# Carbene-Catalyzed Selective Addition of Isothioureas to Enals for Access to Sulphur-Containing 5,6-Dihydropyrimidin-4-ones 

Rakesh Maiti, ${ }^{a}$ Jun Xu, ${ }^{\text {a,b }}$ Jia-Lei Yan, ${ }^{a}$ Bivas Mondal, ${ }^{a}$ Xing Yang, ${ }^{a}$ Huifang Chai,*b Lin Hao, ${ }^{\text {a }}$ Zhichao Jin, ${ }^{\text {c }}$ and Yonggui Robin Chi ${ }^{*}{ }^{\text {a, }}$ c<br>${ }^{\text {a Division }}$ of Chemistry \& Biological Chemistry, School of Physical \& Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore<br>${ }^{\text {b }}$ Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China<br>${ }^{〔}$ Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China

## Table of Contents

Part 1. General Information ..... S3
Part 2. Experimental Section
I. General Procedure to Synthesis of Starting Materials .....  S 4
II. General Procedure for the Catalytic Reaction of Enal (1) with S-alkylated isothiourea (2) to Synthesize Product (3) ..... S5
III. Additional Results of Condition Optimization (NHC, Base \& solvent) ..... S6
IV. Stereochemistry Determination of 3a via X-ray Crystallographic Analysis ..... S7
V. Postulated Reaction Mechanism ..... S8
VI. Procedures for Scale-up Reaction and Synthetic Transformations ..... S9
VII. References. ..... S10
Part 3. Characterizations of Products
I. Characterization of Products ..... S11
II. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HPLC Spectra ..... S23

## Part 1. General Information

Commercially available materials purchased form TCI or Sigma Aldrich were used as received. All reactions were carried out under nitrogen atmosphere under anhydrous conditions unless otherwise noted. THF was distilled from sodium-benzophenone. Flash chromatography was performed using silica gel (200-300 mesh). Reactions were monitored by thin layer chromatography (TLC). Visualization was achieved under a UV lamp ( 254 nm and 365 nm ). 1H and 13C NMR were recorded on Bruker BBFO 400 MHz NMR, Bruker AV400 MHz NMR spectrometer with TMS as the internal standard, and were calibrated using residual undeuterated solvent as an internal reference (CDCI3: ${ }^{1} \mathrm{H}$ NMR = 7.26, ${ }^{13} \mathrm{C}$ NMR = 77.16). The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=\mathrm{quartet} \mathrm{~m}=$, multiplet, $\mathrm{br}=$ broad. Coupling constants (J) are reported in Hertz (Hz). High-resolution Mass spectra (HRMS) were recorded by using Finnigan MAT 95 XP mass spectrometer (Thermo Electron Corporation). The determination of e.r. was performed via chiral HPLC analysis using Shimadzu LC-20AD HPLC workstation. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Jasco P-1030 polarimeter and are reported as follows: $[\alpha]^{21}{ }_{D}$ (c in g per 100 mL solvent)

## Part 2. Experimental Section

## I. General Procedure to Synthesis of Starting Materials:

## S-Methyl Isothiourea: ${ }^{1}$


lodomethane ( 5 mmol ) was added to a solution of thiourea derivative ( 5 mmol ) in acetone and the mixture was continued to stir overnight at room temperature. After that, the mixture was concentrated under vacuum and ethyl acetate ( 25 mL ) was added. Later, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and cooled to $0{ }^{\circ} \mathrm{C}$. Next, conc. $\mathrm{NH}_{4} \mathrm{OH}$ was mixed dropwise until all the solid disappeared and then, stirred for another 30 mins. Organic layer was separated, washed with brine, and concentrated. The product was used directly without further purification.

## Synthesis of 2h: $\mathbf{}^{2}$



In 100 mL round bottom flask equipped with a magnetic stirring bar and a reflux condenser, thiourea ( $4.00 \mathrm{~g}, 51.3 \mathrm{mmol}$ ) was dissolved in methanol ( 40.0 mL ). Then, Iodomethane ( $3.20 \mathrm{~mL}, 51.3 \mathrm{mmol}$ ) was added in one portion and the mixture was continued to reflux for 2 hrs. After the mentioned time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure, giving a yellowish solid. Then, the yellowish solid was mixed with EtOAc ( 50.0 mL ), and the precipitate that did not dissolve was filtered. The precipitate was sequentially washed several times with EtOAc and diethyl ether until it becomes completely colorless. The product was dried under vacuum to provide 8.35 g ( $38.0 \mathrm{mmol}, 74 \%$ yield) of white powder.

## Synthesis of 2i and 2j:



Benzyl Bromide ( 5 mmol ) was added dropwise to a cooled solution of thiourea derivative ( 5 mmol ) in acetone and the mixture was continued to stir overnight at room temperature. After that, the mixture was concentrated under vacuum and ethyl acetate ( 25 mL ) was added. Later, $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added and cooled to $0{ }^{\circ} \mathrm{C}$. Next, conc. $\mathrm{NH}_{4} \mathrm{OH}$ was mixed dropwise until all the solid disappeared and then, stirred for another 30 mins. Organic layer was separated, washed with brine, and concentrated. The product was used directly without further purification.

## II. General Procedure for the Catalytic Reactions of Enal (1) with S-alkylated isothioura (2) to Synthesize Product 3



A dry 10 mL Schlenk tube with a stir bar was charged with enal 1 ( $0.18 \mathrm{mmol}, 1.8$ equiv.), 2 ( 0.1 mmol , 1.0 equiv.), NHC ( $8.4 \mathrm{mg}, 20 \mathrm{~mol} \%$ ), $\mathrm{NaOAc}(13 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.), AcOH ( $1.8 \mu \mathrm{~L}, 30 \mathrm{~mol} \%$ ), DQ ( $51 \mathrm{mg}, 0.125 \mathrm{mmol}, 1.25$ equiv.) and molecular sieves ( 100 mg ). The tube was evacuated and refilled with nitrogen. Then the mixture was dissolved with the newly distilled solvent toluene ( 2.0 mL ). Then the mixture was stirred at room temperature for $36-48 \mathrm{~h}$. When the substrate was consumed completely (monitored by TLC), the mixture was concentrated under vacuum and purified by column chromatography on silica gel (hexane/ethyl acetate $=2: 1$ ) to afford the desired product 3 , which was confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra, and the enantiomeric ratio was determined by chiral HPLC.

Note: Racemic samples were prepared using NHC below for chiral phase HPLC analysis.


Achiral NHC

## III. Additional Results of Condition Optimization

Condition Optimization (additional results) of the Model Reaction (reaction of 1a and 2a) (Tables S1-S2).

Table S1. NHC Catalysts Screening ${ }^{\text {a, }}$ b




A; 63\%, 81:19 e.r.

$$
\begin{aligned}
\text { Ar } & =\text { Ph, B; } 52 \%, 84: 16 \text { e.r. } \\
& =\text { Mes, C; } 58 \%, 93: 7 \text { e.r. }
\end{aligned}
$$



D; 42\%, 84:16 e.r.


E; 65\%, 71:29 e.r


F; NA


G; 52\%, 74:26 e.r.


H; 21\%, 36:64 e.r.


I; 43\%, 84:16 e.r
aReaction condition: 1a ( 0.09 mmol .), $\mathbf{2 a}$ ( 0.05 mmol ), NHC pre-cat. ( $20 \mathrm{~mol} \%$ ), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ( 1.5 equiv.), DQ ( 1.25 equiv.), $\mathrm{AcOH}\left(30 \mathrm{~mol} \%\right.$, additive), Tol. ( 1 mL ), MS ( 50 mg ) at RT for $36-48 \mathrm{hrs}$. ${ }^{\text {b }}$ Yield determined by ${ }^{1} \mathrm{HNMR}$, based on 2a, by using 1,3,5-trimethoxybenzene as internal standard. The e.r. was determined via chiral-phase HPLC analysis.

Table S2. Bases, Solvents, and amount of cat. Loading Screening a, b


| Entry | NHC (mol\%) | Base | Solvent | Yield (\%) | e.r. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | C (20) | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | THF | 50 | 83:17 |
| 2 | C (20) | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | ACN | 63 | 68:32 |
| 3 | C (20) | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | DCE | 73 | 70:30 |
| 4 | C (20) | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | EtOAc | 72 | 83:17 |
| 5 | C (20) | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{CHCl}_{3}$ | 31 | 87:13 |
| 6 | C (20) | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ | $\mathrm{Et}_{2} \mathrm{O}$ | 77 | 86:14 |
| 7 | C (20) | $\mathrm{K}_{2} \mathrm{CO}_{3}$ | Tol. | 49 | 92:8 |
| 8 | C (20) | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | Tol. | 55 | 91:9 |
| 9 | C (20) | $\mathrm{K}_{3} \mathrm{PO}_{4}$ | Tol. | 61 | 91:9 |
| 10 | C (20) | DABCO | Tol. | 25 | 87:13 |
| 11 | C (20) | DMAP | Tol. | 45 | 92:8 |
| 12 | C (20) | DIPEA | Tol. | 36 | 92:8 |
| 13 | C (20) | NaOAc | Tol. | 82 | 95:5 |
| 14 | C (10) | NaOAc | Tol. | 77 | 93:7 |
| 15 | C (5) | NaOAc | Tol. | 75 | 91:9 |

aReaction condition: 1a ( 0.09 mmol .), $\mathbf{2 a}$ ( 0.05 mmol ), NHC pre-cat. (mol\%), Base (1.5 equiv.), DQ ( 1.25 equiv.), $\mathrm{AcOH}\left(30 \mathrm{~mol} \%\right.$, additive), Solvent ( 1 mL ), MS $(50 \mathrm{mg})$ at RT for $36-48 \mathrm{hrs}$. ${ }^{\mathrm{b}}$ Yield determined by ${ }^{1} \mathrm{HNMR}$, based on 2a, by using 1,3,5-trimethoxybenzene as internal standard. The e.r. was determined via chiral-phase HPLC analysis.

## IV. Stereochemistry Determination of 3a via X-ray Crystallographic Analysis

Product 3a was crystallized as a colourless crystal via vaporization of a hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, and its absolute configuration was determined by x-ray structure analysis. CCDC 2025922 contains the supplementary crystallographic data that can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.


## V. Postulated Reaction Mechanism



## VI. Procedures for Scale-up Reaction and Synthetic Transformations



A dry 100 mL Schlenk tube with stir bar was charged with cinnamaldehyde 1a ( $12 \mathrm{mmol}, 1.2$ equiv.), 2a ( $1.66 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv.), NHC C ( $420 \mathrm{mg}, 10 \mathrm{~mol} \%$ ), $\mathrm{NaOAc}(1.23 \mathrm{gm}, 15 \mathrm{mmol}, 1.5$ equiv.), DQ ( $5.1 \mathrm{gm}, 12.5 \mathrm{mmol}, 1.25$ equiv.) and molecular sieves ( 1 gm ). The tube was evacuated and refilled with nitrogen. Then the mixture was dissolved with newly distilled solvent Toluene ( 50 mL ). Then the mixture was stirred at room temperature for 36 h . After complete consumption of the substrate $\mathbf{2 a}$ (monitored by TLC), the mixture was concentrated under vacuum and purified by column chromatography on silica gel (hexane/ethyl acetate $=2: 1$ ) to afford desired product $3 \mathrm{a}(2.13 \mathrm{~g})$ with $72 \%$ yield and 93:7 e.r.

## Preparation of $5 \mathrm{a}^{3}$



To a stirred solution of $3 \mathrm{a}(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ in anhydrous THF $(1 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added LiHMDS ( 1 M in THF, $0.15 \mathrm{~mL}, 0.15 \mathrm{mmol}$ ), and the solution was stirred for 2 hrs . The iodomethane ( 28.4 mg , 0.2 mmol ) was added dropwise. After that, the temperature of the reaction mixture was slowly raised to room temperature and continued to stir for 20 h at the same temperature. After completion of the reaction, $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. The organic layer was collected, and the aqueous layer was extracted with EtOAc (twice). The combined organic extracts were washed with brine, dried over MgSO4, filtered, and concentrated under reduced pressure. The residue was purified via silica gel flash chromatography (hexane/ethyl acetate $=5: 1$ ) to afford product $\mathbf{5 a}(27 \mathrm{mg}, 87 \%, 91: 9$ e.r., $>99: 1$ d.r.).

## Preparation of $\mathbf{5 b} \mathbf{b}^{\mathbf{4}}$



The product $3 \mathbf{a}$ ( $30 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) was suspended in dry THF and then cooled $-15^{\circ} \mathrm{C}$. Grignard reagent ( $\mathrm{PhMgBr}, 1.2$ equiv.) was then added dropwise, and the reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 5 h . Trifluoroacetic acid ( 3.0 equiv.) was then carefully added, and the reaction was stirred at $-15{ }^{\circ} \mathrm{C}$ for another 30 minutes. The mixture was concentrated under reduced pressure, diluted with water, and extracted with EtOAc. The combined organic layers were dried over MgSO4, filtered, and concentrated
under reduced pressure. The residue was purified by column chromatography (hexane/ethyl acetate $=$ 1:50) to obtain 5b ( $35 \mathrm{mg}, 98 \%, 90: 10$ e.r.).

## Preparation of $5 \mathbf{c}$



The product 3 a ( $30 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) was dissolved in 1,4 -dioxane and then $\mathrm{H}_{2} \mathrm{O}_{2}(35 \% \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL})$ was added. Then the solution was heated at $60{ }^{\circ} \mathrm{C}$ for 6 hrs. Solvent was evaporated and the reaction mixture was extracted with EtOAc. The combined organic layers were dried over MgSO4, filtered, and concentrated under reduced pressure. Pure 5c ( $21.6 \mathrm{mg}, 81 \%, 91: 9$ e.r.) was obtained by silica gel column chromatography (hexane/ethyl acetate $=5: 1$ ).

## Preparation of 5d



The product $3 \mathrm{a}(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \mathrm{~mol} \%)$ was added to $\mathrm{MeOH}(10 \mathrm{ml})$. Then solution was degassed using pump and bubbled with $\mathrm{H}_{2}$ gas (5 times). The reaction mixture was stirred until the starting materials consumed completely. When the reaction was finished, MeOH was evaporated and EtOAc was added to the reaction mixture. Excess Pd/C was filtered through celite, solvent was evaporated and concentrated under reduced pressure. Silica gel column chromatography (hexane/ethyl acetate $=3: 1$ ) of the residue provided the pure $5 \mathbf{d}(18.4 \mathrm{mg}, 73 \%, 93: 7$ e.r.).

## VII. Reference

1. I. Cohen, Synthesis 1980, 1980, 60.
2. K. Mailyan, J. L. Chen, W. Li, A. A. Keller, S. M. Sternisha, B. G. Miller, A. Zakarian, J. Am. Chem. Soc. 2018, 140, 6027.
3. C.-L. Zhang, D.-L. Wang, K.-Q. Chen, S. Ye Org. Biomol. Chem., 2015, 13, 11255.
4. B. Ranieri, O.Robles, D. Romo, J. Org. Chem., 2013, 78, 6291.

## Part 3. Characterization of products

## I. Characterizations of Products


(S)-2-(methylthio)-1,6-diphenyl-5,6-dihydropyrimidin-4(1H)-one (3a)

Yield: 23 mg (78\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.41-7.24(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{dd}, \mathrm{J}=7.7$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.8,173.1,140.7,138.5,129.7,129.5,129.2,128.8,128.7,126.8,64.9,38.6,15.2$ ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $297.1062(\mathrm{M}+\mathrm{H})^{+}$, found: 297.1063.
$[\alpha]^{21} \mathrm{D}=+3.6\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95:5 e.r. (ADH, 15:85 ${ }^{\circ} \operatorname{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=22.1 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 28.1 min.

(S)-6-(4-methoxyphenyl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3b)

Yield: 25 mg (77\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.34$ (dd, $\left.J=4.5,2.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.09$ (dd, $\left.J=6.7,2.0 \mathrm{~Hz}, 4 \mathrm{H}\right), 6.87-6.75$ (m, 2H), $4.84(\mathrm{dd}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=15.4$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.45 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.6,173.4,159.9,140.8,130.7,129.6,129.5$, 128.8, 128.3, 114.6, 64.5, 55.4, 38.8, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}: 327.1167(\mathrm{M}+\mathrm{H})^{+}$, found: 327.1169.
$[\alpha]^{21}{ }_{\mathrm{D}}=-5.3\left(\mathrm{c}=1.0 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 94.5:5.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=35.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=38.9 \mathrm{~min}$.


## (S)-2-(methylthio)-1-phenyl-6-(p-tolyl)-5,6-dihydropyrimidin-4(1H)-one (3c)

Yield: 24 mg (78\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.42-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.18-6.97(\mathrm{~m}, 6 \mathrm{H}), 4.86(\mathrm{dd}, \mathrm{J}=7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.22 (dd, $J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=15.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.6,173.2,140.8,138.6,135.6,129.9,129.6,129.4,128.7,126.8,64.8,38.8,21.2$, 15.2 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $311.1218(\mathrm{M}+\mathrm{H})^{+}$, found: 311.1218.
$[\alpha]^{21} \mathrm{~d}=-1.4\left(\mathrm{c}=1.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 94.5:5.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=22.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=28.4 \mathrm{~min}$.

(S)-6-(4-bromophenyl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3d)

Yield: 30 mg (81\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.16-6.99(\mathrm{~m}, 4 \mathrm{H}), 4.87(\mathrm{dd}, J$ $=7.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=15.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,172.6,140.6,137.7,132.5,129.8,129.7,128.6,128.6,122.9,64.4,38.5$, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{OSH}^{+}$: $375.0167(\mathrm{M}+\mathrm{H})^{+}$, found: 375.0167 .
$[\alpha]^{21} \mathrm{D}=+3.7\left(\mathrm{c}=1.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95.5:4.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=26.3 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=37.4 \mathrm{~min}$.

(S)-6-(4-chlorophenyl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3e)

Yield: 27 mg (82\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.41-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18-6.99(\mathrm{~m}, 4 \mathrm{H}), 4.88(\mathrm{dd}, \mathrm{J}$ $=7.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.24 (dd, $J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.84(\mathrm{dd}, J=15.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 173.9,172.7,140.6,137.2,134.8,129.8,129.7,129.5,128.7,128.3,64.4$, 38.5, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{OSH}^{+}$: $331.0672(\mathrm{M}+\mathrm{H})^{+}$, found: 331.0672 .
$[\alpha]^{21}{ }_{\mathrm{D}}=+12.0\left(\mathrm{c}=0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95:5 e.r. (ADH, 15:85 ${ }^{\mathrm{P}} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=24.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 30.7 min.

(S)-6-(4-fluorophenyl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3f)

Yield: 27 mg (86\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.43-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 7.03-6.92(\mathrm{~m}$, 2 H ), 4.90 (dd, $J=7.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.24 (dd, $J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.85 (dd, $J=15.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.8,172.9,164.1,161.7,140.6,134.5(\mathrm{~d}, \mathrm{~J}=3.3 \mathrm{~Hz}$ ), 129.7 (d, $J=14.8 \mathrm{~Hz}$ ), $128.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 116.2,116.0,64.1,38.5,15.1 \mathrm{ppm}$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{OSH}^{+}: 315.0967(\mathrm{M}+\mathrm{H})^{+}$, found: 315.0967.
$[\alpha]^{21} \mathrm{~d}=-6.4\left(\mathrm{c}=2.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 94:6 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=23.5 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 29.1 min.

(S)-2-(methylthio)-6-(4-nitrophenyl)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3g)

Yield: 30 mg (88\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.06$ (dd, $J=7.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.31 (dd, $J=15.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=15.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.0,171.7,148.0,145.7,140.4,130.0,129.9,128.4,127.9,124.6$, 64.2, 38.2, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{SH}^{+}: 342.0912(\mathrm{M}+\mathrm{H})^{+}$, found: 342.0912 .
$[\alpha]^{21} \mathrm{D}=+51.8\left(\mathrm{c}=0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 91.5:8.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i} P r O H} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=36.3 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=71.4 \mathrm{~min}$.

methyl (S)-4-(2-(methylthio)-6-oxo-3-phenyl-3,4,5,6-tetrahydropyrimidin-4-yl)benzoate (3h)
Yield: 28 mg (79\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{dd}, J=7.6,3.9 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}$, 1 H ), $2.86(\mathrm{dd}, J=15.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.0,172.5,166.5$, 143.5, 140.6, 130.7, 130.5, 129.8, 129.7, 128.6, 126.9, 64.6, 52.3, 38.4, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SH}^{+}$: $355.1116(\mathrm{M}+\mathrm{H})^{+}$, found: 375.0167 .
$[\alpha]^{21} \mathrm{D}=+15.7\left(\mathrm{c}=1.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95:5 e.r. (ORJH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=34.1 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 40.2 min.

(S)-6-(2-chlorophenyl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3i)

Yield: 24 mg (73\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ) $\delta 7.54-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, \mathrm{J}=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.09(\mathrm{~m}, 3 \mathrm{H}), 5.47$ (dd, $J=7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=15.4$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.2,172.6,140.9,135.4,132.3,130.4,129.9$, 129.8, 129.6, 128.3, 127.8, 127.7, 61.2, 37.1, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{OSH}^{+}$: $331.0672(\mathrm{M}+\mathrm{H})^{+}$, found: 331.0672.
$[\alpha]^{21} \mathrm{D}=+51.9\left(\mathrm{c}=1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 96:4 e.r. (ADH, 15:85 ${ }^{\mathrm{i} P r O H} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=21.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 53.3 min.

(S)-6-(3-chlorophenyl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3j)

Yield: 18 mg (54\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37$ (dd, $\left.J=7.2,4.1 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (dd, $J=5.4,2.5$ $\mathrm{Hz}, 4 \mathrm{H}$ ), 4.89 (dd, $J=7.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.24 (dd, $J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.84 (dd, $J=15.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.46 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 174.0,172.5,140.6,140.6,135.1,130.6,129.8,129.7$, 129.1, 128.6, 127.1, 124.9, 64.4, 38.5, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{OSH}^{+}$: $331.0672(\mathrm{M}+\mathrm{H})^{+}$, found: 331.0672.
$[\alpha]^{21}{ }_{\mathrm{D}}=+11.9\left(\mathrm{c}=1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 92:8 e.r. (ADH, 15:85 ${ }^{\mathrm{I} P r O H} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=21.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 24.0 min.

(S)-2-(methylthio)-6-(naphthalen-2-yl)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3k)

Yield: 27 mg (78\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.86-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $4 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 5.07$ (dd, $J=7.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (dd, $J=15.5,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96$ (dd, $J=15.5,3.7$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.49 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 173.9,173.0,140.8,136.0,133.4,133.3,129.7$, $129.5,129.4,128.7,128.2,127.8,126.7,126.7,126.2,124.2,65.2,38.7,15.3 \mathrm{ppm}$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $347.1218(\mathrm{M}+\mathrm{H})^{+}$, found: 347.1218.
$[\alpha]^{21} \mathrm{D}=+5.2\left(\mathrm{c}=1.1 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95.5:4.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=34.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=48.2 \mathrm{~min}$.

(S)-2-(methylthio)-1-phenyl-6-(pyridin-3-yl)-5,6-dihydropyrimidin-4(1H)-one (3I)

Yield: 20 mg (67\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}$, $3 \mathrm{H}), 7.29(\mathrm{dd}, \mathrm{J}=8.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{dd}, J=7.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, \mathrm{J}=15.4,7.6$
$\mathrm{Hz}, 1 \mathrm{H}$ ), 2.88 (dd, $J=15.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.1,172.3,150.4$, 148.7, 140.3, 134.3, 130.0, 129.8, 128.6, 124.2, 62.6, 38.3, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OSH}^{+}$: $298.1014(\mathrm{M}+\mathrm{H})^{+}$, found: 298.1017.
$[\alpha]^{21} \mathrm{D}=+2.3\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 94.5:5.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=45.6 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=50.2 \mathrm{~min}$.

(S)-6-(furan-2-yl)-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3m)

Yield: 19 mg (63\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.40(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H})$, 6.26 (dd, $J=3.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=15.6$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=15.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.5,173.1$, $150.4,143.2,140.4,129.7,129.7,128.8,110.6,109.3,58.0,35.9,15.2$ ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}$: $287.0854(\mathrm{M}+\mathrm{H})^{+}$, found: 287.0854 .
$[\boldsymbol{\alpha}]^{21} \mathrm{D}=-19.1$ ( $\mathrm{c}=1.8$ in $\mathrm{CHCl}_{3}$ ).
HPLC analysis: 90:10 e.r. (OD, 15:85 $\left.{ }^{\text {i PrOH} / H e x a n e, ~} 0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=29.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 31.6 min.

(S)-2-(methylthio)-1-phenyl-6-(thiophen-2-yl)-5,6-dihydropyrimidin-4(1H)-one (3n)

Yield: 18 mg (60\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{dd}, J=4.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}), 6.89$ (dd, $J=5.2,2.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.16 (dd, $J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=15.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=$ $15.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.4,172.8,140.6,140.3,129.7,128.9$, 127.0, 126.8, 126.2, 60.2, 39.05, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2} \mathrm{H}^{+}$: $303.0626(\mathrm{M}+\mathrm{H})^{+}$, found: 303.0626.
$[\alpha]^{21} \mathrm{D}=-79.8\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 90:10 e.r. $(\mathrm{ADH}, 15: 85 \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=29.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 31.6 min.

(R)-6-methyl-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (30)

Yield: 20 mg (85\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.10-3.86(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}$ $=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=15.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.9,172.6,140.1,129.9,129.6,128.9,56.4,38.3,18.3,15.1 \mathrm{ppm}$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $235.0905(\mathrm{M}+\mathrm{H})^{+}$, found: 235.0907 .
$[\alpha]^{21}{ }_{\mathrm{D}}=+18.1\left(\mathrm{c}=1.1 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 80.5:19.5 e.r. (ASH, 30:70 ${ }^{\mathrm{i} P r O H} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}($ minor $)=43.6 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)$ $=80.4 \mathrm{~min}$.

(R)-6-ethyl-2-(methylthio)-1-phenyl-5,6-dihydropyrimidin-4(1H)-one (3p)

Yield: 20 mg (81\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.86-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J$ $=15.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=15.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 2 \mathrm{H}), 1.74-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 174.0,172.8,140.4,129.9,129.6,128.9,61.9,34.6,24.6,15.1$, 9.4 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $249.1062(\mathrm{M}+\mathrm{H})^{+}$, found: 249.1062.
$[\alpha]^{21}{ }_{\mathrm{D}}=+45.6\left(\mathrm{c}=1.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 89:11 e.r. $(\mathrm{ADH}, 15: 85 \mathrm{TrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=17.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 19.5 min.


## (R)-2-(methylthio)-1-phenyl-6-propyl-5,6-dihydropyrimidin-4(1H)-one (3q)

Yield: 23 mg (90\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 7.55-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.21(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.63(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}$ $=15.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.30(\mathrm{~m}$, 1H), 1.19 (dddd, $J=13.3,10.5,9.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 174.0, 172.7, 140.5, 129.8, 129.5, 128.9, 60.6, 35.1, 33.6, 18.3, 15.1, 13.8 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $263.1218(\mathrm{M}+\mathrm{H})^{+}$, found: 263.1218.
$[\alpha]^{21} \mathrm{D}=+48.0\left(\mathrm{c}=2.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 90:10 e.r. $(\mathrm{ADH}, 20: 80 \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=35.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 44.0 min.


Ethyl (S)-2-(methylthio)-6-oxo-3-phenyl-3,4,5,6-tetrahydropyrimidine-4-carboxylate (3r)

Yield: 19 mg (65\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.54-7.32(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{dd}, J=7.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{qq}, J=10.8,7.1$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 3.11 (dd, $J=15.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.03 (dd, $J=15.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.42 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.25 (t, $J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 174.2, 171.6, 169.0, 140.9, 130.0, 129.9, 128.7, 62.7, 62.6, 34.0, 15.2, 14.1 ppm.

$[\alpha]^{21}{ }_{\mathrm{D}}=+43.3\left(\mathrm{c}=1.4\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 85:15 e.r. (ADH, 15:85 ${ }^{\mathrm{i} P r O H} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=21.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 26.6 min.


## (S)-1-(4-methoxyphenyl)-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4a)

Yield: 27 mg (83\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$, 2 H ), 4.85 (dd, $J=7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.77 (s, 3 H ), 3.23 (dd, $J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.86 (dd, $J=15.4,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 174.3,173.1,160.1,138.7,133.3,129.8,129.2$, 128.7, 126.9, 114.7, 65.06, 55.5, 38.6, 15.2 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}: 327.1167(\mathrm{M}+\mathrm{H})^{+}$, found: 327.1167.
$[\alpha]^{21}{ }_{\mathrm{D}}=-1.3\left(\mathrm{c}=1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 93:7 e.r. (ADH, 15:85 ${ }^{\mathrm{I}} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}$ (minor) $=30.6 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 35.0 min.

(S)-2-(methylthio)-6-phenyl-1-(p-tolyl)-5,6-dihydropyrimidin-4(1H)-one (4b)

## Yield: 24 mg (77\%)

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.30(\mathrm{ddd}, J=10.7,4.2,2.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{dd}, J=7.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (dd, $J=15.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.9,173.1,139.7$, 138.7, 138.2, 130.3, 129.2, 128.7, 128.3, 126.8, 65.0, 38.6, 21.3, 15.2 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $311.1218(\mathrm{M}+\mathrm{H})^{+}$, found: 311.1218.
$[\alpha]^{21} \mathrm{D}=+0.1\left(\mathrm{c}=1.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95:5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=20.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 24.2 min.

(S)-1-(4-chlorophenyl)-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4c)

Yield: 23 mg (70\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=7.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1 H ), 4.86 (dd, $J=7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.23 (dd, $J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.88 (dd, $J=15.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.46 (s, 1H). ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.5,172.9,139.1,138.3,135.5,130.1,129.9,129.3,129.0$, 126.8, 65.05, 38.6, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{CIN}_{2} \mathrm{OSH}^{+}: 331.0672(\mathrm{M}+\mathrm{H})^{+}$, found: 331.0672 .
$[\alpha]^{21}{ }_{\mathrm{D}}=-3.3\left(\mathrm{c}=1.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 96:4 e.r. (OD, 15:85 ${ }^{\mathrm{i} P r O H} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=29.4 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 32.0 min.

(S)-1-(4-fluorophenyl)-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4d)

Yield: 26 mg (83\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$ ) $\delta 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{dd}, \mathrm{J}=7.2,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}$, 2 H ), 7.00 (t, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.86 (dd, $J=7.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.88$ (dd, $J$ $=15.5,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.9,172.9,164.0,161.5,138.4$, $136.6,130.7$ (d, $J=8.9 \mathrm{~Hz}), 129.1(\mathrm{~d}, J=38.8 \mathrm{~Hz}), 126.9,116.7(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 65.1,38.6,15.3 \mathrm{ppm}$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FN}_{2} \mathrm{OSH}^{+}$: $315.0967(\mathrm{M}+\mathrm{H})^{+}$, found: 315.0967.
$[\alpha]^{21} \mathrm{~d}=-14.5\left(\mathrm{c}=2.0 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95:5 e.r. (ADH, 15:85 ${ }^{\text {PrOH}} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ minor $)=22.6 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 25.6 min.


## (S)-1-(4-bromophenyl)-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4e)

Yield: 26 mg (83\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.99$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 4.86 (dd, $J=7.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.23 (dd, $J=15.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.88 (dd, $J=15.5$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.4,172.8,139.7,138.3,132.9,130.4,129.3$, 129.0, 126.8, 123.6, 65.0, 38.6, 15.2 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{OSH}^{+}$: $375.0167(\mathrm{M}+\mathrm{H})^{+}$, found: 375.0167 .
$[\alpha]^{21} \mathrm{D}=-0.6\left(\mathrm{c}=2.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.

HPLC analysis: 95.5:4.5 e.r. (OD, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=30.5 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=32.9 \mathrm{~min}$.

(S)-1-(3-bromophenyl)-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4f)

Yield: 23 mg (61\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=7.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.4,3.8 \mathrm{~Hz}$, 1H), $2.47(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 173.4,172.8,141.9,138.2,132.7,131.9,130.8,129.3$, 129.0, 127.5, 126.8, 122.8, 65.0, 38.7, 15.3 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{OSH}^{+}: 375.0167(\mathrm{M}+\mathrm{H})^{+}$, found: 375.0166 .
$[\alpha]^{21}{ }_{\mathrm{D}}=+8.9\left(\mathrm{c}=1.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95:5 e.r. (ADH, 15:85 $\mathrm{iPrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=23.6 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 28.5 min .

(S)-1-benzyl-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4g)

Yield: 18 mg (58\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}$ $=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=15.4,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.70(\mathrm{dd}, \mathrm{J}=15.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.8,172.6,138.0,135.1$, 129.5, 129.3, 128.8, 128.5, 127.5, 126.4, 59.6, 53.0, 38.5, 15.0 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $311.1218(\mathrm{M}+\mathrm{H})^{+}$, found: 311.1218.
$[\alpha]^{21} \mathrm{D}=+26.4\left(\mathrm{c}=0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 89.5:10.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i} P r O H} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=25.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=28.3 \mathrm{~min}$.

(S)-2-(methylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4h)

Yield: 14.5 mg (66\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{dd}, \mathrm{J}=12.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=16.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.43(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.8$, 152.5, 142.3, 128.8, 127.5, 126.4, 58.8, 38.4, 13.4.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $221.0749(\mathrm{M}+\mathrm{H})^{+}$, found: 221.0746.
$[\alpha]^{21}{ }_{\mathrm{D}}=+67.0\left(\mathrm{c}=0.5 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 87:13 e.r. (ID, 15:85 ${ }^{\mathrm{i} P r O H} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ major $)=17.9 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ minor $)=$ 21.7 min.

(S)-2-(benzylthio)-1,6-diphenyl-5,6-dihydropyrimidin-4(1H)-one (4i)

Yield: 19 mg (51\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.37-7.14(\mathrm{~m}, 12 \mathrm{H}), 7.10(\mathrm{~s}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=7.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~s}$, 2 H ), $3.25(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=15.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta$ 173.0, 172.9, 140.6, 138.5, 136.3, 129.7, 129.6, 129.5, 129.3, 128.8, 128.7, 128.7, 127.6, 126.9, 65.0, 38.7, 37.1 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $373.1375(\mathrm{M}+\mathrm{H})^{+}$, found: 373.1372.
$[\alpha]^{21} \mathrm{D}=-15.3\left(\mathrm{c}=0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 95.5:4.5 e.r. (ADH, 15:85 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}$ ), $\mathrm{R}_{\mathrm{t}}$ (minor) $=28.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}$ (major) $=34.2 \mathrm{~min}$.

(S)-1-benzyl-2-(benzylthio)-6-phenyl-5,6-dihydropyrimidin-4(1H)-one (4j)

Yield: 20 mg (52\%)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.49-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.26(\mathrm{~m}, 9 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{dd}, J$ $=7.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.42(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{t}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J$ $=15.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 172.6,172.0,137.9$, $136.2,135.0,129.6,129.5,129.3,128.9,128.5,127.8,127.5,126.4,59.5,53.1,38.5,36.9 \mathrm{ppm}$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $387.1531(\mathrm{M}+\mathrm{H})^{+}$, found: 387.1529.
$[\alpha]^{21} \mathrm{~d}=-1.6\left(\mathrm{c}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 90:10 e.r. $(\mathrm{ADH}, 15: 85 \mathrm{iPrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=21.2 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 24.9 min.

(5R,6S)-5-methyl-2-(methylthio)-1,6-diphenyl-5,6-dihydropyrimidin-4(1H)-one (5a)
Yield: 27 mg (87\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.39-7.23(\mathrm{~m}, 6 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.50$ $(\mathrm{d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{qd}, J=7.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.4,172.7,140.9,138.2,129.7,129.4,129.2,128.7,126.9,71.8,42.9,17.0,15.3$ ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OSH}^{+}$: $311.1218(\mathrm{M}+\mathrm{H})^{+}$, found: 311.1212.
$[\alpha]^{21} \mathrm{D}=-26.4\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 91:9 e.r. (IA, 15:85 ${ }^{\circ} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ major $)=20.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ minor $)=25.4$ min.

(S)-2-(methylthio)-1,4,6-triphenyl-1,6-dihydropyrimidine (5b)

Yield: 35 mg (98\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 9 \mathrm{H}), 7.11-$ $7.00(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) б 158.7, 143.6, 142.3, 140.6, 138.5, 129.3, 129.2, 128.8, 128.3, 128.3, 128.2, 127.9, 127.7, 125.6, 103.1, 65.8, 14.8 ppm .

HRMS (ESI, m/z): calculated for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{SH}^{+}: 357.1425(\mathrm{M}+\mathrm{H})^{+}$, found: 357.1425.
$[\alpha]^{21}{ }_{\mathrm{D}}=+12.7\left(\mathrm{c}=1.4\right.$ in $\left.\mathrm{CHCl}_{3}\right)$.
HPLC analysis: 90:10 e.r. (ADH, 3:97 ${ }^{\mathrm{i}} \mathrm{PrOH} /$ Hexane, $\left.0.3 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}$ (minor) $=21.1 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 25.2 min.


## (S)-1,6-diphenyldihydropyrimidine-2,4(1H,3H)-dione (5c)

Yield: 21.6 mg (81\%)
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.14(\mathrm{~m}, 5 \mathrm{H}), 5.08(\mathrm{dd}, \mathrm{J}=6.7$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.34(\mathrm{dd}, J=16.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=16.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 168.2,151.8,140.7,138.6,129.4,129.3,128.7,127.2,126.0,125.9,60.0,39.4 \mathrm{ppm}$.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{H}^{+}$: $267.1134(\mathrm{M}+\mathrm{H})^{+}$, found: 267.1126.
$[\alpha]^{21}{ }_{\mathrm{D}}=+139.8\left(\mathrm{c}=0.4 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 91:9 e.r. (ADH, 30:70 $\operatorname{PrOH} /$ Hexane, $0.5 \mathrm{~mL} / \mathrm{min}), \mathrm{R}_{\mathrm{t}}($ minor $)=30.7 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=$ 43.9 min.

(S)-1,6-diphenyltetrahydropyrimidin-4(1H)-one (5d)

Yield: 18.4 mg (73\%)
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 7.46-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.84(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~s}$, $1 \mathrm{H}), 4.97(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=12.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=12.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd,
$J=16.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=16.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2,148.3,141.0$, 129.6, 129.1, 127.9, 126.6, 120.8, 116.6, 59.6, 56.0, 36.9 ppm.

HRMS (ESI, m/z): calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OH}^{+}: 253.1341(\mathrm{M}+\mathrm{H})^{+}$, found: 253.1341.
$[\alpha]^{21} \mathrm{~d}=+94.8\left(\mathrm{c}=0.8 \mathrm{in} \mathrm{CHCl}_{3}\right)$.
HPLC analysis: 93:7 e.r. (ADH, 20:80 ${ }^{\circ} \mathrm{PrOH} /$ Hexane, $\left.0.5 \mathrm{~mL} / \mathrm{min}\right), \mathrm{R}_{\mathrm{t}}($ major $)=16.3 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ minor $)=$ 17.9 min.
II. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HPLC Spectra


3a





|  |  |  |
| :---: | :---: | :---: |
| 二- - |  |  |
|  <br> NAME |  |  |
| EXPNO |  |  |
| PROCNO |  |  |
| Date_ | 20191119 |  |
| Time | 20.07 |  |
| INSTRUM | spect |  |
| PROBHD | 5 mm PABBO BB |  |
| TD | 65536 |  |
| SOLVENT | CDC13 |  |
| NS | 8 |  |
| DS |  |  |
| SWH | 8223.685 | Hz |
| FIDRES | 0.125483 |  |
| ${ }_{\text {AP }}$ | 3.9846387 | sec |
| RG | . 144 |  |
| DW | 60.800 | usec |
| DE | 6.50 | usec |
| TE | 300.1 |  |
| D1 | 1.00000000 | sec |
| TDO |  |  |
|  | CHANNEL f1 |  |
| NUC1 | 11 |  |
| P1 | 9.00 | usec |
| PL1 | -4.00 | dB |
| PL1W | 23.09303856 |  |
| SFO1 | 400.2324716 | MHz |
| SI | 32768 |  |
| SF | 400.2300174 | MHz |
| WDW | no |  |
| SSB | 0 |  |
| LB | 0.00 | Hz |
| GB |  |  |
| PC | 1.00 |  |











88.69—
$-38.46$
$-15.27$


NAME
EXPNO
PROCNO
EXPNO
Time
INSTRUM
PROBHD
PULPROG
TD
SOLV
NS
DS
SWH
SSH
FIDRES
AQ
RG

| 2 |  |
| :--- | :--- |
|  |  |

25252.525
0.385323
1.297652
0.385323 Hz
1.2976629 sec
19.800 use
6.50 use
300.3 K
2.00000000 K
0.03000000 sec
$=$ CHANNEL
$1===$
13 C
10.00 use
-2.00 dB
59.71607590 W
CHANNEL
CPDPRG2
NUC2
PCPD2
${ }^{\text {PLL2 }}$
waltz16 1 H
80.00 use -4.00 dB
14.98 dB
23.09303856 W
23.09303856 W
0.29206610 W
0.29206610 W
0.37538856 W
400.2316009 MHz
400.2316099
32768
100.6379016 MHz
EM
0
1.00 Hz
0
1.40








1010
$\qquad$





173.47
$<$
173.08

-150.40
-143.22
-140.43
129.68
129.66
128.83
$<$
$<$ 110.56

| N | $\bigcirc$ |
| :---: | :---: |
| $\bigcirc$ | の |
| $\infty$ | in |
| - | m |

( $\begin{array}{ccccccccc}1 \\ 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20\end{array}$





(


















5c


-60.05
-39.38




5d

## 


$2020101{ }^{1} 6$

Z116098 spect
Z116098_0542
8223.685 Hz 8223.685 Hz
0.250967 Hz 3.9846387 sec

128
60.800 usec
6.50 usec
6.50 us
298.3 K
1.00000000 sec
400.2324716 MHz

1 H
3.33 usec
10.00 usec
10.00 usec
32768
400.2300099 MHz
0.30 Hz
-171.23

-148.29
-141.01
$\boldsymbol{K}^{129.58}$
$\mathbf{K}_{129} 127.06$
$\begin{array}{r}126.64 \\ 120.80 \\ 116.56\end{array}$
$\begin{aligned} & 116.56\end{aligned}$

| $\begin{aligned} & \text { n. } \\ & 0_{0}^{\circ} \\ & \sim_{0}^{\circ} \\ & 11 \end{aligned}$ |
| :---: |
|  |  |

[^0]HPLC Data:


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 22.129 | 297217 | 6771 | 49.424 | 54.869 |
| 2 | 28.156 | 304144 | 5569 | 50.576 | 45.131 |
| Total |  | 601361 | 12340 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 22.137 | 151189 | 3606 | 4.858 | 6.345 |
| 2 | 28.146 | 2961267 | 53222 | 95.142 | 93.655 |
| Total |  | 3112456 | 56828 | 100.000 | 100.000 |


mV

Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 35.713 | 2618551 | 36514 | 48.960 | 51.210 |
| 2 | 39.010 | 2729757 | 34789 | 51.040 | 48.790 |
| Total |  | 5348309 | 71303 | 100.000 | 100.000 |

mV

PeakTable
Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 35.727 | 580571 | 8778 | 5.667 | 6.565 |
| 2 | 38.886 | 9664035 | 124928 | 94.333 | 93.435 |
| Total |  | 10244607 | 133706 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.947 | 5928782 | 125502 | 49.845 | 55.009 |
| 2 | 28.373 | 5965756 | 102645 | 50.155 | 44.991 |
| Total |  | 11894539 | 228147 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 22.022 | 385661 | 8827 | 5.477 | 7.025 |
| 2 | 28.366 | 6655879 | 116829 | 94.523 | 92.975 |
| Total |  | 7041540 | 125656 | 100.000 | 100.000 |



3d
mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.163 | 5920708 | 108396 | 49.959 | 54.511 |
| 2 | 32.736 | 5930393 | 90456 | 50.041 | 45.489 |
| Total |  | 11851101 | 198853 | 100.000 | 100.000 |



Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.255 | 429988 | 8904 | 4.438 | 5.910 |
| 2 | 32.744 | 9258346 | 141752 | 95.562 | 94.090 |
| Total |  | 9688334 | 150657 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 24.108 | 7377864 | 146590 | 49.774 | 54.801 |
| 2 | 30.737 | 7444993 | 120903 | 50.226 | 45.199 |
| Total |  | 14822858 | 267493 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 24.207 | 358984 | 7510 | 5.094 | 6.481 |
| 2 | 30.750 | 6688085 | 108363 | 94.906 | 93.519 |
| Total |  | 7047068 | 115873 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 23.513 | 3057126 | 62214 | 49.897 | 54.224 |
| 2 | 29.122 | 3069786 | 52520 | 50.103 | 45.776 |
| Total |  | 6126911 | 114734 | 100.000 | 100.000 |
| mV |  |  |  |  |  |



Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 23.537 | 304563 | 6244 | 5.909 | 6.970 |
| 2 | 29.088 | 4850051 | 83343 | 94.091 | 93.030 |
| Total |  | 5154615 | 89587 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 36.309 | 900971 | 17569 | 8.458 | 14.819 |
| 2 | 71.388 | 9751244 | 100995 | 91.542 | 85.181 |
| Total |  | 10652214 | 118564 | 100.000 | 100.000 |




PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 34.024 | 723368 | 5750 | 50.302 | 55.201 |
| 2 | 40.529 | 714684 | 4667 | 49.698 | 44.799 |
| Total |  | 1438052 | 10417 | 100.000 | 100.000 |

mAU


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 34.078 | 264525 | 2082 | 4.700 | 5.669 |
| 2 | 40.195 | 5363811 | 34636 | 95.300 | 94.331 |
| Total |  | 5628336 | 36718 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| $\|r\| r\|r\| r\|r\|$ | Peak\# | Ret. Time | Area | Height | Area \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.953 | 5061775 | 112574 | 50.168 | 69.435 |
| 2 | 53.377 | 5027787 | 49555 | 49.832 | 30.565 |
| Total |  | 10089561 | 162129 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.903 | 278250 | 6464 | 3.874 | 8.682 |
| 2 | 53.286 | 6903536 | 67984 | 96.126 | 91.318 |
| Total |  | 7181786 | 74448 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.956 | 788033 | 19113 | 49.999 | 53.472 |
| 2 | 24.035 | 788055 | 16631 | 50.001 | 46.528 |
| Total |  | 1576088 | 35744 | 100.000 | 100.000 |



Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.978 | 193573 | 5009 | 7.870 | 9.405 |
| 2 | 24.032 | 2266081 | 48253 | 92.130 | 90.595 |
| Total |  | 2459654 | 53262 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 34.930 | 4928341 | 69950 | 50.133 | 57.278 |
| 2 | 48.253 | 4902233 | 52173 | 49.867 | 42.722 |
| Total |  | 9830574 | 122123 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 34.867 | 372373 | 5897 | 4.469 | 6.469 |
| 2 | 48.225 | 7960744 | 85259 | 95.531 | 93.531 |
| Total |  | 8333117 | 91157 | 100.000 | 100.000 |




Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 45.621 | 628758 | 5792 | 46.739 | 50.983 |
| 2 | 51.222 | 716495 | 5569 | 53.261 | 49.017 |
| Total |  | 1345253 | 11360 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 45.645 | 478821 | 4635 | 5.423 | 6.143 |
| 2 | 50.250 | 8350995 | 70824 | 94.577 | 93.857 |
| Total |  | 8829816 | 75459 | 100.000 | 100.000 |


mV


| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 29.266 | 350964 | 6837 | 49.585 | 51.587 |
| 2 | 31.801 | 356842 | 6417 | 50.415 | 48.413 |
| Total |  | 707806 | 13254 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 29.242 | 465870 | 9619 | 10.391 | 11.591 |
| 2 | 31.626 | 4017380 | 73366 | 89.609 | 88.409 |
| Total |  | 4483250 | 82984 | 100.000 | 100.000 |




Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.716 | 888331 | 16866 | 49.138 | 51.451 |
| 2 | 29.183 | 919480 | 15914 | 50.862 | 48.549 |
| Total |  | 1807811 | 32781 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 26.667 | 398314 | 7692 | 7.374 | 8.102 |
| 2 | 29.082 | 5003019 | 87246 | 92.626 | 91.898 |
| Total |  | 5401333 | 94938 | 100.000 | 100.000 |




Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 43.532 | 1789689 | 22668 | 50.056 | 64.936 |
| 2 | 80.623 | 1785709 | 12240 | 49.944 | 35.064 |
| Total |  | 3575398 | 34908 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 43.625 | 682469 | 8634 | 19.599 | 31.188 |
| 2 | 80.383 | 2799772 | 19050 | 80.401 | 68.812 |
| Total |  | 3482240 | 27684 | 100.000 | 100.000 |



3p


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.730 | 3815433 | 153739 | 49.928 | 52.823 |
| 2 | 19.599 | 3826394 | 137309 | 50.072 | 47.177 |
| Total |  | 7641827 | 291048 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.733 | 6072327 | 258179 | 11.112 | 13.060 |
| 2 | 19.473 | 48572983 | 1718736 | 88.888 | 86.940 |
| Total |  | 54645310 | 1976915 | 100.000 | 100.000 |




Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 38.533 | 1167540 | 27874 | 50.228 | 55.005 |
| 2 | 47.047 | 1156918 | 22801 | 49.772 | 44.995 |
| Total |  | 2324457 | 50675 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 35.896 | 1129258 | 28174 | 10.362 | 13.174 |
| 2 | 43.956 | 9768326 | 185682 | 89.638 | 86.826 |
| Total |  | 10897584 | 213856 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.590 | 506359 | 16166 | 49.200 | 52.860 |
| 2 | 26.267 | 522820 | 14417 | 50.800 | 47.140 |
| Total |  | 1029179 | 30583 | 100.000 | 100.000 |

mV


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.961 | 682609 | 22608 | 15.291 | 17.525 |
| 2 | 26.671 | 3781512 | 106391 | 84.709 | 82.475 |
| Total |  | 4464121 | 128999 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.293 | 6076919 | 103628 | 50.047 | 53.600 |
| 2 | 35.214 | 6065490 | 89709 | 49.953 | 46.400 |
| Total |  | 12142409 | 193337 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.563 | 929990 | 16933 | 6.774 | 8.266 |
| 2 | 34.990 | 12799086 | 187920 | 93.226 | 91.734 |
| Total |  | 13729076 | 204853 | 100.000 | 100.000 |



4b
mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.700 | 7145525 | 166999 | 49.940 | 53.237 |
| 2 | 24.330 | 7162760 | 146690 | 50.060 | 46.763 |
| Total |  | 14308285 | 313689 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.702 | 536472 | 12730 | 5.079 | 5.941 |
| 2 | 24.239 | 10027068 | 201523 | 94.921 | 94.059 |
| Total |  | 10563541 | 214253 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 29.258 | 1609588 | 30924 | 49.247 | 51.474 |
| 2 | 32.290 | 1658780 | 29153 | 50.753 | 48.526 |
| Total |  | 3268368 | 60077 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 29.410 | 697836 | 13766 | 4.384 | 5.017 |
| 2 | 31.996 | 15219025 | 260634 | 95.616 | 94.983 |
| Total |  | 15916861 | 274401 | 100.000 | 100.000 |


mV


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 22.639 | 1604405 | 34588 | 50.371 | 52.598 |
| 2 | 25.670 | 1580780 | 31171 | 49.629 | 47.402 |
| Total |  | 3185185 | 65759 | 100.000 | 100.000 |

mV


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 22.613 | 421049 | 9332 | 4.808 | 5.486 |
| 2 | 25.579 | 8336471 | 160770 | 95.192 | 94.514 |
| Total |  | 8757520 | 170102 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.514 | 1203855 | 22264 | 50.038 | 51.984 |
| 2 | 33.272 | 1202037 | 20565 | 49.962 | 48.016 |
| Total |  | 2405891 | 42829 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.489 | 287168 | 5488 | 4.533 | 5.094 |
| 2 | 32.925 | 6048395 | 102260 | 95.467 | 94.906 |
| Total |  | 6335562 | 107749 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 23.594 | 536143 | 11074 | 49.368 | 53.339 |
| 2 | 28.478 | 549863 | 9687 | 50.632 | 46.661 |
| Total |  | 1086006 | 20761 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 23.612 | 95823 | 2085 | 4.630 | 5.735 |
| 2 | 28.479 | 1973984 | 34272 | 95.370 | 94.265 |
| Total |  | 2069806 | 36357 | 100.000 | 100.000 |


$4 g$
mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 25.153 | 1916128 | 37179 | 49.878 | 52.459 |
| 2 | 28.212 | 1925496 | 33693 | 50.122 | 47.541 |
| Total |  | 3841624 | 70872 | 100.000 | 100.000 |

mV


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 25.245 | 462687 | 9368 | 10.629 | 12.169 |
| 2 | 28.265 | 3890385 | 67611 | 89.371 | 87.831 |
| Total |  | 4353072 | 76979 | 100.000 | 100.000 |



4h
mAU


PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.936 | 176492 | 6964 | 50.566 | 61.060 |
| 2 | 21.535 | 172543 | 4441 | 49.434 | 38.940 |
| Total |  | 349035 | 11405 | 100.000 | 100.000 |



PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 17.955 | 417201 | 15672 | 86.954 | 90.713 |
| 2 | 21.742 | 62595 | 1604 | 13.046 | 9.287 |
| Total |  | 479796 | 17277 | 100.000 | 100.000 |




Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 27.806 | 1978587 | 34515 | 49.763 | 53.974 |
| 2 | 34.126 | 1997453 | 29432 | 50.237 | 46.026 |
| Total |  | 3976039 | 63947 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 27.970 | 228949 | 4257 | 4.597 | 5.730 |
| 2 | 34.223 | 4751820 | 70049 | 95.403 | 94.270 |
| Total |  | 4980769 | 74306 | 100.000 | 100.000 |




PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.151 | 1794962 | 40335 | 49.857 | 53.154 |
| 2 | 24.837 | 1805252 | 35548 | 50.143 | 46.846 |
| Total |  | 3600213 | 75883 | 100.000 | 100.000 |



PDA Ch1 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.223 | 548887 | 11723 | 10.211 | 11.086 |
| 2 | 24.856 | 4826713 | 94030 | 89.789 | 88.914 |
| Total |  | 5375600 | 105753 | 100.000 | 100.000 |



5a
mV


Detector A Ch1 254 nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.970 | 6123344 | 156132 | 49.306 | 54.393 |
| 2 | 25.320 | 6295640 | 130911 | 50.694 | 45.607 |
| Total |  | 12418983 | 287043 | 100.000 | 100.000 |

$m V 1$


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 20.670 | 37014319 | 945665 | 91.097 | 92.495 |
| 2 | 25.432 | 3617568 | 76732 | 8.903 | 7.505 |
| Total |  | 40631887 | 1022397 | 100.000 | 100.000 |


mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.135 | 6388276 | 149144 | 49.771 | 43.353 |
| 2 | 25.183 | 6447024 | 194878 | 50.229 | 56.647 |
| Total |  | 12835300 | 344022 | 100.000 | 100.000 |

mV


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 21.125 | 824440 | 21794 | 9.877 | 8.526 |
| 2 | 25.193 | 7522766 | 233841 | 90.123 | 91.474 |
| Total |  | 8347207 | 255636 | 100.000 | 100.000 |



5c


Detector A Chl 254nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.754 | 533775 | 8937 | 50.353 | 61.750 |
| 2 | 44.222 | 526295 | 5536 | 49.647 | 38.250 |
| Total |  | 1060070 | 14473 | 100.000 | 100.000 |

mv


Detector A Ch1 254nm

| Peak\# | Ret. Time | Area | Height | Area $\%$ | Height $\%$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 30.700 | 778357 | 13482 | 9.195 | 13.585 |
| 2 | 43.856 | 7686495 | 85761 | 90.805 | 86.415 |
| Total |  | 8464852 | 99243 | 100.000 | 100.000 |




PDA Chl 254nm 4nm

| Peak\# | Ret. Time | Area | Height | Area \% | Height \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.241 | 2452299 | 118323 | 49.967 | 52.481 |
| 2 | 17.852 | 2455508 | 107134 | 50.033 | 47.519 |
| Total |  | 4907807 | 225457 | 100.000 | 100.000 |

mAU


PDA Chl 254nm 4nm

| $\|c\|$ | Peak\# | Ret. Time | Hrea | Height | Area \% |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 16.268 | 13048788 | 608549 | 93.537 | 93.965 |
| 2 | 17.890 | 901634 | 39082 | 6.463 | 6.035 |
| Total |  | 13950421 | 647631 | 100.000 | 100.000 |


[^0]:    ler

