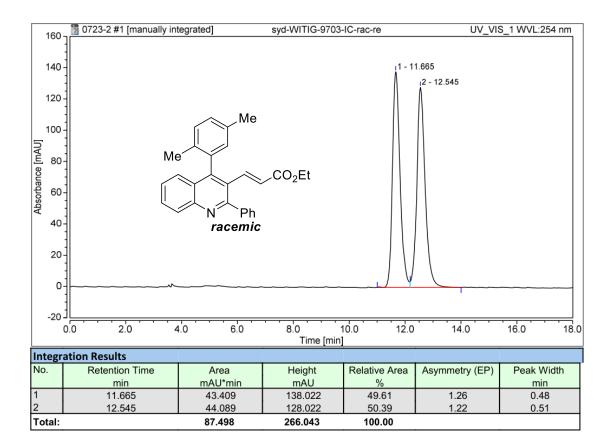


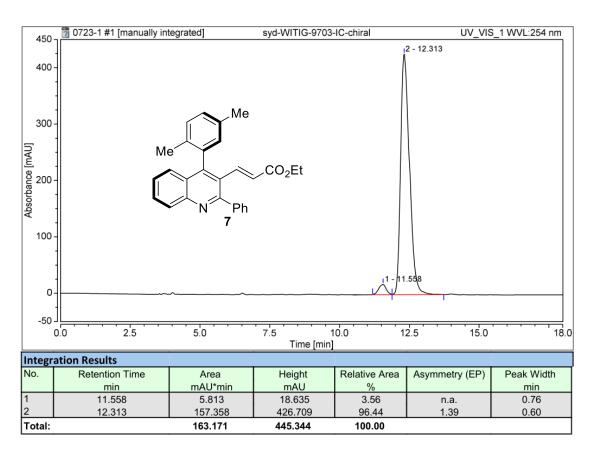


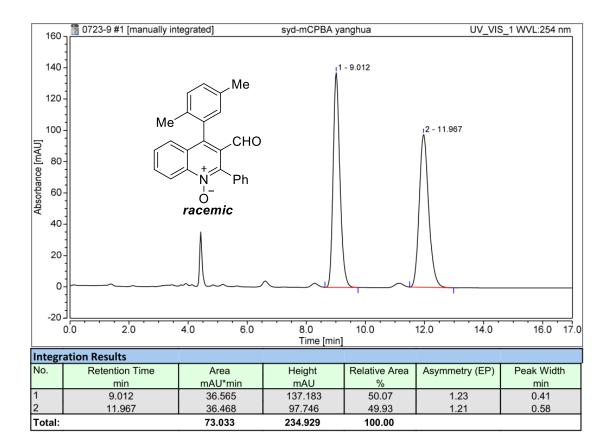


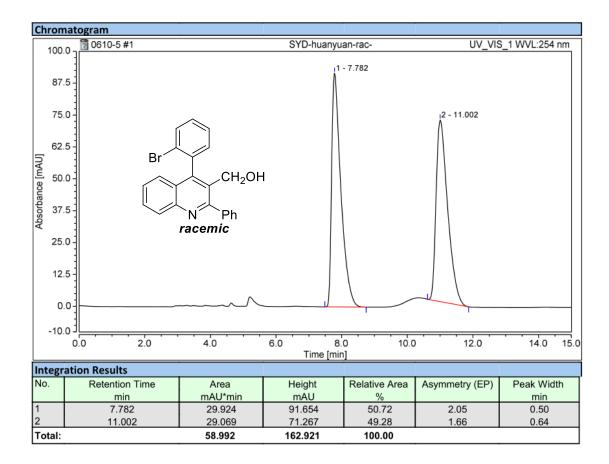


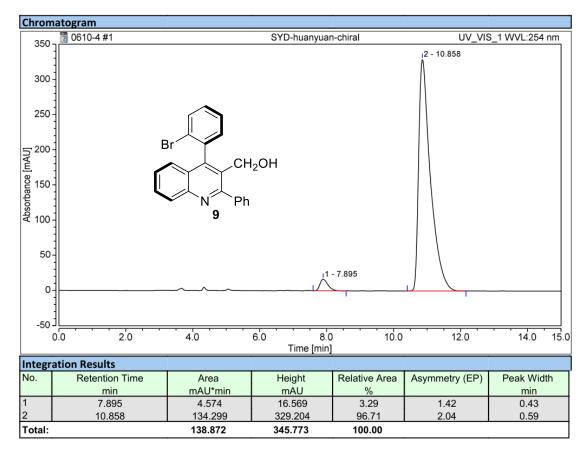


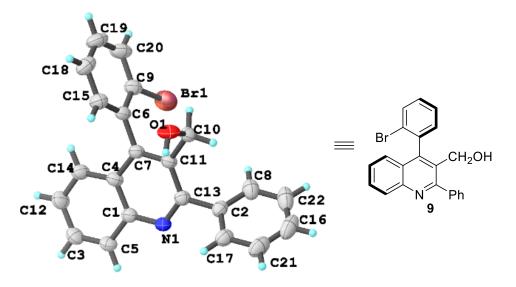












X-ray Crystallographic Information

The absolute configuration of compound **9** was assigned to be (a*S*) by the single crystal X-ray analysis. The crystal data of compound **9** have been deposited in CCDC with number 2021435.

Table S2.	Crystal	data and	structure	refinement	for NDJ	-HZ-300K.

Identification code	NDJ-HZ-300K
Empirical formula	C ₂₂ H ₁₆ BrNO
Formula weight	390.27
Temperature/K	300.91(10)
Crystal system	monoclinic
Space group	C2
a/Å	16.7622(2)
b/Å	7.97140(10)
c/Å	13.42690(10)
$\alpha/^{\circ}$	90
β/°	100.2810(10)
$\gamma/^{o}$	90
Volume/Å ³	1765.27(3)
Z	4
$\rho_{calc}g/cm^3$	1.468
µ/mm ⁻¹	3.232
F(000)	792.0
Crystal size/mm ³	$? \times ? \times ?$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	6.69 to 154.394
Index ranges	$-14 \le h \le 20, -9 \le k \le 9, -16 \le l \le 16$
	\$138

Reflections collected	9327
Independent reflections	3420 [$R_{int} = 0.0231$, $R_{sigma} = 0.0242$]
Data/restraints/parameters	3420/1/228
Goodness-of-fit on F ²	0.858
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0276, wR_2 = 0.0934$
Final R indexes [all data]	$R_1 = 0.0280, wR_2 = 0.0946$
Largest diff. peak/hole / e Å $^{-3}$	0.23/-0.60
Flack parameter	-0.04(2)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for NDJ-HZ-300K. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	z	U(eq)
Br1	8459.8(2)	2191.9(6)	1880.5(3)	63.71(16)
01	8798.2(14)	7822(3)	3865.0(17)	49.7(5)
N1	6925.1(13)	4180(3)	4505.9(16)	36.9(5)
C1	6455.1(15)	4245(4)	3566.7(19)	37.0(5)
C2	8194.1(16)	4438(4)	5636.7(19)	38.9(6)
C3	5130.6(16)	3835(5)	2543(2)	49.1(7)
C4	6763.1(16)	4700(4)	2688(2)	37.3(5)
C5	5618.4(16)	3829(4)	3473(2)	43.2(6)
C6	7955.9(14)	5613(4)	1914.7(18)	37.8(5)
C7	7598.4(14)	5166(3)	2820.4(18)	35.6(5)
C8	8892.2(19)	3444(5)	5783(3)	54.7(7)
C9	8352.7(16)	4442(4)	1415(2)	43.5(6)
C10	8883.0(15)	6050(4)	3948(2)	41.1(6)
C11	8054.3(14)	5218(3)	3776.7(18)	35.5(5)
C12	5435.9(18)	4278(5)	1673(2)	51.7(7)
C13	7698.6(16)	4627(3)	4601.9(19)	36.1(5)
C14	6241.5(18)	4696(4)	1743(2)	44.2(6)
C15	7900.0(17)	7259(6)	1534(2)	48.3(6)
C16	9357(2)	3302(6)	6745(3)	69.2(11)
C17	7969.0(18)	5245(4)	6454(2)	47.6(6)
C18	8230(2)	7675(5)	695(2)	56.3(8)
C19	8633(2)	6499(5)	224(2)	58.8(8)
C20	8698(2)	4867(6)	580(2)	57.4(8)
C21	8448(3)	5104(6)	7412(2)	63.8(10)
C22	9145(3)	4142(6)	7541(3)	72.4(12)

Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}	
Br1	66.4(2)	51.7(2)	77.0(3)	-4.24(16)	23.50(16)	6.76(15)	
O1	51.8(11)	52.9(12)	50.5(11)	-10.0(9)	26.0(9)	-16.3(9)	
N1	33.8(9)	42.5(12)	36.3(10)	3.0(9)	11.5(8)	-1.2(9)	
C1	34.7(11)	41.1(13)	36.5(11)	-0.8(9)	9.6(9)	-0.7(10)	
C2	40.5(12)	41.0(15)	34.3(11)	4.7(10)	4.3(9)	-5.8(10)	
C3	32.2(11)	59.6(18)	54.8(15)	-0.5(13)	5.7(11)	-5.7(11)	
C4	32.0(11)	44.2(14)	37.1(11)	-5.1(10)	9.8(9)	-2.9(10)	
C5	34.8(11)	52.4(16)	44.2(13)	3.4(11)	11.9(10)	-4.1(11)	
C6	29.8(10)	51.1(14)	33.5(10)	-3.1(10)	8.6(8)	-3.7(10)	
C7	33.9(10)	41.1(13)	33.9(10)	-1.9(9)	11.3(8)	-1.4(9)	
C8	49.4(15)	53.5(17)	58.3(17)	7.3(13)	1.6(13)	4.4(13)	
C9	38.7(11)	53.5(16)	39.8(12)	-6.2(11)	11.0(10)	-3.1(10)	
C10	32.3(11)	52.8(15)	39.2(12)	-0.5(11)	8.8(9)	-4.0(11)	
C11	30.7(10)	41.3(13)	35.8(11)	-2.3(9)	9.7(8)	-1.7(9)	
C12	37.9(12)	72(2)	43.1(14)	-7.9(14)	0.4(11)	-4.3(13)	
C13	36.0(11)	39.0(13)	33.9(11)	-2.2(9)	7.9(9)	-2.4(9)	
C14	40.6(12)	58.2(18)	35.1(12)	-4.6(11)	10.1(9)	-5.3(12)	
C15	51.0(12)	54.4(15)	42.1(12)	3.2(14)	15.1(9)	1.6(15)	
C16	55.0(17)	63(2)	81(3)	23.3(19)	-11.6(18)	0.9(15)	
C17	49.4(14)	56.2(17)	36.9(12)	-0.6(11)	7.2(11)	-9.3(12)	
C18	66.6(18)	64(2)	38.6(13)	7.3(12)	9.4(13)	-13.9(14)	
C19	62.5(17)	83(2)	35.2(12)	-1.5(14)	19.1(11)	-18.0(17)	
C20	52.3(15)	78(2)	47.4(14)	-13.3(15)	23.7(12)	-6.5(15)	
C21	76(2)	77(3)	36.6(14)	-1.2(15)	2.5(14)	-22.7(19)	
C22	79(2)	82(3)	47.4(17)	18.7(18)	-14.2(16)	-25(2)	

Table S4. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for NDJ-HZ-300K. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S5. Bond Lengths for NDJ-HZ-300K.

Atom Atom		Length/Å	Atom Atom		Length/Å
Br1	C9	1.898(3)	C6	C9	1.387(4)
01	C10	1.422(4)	C6	C15	1.405(5)
N1	C1	1.363(3)	C7	C11	1.373(3)
N1	C13	1.329(3)	C8	C16	1.389(5)
C1	C4	1.417(4)	C9	C20	1.392(4)
C1	C5	1.425(4)	C10	C11	1.519(3)
C2	C8	1.398(4)	C11	C13	1.429(3)
C2	C13	1.494(3)	C12	C14	1.378(4)

C2	C17	1.381(4)	C15	C18	1.381(4)
C3	C5	1.365(4)	C16	C22	1.361(7)
C3	C12	1.401(5)	C17	C21	1.393(4)
C4	C7	1.429(3)	C18	C19	1.374(6)
C4	C14	1.407(4)	C19	C20	1.384(6)
C6	C7	1.492(3)	C21	C22	1.382(7)

Table S6. Bond Angles for NDJ-HZ-300K.

Atom Atom Atom		n Atom	Angle/°	Aton	n Aton	n Atom	Angle/°	
C13	N1	C1	118.2(2)	C6	C9	C20	122.0(3)	
N1	C1	C4	122.9(2)	C20	C9	Br1	117.8(3)	
N1	C1	C5	118.0(2)	01	C10	C11	110.2(2)	
C4	C1	C5	119.0(2)	C7	C11	C10	119.8(2)	
C8	C2	C13	120.1(3)	C7	C11	C13	118.4(2)	
C17	C2	C8	119.5(3)	C13	C11	C10	121.6(2)	
C17	C2	C13	120.4(3)	C14	C12	C3	120.3(3)	
C5	C3	C12	121.0(2)	N1	C13	C2	115.7(2)	
C1	C4	C7	117.2(2)	N1	C13	C11	123.3(2)	
C14	C4	C1	119.4(2)	C11	C13	C2	121.0(2)	
C14	C4	C7	123.4(2)	C12	C14	C4	120.3(3)	
C3	C5	C1	120.0(3)	C18	C15	C6	120.8(3)	
C9	C6	C7	122.0(3)	C22	C16	C8	120.5(4)	
C9	C6	C15	117.3(2)	C2	C17	C21	120.1(3)	
C15	C6	C7	120.6(2)	C19	C18	C15	120.8(4)	
C4	C7	C6	119.2(2)	C18	C19	C20	119.8(3)	
C11	C7	C4	119.6(2)	C19	C20	C9	119.3(3)	
C11	C7	C6	121.2(2)	C22	C21	C17	119.7(4)	
C16	C8	C2	119.6(3)	C16	C22	C21	120.6(3)	
C6	C9	Br1	120.2(2)					

Table S7. Torsion Angles for NDJ-HZ-300K.

A B C D	Angle/°	A B C D	Angle/°
Br1C9 C20C19	-179.8(2)	C7 C11C13N1	-6.7(4)
O1 C10C11C7	72.4(3)	C7 C11C13C2	171.8(2)
O1 C10C11C13	-101.4(3)	C8 C2 C13N1	122.8(3)
N1 C1 C4 C7	-2.5(4)	C8 C2 C13C11	-55.8(4)
N1 C1 C4 C14	178.4(3)	C8 C2 C17C21	1.7(5)

N1 C1 C5 C3	-178.2(3)	C8 C16C22C21	2.3(7)
C1 N1 C13C2	-176.7(3)	C9 C6 C7 C4	-93.9(3)
C1 N1 C13C11	1.9(4)	C9 C6 C7 C11	87.1(3)
C1 C4 C7 C6	178.5(3)	C9 C6 C15C18	0.0(4)
C1 C4 C7 C11	-2.4(4)	C10C11C13N1	167.2(3)
C1 C4 C14C12	0.9(5)	C10C11C13C2	-14.3(4)
C2 C8 C16C22	-1.0(6)	C12C3 C5 C1	-1.3(5)
C2 C17 C21 C22	-0.5(5)	C13N1 C1 C4	2.7(4)
C3 C12C14C4	-0.7(6)	C13N1 C1 C5	-177.5(3)
C4 C1 C5 C3	1.5(5)	C13C2 C8 C16	178.8(3)
C4 C7 C11C10	-167.3(3)	C13C2 C17C21	-178.0(3)
C4 C7 C11C13	6.7(4)	C14C4 C7 C6	-2.4(4)
C5 C1 C4 C7	177.8(3)	C14C4 C7 C11	176.6(3)
C5 C1 C4 C14	-1.3(4)	C15C6 C7 C4	86.1(3)
C5 C3 C12C14	0.9(6)	C15C6 C7 C11	-93.0(3)
C6 C7 C11C10	11.7(4)	C15C6 C9 Br1	179.78(19)
C6 C7 C11C13	-174.3(3)	C15C6 C9 C20	1.2(4)
C6 C9 C20C19	-1.1(5)	C15C18C19C20	1.3(5)
C6 C15C18C19	-1.2(5)	C17C2 C8 C16	-1.0(5)
C7 C4 C14C12	-178.1(3)	C17C2 C13N1	-57.5(4)
C7 C6 C9 Br1	-0.3(3)	C17C2 C13C11	123.9(3)
C7 C6 C9 C20	-178.9(3)	C17 C21 C22 C16	-1.6(6)
C7 C6 C15C18	-179.9(2)	C18C19C20C9	-0.1(5)

Table S8. Hydrogen Atom	Coordinates	$(\text{\AA} \times 10^4)$ and	Isotropic	Displacement	Parameters
(Å ² ×10 ³) for NDJ-HZ-300K.					

Atom	n <i>x</i>	у	z	U(eq)
H1	8498.27	8151.35	4244.21	74
H3	4587.52	3540.12	2485.17	59
H5	5404.6	3553.85	4044.93	52
H8	9044.54	2881.43	5240.15	66
H10A	A 9176.68	5760.59	4615.26	49
H10E	3 9191.49	5643.88	3450.82	49
H12	5093.46	4289.24	1046.89	62
H14	6441.42	4977.78	1161.37	53
H15	7638.18	8076.97	1849.95	58
H16	9816.98	2627.05	6846.42	83
H17	7497.46	5884.26	6364.62	57
H18	8177.77	8765.66	444.79	68
H19	8861.9	6799.02	-332.25	71

H20	8968.92	4062.31	265.55	69
H21	8298.59	5653.61	7961.38	77
H22	9471.25	4069.18	8176.29	87