Supporting Information

Arylation of enelactams using TIPSOTf: reaction scope and mechanistic insight

Tomasz J. Idzik¹, Zofia M. Myk¹, Łukasz Struk¹, Magdalena Perużyńska², Gabriela Maciejewska³, Marek Droździk², Jacek G. Sośnicki^{1,*}

¹West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, Al. Piastów 42, Szczecin, 71-065, Poland

²Pomeranian Medical University, Department of Experimental & Clinical Pharmacology, Powstańców Wlkp. 72, 70-111 Szczecin, Poland

³ Wrocław University of Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Corresponding author's e-mail address: sosnicki@zut.edu.pl

Table of Contents

1. General information
2. Sequences of preparation of enelactams 8
3. Additional mechanistic aspects
4. The diagnostic NOEs found in NOESY spectra and vicinal coupling constants for representative compounds
5. Preparation of starting materials
5a. Procedure 1: Synthesis of enamines En-1, En-2 and En-3
5b. Procedure 2: Synthesis of N-Benzyl-4-pyrrolidinyl-1,2,5,6-tetrahydropyridine (En-4)
5c. Procedure 3: Synthesis of formyl esters
5d. Procedure 4: Synthesis of methyl 3-(1-benzyl-4-oxopiperidin-3-yl)propanoate ⁵
5e. Procedure 5: Procedures for the synthesis of 1,5-disubstited-3,4-dihydropyridin-2(1H)- ones 1a-1c , 1j-1n and 6-benzyl-1-(3,4-dimethoxyphenethyl)-3,4,5,6,7,8-hexahydro-1,6- naphthyridin-2(1H)-one (1i)
5f. Synthesis of 4- and 6-benzylsubstituted γ , δ - and β , γ -unsatursted δ -lactams via nucleophilic addition of benzyl magnesiate to 2-pyridone
5g. Preparation of solution of (2-fluoro-4-methoxybenzyl)magnesium chlorideS16
5h. Procedure 6. Procedure for the synthesis of compounds 6a-c via nucleophilic addition of fluorobenzylmagnesiate to NH 2-pyridones

5i. Procedure 7: Procedure for the synthesis of compounds 6d and 6d-isomer-6 via nucleophilic addition of allylmagnesiate to NH 2-pyridones
5j. Procedure 8: C3-Allylation of compound 6d
5k. Procedure 9: Procedure for the synthesis of 7e via RCM
51. Synthesis of 4-bromoisoquinolin-1(2H)-one from isoquinolin-1(2H)-one
5m. Procedure 10: Procedure for the synthesis of compounds 7a-f , 8e , 1d , 1f and 1g-h through N-alkylation
5n. Synthesis of compounds 8a-d and 8f-g via "benzyne" cyclization
50. Procedure 11: Procedure for the synthesis of 3-(2-oxocyclohexyl)propanoate using 4-(cyclohex-1-en-1-yl)morpholine
5p . Synthesis of methyl 3-(1-methyl-2-oxocyclohexyl)-propanoate using 2- methylcyclohexan-1-one and methyl acrylate
5q. Procedure 12: Synthesis of compounds 1e and 16 via condensation reaction
5r. Procedure 13: Arylation of 4-Br-1g under Suzuki reaction conditions
6. Synthesis of compounds 2a-l, 9a-g, 10a, f-g, 11f-g
6a. Procedure 14. General procedure for intramolecular arylation of enelactams using TIPSOTf
6b. Procedure 15. General procedure for intermolecular arylation of enelactams with 1,3,5-trimethoxybenzene using TIPSOTf
6c. Procedure 16. General procedure for the cyclisation of 4-benzyl enelactams using TIPSOTf
6d. Procedure 17. Procedure for the cyclisation of compound 16 using TIPSOTf
7. Procedure 18. Procedure for the cyclisation of compound 1a using TIPSOTf in presence of DIPEA
8. Antiproliferative activity
9. Conformational analysis data for representative compounds
10. ¹ H NMR, ¹³ C NMR, ¹³ C DEPT-135 spectra of monitoring the cyclization of enelactam 1a in presence of 0.5, 1.5 and 2.5 fold excess of TIPSOTf
11. ¹ H, ¹³ C, ¹³ C DEPT-135 and ¹⁹ F NMR spectra
12. ¹ H, ¹ H NOESY spectra for selected compounds
13. Computational results
14. References

1. General information

Melting points were determined on a Boetius hot stage apparatus. ¹H, ¹³C, ¹⁹F and ²⁹Si NMR spectroscopic measurements were performed on a Bruker DPX 400 Avance III HD spectrometer, operating at 400.2, 100.6, 376.6 and 79.5 MHz, respectively. TMS (internal standard, $\delta_{H,C,Si} = 0$ ppm) and PhCF₃ (external standard, 0.05% in CDCl₃, $\delta_F = -62.61$ ppm) was used as reference and spectra were acquired in 5 mm probes at 21°C. For NMR analyses MestReNova (version: 12.0.4) program was used. Conformational analyses were performed on the basis of PM3 calculated structures (HyperChem 7.52) and calculated vicinal coupling constants by MSpin program (version: 2.3.4.). For detailed peak assignments, 2D spectra were acquired using Bruker software (¹H, ¹H DFQCOSY; ¹³C, ¹H COSY; ¹H, ¹³C HMQC; ¹H, ¹H NOESY; ¹H, ¹³C HMBC). In the ¹H, ¹H NOESY spectra the optimized mixing time, varied from 0.7 s to 0.8 s, was used. The ¹H,¹³C HMBC long-range correlations were acquired for $J_{C,H}=10$ Hz. The standard abbreviation for multiplicities were used (s = singlet, d = doublet, t = triplet, q =quartet, quint = quintet, m = multiplet, sxt = sextet, spt = septet, etc. The DOSY spectrum parameters have been optimized in the range of the gradient power between 2 and 95%. After optimization, the DOSY spectrum was taken with a gradient length of 1500 µs, a diffusion time of 50 ms and a relaxation delay of 5 ms. Gas chromatography-mass spectrometry (GC-MS) measurements were carried out on a Hewlett-Packard instrument model HP 6890 equipped with a mass detector HP 5973 and on an Agilent 78206b GC system equipped with a mass (Agilent 5977E MSD) and FID detectors. HRMS analyses (ESI+) were performed on a Waters LCT premier XE (TOF) using acetonitrile as solvent. Crude post-reaction mixtures were analyzed by GC-MS and ¹H NMR spectroscopy. n-BuLi (2.5 M in hexane), sec-BuLi (1.4 M in cyclohexane), MeLi (3.1 M in diethoxymethane), i-PrMgCl (2.0M in THF), BnMgCl (2.0M in THF), AllMgCl (2.0M in THF), LDA (2.0M in THF), allyl bromide, metallic magnesium (Mg), methyl acrylate, 3-(2-bromoethyl)-1H-indole, PhB(OH)₂, Pd(PPh₃)₄, 1,3,5-trimethoxybenzene, piperidine, furfurylamine, tryptamine, 4-methoxybenzylamine, phenylethylamine and Grubbs catalyst second generation were purchased from Aldrich. TIPSOTf, 1-(2-bromoethyl)-3methylbenzene, 5-(2-bromoethyl)-2,3-dihydrobenzofuran and phenylacetaldehyde were purchased from Fluorochem. Homoveratrylamine, propionaldehyde, isovaleraldehyde, 1benzyl-4-piperidone was purchased from TCI Chemicals. Pyrrolidine and phenylpropylamine were purchased from Fluka. DIPEA was purchased from Abcr GmbH. Aniline (distilled form zinc powder) was purchased from POCH. 2-(3,4-Dimethoxyphenyl)bromoethane was prepared from corresponding alcohol as described earlier.¹ Reactions in tetrahydrofuran (THF), dichloromethane (DCM), acetonitrile (MeCN) and chlorobenzene (PhCl) solutions were performed under argon in flame-dried flasks and liquid components were added from a syringe. Anhydrous toluene and THF were purified by distillation over sodium metal under argon prior to use. Anhydrous DCM was purified by distillation over CaH₂ under argon prior to use. Anhydrous MeCN was purified by filtration through a pad of Al₂O₃. Anhydrous PhCl was purified by distillation over P₂O₅, then stored over a layer of dry silica gel and collected in this form for the reaction. Products were purified by flash column chromatography on silica gel (63-200 μ m, Merck) using appropriate solvents.

2. Sequences of preparation of enelactams 8

Scheme S1 Synthesis of compounds 8a-8d

Conditions: *a* - **1**. MeLi (1.05 eq.), 0°C, 15 min, THF **2**. (2-fluoro-4-methoxybenzyl)magnesium chloride (1.1 eq.), MeLi (2.2 eq.), 0°C to rt, 2.5h, THF; *b* - 4-(2-bromoethyl)-1,2-dimethoxybenzene (1.5 eq.), TBAI (0.5 eq.), KOH (1.5 eq.), rt, **7a**, **7b** – 24h, **7c** – 16h, THF; *c* - **1**. *i*-PrMgCl (2.02 eq.), *s*-BuLi (4.04 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), -80°C, 3h, THF **3**. 0°C, 3 min., THF (vigorous stirring) **4**. NH₄Cl_{aq}, 0°C to rt; *d* - 3-(2-bromoethyl)-1*H*-indole (2.5 eq.), TBAI (0.5 eq.), KOH (5.0 eq.), rt, 18h, THF; *e* - **1**. *i*-PrMgCl (3.03 eq.), *s*-BuLi (6.06 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), rt, 18h, THF; *e* - **1**. *i*-PrMgCl (3.03 eq.), *s*-BuLi (6.06 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), rt, 18h, THF; *e* - **1**. *i*-PrMgCl (3.03 eq.), *s*-BuLi (6.06 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), rt, 18h, THF; *e* - **1**. *i*-PrMgCl (3.03 eq.), *s*-BuLi (6.06 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), rt, 18h, THF; *e* - **1**. *i*-PrMgCl (3.03 eq.), *s*-BuLi (6.06 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), rt, 18h, THF; *e* - **1**. *i*-PrMgCl (3.03 eq.), *s*-BuLi (6.06 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), -80°C, 3h, THF **3**. 0°C, 3 min., THF (vigorous stirring) **4**. NH₄Cl_{aq}, 0°C to rt.

Scheme S2 Synthesis of compound 8e from 2-pyridone 5c

Conditions: *a* - 1. MeLi (1.05 eq.), 0°C, 0.5h, THF 2. AllMgCl (1.25 eq.), MeLi (2.5 eq.), 0°C, 3h, THF (**6d** – 35%, **6d-isomer-6** – 41%); *b* - 1. LDA (2.0 eq.), 0°C, 0.5h, THF 2. AllBr (1.0 eq.), -80°C (1h) then 0°C (1h), THF (**6e** – 65%); *c* - Grubbs catalyst 2nd gen. (2% mol.), 70°C, 2h, PhMe (**7e** – 80%); *d* - 4-(2-bromoethyl)-1,2-dimethoxybenzene (1.5 eq.), TBAI (0.5 eq.), KOH (1.5 eq.), rt, 24h, THF (**8e** – 80%).

Scheme S3 Synthesis of compounds 8f and 8g

Conditions: *a* - **1**. MeLi (1.05 eq.), 0°C, 15 min, THF **2**. (2-fluoro-4-methoxybenzyl)magnesium chloride (1.1 eq.), MeLi (2.2 eq.), 0°C to rt, 2.5h, THF; *b* - 1-(2-bromoethyl)-3-methylbenzene (1.5 eq.) or 5-(2-bromoethyl)-2,3-dihydrobenzofuran (1.5 eq.), TBAI (0.5 eq.), KOH (1.5 eq.), rt, **7f** - 24h, **7g** - 18h, THF; *c* - **1**. *i*-PrMgCl (2.02 eq.), *s*-BuLi (4.04 eq.), 0°C, 1h, THF **2**. *n*-BuLi (5.0 eq.), -80°C, 3h, THF **3**. 0°C, 3 min., THF (vigorous stirring) **4**. NH₄Cl_{aq}, 0°C to rt.

3. Additional mechanistic aspects

Scheme S4 Possible route of compound 15 formation

Scheme S5 Possible route of compound 14 formation

Scheme S6 Mechanism of the reaction of 1a upon treatment with TfOH

4. The diagnostic NOEs found in NOESY spectra and vicinal coupling constants for representative compounds

Figure S1 Selected experimental and calculated (given in the parenthesis) ${}^{3}J_{H,H}$ coupling constants for representative compounds **3a**, **4c**, **3e** and **4e** as well as the diagnostic NOE effects found in ${}^{1}H$, ${}^{1}H$ NOESY spectra of compounds **2c**, **2d**, **2j**, **3c**, **3e** and **4e** (for more details see also below)

Figure S2 Selected experimental and calculated (given in the parenthesis) ${}^{3}J_{H,H}$ coupling constants as well as the diagnostic NOE effects found in ${}^{1}H$, ${}^{1}H$ NOESY spectra for representative compounds **9a**, **9b**, **9d**, **10f**, **11g** and **9e** (for more details see also below)

Figure S3 Selected experimental and calculated (given in the parenthesis) ${}^{3}J_{H,H}$ coupling constants and the diagnostic NOE effects found in ${}^{1}H$, ${}^{1}H$ NOESY spectra for representative diasteroisomeric benzomorphanones **12a**, **13a** (for more details see also below)

5. Preparation of starting materials

5a. Procedure 1: Synthesis of enamines En-1, En-2 and En-3

Compounds **En-1**, **En-2** and **En-3** were prepared in 5g scale according to the procedure described earlier². The resulting crude products were purified by distillation under reduced pressure to give respectively 7.615g (78%) of **En-1** as colorless oil (bp 76-77°C/18 mm Hg; reported³ bp 90-91°C/45 mm Hg), 7.610g (86%) of **En-2** as colorless oil (bp 80-82°C/18 mm Hg; reported⁴ bp 83.5-85°C/18 mm Hg) and 4.664g (60%) of **En-3** as yellow oil (bp 85-88°C/0.02 mm Hg). ¹H and ¹³C NMR data for **En-1**², **En-3**⁵ matched those reported previously.

5b. Procedure 2: Synthesis of N-Benzyl-4-pyrrolidinyl-1,2,5,6-tetrahydropyridine (En-4)

N-Benzyl-4-pyrrolidinyl-1,2,5,6-tetrahydropyridine was prepared according to the procedure described earlier⁶, however, toluene was used instead of benzene and heating was continued for 4 hours. The resulting crude product was purified by distillation under reduced pressure to give 36% of **En-4** as yellowish oil (bp 145-150°C/0.02 mm Hg, reported⁷ 138-140°C/0.05 mm Hg). ¹H NMR data for **En-4** matched those reported previously.⁵

5c. Procedure 3: Synthesis of formyl esters

Compounds FE-1, FE-2 and FE-3 were prepared according to the procedure described earlier². The resulting crude products were purified by distillation under reduced pressure to give products with 55% yield of FE-1 as colorless oil (bp 30-32°C/0,01 mm Hg), 75% yield of FE-2 as colorless oil (bp 56-58°C/0,01 mm Hg) and 24% yield of FE-3 as yellowish oil bp 102-

110°C/0.01 mm Hg). ¹H and ¹³C NMR data for **FE-1**², **FE-2**⁸, **FE-3**⁹ matched those reported previously.

5d. Procedure 4: Synthesis of methyl 3-(1-benzyl-4-oxopiperidin-3-yl)propanoate⁵

The mixture of enamine **En-4** (1.362g, 5.62 mmol) and methyl acrylate (0.51 mL, 5.62 mmol) in dry MeCN (10 mL) was refluxed for 2 h under Argon. Water (5 mL) was added and the solution was heated for one more hour. After rotary-evaporation, the residue was taken into DCM, washed with water, dried, and the solvent removed in vacuo. The crude product was distilled (130-140°C, 0.01 mmHg) to yield ketoester **KE-1** (0.635g, 47%).

Methyl 3-(1-benzyl-4-oxopiperidin-3-yl)propanoate (**KE-1**):

3.57 (d, J = 13.2 Hz, 1H, NC<u>H</u>HPh), 3.63 (d, J = 13.3 Hz, 1H, NCH<u>H</u>Ph), 3.64 (s, 3H, OCH₃), 7.25 – 7.36 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 22.77 (CH₂), 31.63 (CH₂), 41.05 (CH₂), 48.89 (CH), 51.57 (OCH₃), 53.57, 58.88 (two NCH₂), 61.77 (NCH₂Ph), 127.35, 128.41, 128.85, 138.06 (C₆H₅), 173.71 (O-C=O), 210.29 (C=O). GC-MS (EI, 70eV): m/z = 275 (17), [M+], 244 (15), 202 (75), 189 (24), 188 (20), 152 (19), 91 (100), 65 (10). HRMS (ESI-TOF): m/z calcd for C₁₆H₂₂NO₃[M + H]⁺, 276.1600; found, 276.1599.

5e. *Procedure* **5**: *Procedures for the synthesis of* 1,5-*disubstited*-3,4-*dihydropyridin*-2(1H)*ones* **1a-1c**, **1j-1n** *and* 6-*benzyl*-1-(3,4-*dimethoxyphenethyl*)-3,4,5,6,7,8-*hexahydro*-1,6*naphthyridin*-2(1H)-*one* (**1i**)

Methyl 4-formylhexanoate (**FE-1**) 0.598g (3.78 mmol), homoveratrylamine 0.685g (3.78 mmol) and dry toluene (10 mL) were placed in a 50 mL round-bottomed flask equipped with a magnetic stirrer and Dean-Stark trap. The reaction mixture was heated at 160° C and the reaction progress was monitored by GC-MS. (Heating time is given separately for each product). The solvent was removed by rotary evaporation and the crude product was purified by column chromatography on silica gel, using a mixture hexane and ethyl acetate (1:1 v/v) as the eluent, yielding the product **1a** as yellow oil 0.951g (87%). (Following this procedure compounds **1b-1c**, **1j-1n** and **1i** were obtained.)

 $1-(3,4-Dimethoxyphenethyl)-5-ethyl-3,4-dihydropyridin-2(1H)-one (1a)^{10}$:

Yield 87% (0.951g, reaction time: 4h). The crude product purified by column chromatography (SiO₂, n-hexane:ethyl acetate, 1:1) gave yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 0.97 (t, *J* = 7.5 Hz, 3H, CH₃), 2.00 (qd, *J* = 7.5, 1.4 Hz, 2H, <u>CH₂CH₃</u>), 2.19 (t, *J* = 8.8, 7.2 Hz, 2H, CH₂-4), 2.47 (dd, *J* = 8.8, 7.2 Hz, 2H, CH₂-3), 2.80 (t, *J* = 8.4, 6.7 Hz, 2H, NCH₂<u>CH₂</u>), 3.63 (dd, *J* = 8.4, 6.7 Hz, 2H, NCH₂), 3.85 (s, 3H, OCH₃), 3.87 (s, 2H, OCH₃), 5.61 (t, *J* = 1.4 Hz, 1H, =CH-6), 6.73 – 6.76 (m, 2H, CH-5', CH-6'), 6.79 (d, *J* = 8.0 Hz, 1H, CH-2'). ¹³C NMR (101 MHz, CDCl₃) δ 12.37 (CH₃), 24.17 (CH₂-4), 26.72 (<u>CH₂CH₃</u>), 31.36 (CH₂-3), 34.41 (NCH₂<u>CH₂</u>), 48.05 (NCH₂), 55.85, 55.89 (two OCH₃), 111.21

(CH-5'), 112.12 (CH-2'), 120.80 (CH-6'), 121.25 (=C-5), 123.70 (=CH-6), 131.38 (C-1'),

147.55, 148.83 (C-3', C-4'), 168.68 (C=O). GC-MS (EI, 70eV): m/z = 289 (13), [M⁺], 164 (100), 151 (10), 138 (11), 110 (18), 84 (7).

1-(3,4-Dimethoxyphenethyl)-5-isopropyl-3,4-dihydropyridin-2(1*H*)-one (**1b**):

Yield 92% (0.810g, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 0.96 (d, *J* = 6.8 Hz, 6H, two CH₃), 2.17 (t, *J* = 8.9, 7.4 Hz, 2H, CH-4), 2.23 [hd, *J* = 6.8, 1.2 Hz, 1H, <u>CH</u>(CH₃)₂], 2.45 (t, *J* = 8.9, 7.4 Hz, 1H, CH-3), 2.80 (dd, *J* = 8.2, 6.6 Hz, 1H, NCH₂<u>CH₂</u>), 3.64 (dd, *J* = 8.2, 6.6 Hz, 1H, NCH₂), 3.85 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 5.57 (q, *J* = 1.2 Hz, 1H, =CH-6), 6.70 – 6.76 (m, 2H, CH-5', CH-6'), 6.79 (d, *J* = 7.9 Hz, 1H, CH-2'). ¹³C NMR (101 MHz, CDCl₃) δ 21.05 (two CH₃), 22.21 (CH₂-4), 31.60 (CH₂-3), 31.88 (CH(CH₃)₂), 34.44 (NCH₂<u>CH₂</u>), 48.12 (NCH₂), 55.87 and 55.93 (two OCH₃), 111.29 (CH-5'), 112.20 (CH-2'), 120.85 (CH-6'), 123.12 (=CH-6), 125.52 (=C-5), 131.46 (C-1'), 147.62 and 148.89 (two OCH₃), 168.91 (C=O). GC-MS (EI, 70eV): m/z = 303 (23), [M⁺], 164 (100), 152 (15), 124 (17). HRMS (ESI-TOF): *m/z* calcd for C₁₈H₂₆NO₃[M + H]⁺, 304.1913; found, 304.1916.

1-(3,4-Dimethoxyphenethyl)-5-phenyl-3,4-dihydropyridin-2(1*H*)-one (**1c**):

6-Benzyl-1-(3,4-dimethoxyphenethyl)-3,4,5,6,7,8-hexahydro-1,6-naphthyridin-2(1*H*)-one (**1i**):

Yield 79% (0.742g, reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave orange oil. ¹H NMR (400 MHz, CDCl₃) δ 2.05 (dd, J = 8.7, 6.9 Hz, 2H, CH₂-4), 2.23 (tt, J = 5.6, 2.0 Hz, 2H, CH₂-8), 2.48 (dd, J = 8.7, 6.9 Hz, 2H, CH₂-3), 2.59 (t, J = 5.6 Hz,

^{6Me} ¹² 2.0 Hz, ²H, ¹CH₂ 0, ².40 (dd, ³ = 0.7, 0.5 Hz, ²H, ¹CH₂ 5), ².55 (t, ³ = 5.0 Hz, ²H, ²CH₂ -7), ².75 (dd, J = 9.2, 6.3 Hz, ²H, NCH₂CH₂), 2.96 (d, J = 2.0 Hz, ²H, CH₂-5), 3.57 (s, ²H, N<u>CH₂Ph</u>), 3.72 (dd, J = 9.1, 6.2 Hz, ²H, N<u>CH₂CH₂</u>), 3.82 and 3.84 (two s, 6H, two OCH₃), 6.71 – 6.80 (m, 3H, C₆H₃), 7.23 – 7.35 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 23.03 (CH₂-4), 26.13 (CH₂-8), 31.49 (CH₂-3), 35.08 (NCH₂<u>CH₂</u>), 42.72 (N<u>CH₂</u>CH₂), 49.57 (CH₂-7), 55.21 (CH₂-5), 55.80, 55.85 (two OCH₃), 62.14 N<u>CH₂Ph</u>, 111.28 (CH-5'), 112.14 (CH-2'), 112.23 (=C-4a), 120.70 (CH-6'), 127.17, 128.27, 129.03 (C₆H₅), 129.86 (C-1'), 131.55 (=C-8a), 137.91 (C₆H₅), 147.56, 148.84 (C-3', C-4'), 169.52 (C=O). GC-MS (EI, 70eV): m/z = 406 (91), [M⁺], 405 (100), 315 (21), 267 (59), 255 (29), 242 (39), 241 (32), 165 (32), 164 (45), 151 (17), 91 (65). HRMS (ESI-TOF): *m*/z calcd for C₂₅H₃₁N₂O₃[M + H]⁺, 407.2335; found, 407.2329. [(Compound **1i** exists in equilibrium with the second ene-isomer (~92:8).]

1-(2-(1H-Indol-3-yl)ethyl)-5-ethyl-3,4-dihydropyridin-2(1H)-one (**1j**)¹¹:

Yield 69% (0.818g, reaction time: 32h). The crude product purified by column chromatography (SiO₂, n-hexane:ethyl acetate, 1:1) gave beige solid, mp 84–86 °C (hexane:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 0.92 (t, J = 7.4 Hz, 3H, CH₃), 1.96 (qd, J = 7.5, 1.4 Hz, 2H, <u>CH₂CH₃</u>), 2.07 – 2.22 (m, 2H, CH₂-4), 2.49 (dd, J = 8.9, 7.3 Hz, 2H, CH₂-3), 2.83 – 3.20 (m, 2H, NCH₂<u>CH₂</u>), 3.59 – 3.82 (m, 2H, NCH₂), 5.65 (t, J = 1.4 Hz, 1H, CH-6), 6.97 (d, J = 2.4 Hz, 1H, CH-2'), 7.10 (td, J = 7.8, 7.0, 1.1 Hz, 1H, CH-5''), 7.16 (td, J = 8.1, 7.0, 1.1 Hz, 1H, CH-6'), 7.33 (dd, J = 8.1, 1.1 Hz, 1H, CH-7'), 7.64 (dd, J = 7.8, 1.1 Hz, 1H, CH-4'), 8.45 (s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 12.27 (CH₃), 24.13 (CH₂-4), 24.35 (NCH₂CH₂), 26.68 (CH₂CH₃), 31.37 (CH₂-3), 47.08 (NCH₂), 111.22 (CH-7'), 112.69 (C-3'), 118.67 (CH-4'), 119.20 (CH-5'), 121.30 (=C-5), 121.85 (CH-6'), 122.16 (CH-2'), 123.65 (=CH-6), 127.49 (C-3a'), 136.31 (C-7a'), 168.87 (C=O). GC-MS (EI, 70eV): m/z = 268 (15), [M⁺], 143 (100), 130 (32), 110 (10).

5-Ethyl-1-phenethyl-3,4-dihydropyridin-2(1*H*)-one (1**k**):

Yield 97% (0.984g, reaction time: 5.5h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 0.95 (t, *J* = 7.4 Hz, 3H, CH₃), 1.98 (qd, *J* = 7.7, 1.4 Hz, 2H, CH₂), 2.17 (t, *J* = 8.8, 7.2 Hz, 2H, CH₂-4), 2.46 (dd, *J* = 8.8, 7.2 Hz, 2H, CH₂-3), 2.84 (dd, *J* = 8.3, 6.6 Hz, 2H, C<u>H₂-C₆H₅), 3.65 (dd, *J* = 8.3, 6.6 Hz, 2H, NCH₂), 5.58 (p, *J* = 1.4 Hz, 1H, =CH-6), 7.14 – 7.31 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 12.31 (CH₃), 24.18 (CH₂-4), 26.70 (<u>CH₂CH₃), 31.34 (CH₂-3), 34.83 (CH₂Ph), 47.89 (NCH₂), 121.28 (=C-5), 123.68 (=CH-6), 126.37, 128.43, 128.91, 138.81 (C₆H₅), 168.69 (C=O). GC-MS (EI, 70eV): m/z = 229 (54), [M⁺], 138 (100), 125 (11), 110 (76), 105 (15), 91 (16), 84 (24). HRMS (ESI-TOF): *m/z* calcd for C₁₅H₂₀NO[M + H]⁺, 230.1545; found, 230.1551.</u></u>

5-Ethyl-1-(3-phenylpropyl)-3,4-dihydropyridin-2(1*H*)-one (**1**l):

Yield 85% (0.915g, reaction time: 5.5h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.02 (t, *J* = 7.4 Hz, 3H, CH₃), 1.80 – 1.94 (m, 2H, <u>CH</u>₂CH₂N), 2.04 (qd, *J* = 7.4, 1.4 Hz, 2H, <u>CH</u>₂CH₃), 2.20 (t, *J* = 8.8, 7.2 Hz, 2H, CH₂-4), 2.47 (dd, *J* = 8.8, 7.2 Hz, 2H, CH₂-3), 2.62 (t, *J* = 8.7, 7.1 Hz, 1H, <u>CH</u>₂C₆H₅), 3.48 (t, *J* = 7.8, 7.0 Hz, 2H, NCH₂), 5.71 (p, *J* = 1.4 Hz, 1H, =CH-6), 7.18 (d, *J* = 7.1 Hz, 2H, C₆H₅), 7.23 – 7.31 (m, 3H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 12.40 (CH₃), 24.15 (CH₂-4), 26.78 (<u>CH</u>₂CH₃), 30.00 (NCH₂<u>CH</u>₂), 31.35 (CH₂-3), 33.00 (<u>CH</u>₂C₆H₅), 45.73 (NCH₂), 121.58 (=C-5), 123.33 (=CH-6), 125.88, 128.31, 128.36, 141.51 (C₆H₅), 168.74 (C=O). GC-MS (EI, 70eV): m/z = 243 (100), [M⁺], 228 (35), 214 (8), 139 (23), 138 (24), 124 (73), 117 (14), 110 (47), 96 (18), 91 (55), 82 (11), 65 (11). HRMS (ESI-TOF): *m/z* calcd for C₁₆H₂₂NO[M + H]⁺, 244.1701; found, 244.1701.

5-Ethyl-1-(4-methoxybenzyl)-3,4-dihydropyridin-2(1*H*)-one (1m):

Yield 71% (0.773g, reaction time: 24h). The crude product purified by column chromatography (SiO₂, n-hexane:ethyl acetate, 1:1) gave yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 0.98 (t, *J* = 7.4 Hz, 3H, CH₃), 2.01 (qd, *J* = 7.4, 1.3 Hz, 2H, <u>CH₂CH₃</u>), 2.20 – 2.28 (m, 2H, CH₂-4), 2.50 – 2.59 (m, 2H, CH₂-

3), 3.78 (s, 3H, OCH₃), 4.59 (s, 2H, NCH₂), 5.75 (p, *J* = 1.3 Hz, 1H, =CH-6), 6.75 – 6.92 (m,

2H, ArH), 7.07 – 7.23 (m, 2H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 12.34 (CH₃), 24.16 (CH₂-4), 26.77 (<u>CH₂CH₃</u>), 31.31 (CH₂-3), 48.30 (NCH₂), 55.24 (OCH₃), 113.98 (2C, ArH), 121.94 (C-5), 122.81 (=CH-6), 129.01 (2C, ArH), 129.54 (Ar), 158.93 (Ar), 168.88 (C=O). GC-MS (EI, 70eV): m/z = 245 (14), [M⁺], 121 (100). HRMS (ESI-TOF): *m/z* calcd for C₁₅H₂₀NO₂[M + H]⁺, 246.1494; found, 246.1501.

1,5-Diphenyl-3,4-dihydropyridin-2(1*H*)-one (**1n**):

Yield 42% (0.233g, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 86-88°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.61 – 3.07 (m, 4H, CH₂-3, CH₂-4), 6.69 (d, *J* = 1.2 Hz, 1H, =CH-6), 7.19 – 7.27 (m, 1H, C₆H₅), 7.29 – 7.36 (m, 7H, C₆H₅), 7.39 – 7.45 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 23.71 (CH₂-4), 32.04 (CH₂-3), 118.96 (C-5), 124.38 (2C), 126.26 (2C), 126.82, 127.23 (C₆H₅), 127.70 (=CH-6), 128.68 (2C), 129.17 (2C), 138.17, 140.75 (C₆H₅), 168.60 (C=O). GC-MS (EI, 70eV): m/z = 249 (100), 220 (22), 206 (69), 77 (23). HRMS (ESI-TOF): *m/z* calcd for C₁₇H₁₆NO[M + H]⁺, 250.1232; found, 250.1237.

5f. Synthesis of 4- and 6-benzylsubstituted γ , δ - and β , γ -unsatursted δ -lactams via nucleophilic addition of benzyl magnesiate to 2-pyridone

Compounds **10-z** were prepared according to the procedure described earlier.¹²

Spectra of compounds **10**,¹² **1q**,¹³ **1r**,¹³ **1t**,¹², **1v-1z**¹² and **1aa**¹³ are in agreement with literature data.

(*4RS*)-4-Benzyl-1,5-diphenyl-3,4-dihydropyridin-2(1*H*)-one (**1p**):

 $\begin{array}{l} \begin{array}{l} {}_{Ph} & {}_{Vield 41\% \ (0.825g). The crude product purified by column chromatography (SiO_2, \\ {}_{Ph} & {}_{1p} & {}_{2.77 \ (m, 2H, C\underline{H}H-3, 4-C\underline{H}H), 2.87 \ (ddd, J = 16.1, 6.8, 0.6 \ Hz, 1H, CH\underline{H}-3), 2.99 \\ (dd, J = 13.6, 4.0 \ Hz, 1H, 4-CH\underline{H}), 6.70 \ (d, J = 0.6 \ Hz, 1H, =CH-6), 7.15 - 7.33 \ (m, 9H, C_6H_5), \\ 7.34 - 7.47 \ (m, 6H, C_6H_5). \ {}^{13}C \ NMR \ (101 \ MHz, CDCl_3) \ \delta \ 36.12 \ (CH_2-3), 36.42 \ (CH-4), 38.47 \\ (4-CH_2), \ 122.45 \ (=C-5), \ 124.96 \ (2C), \ 126.18 \ (2C), \ 126.57, \ 127.03, \ 127.22 \ (C_6H_5), \ 127.27 \\ (=CH-6), \ 128.46 \ (2C), \ 128.88 \ (2C), \ 129.10 \ (2C), \ 129.60 \ (2C), \ 137.03, \ 138.37, \ 140.43 \ (C_6H_5), \\ 167.90 \ (C=O). \ GC-MS \ (EI, \ 70eV): \ m/z = 277 \ (5), \ [M^+], \ 186 \ (100), \ 158 \ (18), \ 143 \ (17), \ 91 \ (10), \\ 77 \ (14). \ HRMS \ (ESI-TOF): \ m/z \ calcd \ for \ C_{19}H_{19}NONa \ [M+Na]^+, \ 300.1364; \ found, \ 300.1367. \end{array}$

(*4RS*)-4-Benzyl-5-methyl-1-phenyl-3,4-dihydropyridin-2(1*H*)-one (**1**s):

(*6RS*)-6-Benzyl-5-methyl-1-phenyl-3,6-dihydropyridin-2(1*H*)-one (**1s-isomer-6**) (obtained as regioisomer):

Yield 35% (0.828g). The crude product purified by column chromatography (SiO₂, n-hexane:ethyl acetate, 3:1) gave white solid, mp 104-106°C (petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.84 (dt, *J* = 2.7, 1.3 Hz, 3H, 5-CH₃), 2.02 (ddq, *J* = 20.9, 5.4, 2.7 Hz, 1H, C<u>H</u>H-3), 2.63 (ddt, *J* = 20.9, 5.4, 1.2 Hz, 1H,

CH<u>H</u>-3), 2.80 – 2.95 (m, 2H, 6-CH₂), 4.46 (q, *J* = 3.9, 3.5 Hz, 1H, CH-6), 5.47 (dp, *J* = 5.4, 1.7 Hz, 1H, =CH-4), 7.13 – 7.19 (m, 2H, C₆H₅), 7.21 – 7.28 (m, 3H, C₆H₅), 7.29 – 7.34 (m, 1H,

C₆H₅), 7.37 – 7.51 (m, 4H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 20.49 (CH₃), 32.99 (CH₂-3), 37.04 (6-CH₂), 66.74 (CH-6), 120.50 (=CH-4), 126.90, 127.06, 127.75 (2C), 128.13 (2C), 129.27 (2C), 130.06 (2C), 131.91, 135.79, 141.32 (two C₆H₅), 168.80. GC-MS (EI, 70eV): m/z = 277 (1), [M⁺], 186 (100), 158 (17), 143 (17), 91 (12), 77 (14). HRMS (ESI-TOF): *m/z* calcd for C₁₉H₂₀NO[M + H]⁺, 278.1545; found, 278.1558. HRMS (ESI-TOF): *m/z* calcd for C₁₉H₁₉NONa [M + Na]⁺, 300.1364; found, 300.1369.

(4*RS*)-4-Benzyl-1,5-dimethyl-3,4-dihydropyridin-2(1*H*)-one (**1u**):

 $\begin{array}{l} \begin{array}{l} & \text{Yield } 20\% \ (0.524\text{g}). \ \text{The crude product purified by column chromatography} \\ & \text{(SiO}_2, \ n\text{-hexane:ethyl acetate, } 1:1) \ \text{gave white semi-solid.} \ ^1\text{H NMR } (400 \ \text{MHz}, \\ & \text{CDCl}_3) \ \delta \ 1.68 \ (\text{d}, \ J = 1.6 \ \text{Hz}, \ 3\text{H}, \ 5\text{-CH}_3), \ 2.32 - 2.40 \ (\text{m}, \ 2\text{H}, \ \text{C}\underline{\text{H}}\text{H}\text{-3}, \ \text{CH}\text{-4}), \\ & 2.44 - 2.53 \ (\text{m}, \ 2\text{H}, \ \text{CH}\underline{\text{H}}\text{-3}, \ 4\text{-C}\underline{\text{H}}\text{H}), \ 2.78 \ (\text{dd}, \ J = 13.2, \ 5.0 \ \text{Hz}, \ 1\text{H}, \ 4\text{-CH}\underline{\text{H}}), \\ & 2.95 \ (\text{s}, \ 3\text{H}, \ \text{NCH}_3), \ 5.75 \ (\text{q}, \ J = 1.6 \ \text{Hz}, \ 1\text{H}, \ =\text{CH-6}), \ 7.11 - 7.32 \ (\text{m}, \ 5\text{H}, \ \text{C}_6\text{H}_5). \ ^{13}\text{C} \ \text{NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 18.29 \ (5\text{-CH}_3), \ 33.28 \ (\text{NCH}_3), \ 35.42 \ (\text{CH}_2\text{-3}), \ 37.93 \ (4\text{-CH}_2), \ 38.97 \ (\text{CH-4}), \\ & 118.78 \ (=\text{C-5}), \ 125.46 \ (=\text{CH-6}), \ 126.31, \ 128.31, \ 129.30, \ 138.98 \ (\text{C}_6\text{H}_5), \ 168.17 \ (\text{C=O}). \ \text{GC-} \\ & \text{MS} \ (\text{EI}, \ 70\text{eV}): \ \text{m/z} = 215 \ (25), \ [\text{M}^+], \ 124 \ (100), \ 96 \ (11), \ 91 \ (9), \ 81 \ (13). \ \text{HRMS} \ (\text{ESI-TOF}): \\ & m/z \ \text{calcd for } \ \text{C}_{14}\text{H}_{18}\text{NO}[\text{M} + \text{H}]^+, \ 216.1388; \ \text{found}, \ 216.1386. \end{array}$

(6RS)-6-Benzyl-1,5-dimethyl-3,6-dihydropyridin-2(1*H*)-one (**1u-isomer-6**) (obtained as regioisomer):

Yield 70% (1.834 g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 1.60 (dq, J = 21.2, 2.7 Hz, 1H, C<u>H</u>H-3), 1.84 (dt, J = 2.7, 1.4 Hz, 3H, 5-CH₃), 2.44 (ddt, J = 21.2, 5.2, 1.5 Hz, 1H, CH<u>H</u>-3), 2.84 (dd, J = 13.8, 3.4 Hz, 1H, 6-C<u>H</u>H), 3.05 (dd, J = 13.8, 4.8 Hz, 1H, 6-CH<u>H</u>), 3.07 (s, 3H, NCH₃), 3.91 (qd, J = 4.8, 3.4, 1.5 Hz, 1H, CH-6), 5.33 (dt, J = 5.2, 1.8 Hz,

1H, =CH-4), 6.97 – 7.04 (m, 2H, C₆H₅), 7.17 – 7.24 (m, 3H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 20.18 (5-CH₃), 31.91 (CH₂-3), 33.24 (NCH₃), 36.27 (6-CH₂), 65.22 (CH-6), 120.45 (=CH-4), 126.93, 128.08 (2C), 129.97 (2C, C₆H₅), 130.92 (=C-5), 135.41 (C₆H₅), 169.24 (C=O). GC-MS (EI, 70eV): m/z = 215 (<1)), [M⁺], 124 (100), 96 (12), 81 (16). HRMS (ESI-TOF): *m*/*z* calcd for C₁₄H₁₈NO[M + H]⁺, 216.1388; found, 216.1394.

5g. Preparation of solution of (2-fluoro-4-methoxybenzyl)magnesium chloride

Solution of (2-fluoro-4-methoxybenzyl)magnesium chloride (**2-F-4-OMe-BnMgCl**) was prepared¹⁴ and titrated¹⁵ according to the procedures described earlier.

5h. *Procedure 6. Procedure for the synthesis of compounds 6a-c via nucleophilic addition of fluorobenzylmagnesiate to NH 2-pyridones*

MeLi (1.7 mL, 5.25 mmol, 3.1M in DEM, 1.05 equiv) was added dropwise to the solution of **5** (5 mmol) in 15 mL of anhydrous THF at 0°C placed in the first Schlenk flask. Resulting suspension was stirred in this temperature for 15 min. Simultaneously, in the second Schlenk flask, MeLi (3.55 mL, 11 mmol, 3.1M in DEM, 2.2 equiv) was added to the solution of (2-fluoro-4-methoxybenzyl)magnesium chloride (55 mL, 5.5 mmol, 0.1 M in THF, 1.1 equiv,) at 0°C and resulting yellow complex was stirred for 10 min. Subsequently, magnesiate complex was transferred to a solution of lithiated **5** with a syringe and stirring was maintained for 2.5h while temperature was slowly raised from 0°C to room temperature. After this time, the mixture was cooled to 0°C, carefully quenched with saturated aqueous ammonium chloride (NH₄Cl, 15 mL) and then diluted with water (ca. 10 mL). The aqueous layer was extracted with ethyl acetate (3 x 70 mL), and the combined organic layers were dried with MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude products were purified by column chromatography on silica gel using the appropriate solvent mixtures to afford the desired products **6**.

(4*RS*)-4-(2-Fluoro-4-methoxybenzyl)-3,4-dihydropyridin-2(1*H*)-one (**6**a):

6b

Yield 42% (0.568g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 61-63 °C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.32 (dd, *J* = 16.4, 8.6 Hz, 1H, C<u>H</u>H-3), 2.51 (dd, *J* = 16.4, 6.6 Hz, 1H, CH<u>H</u>-3), 2.62 (ddd, *J* = 13.5, 7.8, 1.0 Hz, 1H, 4-CHH), 2.70 (ddd, *J* = 13.5, 7.1, 1.0 Hz, 1H, 4-CHH), 2.73 – 2.83

(m, 1H, CH-4), 3.78 (s, 3H, OCH₃), 5.02 (ddd, J = 7.7, 3.8, 1.0 Hz, 1H, =CH-5), 6.06 (ddd, J = 7.7, 4.5, 1.5 Hz, 1H, =CH-6), 6.46 – 6.69 (m, 2H, CH-3', CH-5'), 7.04 (t, J = 8.6 Hz, 1H, CH-6'), 7.75 (s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 32.69(CH-4), 33.20 (4-CH₂), 36.21 (CH₂-3), 55.54 (OCH₃), 101.64 (d, ² $J_{C-F} = 25.9$ Hz, CH-3'), 109.21 (=CH-5), 109.69 (d, ⁴ $J_{C-F} = 3.2$ Hz, CH-5'), 117.58 (d, ² $J_{C-F} = 16.3$ Hz, C-1'), 124.38 (=CH-6), 131.75 (d, ³ $J_{C-F} = 6.9$ Hz, CH-6'), 159.60 (d, J = 11.1 Hz, C-4'), 161.67 (d, ³ $J_{C-F} = 244.4$ Hz, C-2'), 171.23 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) $\delta = -115.66$ ppm. GC-MS (EI, 70eV): m/z = 235 (1), [M⁺], 139 (100), 96 (52). HRMS (ESI-TOF): m/z calcd for C₁₃H₁₅FNO₂[M + H]⁺, 236.1087; found, 236.1089.

(4*RS*)-4-(2-Fluoro-4-methoxybenzyl)-5-methyl-3,4-dihydropyridin-2(1*H*)-one (**6**b):

Yield 24% (0.169g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 131-133 °C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 1.68 (d, *J* = 1.6 Hz, 3H, 5-CH₃), 2.29 (dd, *J* = 16.0, 2.4 Hz, 1H, C<u>H</u>H-3), 2.37 – 2.43 (m, 1H, CH-4), 2.46 (d, *J* = 13.3 Hz, 1H, 4-C<u>H</u>H), 2.50 (dd, *J* = 16.3, 6.5 Hz,

1H, CH<u>H</u>-3), 2.84 (ddd, J = 13.3, 4.1, 0.9 Hz, 1H, CH<u>H</u>-3), 3.78 (s, 3H, OCH₃), 5.85 (dq, J = 4.6, 1.6 Hz, 1H, =CH-6), 6.53 – 6.68 (m, 2H, CH-3', CH-5'), 7.05 (t, J = 8.7 Hz, 1H, CH-6'), 7.68 (d, J = 4.3 Hz, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 18.20 (5-CH₃), 30.54 (4-CH₂), 34.69 (CH₂-3), 37.40 (CH-4), 55.53 (OCH₃), 101.65 (d, ²*J*_{*C*-*F*} = 26.0 Hz, CH-3'), 109.59 (d, ⁴*J*_{*C*-*F*} = 3.0 Hz, CH-5'), 117.81 (d, ²*J*_{*C*-*F*} = 16.3 Hz, C-1'), 118.03 (=C-5), 119.38 (=CH-6), 132.04 (d, ³*J*_{*C*-*F*} = 6.7 Hz, CH-6'), 159.62 (d, ³*J*_{*C*-*F*} = 10.9 Hz, C-4'), 161.74 (d, ¹*J*_{*C*-*F*} = 244.9 Hz, C-2'), 170.38 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) δ = –116.06 ppm. GC-MS (EI, 70eV): m/z = 249 (5), [M⁺], 139 (75), 110 (100), 82 (11). HRMS (ESI-TOF): *m*/*z* calcd for C₁₄H₁₆FNO₂Na [M + Na]⁺, 272.1063; found, 272.1060.

(4*RS*)-4-(2-Fluoro-4-methoxybenzyl)-5-phenyl-3,4-dihydropyridin-2(1*H*)-one (**6c**):

Yield 70% (1.100g). The crude product purified by column chromatography OMe (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 161-162 °C Ph (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.46 (dt, J = 16.4, 1.6 Hz, 1H, CHH-3), 2.54 (dd, J = 13.9, 10.7 Hz, 1H, 4-CHH), 2.62 6c (dd, J = 16.4, 6.5 Hz, 1H, CHH-3), 2.97 (dd, J = 13.9, 4.1 Hz, 1H, 4-CHH), 3.16 (dddd, J = 13.9, 4.1 Hz, 1H, 4-CHH), 3.16 (dddd, J = 13.9, 4.1 Hz, 1H, 4-CHH)10.7, 6.5, 4.1, 1.6 Hz, 1H, CH-4), 3.76 (s, 3H, OCH₃), 6.56 - 6.65 (m, 3H, =CH-6, CH-3', CH-5'), 7.06 (t, J = 8.8 Hz, 1H, CH-6'), 7.19 – 7.27 (m, 1H, C₆H₅), 7.36 (dd, J = 8.5, 7.0 Hz, 2H, $C_{6}H_{5}$), 7.41 – 7.47 (m, 2H, $C_{6}H_{5}$), 8.32 (d, J = 4.8 Hz, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 30.94 (CH₂-3), 34.19 (4-CH₂), 34.84 (CH-4), 55.54 (OCH₃), 101.73 (d, ${}^{2}J_{C-F}$ = 26.0 Hz, CH-3'), 109.64 (d, ${}^{4}J_{C-F}$ = 3.4 Hz, CH-5'), 117.35 (d, ${}^{2}J_{C-F}$ = 16.8 Hz, C-1'), 120.93 (=CH-6), 121.37 (=C-5), 124.60, 126.76, 128.80 (C₆H₅), 132.33 (d, ${}^{3}J_{C-F} = 7.1$ Hz, CH-6'), 136.93 (C₆H₅), 159.73 (d, ${}^{3}J_{C-F} = 11.0$ Hz, C-4'), 161.79 (d, ${}^{1}J_{C-F} = 244.9$ Hz, C-2'), 170.75 (C=O). 19 F NMR $(376.6 \text{ MHz}, \text{CDCl}_3) \delta = -115.21 \text{ ppm. GC-MS}$ (EI, 70eV): m/z = 311 (21), [M⁺], 172 (100), 171 (34), 145 (12), 139 (52), 115 (11). HRMS (ESI-TOF): *m/z* calcd for C₁₉H₁₉FNO₂[M + H]⁺, 312.1400; found, 312.1395.

5i. Procedure 7: Procedure for the synthesis of compounds 6d and 6d-isomer-6 via nucleophilic addition of allylmagnesiate to NH 2-pyridones

To a cooled and stirred solution of 5-phenylpyridine-2(1H)-one **5c** (1.5g, 8.76 mmol) in dry THF (30 mL) at 0°C 2.97 mL (9.2 mmol), MeLi solution (3.1 M in DEM) was added from a syringe over 5 min under argon. The resulting white suspension was stirred at 0°C for 30 min. Simultaneously, in a second Schlenk flask MeLi (3.1 M in DEM, 7.12 mL, 22.08 mmol, 2.5 equiv.) was added from a syringe at 0°C over 5 min to the solution of AllMgCl (5.52 mL, 11.04 mmol, 2.0 M in THF, 1.25 equiv.) in 30 mL of anhydrous THF and resulting solution of yellow complex was stirred for 5 min. Subsequently, the suspension containing the lithium allyldimethylmagnesate was transferred to the solution of lithiated 5-phenylpyridine-2(1H)-one

via syringe. The resulting brown-orange solution was stirred for 3h at 0° C. After careful quenching with aqueous saturated NH₄Cl (20 mL) reaction mixture was extracted with ethyl acetate (3x100 mL) and the combined organic layers were dried over MgSO₄. Filtration, concentration in vacuo, and purification by column chromatography yielded **6d** and **6d-isomer-6** as white solids.

(4*RS*)-4-Allyl-5-phenyl-3,4-dihydropyridin-2(1*H*)-one (**6d**):

Yield 35% (0.6473g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 99-101 °C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.18 (dddt, *J* = 14.1, 9.2, 8.1, 1.0 Hz, 1H, 4-C<u>H</u>H), 2.31 (dt, *J* = 14.3, 6.1, 4.5 Hz, 1H, 4-CH<u>H</u>), 2.64 (ddd, *J* = 16.4, 2.5, 0.9 Hz, 1H, C<u>H</u>H-3), 2.72 (dd, *J* = 16.5, 6.8 Hz, 1H, CH<u>H</u>-3), 2.99 (dddd, *J* = 9.2, 6.8, 4.5, 2.5 Hz, 1H, CH-4), 5.05 – 5.15 (m, 2H, =CH₂), 5.74 (dddd, *J* = 16.7, 10.1, 8.0, 6.3 Hz, 1H, =CH), 6.50 (d, *J* = 4.8 Hz, 1H, =CH), 7.19 – 7.28 (m, 1H, C₆H₅), 7.31 – 7.40 (m, 4H, C₆H₅), 7.69 (s, 1H. NH). ¹³C NMR (101 MHz, CDCl₃) δ 33.87 (CH-4), 34.60 (CH₂-3), 36.51 (4-CH₂), 118.11 (=CH₂), 120.92 (=CH-6), 121.28 (=C-5), 124.97, 126.81, 128.76 (C₆H₅), 134.71 (=CH), 137.28 (C₆H₅), 170.69 (C=O). GC-MS (EI, 70eV): m/z = 213 (2), [M⁺], 172 (100), 145 (14), 143 (8), 127 (13), 117 (10), 115 (19), 91 (5). HRMS (ESI-TOF): *m/z* calcd for C₁₄H₁₆NO[M + H]⁺, 214.1232; found, 214.1230.

(6*RS*)-6-Allyl-5-phenyl-3,6-dihydropyridin-2(1*H*)-one (**6d-isomer-6**):

Ph Yield 41% (0.763g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 90-92°C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.17 (dt, *J* = 14.3, 7.3 Hz, 1H, 6-C<u>H</u>H), 2.31 – 2.41 (m, 1H, 6-CH<u>H</u>), 3.08 (t, *J* = 3.8 Hz, 2H, CH₂-3), 4.63 (dp, *J* = 7.0, 3.6 Hz, 1H, CH-6), 5.05 (dq, *J* = 17.0, 1.6 Hz, 1H, =C<u>H</u>H), 5.12 (dd, *J* = 10.2, 1.9 Hz, 1H, =CH<u>H</u>), 5.72 (dddd, *J* = 17.0, 10.2, 7.3, 6.3 Hz, 1H, =CH), 5.93 (t, *J* = 3.8 Hz, 1H, =CH-4), 7.28 – 7.40 (m, 6H, C₆H₅, NH). ¹³C NMR (101 MHz, CDCl₃) δ 31.94 (CH₂-3), 39.85 (6-CH₂), 54.98 (CH-6), 119.73 (=CH₂), 120.42 (=CH-4), 126.35, 127.89, 128.72 (C₆H₅), 132.28 (=CH), 136.18 (=C-5), 138.26 (C₆H₅), 170.32 (C=O). GC-MS (EI, 70eV): m/z = 213 (1), [M⁺], 172 (100), 145 (14), 143 (8), 127 (14), 117 (11), 115 (20), 91 (5). HRMS (ESI-TOF): *m/z* calcd for C₁₄H₁₆NO[M + H]⁺, 214.1232; found, 214.1235.

5j. Procedure 8: C3-Allylation of compound 6d

Commercially available (Sigma-Aldrich) 2.0 M solution of LDA in THF/heptane/ethylbenzene (2.25 mL, 4.5 mmol, 2.0 equiv.) was added dropwise to a solution of **6d** (0.480g, 2.25 mmol) in dry THF (10 mL) under argon, prepared in a Schlenk flask and cooled to 0°C. The mixture was stirred at 0°C for 0.5h. After this time, reaction flask was transferred to -80°C bath and allyl bromide (0.272g, 2.25 mmol, 1.0 equiv.) was added dropwise for ca. 5 min and the reaction mixture was stirred for 1h at -80°C and 1h at 0°C. Subsequently reaction mixture was carefully quenched with saturated aqueous NH₄Cl (10 mL), then was allowed to warm up to rt and was diluted with water (ca. 10 mL). The aqueous layer was extracted with ethyl acetate (3×60 mL), and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using *n*-hexane/ethyl acetate (1:3) to give product **6e** as a pale yellow oil.

(3RS,4RS)-3,4-Diallyl-5-phenyl-3,4-dihydropyridin-2(1H)-one (6e):

Yield 65% (0.368g). ¹H NMR (400 MHz, CDCl₃) δ 2.14 (dt, J = 14.3, 8.7 Hz, 1H, 4-C<u>H</u>H), 2.22 – 2.36 (m, 2H, 4-CH<u>H</u>, 3-C<u>H</u>H), 2.47 (dtt, J = 14.2, 5.6, 1.6 Hz, 1H, 3-CH<u>H</u>), 2.62 (ddt, J = 9.6, 5.5, 1.2 Hz, 1H, CH-3), 2.86 (ddt, J = 9.6, 4.4, 1.0 Hz, 1H, CH-4), 5.01 – 5.16 (m, 4H, two =CH2), 5.68 (dddd, J = 16.5, 10.1, 8.1, 6.1 Hz, 1H, =CH), 5.81 (dddd, J = 17.0, 10.1, 8.5, 5.7 Hz, 1H, =CH), 6.48 (d, J = 4.7Hz, 1H, =CH-6), 7.21 – 7.29 (m, 1H, C₆H₅), 7.34 (d, J = 4.3 Hz, 4H, C₆H₅), 8.25 (d, J = 4.8 Hz, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 34.82 (3-CH₂), 36.57 (4-CH₂), 37.98 (CH-4), 44.32 (CH-3), 117.88, 117.93 (two =CH₂), 119.86 (=C-5), 120.06 (=CH-6), 125.18, 126.84, 128.75 (C₆H₅), 134.72, 135.18 (two =CH), 137.78 (C₆H₅), 173.28 (C=O). GC-MS (EI, 70eV): m/z = 253 (9), [M⁺], 212 (100), 171 (63), 143 (21), 115 (18). HRMS (ESI-TOF): *m/z* calcd for C₁₇H₂₀NO[M + H]⁺, 254.1545; found, 254.1550.

5k. Procedure 9: Procedure for the synthesis of 7e via RCM

To a solution of 3,4-diallyl-5-phenyl-3,4-dihydropyridin-2(1H)-one **6e** (0.33g, 1.3mmol) in dry, degassed toluene (10 mL) Grubbs catalyst **GII** was added and the reaction mixture was vigorously stirred under slowly passing stream of argon at 70°C for 2h. After this time toluene was evaporated at reduced pressure, and the residue was left standing for 48 h followed by crystallization from ethyl acetate. The product **7e** was obtained as a white solid in 80% yield.

(4aRS,8aRS)-4-phenyl-4a,5,8,8a-tetrahydroisoquinolin-1(2H)-one (7e):

Yield 80% (0.236g). The crude product purified by crystallization from ethyl acetate gave white solid, mp 246-248 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 1.50 – 1.70 (m, 1H, C<u>H</u>H-5), 2.10 (ddt, *J* = 17.7, 11.3, 4.5, 2.2 Hz, 1H, C<u>H</u>H-8), 2.32 (dt, *J* = 17.4, 5.9, 5.1 Hz, 1H, CH<u>H</u>-5), 2.37 – 2.43 (m, 2H, CH<u>H</u>-8, CH-4a), 2.97 (dddd, *J* = 14.1, 11.3, 5.0, 2.5 Hz, 1H, CH-8a), 5.57 – 5.66 (m, 1H, =CH-6), 5.68 – 5.77 (m, 1H, =CH-7), 6.09 (dd, *J* = 4.9, 2.6 Hz, 1H, =CH-3), 7.05 – 7.27 (m, 3H, C₆H₅), 7.27 – 7.44 (m, 2H, C₆H₅), 9.36 (d, *J* = 4.9 Hz, 1H, NH). ¹³C NMR (101 MHz, DMSO-d₆) δ 26.37 (CH₂-8), 31.21 (CH₂-5), 34.10 (CH-4a), 40.43 (CH-8a), 120.35 (=C-4), 123.11 (=CH-3), 125.78, 125.92, 125.98 (=CH-6, =CH-7, C₆H₅), 126.90, 127.98, 138.36 (C₆H₅), 170.27 (C=O). GC-MS (EI, 70eV): m/z = 225 (96), [M⁺], 208 (11), 196 (17), 184 (14), 171 (100), 170 (21), 143 (37), 128 (11), 115 (28), 91 (12), 77 (16). HRMS (ESI-TOF): *m/z* calcd for C₁₅H₁₆NO[M + H]⁺, 226.1232; found, 226.1239.

51. Synthesis of 4-bromoisoquinolin-1(2H)-one from isoquinolin-1(2H)-one

4-Bromoisoquinolin-1(2H)-one was prepared according to the procedures described earlier.¹⁶

5m. Procedure 10: Procedure for the synthesis of compounds *7a-f*, *8e*, *1d*, *1f* and *1g-h* through *N*-alkylation

(Note: compounds: 1,3,4,5,6,7-hexahydro-2*H*-cyclopenta[b]pyridin-2-one and 1,3,4,5,6,7,8,9-octahydro-2*H*-cyclohepta[b]pyridin-2-one were prepared according to the procedure described earlier.¹⁷

(2-Bromoethyl)-aryl derivatives **A-D** (1.5 mmol, 1.5 equiv.), TBAI (0.5 mmol, 0.185g, 0.5 equiv.) and KOH (1.5 mmol, 0.084g, 1.5 equiv.) were added to the solution of enamide: **6a-c**, **6e**, isoquinolin-1(2*H*)-one, 4-bromoisoquinolin-1(2*H*)-one, 1,3,4,5,6,7-hexahydro-2*H*-cyclopenta[b]pyridin-2-one or 1,3,4,5,6,7,8,9-octahydro-2*H*-cyclohepta[b]pyridin-2-one (1

mmol) in dry THF (6 mL) in a Schlenk flask at room temperature under argon and the mixture was stirred for 3-72h was. After full conversion of substrate (checked by GC-MS) aqueous saturated sodium bicarbonate (10 mL) was added and the mixture was stirred for another 5 min and then diluted with water (ca. 10 mL). The aqueous layer was extracted with ethyl acetate (3×60 mL), and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using appropriate mixture of *n*-hexane/ethyl acetate to give desired products.

(4*RS*)-1-(3,4-Dimethoxyphenethyl)-4-(2-fluoro-4-methoxybenzyl)-3,4-dihydropyridin-2(1*H*)one (**7a**):

Yield 77% (0.508g, reaction time: 24h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave orange thick oil. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (dd, *J* = 16.0, 8.8 Hz, 1H, C<u>H</u>H-3), 2.44 – 2.66 (m, 3H, CH<u>H</u>-3, 4-CH₂), 2.66 – 2.72 (m, 1H, CH-4), 2.78 (t, *J* = 7.4 Hz, 2H, CH₂), 3.57 – 3.71 (m, 2H, NCH₂),

3.76 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.97 (dd, J = 7.8, 3.8 Hz, 1H, =CH-5), 5.86 (dd, J = 7.8, 1.5 Hz, 1H, =CH-6), 6.53 – 6.65 (m, 2H, CH-3', CH-5'), 6.69 – 6.75 (m, 2H, ArH), 6.76 – 6.81 (m, 1H, ArH), 6.98 (t, J = 8.6 Hz, 1H, CH-6'). ¹³C NMR (101 MHz, CDCl₃) δ 32.81 (CH-4), 33.03 (4-CH₂), 34.41 (CH₂), 37.14 (CH₂-3), 47.84 (NCH₂), 55.49, 55.83, 55.85 (three OCH₃), 101.59 (d, ²*J*_{*C*-*F*} = 25.9 Hz), 109.62 (d, ⁴*J*_{*C*-*F*</sup> = 3.0 Hz, CH-5'), 109.77 (=CH-5), 111.25, 112.10 (ArH), 117.57 (d, ²*J*_{*C*-*F*} = 16.4 Hz, C-1'), 120.83 (ArH), 129.56 (=CH-6), 131.11 (Ar), 131.72 (d, ³*J*_{*C*-*F*} = 6.7 Hz, CH-6'*J* = Hz), 147.63, 148.87 (Ar), 159.57 (d, ³*J*_{*C*-*F*</sup> = 10.9 Hz, C-4'), 161.61 (d, ¹*J*_{*C*-*F*} = 244.9 Hz, C-2'), 168.71 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) δ = –115.55 ppm. GC-MS (EI, 70eV): m/z = 399 (3), [M⁺], 260 (37), 165 (100), 164 (37), 150 (12), 139 (20). HRMS (ESI-TOF): *m*/*z* calcd for C₂₃H₂₇FNO4[M + H]⁺, 400.1924; found, 400.1921.}}

(4*RS*)-1-(3,4-Dimethoxyphenethyl)-4-(2-fluoro-4-methoxybenzyl)-5-methyl-3,4dihydropyridin-2(1*H*)-one (**7b**):

 Yield 82% (0.164g, reaction time: 24h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.65 (d, *J* = 1.5 Hz, 3H, CH₃), 2.19 – 2.40 (m, 3H, CHH-3, CH-4, 4-CHH), 2.44 – 2.56 (m, 1H, CHH-

3), 2.65 – 2.81 (m, 3H, CH₂, 4-CHH), 3.41 (ddd, J = 13.4, 8.2, 6.7 Hz, 1H, NC<u>H</u>H), 3.76 (s, 3H, OCH₃), 3.77 – 3.84 (m, 1H, NCH<u>H</u>), 3.85 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 5.72 (q, J = 1.5 Hz, 1H, =CH-6), 6.55 – 6.64 (m, 2H, CH-3', CH-5'), 6.73 – 6.84 (m, 3H, ArH), 6.93 – 7.00 (m, 1H, CH-6') ¹³C NMR (101 MHz, CDCl₃) δ 18.36 (CH₃), 30.56 (4-CH₂), 34.34 (CH₂), 35.74 (CH₂-3), 37.43 (CH-4), 47.45 (NCH₂), 55.53, 55.89, 55.92 (three OCH₃), 101.62 (d, ² $J_{C-F} = 26.0$ Hz, CH-3'), 109.54 (d, ⁴ $J_{C-F} = 3.3$ Hz, CH-5'), 111.25, 112.09 (ArH), 117.79 (d, ² $J_{C-F} = 16.2$ Hz, C-1'), 119.00 (=C-5), 120.82 (ArH), 124.36 (=CH-6), 131.19 (Ar), 132.05 (d, ³ $J_{C-F} = 6.7$ Hz, CH-6'), 147.63, 148.92 (Ar), 159.60 (d, ³ $J_{C-F} = 10.9$ Hz, C-4'), 161.71 (d, ¹ $J_{C-F} = 244.9$ Hz, C-2'), 167.76 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) $\delta = -116.03$ ppm. GC-MS (EI, 70eV): m/z = 413 (2), [M⁺], 274 (52), 165 (100), 164 (24), 150 (13), 139 (19), 94 (8). HRMS (ESI-TOF): *m/z* calcd for C₂₄H₂₉FNO₄[M + H]⁺, 414.2081; found, 414.2085.

(4*RS*)-1-(3,4-Dimethoxyphenethyl)-4-(2-fluoro-4-methoxybenzyl)-5-phenyl-3,4dihydropyridin-2(1*H*)-one (**7c**):

Yield 98% (0.837g, reaction time: 16h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave red semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 2.32 (dd, *J* = 13.9, 10.6 Hz, 1H, 4-C<u>H</u>H), 2.46 (dd, *J* = 16.3, 2.1 Hz, 1H, C<u>H</u>H-3), 2.56 (dd, *J* =

16.3, 6.5 Hz, 1H, CH<u>H</u>-3), 2.81 – 2.91 (m, 3H, CH₂, 4-CH<u>H</u>), 3.01 – 3.10 (m, 1H, CH-4), 3.55 (dt, J = 13.5, 7.3, 6.3 Hz, 1H, NC<u>H</u>H), 3.76 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.87 (s, 3H, OCH₃), 4.08 (dt, J = 13.5, 7.7 Hz, 1H, NCH<u>H</u>), 6.36 (s, 1H, =CH-6), 6.55 – 6.63 (m, 2H, CH-3', CH-5'), 6.76 – 6.82 (m, 3H, CH-2'', CH-5'', CH-6''), 6.94 (t, J = 8.8 Hz, 1H, CH-6'), 7.18 – 7.25 (m, 1H, C₆H₅), 7.30 – 7.36 (m, 4H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 30.90 (4-CH₂), 34.71 (CH₂), 34.95 (CH-4), 35.08 (CH-3), 47.90 (NCH₂), 55.54, 55.90, 55.93 (three OCH₃), 101.71 (d, ²*J*_{*C*-*F*} = 25.9 Hz, CH-3'), 109.55 (d, ⁴*J*_{*C*-*F*} = 3.0 Hz, CH-5'), 111.34, 112.17 (CH-2'', CH-5''), 117.35 (d, ²*J*_{*C*-*F*} = 16.4 Hz, C-1'), 121.01 (CH-6''), 121.90 (=C-5), 124.56 (C₆H₅), 126.01 (=CH-6), 126.69, 128.73 (C₆H₅), 130.92 (C-1''), 132.35 (d, ³*J*_{*C*-*F*</sup> = 6.9 Hz, CH-6'), 137.04 (C₆H₅), 147.77, 149.03 (C-3'', C-4''), 159.67 (d, ³*J*_{*C*-*F*</sup> = 11.1 Hz, C-4'), 161.72 (d, ¹*J*_{*C*-*F*</sup> = 244.5 Hz, C-2'), 168.02 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) δ = –115.30 ppm. GC-MS}}}

(EI, 70eV): m/z = 475 (8), $[M^+]$, 336 (62), 165 (100), 156 (9), 150 (15), 139 (19). HRMS (ESI-TOF): m/z calcd for C₂₉H₃₁FNO₄[M + H]⁺, 476.2237; found, 476.2230.

(4*RS*)-1-(2-(1*H*-Indol-3-yl)ethyl)-4-(2-fluoro-4-methoxybenzyl)-5-phenyl-3,4-dihydropyridin-2(1*H*)-one (**7d**):

Yield 63% (0.229g, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 10:1) gave pale brown solid, mp 74-76°C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.35 (dd, *J* = 13.9, 10.5 Hz, 1H, 4-C<u>H</u>H), 2.47 (dd, *J* = 16.3, 2.2 Hz, 1H, CHH-3), 2.57 (dd, *J* = 16.3, 6.5 Hz,

1H, CH<u>H</u>-3), 2.81 (dd, J = 13.9, 4.2 Hz, 1H, 4-CH<u>H</u>), 2.97 – 3.07 (m, 1H, CH-4), 3.10 (td, J = 7.3, 2.7 Hz, 2H, CH₂), 3.64 – 3.73 (m, 1H, NC<u>H</u>H), 3.74 (s, 3H, OCH₃), 4.12 (dt, J = 13.6, 7.3 Hz, 1H, NCH<u>H</u>), 6.29 (s, 1H, =CH-6), 6.52 – 6.64 (m, 2H, CH-3', CH-5'), 6.93 (t, J = 8.4 Hz, 1H, CH-6'), 7.05 (d, J = 2.3 Hz, 1H, CH-2"), 7.11 – 7.30 (m, 7H, C₆H₅, CH-5", CH-6"), 7.37 (dd, J = 7.9, 1.1 Hz, 1H, CH-7"), 7.71 (d, J = 7.5 Hz, 1H, CH-4"), 8.14 (s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 24.80 (CH₂), 30.78 (4-CH₂), 34.89 (CH-4), 35.11 (CH₂-3), 47.02 (NCH₂), 55.53 (OCH₃), 101.67 (d, ² $J_{C-F} = 25.7$ Hz, CH-3'), 109.57 (d, ⁴ $J_{C-F} = 2.9$ Hz, CH-5'), 111.31 (CH-7"), 112.50 (C-3"), 117.42 (d, ² $J_{C-F} = 16.6$ Hz, C-1'), 118.83 (CH-4"), 119.55 (CH-5"), 121.38 (=C-5), 122.12 (CH-6"), 122.51 (CH-2"), 124.57 (C₆H₅), 126.36 (=CH-6), 126.52 (C₆H₅), 159.63 (d, ³ $J_{C-F} = 10.8$ Hz, C-4'), 161.72 (d, ¹ $J_{C-F} = 244.5$ Hz, C-2'), 168.12 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) $\delta = -115.39$ ppm. GC-MS (EI, 70eV): m/z = 454 (4), [M⁺], 315 (14), 207 (7), 172 (8), 144 (100), 143 (33), 139 (15), 130 (10), 115 (6). HRMS (ESI-TOF): m/z calcd for C₂₉H₂₇FN₂O₂Na [M + Na]⁺, 477.1954; found, 477.1944.

(4*RS*)-4-(2-Fluoro-4-methoxybenzyl)-1-(3-methylphenethyl)-5-phenyl-3,4-dihydropyridin-2(1*H*)-one (**7f**):

Yield 83% (0.275g, reaction time: 24h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave pale yellow thick oil. ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H, CH₃), 2.33 (dd, *J* = 13.9, 10.7 Hz, 1H, 4-C<u>H</u>H), 2.46 (dd, *J* = 16.3, 2.1 Hz, 1H, CHH-3), 2.56 (dd, *J* = 16.3, 6.5 Hz, 1H, CHH-3), 2.81 –

2.92 (m, 3H, 4-CHH, CH₂), 3.05 (dddd, *J* = 10.7, 6.5, 4.1, 2.1 Hz, 1H, CH-4), 3.54 (dt, *J* = 13.5,

7.3 Hz, 1H, NCHH), 3.75 (s, 3H, OCH₃), 4.09 (dt, J = 13.5, 7.5 Hz, 1H, NCHH), 6.32 (s, 1H, =CH-6), 6.53 – 6.65 (m, 2H, C-1', C-5'), 6.95 (t, J = 8.8 Hz, 1H, CH-6'), 7.01 – 7.11 (m, 3H, ArH), 7.16 – 7.25 (m, 2H, ArH), 7.29 – 7.36 (m, 4H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 21.34 (CH₃), 30.81 (CH₂), 34.93 (CH-4), 35.06 (CH₂-3, 4-CH₂), 48.02 (NCH₂), 55.53 (OCH₃), 101.69 (d, ²*J*_{*C*-*F*} = 25.8 Hz, CH-3'), 109.54 (d, ⁴*J*_{*C*-*F*} = 2.9 Hz, CH-5'), 117.42 (d, ²*J*_{*C*-*F*</sup> = 16.2 Hz, C-1'), 121.72 (=C-5), 124.61, 126.00 (ArH), 126.15 (=CH-6), 126.63, 127.31, 128.52, 128.68, 129.92 (ArH), 132.39 (d, ³*J*_{*C*-*F*} = 6.9 Hz, CH-6'), 137.08, 138.17, 138.37 (Ar), 159.66 (d, ³*J*_{*C*-*F*</sup> = 11.0 Hz, C-4'), 161.73 (d, ¹*J*_{*C*-*F*} = 245.1 Hz, C-2'), 168.01 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) δ = –115.26 ppm. GC-MS (EI, 70eV): m/z = 429 (7), [M⁺], 290 (100), 172 (14), 156 (11), 139 (17), 119 (90), 117 (14), 91 (17), 77 (5). HRMS (ESI-TOF): *m*/*z* calcd for C₂₈H₂₉FNO₂ [M + H]⁺, 430.2182; found, 430.2178.}}

(4*RS*)-1-(2-(2,3-Dihydrobenzofuran-5-yl)ethyl)-4-(2-fluoro-4-methoxybenzyl)-5-phenyl-3,4dihydropyridin-2(1*H*)-one (**7**g):

Yield 88% (0.260g, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave red semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 2.35 (dd, *J* = 13.8, 10.6 Hz, 1H, 4-C<u>H</u>H), 2.45 (dd, *J* = 16.3, 2.1 Hz, 1H, C<u>H</u>H-3), 2.56 (dd, *J* = 16.3, 6.5 Hz, 1H, CH<u>H</u>-3), 2.76 – 2.91 (m, 3H, <u>CH</u>₂CH₂N, 4-

CH<u>H</u>), 3.05 (dddd, J = 10.6, 6.5, 4.0, 2.1 Hz, 1H, CH-4), 3.14 (t, J = 8.7 Hz, 2H, <u>CH</u>₂CH₂O), 3.50 (dt, J = 13.5, 7.3 Hz, 1H, NC<u>H</u>H), 3.76 (s, 3H, OCH₃), 4.06 (dt, J = 13.5, 7.3 Hz, 1H, NCH<u>H</u>), 4.51 (t, J = 8.7 Hz, 2H, OCH₂), 6.33 (s, 1H, =CH-6), 6.55 – 6.64 (m, 2H, CH-3', CH-5'), 6.73 (d, J = 8.1 Hz, 1H, CH-3"), 6.94 (d, J = 8.4 Hz, 1H, CH-6'), 6.99 (dd, J = 8.1, 1.7 Hz, 1H, CH-2"), 7.10 (d, J = 1.7 Hz, 1H, CH-6"), 7.18 – 7.25 (m, 1H, C₆H₅), 7.28 – 7.36 (m, 4H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 29.72 (<u>CH</u>₂CH₂O), 30.81 (4-CH₂), 34.58 (<u>CH</u>₂CH₂N), 34.94 (CH-4), 35.06 (CH₂-3), 48.35 (NCH₂), 55.55 (OCH₃), 71.22 (OCH₂), 101.71 (d, ² $J_{C-F} =$ 26.0 Hz, CH-3'), 109.25 (CH-3"), 109.56 (d, ⁴ $J_{C-F} = 3.0$ Hz, CH-5'), 117.42 (d, ² $J_{C-F} = 16.5$ Hz, C-1'), 121.65 (=C-5), 124.58 (C₆H₅), 125.70 (CH-6"), 126.19 (=CH-6), 126.65 (C₆H₅), 127.27 (C-5"), 128.47 (CH-2"), 128.72 (C₆H₅), 130.32 (C-1"), 132.36 (d, ³ $J_{C-F} = 7.0$ Hz, CH-6'), 137.10 (C₆H₅), 158.88 (C-4"), 159.68 (d, ³ $J_{C-F} = 11.0$ Hz, C-4'), 161.73 (d, ¹ $J_{C-F} = 244.5$ Hz, C-2'), 168.01 (C=O). ¹⁹F NMR (376.6 MHz, CDCl₃) $\delta = -115.32$ ppm. GC-MS (EI, 70eV): m/z = 457 (7), [M⁺], 318 (44), 147 (100), 146 (21), 91 (10). HRMS (ESI-TOF): *m*/z calcd for C₂₉H₂₉FNO₃[M + H]⁺, 458.2131; found, 458.2132. (4a*RS*,8a*RS*)-2-(3,4-dimethoxyphenethyl)-4-phenyl-4a,5,8,8a-tetrahydroisoquinolin-1(2*H*)one (**8e**):

Yield 80% (0.1384g, reaction time: 24h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white semisolid. ¹H NMR (400 MHz, CDCl₃) δ 1.61 – 1.73 (m, 1H, CH<u>H-5ax</u>), 2.27 (dddt, *J* = 15.9, 11.2, 4.7, 2.3 Hz, 1H, CHH-8ax), 2.33 – 2.40 (m, 1H, CHH-

<u>5eq</u>), 2.51 (ddd, J = 14.4, 11.2, 5.0 Hz, 1H, CH-8a), 2.64 – 2.74 (m, 1H, CH<u>H-8eq</u>), 2.77 – 2.90 (m, 2H, CH₂), 2.95 (dddd, J = 14.2, 11.4, 5.1, 2.6 Hz, 1H, CH-4a), 3.65 – 3.80 (m, 2H, NCH₂), 3.85 (s, 3H, OCH₃), 3.86 (s, 3H, OCH₃), 5.55 – 5.68 (m, 1H, =CH-6), 5.68 – 5.81 (m, 1H, =CH-7), 5.91 (d, J = 2.6 Hz, 1H, =CH-3), 6.71 – 6.84 (m, 3H, C₆H₃), 7.06 – 7.14 (m, 2H, C₆H₅), 7.20 – 7.36 (m, 3H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 27.00 (CH₂-8), 31.47 (CH₂-5), 34.56 (CH₂), 34.73 (CH-4a), 41.62 (CH-8a), 48.67 (NCH₂), 55.88, 55.93 (two OCH₃), 111.34, 112.18, 120.88 (C₆H₃), 123.03 (=C-4), 125.60 (=CH-6), 126.13 (=CH-7), 126.63, 127.29 (C₆H₅), 127.59 (=CH-3), 128.18 (C₆H₅), 131.12 (C₆H₃), 138.25 (C₆H₅), 147.69, 148.96 (C₆H₃), 170.10 (C=O). GC-MS (EI, 70eV): m/z = 389 (22), [M⁺], 225 (16), 210 (13), 171 (13), 164 (100), 156 (21), 151 (10), 115 (6), 91 (9), 77 (7). HRMS (ESI-TOF): *m*/z calcd for C₂₅H₂₈NO₃[M + H]⁺, 390.2069; found, 390.2059. HRMS (ESI-TOF): *m*/z calcd for C₂₅H₂₇NO₃Na[M + Na]⁺, 412.1889, found, 412.1887.

1-(3,4-dimethoxyphenethyl)-1,3,4,5,6,7-hexahydro-2*H*-cyclopenta[b]pyridin-2-one (**1d-A**), 1-(3,4-dimethoxyphenethyl)-1,3,4,4a,5,6-hexahydro-2*H*-cyclopenta[b]pyridin-2-one (**1d-B**)¹⁸:

Yield 55% (0.606g, reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.39 – 1.58 (m, 1.92H, two

C<u>H</u>H, B), 1.81 - 1.95 (m, 2H, CH₂, A), 1.95 - 2.03 (m, 0.86H, CH<u>H</u>, B), 2.12 - 2.27 [m, 2.86H, CH₂ (A), CH<u>H</u> (B], 2.29 - 2.42 [m, 5.92H, two CH₂ (A), CH₂ (B)], 2.43 - 2.64 [m, 3.92H, CH₂ (A), CH₂ (B)], 2.72 - 2.85 [m, 4.58H, CH-4a (B), NCH₂<u>CH₂</u> (A), NCH₂<u>CH₂</u> (B)], 3.63 - 3.69 (m, 2H, NCH₂, A), 3.72 - 3.92 [m, 12.88H, NCH₂ (B), two OCH₃ (A), two OCH₃ (B)], 4.88 (q, J = 2.4 Hz, 0.86H, =CH-7, B), 6.69 - 6.83 [m, 5.58H, three CH (A), three CH (B)]. ¹³C NMR (101 MHz, CDCl₃) δ 21.10 (CH₂, A), 21.73 (CH₂, A), 26.99 (CH₂, B), 30.04 (CH₂), 30.56 (CH₂, B), 30.90 (CH₂), 31.79 (CH₂), 32.72 [2C, CH₂, NCH₂<u>CH₂</u> (B)], 33.17 (CH₂), 35.13 (NCH₂<u>CH₂</u>, A), 41.76 (CH-4a, B), 45.01 (NCH₂, B), 45.25 (NCH₂, A), 55.85 (OCH₃), 55.90 (2C, two

OCH₃), 55.93 (OCH₃), 102.35 (=CH-7, B), 111.22, 111.28 (two CH, A, B), 112.14, 112.22 (two CH, A, B), 115.25 (=C-4a, A), 120.71, 120.82 (two CH, A, B), 131.63, 131.71 (two C-1', A, B), 136.65 (=C-7a, A), 143.60 (=C-7a, B), 147.59 (2C), 148.86, 148.90, (C-3', C-4' A, B), 168.88, 169.71 (C=O, A, B). GC-MS (EI, 70eV): m/z = 301 (9), [M⁺], 164 (100), 150 (25), 137 (11), 122 (19), 96 (14).

1-(3,4-Dimethoxyphenethyl)-1,3,4,5,6,7,8,9-octahydro-2*H*-cyclohepta[b]pyridin-2-one (**1f**):

Yield 46% (0.462g, reaction time: 72h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.47-1.62 (m, 4H, two CH₂), 1.68 – 1.76 (m, 2H, CH₂), 2.09 – 2.23 (m, 2H, CH₂), 2.30 – 2.43 (m, 2H, CH₂), 2.72 – 2.80 (m, 2H, <u>CH₂CH₂N</u>), 3.75 – 3.81 (m, 2H, CH₂N), 3.86 and 3.88 (two s, 6H, two OCH₃), 6.68 – 6.83 (m,

3H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 25.89, 26.30, 27.55, 28.70, 31.06, 32.50, 33.35 (seven CH₂), 34.90 (<u>CH₂CH₂N</u>), 43.50 (NCH₂), 55.88, 55.95 (two OCH₃), 111.24, 112.18, 120.75 (ArH), 122.03 (4a), 131.71 (Ar), 136.86 (C-9a), 147.58, 148.85 (Ar), 170.59 (C=O). GC-MS (EI, 70eV): m/z = 329 (18), [M⁺], 178 (21), 165 (58), 164 (100), 150 (53), 124 (22), 91 (12). HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₈NO₃[M + H]⁺, 330.2069; found, 330.2070.

2-(3,4-Dimethoxyphenethyl)isoquinolin-1(2H)-one (**1g**)¹⁹:

Yield 88% (0.938g, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white solid, mp 111-112 °C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 3.04 (t, *J* = 7.3 Hz, 2H, CH₂), 3.74 (s, 3H, 3'-OCH₃), 3.85 (s, 3H, 4'-OCH₃),

4.19 (t, J = 7.2 Hz, 2H, NCH₂), 6.37 (d, J = 7.3 Hz, 1H, =CH-4), 6.66 (d, J = 1.9 Hz, 1H, CH-2'), 6.74 (dd, J = 8.1, 1.9 Hz, 1H, CH-6'), 6.78 (d, J = 7.3 Hz, 1H, =CH-3), 6.79 (d, J = 8.1 Hz, 1H, CH-5')7.48 (d, J = 8.2 Hz, 1H, CH-5), 7.48 – 7.52 (m, 1H, CH-7), 7.63 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H, CH-6), 8.46 (dd, J = 8.1, 1.0 Hz, 1H, CH-8). ¹³C NMR (101 MHz, CDCl₃) δ 34.74 (CH₂), 51.77 (NCH₂), 55.74 (3'-OCH₃), 55.88 (4'-OCH₃), 105.61 (=CH-4), 111.32 (CH-5'), 112.13 (CH-2'), 120.89 (CH-6'), 125.86 (CH-5 or CH-7), 126.20 (C-8a), 126.75 (CH-5 or CH-7), 127.73 (CH-8), 130.82 (C-1'), 132.09, 132.10 (CH-6, =CH-3), 137.10 (C-4a), 147.74 (C-4'), 148.95 (C-3'), 162.10 (C=O). GC-MS (EI, 70eV): m/z = 309 (2), [M⁺], 164 (100), 149 (17), 128 (18), 77 (9).

4-Bromo-2-(3,4-dimethoxyphenethyl)isoquinolin-1(2*H*)-one (**4-Br-1g**):

Yield 65% (0.653g, reaction time: 3h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave pale yellow solid, mp 80-81 °C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 3.02 (t, *J* = 7.4 Hz, 2H, CH₂), 3.78 (s, 3H, OCH₃), 3.86 (s,

3H, OCH₃), 4.17 (t, J = 7.4 Hz, 2H, NCH₂), 6.69 (d, J = 2.0 Hz, 1H, CH-2'), 6.74 (dd, J = 8.1, 2.0 Hz, 1H, CH-6'), 6.80 (d, J = 8.1 Hz, 1H, CH-5'), 7.12 (s, 1H, =CH-3), 7.56 (ddd, J = 8.4, 6.9, 0.9 Hz, 1H, CH-7), 7.74 (ddt, J = 8.1, 7.0, 0.9 Hz, 1H, CH-6), 7.79 (dd, J = 8.1, 0.9 Hz, 1H, CH-5), 8.46 (dd, J = 7.9, 0.9 Hz, 1H, CH-8). ¹³C NMR (101 MHz, CDCl₃) δ 34.85 (CH₂), 51.56 (NCH₂), 55.80, 55.93 (two OCH₃), 99.35 (C-4), 111.40 (CH-5'), 112.01 (CH-2'), 120.91 (CH-6'), 125.79 (CH-5), 126.41 (C-8a), 127.78 (CH-7), 128.16 (CH-8), 130.28 (C-1'), 132.52 (=CH-3), 132.95 (CH-6), 135.44 (C-4a), 147.87, 149.04 (C-3', C-4'), 161.15 (C=O). GC-MS (EI, 70eV): m/z = 387 (1), [M⁺], 206 (7), 164 (100), 151 (12), 149 (21). HRMS (ESI-TOF): *m/z* calcd for C₁₉H₁₉BrNO₃[M + H]⁺, 388.0548; found, 388.0545.

Next to the product **4-Br-1g** by-product **1g-by-product** was also isolated in 10% yield.

4-((4-Bromoisoquinolin-1-yl)oxy)-2-(3,4-dimethoxyphenethyl)isoquinolin-1(2*H*)-one (**1g-by-product**): ¹H NMR (400 MHz, CDCl₃) δ 3.09 (t, *J* = 7.3 Hz, 2H, CH₂), 3.77 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 4.23 (t, *J* = 7.3 Hz, 2H, NCH₂), 6.67 – 6.79 (m, 3H, CH-2', CH-5', CH-6'), 7.00 (s, 1H, CH-3), 7.38 (dd, *J* = 7.0, 1.4 Hz, 1H, CH-5), 7.48 – 7.64 (m, 2H, CH-6", CH-7"), 7.75

(td, J = 8.2, 7.0, 1.2 Hz, 1H, CH-7), 7.90 (td, J = 8.4, 7.0, 1.4 Hz, 1H, CH-6), 8.06 (s, 1H, CH-3"), 8.15 (dd, J = 8.4, 1.2 Hz, 1H, CH-8), 8.47 – 8.56 (m, 2H, CH-5", CH-8"). ¹³C NMR (101 MHz, CDCl₃) δ 34.77 (CH₂), 51.83 (NCH₂), 55.74, 55.84 (two OCH₃), 111.32 (CH-5"), 112.12 (CH-2"), 113.41 (C-4"), 120.09 (C-4a), 120.90, 120.92 (CH-5, CH-6'), 124.34 (CH-8"), 125.02 (=CH-3), 126.08 (C-8a"), 126.19 (CH-8), 127.39 (CH-7"), 128.38 (CH-7), 128.46 (CH-5"), 130.60 (C-1"), 132.11 (C-4a"), 132.16 (CH-6"), 132.28 (CH-6), 133.18 (C-4), 136.80 (C-8a), 140.89 (CH-3"), 147.75, 149.03 (C-3", C-4"), 159.75 (C-1"), 161.02 (C=O).). GC-MS (EI, 70eV): m/z = 530 (<1), [M⁺], 366 (4), 207 (7), 164 (100), 149 (9), 127 (8). HRMS (ESI-TOF): *m/z* calcd for C₂₈H₂₄BrN₂O₄[M + H]⁺, 531.0919; found, 531.0925.

5n. Synthesis of compounds 8a-d and 8f-g via "benzyne" cyclization

Compounds **8a-d** and **8f-g** were prepared according to the procedure described earlier.¹⁴

(4a*RS*,9b*SR*)-2-(3,4-Dimethoxyphenethyl)-8-methoxy-2,4a,5,9b-tetrahydro-1*H*-indeno[1,2-c]pyridin-1-one (**8a**):

Yield 47% (0.180g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave brown oil. ¹H NMR (400 MHz, CDCl₃) δ 2.73 – 2.81 (m, 3H, CH₂, C<u>H</u>H-5), 3.19 (dd, *J* = 15.2, 7.6 Hz, 1H, CHH-5), 3.46 (ddtd, *J* = 8.4, 7.6, 2.8, 2.3

Hz, 1H, CH-4a), 3.52 (dt, J = 13.4, 7.5 Hz, 1H, NC<u>H</u>H), 3.67 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.75 – 3.83 (m, 1H, NCH<u>H</u>), 3.84 (s, 3H, OCH₃), 4.03 (d, J = 8.4 Hz, 1H, CH-9b), 4.72 (ddd, J = 8.1, 2.8, 0.8 Hz, 1H, =CH-4), 5.65 (dd, J = 8.1, 2.3 Hz, 1H, CH-3), 6.58 (d, J = 1.9 Hz, 1H, CH-2'), 6.68 (dd, J = 8.2, 1.9 Hz, 1H, CH-6'), 6.75 (d, J = 8.0 Hz, 1H, CH-5'), 6.77 (dd, J = 8.0, 2.5 Hz, 1H, CH-7), 6.96 (d, J = 2.5 Hz, 1H, CH-9), 7.13 (d, J = 8.2 Hz, 1H, CH-6). ¹³C NMR (101 MHz, CDCl₃) δ 34.42 (CH₂), 38.61 (CH-4a), 39.07 (CH₂-5), 48.98 (NCH₂), 51.36 (CH-9b), 55.51, 55.66, 55.86 (three OCH₃), 108.79 (=CH-4), 109.55 (CH-9), 111.24 (CH-5'), 112.21 (CH-2'), 114.19 (CH-7), 120.72 (CH-6'), 125.06 (CH-6), 128.91 (=CH-3), 131.25 (C-1'), 133.74 (C-5a), 141.64 (C-9a), 147.55 (C-4'), 148.81 C-3'), 159.28 (C-8), 167.73 (C=O). GC-MS (EI, 70eV): m/z = 379 (6), [M⁺], 200 (11), 164 (100). HRMS (ESI-TOF): m/z calcd for C₂₃H₂₆NO₄[M + H]⁺, 380.1862; found, 380.1855.

(4a*SR*,9b*SR*)-2-(3,4-Dimethoxyphenethyl)-8-methoxy-4-methyl-2,4a,5,9b-tetrahydro-1*H*-indeno[1,2-c]pyridin-1-one (**8b**):

Yield 68% (0.071g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave brown semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 1.68 (t, *J* = 1.3 Hz, 3H, 4-CH₃), 2.78 (ddd, *J* = 9.0, 6.7, 2.6 Hz, 2H, CH₂), 2.86 (dd, *J* = 15.2,

5.5 Hz, 1H, C<u>H</u>H-5), 3.15 (dd, *J* = 15.2, 8.0 Hz, 1H, CH<u>H</u>-5), 3.26 (dddq, *J* = 9.3, 8.0, 5.5, 1.3 Hz, 1H, CH-4a), 3.54 (ddd, *J* = 13.4, 8.5, 6.9 Hz, 1H, NC<u>H</u>H), 3.68-3.78 (m, 1H, NCH<u>H</u>), 3.75

(s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 4.01 (d, J = 9.2 Hz, 1H, CH-9b), 5.60 (p, J = 1.3 Hz, 1H, =CH-3), 6.65 (d, J = 1.9 Hz, 1H, CH-2'), 6.71 (dd, J = 8.1, 1.9 Hz, 1H, CH-6'), 6.74 – 6.80 (m, 2H, CH-7, CH-5'), 7.07 (d, J = 2.2 Hz, 1H, CH-9), 7.11 (d, J = 8.2 Hz, 1H, CH-6). ¹³C NMR (101 MHz, CDCl₃) δ 18.27 (4-CH₃), 34.32 (CH₂), 36.85 (CH₂-5), 43.21 (CH-4a), 48.97 (NCH₂), 50.39 (CH-9b), 55.48, 55.72, 55.89 (three OCH₃), 110.38 (CH-9), 111.21 (CH-5'), 112.13 (CH-2'), 114.29 (CH-7), 114.79 (C-4), 120.71 (CH-6'), 123.92 (=CH-3), 124.52 (CH-6), 131.26 (C-1'), 133.22 (C-5a), 142.26 (C-9a), 147.54 (C-4'), 148.83 (C-3'), 159.10 (C-8), 167.24 (C=O). GC-MS (EI, 70eV): m/z = 393 (5), [M⁺], 214 (15), 164 (100). HRMS (ESI-TOF): *m/z* calcd for C₂₄H₂₈NO₄[M + H]⁺, 394.2018; found, 394.2025.

(4a*SR*,9b*SR*)-2-(3,4-Dimethoxyphenethyl)-8-methoxy-4-phenyl-2,4a,5,9b-tetrahydro-1*H*-indeno[1,2-c]pyridin-1-one (**8c**):

Yield 74% (0.480g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 10:1) gave brown solid, mp 53-55 °C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.77 (dd, *J* = 15.4, 6.1 Hz, 1H, C<u>H</u>H-5), 2.82 – 2.90

(m, 2H, CH₂), 3.23 (dd, J = 15.4, 7.9 Hz, 1H, CH<u>H</u>-5), 3.56 (dt, J = 13.4, 7.6 Hz, 1H, NC<u>H</u>H), 3.68 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.84 (s, 3H, OCH₃), 3.86 – 3.94 (m, 1H, CH-4a), 3.98 (dt, J = 13.4, 7.6, 6.0 Hz, 1H, NC<u>H</u>H), 4.16 (d, J = 9.3 Hz, 1H, CH-9b), 6.05 (d, J = 0.9 Hz, 1H, =CH-3), 6.62 (d, J = 2.0 Hz, 1H, CH-2'), 6.70 (dd, J = 8.2, 2.0 Hz, 1H, CH-6'), 6.74 – 6.81 (m, 2H, CH-5', CH-7), 7.03 (d, J = 8.2 Hz, 1H, CH-6), 7.12 (d, J = 2.4 Hz, 1H, CH-9), 7.14 – 7.18 (m, 2H, C₆H₅), 7.19 – 7.25 (m, 1H, C₆H₅), 7.28 – 7.34 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 34.57 (CH₂), 38.32 (CH₂-5), 40.85 (CH-4a), 49.50 (NCH₂), 50.36 (CH-9b), 55.51, 55.70, 55.93 (three OCH₃), 110.51 (CH-9), 111.39 (CH-5'), 112.25 (CH-2'), 114.38 (CH-7), 118.84 (=C-4), 120.86 (CH-6'), 124.64 (CH-6), 125.29 (C₆H₅), 126.39) (=CH-3), 126.68, 128.63 (C₆H₅), 131.11 (C-1'), 133.43 (C-5a), 138.12 (C₆H₅), 141.91 (C-9a), 147.69 (C-4'), 148.97 (C-3'), 159.16 (C-8), 167.37 (C=O). GC-MS (EI, 70eV): m/z = 455 (22), [M⁺], 291 (80), 276 (32), 274 (14), 248 (17), 164 (100), 151 (16), 103 (8), 91 (13), 77 (8). HRMS (ESI-TOF): m/z calcd for C₂₉H₃₀NO4[M + H]⁺, 456.2175; found 456.2170.

(4a*SR*,9b*SR*)-2-(2-(1*H*-Indol-3-yl)ethyl)-8-methoxy-4-phenyl-2,4a,5,9b-tetrahydro-1*H*-indeno[1,2-c]pyridin-1-one (**8d**):

Yield 63% (0.090g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave brown oil. ¹H NMR (400 MHz, CDCl₃) δ 2.73 (dd, *J* = 15.4, 6.6 Hz, 1H, C<u>H</u>H-5), 3.07 (t, *J* = 7.2 Hz, 2H, CH₂), 3.20 (dd, *J* = 15.4, 8.0 Hz, 1H, CHH-

5), 3.75 (dt, J = 13.5, 7.6 Hz, 1H, NC<u>H</u>H), 3.81 (s, 3H, OCH₃), 3.82 – 3.89 (m, 1H, CH-4a), 3.99 (dt, J = 13.5, 6.8 Hz, 1H, NCH<u>H</u>), 4.15 (d, J = 9.5 Hz, 1H, CH-9b), 6.04 (d, J = 0.8 Hz, 1H, =CH-3), 6.78 (dd, J = 8.3, 2.5 Hz, 1H, CH-7), 6.85 (d, J = 2.3 Hz, 1H, CH-2'), 6.97 – 7.01 (m, 2H, C₆H₅), 7.03 (d, J = 8.3 Hz, 1H, CH-6), 7.09 (ddd, J = 7.9, 7.0, 1.1 Hz, 1H, CH-5'), 7.15 (d, J = 2.5 Hz, 1H, CH-9), 7.16 – 7.22 (m, 2H, C₆H₅, CH-6'), 7.22 – 7.28 (m, 2H, C₆H₅), 7.34 (dt, J = 8.2, 0.9 Hz, 1H, CH-7'), 7.61 (dd, J = 7.8, 1.1 Hz, 1H, CH-4'), 8.02 (s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 24.50 (CH₂-5), 38.43 (CH₂), 40.79 (CH-5a), 48.29 (NCH₂), 50.28 (CH-9b), 55.53 (OCH₃), 110.71 (CH-9), 111.19 (CH-7'), 112.53(C-3'), 114.41 (CH-7), 118.41 (=C-4), 118.77 (CH-4'), 119.57 (CH-5'), 122.08 (CH-6'), 122.49 (CH-2'), 124.58 (CH-6), 125.15 (C₆H₅), 126.37 (=CH-3), 126.49 (C₆H₅), 127.30 (C-3a'), 128.53 (C₆H₅), 133.51 (C-5a), 136.33 (C-5a), 138.09 (C₆H₅), 142.04 (C-9a), 159.07 (C-8), 167.43 (C=O). GC-MS (EI, 70eV): m/z = 434 (9), [M⁺], 291 (15), 276 (9), 144 (23), 143 (100), 130 (22), 115 (5). HRMS (ESI-TOF): *m*/z calcd for C₂₉H₂₇N₂O₂[M + H]⁺, 435.2073; found, 435.2063.

(4a*SR*,9b*SR*)-8-Methoxy-2-(3-methylphenethyl)-4-phenyl-2,4a,5,9b-tetrahydro-1*H*-indeno[1,2-c]pyridin-1-one (**8f**):

Yield 70% (0.141g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave brown semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 2.23 (s, 3H, 3'-CH₃), 2.78 (dd, *J* = 15.4, 6.4 Hz, 1H, C<u>H</u>H-5), 2.83 – 2.92 (m, 2H, CH₂), 3.23

(dd, J = 15.4, 7.9 Hz, 1H, CH<u>H</u>-5), 3.59 (dt, J = 13.4, 7.9 Hz, 1H, NC<u>H</u>H), 3.82 (s, 3H, OCH₃), 3.86 – 3.98 (m, 2H, CH-4a, NCH<u>H</u>), 4.16 (d, J = 9.4 Hz, 1H, CH-9b), 6.04 (d, J = 0.8 Hz, 1H, =CH-3), 6.78 (ddd, J = 8.2, 2.5, 0.7 Hz, 1H, CH-7), 6.93 (d, J = 1.8 Hz, 1H, CH-2'), 6.94 – 7.06 (m, 3H, ArH, CH-6), 7.10 – 7.18 (m, 4H, ArH, CH-9), 7.19 – 7.26 (m, 1H, ArH), 7.31 (dd, J = 8.2, 6.7 Hz, 2H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 21.25 (CH₃), 34.86 (CH₂), 38.38 (CH₂-5), 40.85 (CH-4a), 49.49 (NCH₂), 50.31 (CH-9b), 55.51 (OCH₃), 110.60 (CH-9), 114.46 (CH-7), 118.73 (=C-4), 124.60 (CH-6), 125.27 (ArH), 125.93 (=CH-3), 126.37, 126.62, 127.22, 128.50, 128.58 (ArH), 130.01 (CH-2'), 133.43 (C-5a), 138.17 (two Ar), 138.39 (Ar), 141.91 (C-9a), 159.11 (C-8), 167.36 (C=O). GC-MS (EI, 70eV): m/z = 409 (73), [M⁺], 304 (48), 291

(33), 276 (100), 274 (18), 248 (16), 232 (11), 202 (12), 119 (17), 115 (12), 103 (15), 91 (27),
77 (16). HRMS (ESI-TOF): *m/z* calcd for C₂₈H₂₈NO₂[M + H]⁺, 410.2120; found, 410.2131.

(4a*SR*,9b*SR*)-2-(2-(2,3-Dihydrobenzofuran-5-yl)ethyl)-8-methoxy-4-phenyl-2,4a,5,9b-tetrahydro-1*H*-indeno[1,2-c]pyridin-1-one (**8g**):

Yield 68% (0.144g). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave white solid, mp 53-55°C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 2.69 – 2.90 (m, 3H, CH₂-2", C<u>H</u>H-5), 2.94 – 3.14 (m, 2H,

CH₂-3'), 3.23 (dd, J = 15.4, 7.9 Hz, 1H, CH<u>H</u>-5), 3.54 (dt, J = 13.4, 7.6 Hz, 1H, NC<u>H</u>H), 3.82 (s, 3H, OCH₃), 3.85 – 3.97 (m, 2H, NCH<u>H</u>, CH-4a), 4.15 (d, J = 9.4 Hz, 1H, CH-9b), 4.50 (ddd, J = 9.3, 8.2, 1.2 Hz, 2H, CH₂-2'), 6.03 (d, J = 0.9 Hz, 1H, =CH-3), 6.68 (d, J = 7.9 Hz, 1H, CH-7'), 6.78 (dd, J = 8.2, 2.4 Hz, 1H, CH-7), 6.84 – 6.94 (m, 2H, CH-4', CH-6'), 7.04 (d, J = 8.2 Hz, 1H, CH-6), 7.12 (d, J = 2.4 Hz, 1H, CH-9), 7.14 – 7.19 (m, 2H, C₆H₅), 7.19 – 7.27 (m, 1H, C₆H₅), 7.31 (dd, J = 8.2, 6.7 Hz, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 29.65 (CH₂-3), 34.30 (CH₂-2''), 38.38 (CH₂-5), 40.83 (CH-4a), 49.72 (NCH₂), 50.32 (CH-9a), 55.52 (OCH₃), 71.20 (CH₂-2'), 109.19 (CH-7'), 110.62 (CH-9), 114.43 (CH-7), 118.64 (=C-4), 124.56 (CH-6), 125.24 (C₆H₅), 125.81 (CH-4'), 126.40 (=CH-3), 126.64 (C₆H₅), 127.24 (C-3a'), 128.88 (CH-6'), 128.61 (C₆H₅), 130.32 (C-5'), 133.45 (C-5a), 138.17 (C₆H₅), 141.94 (C-9a), 158.80, 159.11 (C-7a', C-8), 167.36 (C=O). GC-MS (EI, 70eV): m/z = 437 (24), [M⁺], 291 (100), 290 (20), 276 (33), 274 (17), 248 (23), 146 (63), 133 (29), 115 (9), 103 (11), 91 (16), 77 (12). HRMS (ESI-TOF): *m*/z calcd for C₂₉H₂₈NO₃[M + H]⁺, 438.2069; found, 438.2077.

50. *Procedure 11: Procedure for the synthesis of 3-(2-oxocyclohexyl)propanoate using* 4-(cyclohex-1-en-1-yl)morpholine

A solution of methyl acrylate (1.29g, 14.95 mmol) in 3.5 mL of dry MeCN was slowly added to the flask containing a solution of 4-(cyclohex-1-en-1-yl)morpholine (2.0g, 11.96 mmol) in 8 mL of dry MeCN. A reflux condenser was installed and the oil bath temperature was raised to 110°C. The reaction mixture was refluxed for 48h, then AcOH (0.72 mL) and H₂O (4.8 mL) were added and reflux was continued for further 30h. After this time, the reaction mixture was cooled to room temperature and saturated with NaCl, extracted with AcOEt (3x100 mL), washed with 5% HCl (1x30 mL), then with 5% sodium bicarbonate (1x30 mL) and saturated NaCl aqueuos solution (1x30 mL). Combined organic layers were dried over MgSO₄. Filtration, concentration *in vacuo*, and purification by distillation (b.p. 60-61°C, 0.01mmHg) yielded methyl 3-(2-oxocyclohexyl)propanoate in 46% (1.009 g, 5.48 mmol) as a colorless oil. ¹H and ¹³C NMR spectra are in agreement with literature data.²⁰

5p. Synthesis of methyl 3-(1-methyl-2-oxocyclohexyl)-propanoate using 2-methylcyclohexan-1one and methyl acrylate

Methyl 3-(1-methyl-2-oxocyclohexyl)propanoate was prepared according to the procedure described earlier.²¹

5q. Procedure 12: Synthesis of compounds 1e and 16 via condensation reaction

Solution of *homoveratrylamine* (0.492g, 2.71 mmol for the synthesis of **1e** or 0.768g, 4.24 mmol for the synthesis of **16**) in toluene (6.5 mL for the synthesis of **1e** or 20 mL for the synthesis of **16**) was treated with two equivalents of a 2.0M AlMe₃ solution in toluene (2.18 mL, 5.43 mmol - for the synthesis of **1e** or 4.25 mL, 8.5 mmol - for the synthesis of **16**) at 0°C

and stirred for 1h at room temperature. After this time methyl 3-(2-oxocyclohexyl)propanoate (0.5g, 2.71mmol) or methyl 3-(1-methyl-2-oxocyclohexyl)propanoate (0.7g, 3.53 mmol) was added dropwise and the mixture was heated at 80°C for 3h in a pre-heated oil bath. After this time the reaction mixture was allowed to cool to room temperature and saturated solution of sodium bicarbonate (20 mL) was added dropwise, and the reaction mixture was stirred for another 15 minutes. The aqueous phase was extracted with ethyl acetate (3x80mL), the combined extracts were dried over MgSO₄, and the solvent was removed in vacuum. The crude product was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 3:1) giving product **1e** with 45% yield (0.383g, 1.21 mmol, as a mixture of regioisomers) as a yellow oil or product **16** in 8.5% yield (0.098g, 0.296mmol). ¹H and ¹³C NMR spectra of **16** are in agreement with literature data.²²

1-(3,4-Dimethoxyphenethyl)-3,4,5,6,7,8-hexahydroquinolin-2(1H)-one (**1e-A**)²³: 1-(3,4-Dimethoxyphenethyl)-3,4,4a,5,6,7-hexahydroquinolin-2(1H)-one (**1e-B**):

From 1:0.65 mixture of A : B

Yield 45% (0.383g, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 1.31 (tdd, *J* = 12.9, 10.6, 2.7 Hz, 0.65H, C<u>H</u>H-5, B), 1.45 [qd, *J* = 12.9, 5.4 Hz, 0.65H, C<u>H</u>H-6(7), B], 1.51 – 1.57 [m, 2H, CH₂-

6(7), A], 1.62 – 1.70 (m, 2.65H, CH₂-7(6), A; C<u>H</u>H-4, B), 1.75 – 1.87 [m, 1.3H, CH<u>H</u>-6(7), CH<u>H</u>-4, B], 1.88 – 2.00 (m, 0.65H, CH<u>H</u>-5, B), 2.00 – 2.10 (m, 6.65H, CH₂-4, CH₂-5, CH₂-8, A; CH<u>H</u>-6(7), B), 2.13 – 2.32 (m, 1.3H, CHH-6(7), CH-4a, B), 2.41 – 2.47 (m, 2.0H, CH₂-3, A), 2.50 (dd, J = 13.2, 6.0 Hz, 0.65H, NCH₂C<u>H</u>H, B), 2.60 (ddd, J = 17.7, 5.3, 1.8 Hz, 0.65H, C<u>H</u>H-3, B), 2.71 – 2.76 (m, 2.65H, NCH₂C<u>H</u>₂, A; CH<u>H</u>-3, B), 2.83 (ddd, J = 13.2, 10.7, 5.5 Hz, 0.65H, NCH₂C<u>H</u>H, B), 3.73 – 3.82 (m, 2.65H, NCH₂, A; NC<u>H</u>H, B), 3.85 (s, 3H, OCH₃, A), 3.86 (s, 1.95H, OCH₃, B), 3.87 (s, 3H, OCH₃, A), 3.89 (s, 1.95H, OCH₃, B), 3.98 (ddd, J = 13.6, 10.8, 5.5 Hz, 0.65H, NCH<u>H</u>, B), 5.16 (dt, J = 5.1, 2.3 Hz, 0.65H, =CH-8, B), 6.55 – 6.87 (m, 4.95H, ArH, A, B). ¹³C NMR (101 MHz, CDCl₃) δ 21.46 [CH₂-6(7), B], 22.10 [CH₂-6(7), A], 22.94 [CH₂-7(6), A], 24.61 [CH₂-7(6), B], 25.49, 25.53 (CH₂-4, CH₂-5, A), 27.48 [CH₂-4, B], 29.04 [CH₂-8, A], 30.55, [CH₂-5, B], 31.77 [CH₂-3, A], 32.87 [NCH₂C<u>H₂</u>, B], 32.92 [CH₂-3, B], 34.99 [CH-4a, B], 35.17 [NCH₂C<u>H₂</u>, A], 42.32 (NCH₂, A), 44.13 (NCH₂, B), 55.87, 55.90, 55.92, 55.95 (four OCH₃, A, B), 103.87 (=CH-8, B), 111.23 (ArH, A), 111.26 (ArH, B),

112.15 (ArH, B), 112.25 (ArH, A), 115.32 (=C-4a, A), 120.65 (ArH, B), 120.80 (ArH, A), 131.11, 131.81 (C-1', C-8a, A), 131.87 (C-1', B), 138.48 (=C-8a, B), 147.56 (Ar, B), 147.59 (Ar, A), 148.83 (Ar, A), 148.91 (Ar, B), 168.84 (C=O, B), 170.06 (C=O, A). GC-MS (EI, 70eV): m/z = 315 (10), [M⁺], 164 (100), 151 (28), 136 (40), 110 (12).

5r. Procedure 13: Arylation of 4-Br-1g under Suzuki reaction conditions

To a solution of **4-Br-1g** (0.5g, 1.3mmol) in dry, degassed mixture of 1,4-dioxane and H₂O in 3:1 volume ratio (9.75 mL/3.25 mL), PhB(OH)₂ (0.204g, 1.67 mmol, 1.3 equiv.), Pd(PPh₃)₄ (0.0744g, 0.064 mmol, 5% mol.) and K₂CO₃ (0.3560g, 2.6 mmol, 2.0 equiv.) was added and the reaction mixture was heated to 120°C under an argon atmosphere and stirred at this temperature for 2h. After this time reaction mixture was allowed to cool to room temperature, 5 mL of AcOEt was added and stirring was maintained for 5 min. Aqueous layer was extracted with ethyl acetate (3x80mL), the combined extracts were dried over MgSO₄, and the solvent was removed *in vacuo*. The crude product was purified by column chromatography on silica gel (*n*-hexane/ethyl acetate = 1:1) giving product **1h** with 93% yield (0.460g, 1.2 mmol) as a white solid.

2-(3,4-Dimethoxyphenethyl)-4-phenylisoquinolin-1(2*H*)-one (1h):

MeO

MeC

Yield 93% (0.460g). Mp 138-140°C (petroleum ether:ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ 3.07 (dd, J = 7.9, 6.6 Hz, 2H, CH₂), 3.71 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.24 (dd, J = 7.9, 6.6 Hz, 2H, NCH₂), 6.67 (d, J = 2.0 Hz, 1H, CH-2'), 6.72 (s, 1H, =CH-3), 6.74 (dd, J = 8.2, 2.0 Hz, 1H, CH-6'),

6.79 (d, J = 8.2 Hz, 1H, CH-5'), 7.23 – 7.28 (m, 2H, C₆H₅), 7.36 – 7.46 (m, 3H, C₆H₅), 7.49 – 7.57 (m, 2H, CH-5, CH-7), 7.57 – 7.65 (m, 1H, CH-6), 8.56 (dd, J = 8.2, 1.5 Hz, 1H, CH-8). ¹³C NMR (101 MHz, CDCl₃) δ 34.77 (CH₂), 51.81 (NCH₂), 55.74, 55.94 (two OCH₃), 111.46 (CH-5'), 112.24 (CH-2'), 119.23 (C-4), 120.98 (CH-6'), 124.63 (CH-5), 125.87 (C-8a), 126.89 (CH-7), 127.66 (C₆H₅), 128.14 (CH-8), 128.61, 129.90 (C₆H₅), 130.75 (C-1'), 131.16 (=CH-3), 132.14 (CH-6), 136.22, 136.36 (C-4a, C₆H₅), 147.86, 149.07 (C-3', C-4'), 161.69 (C=O).
GC-MS (EI, 70eV): m/z = 385 (1), $[M^+]$, 221 (9), 164 (100), 149 (9). HRMS (ESI-TOF): m/z calcd for C₂₅H₂₄NO₃[M + H]⁺, 386.1756; found, 386.1755.

6. Synthesis of compounds 2a-l, 9a-g, 10a, f-g, 11f-g

6a. Procedure 14. General procedure for intramolecular arylation of enelactams using TIPSOTf

Conditions A:

Enelactam **1a-f** or **1i** or **8a-e** (1 mmol) was dissolved in 10 mL of anhydrous DCM, placed in a dry Schlenk flask. TIPSOTf (0.766g, 2.5 mmol, 2.5 equiv.) was added to the resulting solution with a syringe and was stirred at room temperature. Reaction time (2-66h) was monitored by GC-MS. After completation of the reaction 10 mL of saturated sodium bicarbonate solution was added to the reaction flask and the mixture was stirred for 5 minutes. The aqueous layer was extracted with ethyl acetate (3×80 mL), and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using the appropriate mixture of n-hexane/AcOEt to give desired products **2a-f**, **2i**, **9a-9e**.

Conditions B:

Enelactam **1g** or **1j** or **8f-g** (1 mmol) was dissolved in 5 ml of anhydrous PhCl, which was placed in a dry Schlenk flask. TIPSOTF (0.766g, 2.5 mmol, 2.5 equiv.) was added to this solution with a syringe and the mixture was stirred at room temperature for 5 minutes. Subsequently, a reflux condenser was attached to the flask and the bath temperature was raised to 125°C. Reaction time (4-96h) was monitored by GC-MS. After completation of the reaction a heater was removed and the reaction mixture was allowed to cool to room temperature. Subsequently, 10 mL of saturated sodium bicarbonate solution was added to the reaction flask and the mixture was stirred for 5 minutes. The aqueous layer was extracted with ethyl acetate

 $(3 \times 80 \text{ mL})$, and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using the appropriate mixture of *n*-hexane/AcOEt to give desired products **2g**, **2j**, **9f-g**, **10f-g**, **11f-g**.

(1*SR*,11b*SR*)-1-Ethyl-9,10-dimethoxy-1,2,3,6,7,11b-hexahydro-4*H*-pyrido[2,1-a]isoquinolin-4-one (**2a**):

Yield 92% (0.220g, reaction conditions **A**; reaction time: 18h). The crude product purified by cristalization from ethyl acetate:petroleum ether gave white solid, mp 212-213°C. ¹H NMR (400 MHz, DMSO) δ 1.03 (t, *J* = 7.4 Hz, 3H, CH₃), 1.39 – 1.82 (m, 4H, CH₂-2, CH₂CH₃), 2.09 (dt, *J* =

17.2, 5.5 Hz, 1H, C<u>H</u>H-3), 2.21 – 2.28 (m, 1H, CH-1), 2.30 (ddd, J = 17.2, 9.8, 5.8 Hz, 1H, CH<u>H</u>-3), 2.66 (dt, J = 15.5, 4.9 Hz, 1H, C<u>H</u>H-7), 2.84 (ddd, J = 15.5, 9.3, 5.9 Hz, 1H, CH<u>H</u>-7), 3.00 (ddd, J = 12.4, 9.3, 5.0 Hz, 1H, NC<u>H</u>H), 3.73 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 4.15 (dt, J = 12.6, 5.4 Hz, 1H, NCH<u>H</u>), 4.34 (d, J = 4.7 Hz, 1H, CH-11b), 6.78 (s, 1H, ArH), 6.79 (s, 1H, ArH). ¹³C NMR (101 MHz, DMSO) δ 11.41 (CH₃), 21.87, 24.71 (CH₂-2, <u>CH₂CH₃), 27.22</u> (CH₂-7), 28.91 (CH₂-3), 36.20 (CH-1), 41.80 (NCH₂), 55.42, 55.73 (two OCH₃), 59.62 (CH-11b), 108.34, 112.23 (CH-8, CH-11), 128.72, 129.45 (CH-7a, C-11a), 146.89, 147.64 (C-9, C-10), 168.54. GC-MS (EI, 70eV): m/z = 289 (39), [M⁺], 233 (24), 232 (26), 191 (100), 190 (31), 176 (22). HRMS (ESI-TOF): *m/z* calcd for C₁₇H₂₄NO₃ [M + H]⁺, 290.1756; found, 290.1752.

(1*RS*,11b*SR*)-1-Isopropyl-9,10-dimethoxy-1,2,3,6,7,11b-hexahydro-4*H*-pyrido[2,1-a]isoquinolin-4-one (**2b**):

Yield 81% (0.171g, conditions **A**; reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white solid, mp 129-131°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.02 (d, *J* = 6.1 Hz, 3H, CH₃), 1.13 (d, *J* = 6.1 Hz,

3H, CH₃), 1.66 – 1.81 (m, 2H, CH₂-2), 1.94 – 2.05 [m, 2H, CH-1, <u>CH</u>(CH₃)₂], 2.24 (dt, J = 17.3, 5.6 Hz, 1H, C<u>H</u>H-3), 2.44 (ddd, J = 17.3, 9.5, 5.8 Hz, 1H, CH<u>H</u>-3), 2.64 – 2.76 (m, 1H, C<u>H</u>H-7), 2.97 – 3.12 (m, 2H, CH<u>H</u>-7, NC<u>H</u>H), 3.87 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃), 4.39 – 4.47 (m, 1H, NCH<u>H</u>), 4.50 (d, J = 4.2 Hz, 1H, CH-11b), 6.67 and 6.70 (two s, 2H, CH-8, CH-11). ¹³C NMR (101 MHz, CDCl₃) δ 18.73 (CH₃), 19.41 (CH₂-2), 21.75 (CH₃), 27.55 [<u>CH</u>(CH₃)₂], 28.08 (CH₂-7), 29.86 (CH₂-3), 42.20 (CH-1), 42.67 (NCH₂), 55.95 and 56.23 (two OCH₃), 58.38 (CH-11b), 107.74 and 111.93 (CH-8, CH-11), 129.33 and 129.75 (C-7a, C-11a),

147.30 and 148.12 (C-9, C-10), 170.25 (C=O). GC-MS (EI, 70eV): m/z = 303 (29), [M⁺], 233 (24), 232 (25), 192 (23), 191 (100), 190 (29), 176 (19). HRMS (ESI-TOF): m/z calcd for $C_{18}H_{26}NO_3[M + H]^+$, 304.1913; found, 304.1920.

(1*RS*,11b*SR*)-9,10-Dimethoxy-1-phenyl-1,2,3,6,7,11b-hexahydro-4*H*-pyrido[2,1-a]isoquinolin-4-one (**2c**):

Yield 99% (0.212g, conditions **A**; reaction time: 42h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white solid, mp 221-223°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, DMSO-d₆) δ 1.86 (dtd, *J* = 13.3, 5.1, 4.5 Hz, 1H, C<u>H</u>H-2), 1.97

- 2.12 (m, 1H, CH<u>H</u>-2), 2.30 – 2.47 (m, 2H, CH₂-3), 2.69 (dt, J = 15.3, 4.6 Hz, 1H, C<u>H</u>H-7), 2.79 (ddd, J = 15.3, 9.9, 5.0 Hz, 1H, CH<u>H</u>-7), 2.96 (td, J = 12.3, 9.9, 4.6 Hz, 1H, NC<u>H</u>H), 3.16 (td, J = 9.9, 9.5, 4.5 Hz, 1H, CH-1), 3.23 (s, 3H, 10-OCH₃), 3.68 (s, 3H, 9-OCH₃), 4.36 (dt, J = 12.3, 4.6 Hz, 1H, NCH<u>H</u>), 5.05 (dd, J = 81.9, 9.5 Hz, 1H, CH-11b), 6.20 (s, 1H, CH-11), 6.73 (s, 1H, CH-8), 7.27 (dd, J = 7.5, 7.1 Hz, 1H, C₆H₅), 7.38 (t, J = 7.5 Hz, 2H, C₆H₅), 7.43 (d, J = 7.5 Hz, 2H, C₆H₅). ¹³C NMR (101 MHz, DMSO-d₆) δ 27.83 (CH₂-7), 29.11 (CH₂-2), 31.43 (CH₂-3), 40.63 (NCH₂), 45.99 (CH-1), 54.67 (10-OCH₃), 55.29 (9-OCH₃), 59.36 (CH-11b), 109.87 (CH-11), 111.63 (CH-8), 126.59, 127.83 (C₆H₅), 128.30 (C-7a), 128.62 (C-11a), 128.71 (C₆H₅), 144.37 (C₆H₅), 146.07 (CH-10), 147.07 (CH-9), 168.43 (C=O). GC-MS (EI, 70eV): m/z = 337 (16), [M⁺], 233 (32), 232 (21), 192 (20), 191 (100), 190 (29), 176 (26). HRMS (ESI-TOF): m/z calcd for C₂₁H₂₄NO₃[M + H]⁺, 338.1756; found, 338.1748.

(3a*SR*,13b*SR*)-11,12-Dimethoxy-1,2,3,3a,4,5,8,9-octahydro-6*H*-cyclopenta[2,3]pyrido[2,1-a]isoquinolin-6-one (**2d**):

Yield 81% (0.162g, conditions **A**; reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white solid, mp 110-112°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.68 – 1.74 (m, 2H, CH₂-4), 1.74

-1.89 (m, 3H, CH₂-2, C<u>H</u>H-3), 2.00 (dt, J = 13.1, 7.4 Hz, 1H, C<u>H</u>H-1), 2.10 -2.26 (m, 2H, CH<u>H</u>-1, CH<u>H</u>-3), 2.31 (dtd, J = 17.4, 4.7, 1.0 Hz, 1H, C<u>H</u>H-5), 2.49 (ddd, J = 17.4, 9.8, 6.9 Hz, 1H, CH<u>H</u>-5), 2.53 -2.65 (m, 1H, C<u>H</u>H-9), 2.80 (dq, J = 10.8, 5.2 Hz, 1H, CH-3a), 2.94 -3.10 (m, 2H, CH<u>H</u>-9, NC<u>H</u>H), 3.86 and 3.88 (two s, 6H, two OCH₃), 4.85 (dt, J = 9.0, 1.9 Hz, 1H,

NCH<u>H</u>), 6.57 (s, 1H, CH-10), 6.70 (s, 1H, CH-13). ¹³C NMR (101 MHz, CDCl₃) δ 22.61 (CH₂-4), 24.14 (CH₂-2), 28.45 (CH₂-9), 28.59 (CH₂-5), 30.08 (CH₂-3), 37.48 (NCH₂), 43.79 (CH-3a), 44.20 (CH₂-1), 55.84 and 56.23 (two OCH₃), 70.05 (C-13b), 108.25 (CH-13), 111.67 (CH-10), 127.95 (C-9a), 133.82 (C-13a), 147.38 (C-12), 147.78 (C-11), 170.29 (C=O). GC-MS (EI, 70eV): m/z = 301 (23), [M⁺], 272 (61), 259 (100), 258 (46), 244 (34), 230 (20), 216 (11), 115 (10). HRMS (ESI-TOF): *m/z* calcd for C₁₈H₂₄NO₃[M + H]⁺, 302.1756; found, 302.1753.

(4a*SR*,14b*SR*)-12,13-Dimethoxy-2,3,4,4a,5,6,9,10-octahydroisoquinolino[1,2-j]quinolin-7(1*H*)-one (**2e**)²⁴:

Yield 91% (0.245g, conditions **A**; reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white solid. ¹H NMR (400 MHz, CDCl₃) δ 1.35 – 1.70 (m, 6H, CH₂-3, CH₂-5, C<u>H</u>H-1, C<u>H</u>H-2), 1.77 – 1.90 (m, 3H, C<u>H</u>H-2, CH₂-4), 2.26 (dd,

J = 18.4, 6.7 Hz, 1H, CHH-1), 2.30 – 2.37 (m, 1H, C<u>H</u>H-6), 2.46 – 2.60 (m, 3H, CH<u>H</u>-6, CH-4a, C<u>H</u>H-10), 3.17 (ddd, J = 16.5, 12.2, 8.0 Hz, 1H, CH<u>H</u>-10), 3.26 (td, J = 12.2, 4.8 Hz, 1H, NC<u>H</u>H), 3.84 and 3.87 (two s, 6H, two OCH₃), 4.71 – 4.81 (m, 1H, NCH<u>H</u>), 6.57 (s, 1H, CH-11), 6.68 (s, 1H, CH-14). ¹³C NMR (101 MHz, CDCl₃) δ 21.65 (CH₂-5), 22.53 (CH₂-2), 25.90, 26.09 (CH₂-3, CH₂-4), 26.92 (CH₂-9), 28.72 (CH₂-6), 35.20 (NCH₂), 36.11 (CH-4a), 40.82 (CH₂-1), 55.80 and 56.28 (two OCH₃), 61.56 (C-14b), 106.18 (CH-14), 112.47 (CH-11), 127.23 (C-10a), 135.77 (C-14a), 147.18, 147.74 (C-12, C13), 172.42 (C=O). GC-MS (EI, 70eV): m/z = 315 (24), [M⁺], 273 (18), 272 (100), 259 (20), 244 (15), 230 (7).

(4b*SR*,9a*SR*)-2,3-dimethoxy-5,6,7,8,9,9a,10,11,14,15-decahydro-12H-cyclohepta[2,3]pyrido-[2,1-a]isoquinolin-12-one (**2f**):

Yield 68% (0.135g, conditions **A**, reaction time: 66h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white solid, mp 141-143°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, DMSO-d₆) δ 1.30 – 1.60 (m, 6H, CH₂-6,

CH₂-8, CH₂-10), 1.65 – 1.94 (m, 5H, C<u>H</u>H-5, CH₂-7, CH₂-9), 1.97 – 2.16 (m, 2H, CH<u>H</u>-5, C<u>H</u>H-11), 2.33 (ddd, J = 17.5, 13.7, 6.4 Hz, 1H, CH<u>H</u>-11), 2.55 (dd, J = 16.5, 5.4 Hz, 1H, C<u>H</u>H-15), 2.65 – 2.78 (m, 1H, CH-9a), 2.87 (ddd, J = 16.5, 11.9, 7.5 Hz, 1H, CH<u>H</u>-15), 3.16 (ddd, J = 13.3, 11.9, 5.4 Hz, 1H, NC<u>H</u>H), 3.70 and 3.76 (two s, 6H, two OCH₃), 4.58 (dd, J = 13.3, 7.5 Hz, 1H, NCH<u>H</u>), 6.66 (s, 1H, CH-1), 6.90 (s, 1H, CH-4). ¹³C NMR (101 MHz, DMSO-d₆) δ

20.46 (CH₂-10), 25.13 (CH₂-6), 26.76 (CH₂-15), 27.81, 27.89, 28.02, 28.70 (CH₂-7, CH₂-8, CH₂-9, CH₂-11), 34.37 (NCH₂), 38.79 (CH-9a), 41.99 (CH₂-5), 55.28 and 56.03 (two OCH₃), 64.06 (C-4b), 107.64 (CH-4), 113.18 (CH-1), 126.17 (C-15a), 135.92 (C-4a), 146.65, 147.35 (C-2, C-3), 169.34 (C=O). GC-MS (EI, 70eV): m/z = 329 (29), [M⁺], 286 (16), 273 (19), 272 (100), 259 (46), 258 (42), 245 (37), 244 (36), 230 (14), 216 (10). HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₈NO₃[M + H]+, 330.2069; found, 330.2078.

(13a*RS*)-2,3-Dimethoxy-5,6,13,13a-tetrahydro-8*H*-isoquinolino[3,2-a]isoquinolin-8-one (**2g**)²⁵:

Yield 79% (0.197g, conditions **B**, reaction time: 72h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white solid, mp 141-142°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.73 – 2.82 (m, 1H, CHH-5), 2.89 – 3.07 (m, 3H,

CH<u>H</u>-5, C<u>H</u>H-13, NC<u>H</u>H), 3.22 (dd, J = 15.7, 3.7 Hz, 1H, CH<u>H</u>-13), 3.90 (s, 3H, OCH₃), 3.92 (s, 3H, OCH₃), 4.87 (dd, J = 13.4, 3.7 Hz, 1H, CH-13a), 4.96 – 5.08 (m, 1H, NCH<u>H</u>), 6.70 and 6.72 (two s, 2H, CH-1, CH-4), 7.27 (dd, J = 7.6, 1.0 Hz, 1H, CH-12), 7.39 (td, J = 7.6, 1.0 Hz, 1H, CH-10), 7.46 (td, J = 7.6, 1.0 Hz, 1H, CH-11), 8.14 (dd, J = 7.6, 1.0 Hz, 1H, CH-9). ¹³C NMR (101 MHz, CDCl₃) δ 29.21 (CH₂-5), 38.13 (CH₂-13), 38.72 (NCH₂), 55.00 (CH-3a), 55.94, 56.16 (two OCH₃), 108.83, 111.46 (CH-1, CH-4), 126.87 (CH-12), 127.30 (C-4a), 127.34 (CH-10), 127.65 (C-13b), 128.60 (CH-9), 129.10 (C-8a), 131.81 (CH-11), 137.30 (C-12a), 147.96, 148.03 (C-2, C-3), 164.64 (C=O). GC-MS (EI, 70eV): m/z = 309 (100), [M⁺], 308 (93), 294 (46), 280 (28), 278 (38), 190 (19), 176 (11), 119 (31), 118 (73), 90 (68), 89 (25), 77 (8).

(4a*RS*,14b*SR*)-3-Benzyl-12,13-dimethoxy-2,3,4,4a,5,6,9,10-octahydroisoquinolino[1,2j][1,6]naphthyridin-7(1*H*)-one (**2i**):

Yield 87% (0.113g, conditions **B**, reaction time: 4h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white solid, mp 141-143°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.46 (ddd, *J* = 13.5, 6.8, 2.6 Hz, 1H, CHH-

5), 1.76 (dddd, *J* = 13.5, 10.1, 6.8, 3.4 Hz, 1H, CH<u>H</u>-5), 1.85 (td, *J* = 14.8, 12.7, 3.5 Hz, 1H, C<u>H</u>H-1), 2.12 (ddd, *J* = 13.2, 11.3, 1.8 Hz, 1H, C<u>H</u>H-2), 2.28 (dd, *J* = 18.8, 6.8 Hz, 1H, CHH-6), 2.32 (dt, *J* = 14.8, 2.3, 1.8 Hz, 1H, CH<u>H</u>-1), 2.40 – 2.52 (m, 2H, CH<u>H</u>-6, C<u>H</u>H-4), 2.56 (d,

J = 14.8 Hz, 1H, C<u>H</u>H-10), 2.73 (dt, J = 11.3, 2.6 Hz, 1H, CH<u>H</u>-2), 2.78 – 2.88 (m, 2H, CH-4a, CH<u>H</u>-4), 3.03 – 3.33 (m, 2H, C<u>H</u>H-9, CH<u>H</u>-10), 3.52 (d, J = 13.0 Hz, 1H, NC<u>H</u>HPh), 3.56 (d, J = 13.0 Hz, 1H, NC<u>H</u>HPh), 3.84 and 3.85 (two s, 6H, two OCH₃), 4.74 – 4.84 (m, 1H, CH<u>H</u>-9), 6.57 (s, 1H, CH-11) 6.71 (s, 1H, C-14), 7.21 – 7.42 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 20.61 (CH₂-5), 27.06 (CH₂-10), 28.98 (CH₂-6), 35.36 (CH₂-9), 35.94 (CH-4a), 39.50 (CH₂-1), 49.36 (CH₂-2), 53.39 (CH₂-4), 55.81, 56.22 (two OCH₃), 60.23 (C-14b), 63.40 (NCH₂Ph), 106.17 (CH-14), 112.41 (CH-11), 127.21 (C₆H₅), 127.46 (C-10a), 128.36, 129.18 (C₆H₅), 134.36 (C-14), 138.04 (C₆H₅), 147.38, 147.93 (C-12, C-13), 172.16 (C=O). GC-MS (EI, 70eV): m/z = 406 (35), [M⁺], 315 (45), 287 (19), 260 (55), 218 (25), 146 (100), 91 (91). HRMS (ESI-TOF): *m*/z calcd for C₂₅H₃₁N₂O₃[M + H]⁺, 407.2335; found, 407.2329.

(1*SR*,12*bSR*)-1-Ethyl-2,3,6,7,12,12*b*-hexahydroindolo[2,3-a]quinolizin-4(1*H*)-one (**2j**)²⁶:

Yield 86% (0.198g, conditions **A**, reaction time: 18h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave pale yellow solid, mp 213-215°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.14 (t, *J* = 7.5 Hz, 3H, CH₂CH₃), 1.61 –

1.75 (m, 2H, C<u>H</u>HCH₃, C<u>H</u>H-2), 1.81 – 1.96 (m, 2H, CH<u>H</u>CH₃, CH<u>H</u>-2), 2.03 – 2.13 (m, 1H, CH-1), 2.27 (ddd, J = 17.5, 7.2, 5.2 Hz, 1H, C<u>H</u>H-3), 2.50 (ddd, J = 17.5, 8.6, 5.2 Hz, 1H, CH<u>H</u>-3), 2.69 (ddt, J = 15.0, 4.2, 1.3 Hz, 1H, C<u>H</u>H-7), 2.87 (ddd, J = 12.4, 4.2 Hz, 1H, NC<u>H</u>H), 3.02 (dddd, J = 15.0, 12.1, 5.4, 2.5 Hz, 1H, CH<u>H</u>-7), 4.62 (dt, J = 4.6, 2.0 Hz, 1H, CH-12b), 5.04 (ddd, J = 12.4, 5.5, 1.1 Hz, 1H, NCH<u>H</u>), 7.11 (td, J = 8.1, 7.2, 1.0 Hz, 1H, CH-9), 7.18 (td, J = 8.1, 7.2, 1.0 Hz, 1H, CH-10), 7.34 (dt, J = 8.2, 1.0 Hz, 1H, CH-11), 7.48 (dd, J = 7.2, 1.0 Hz, 1H, CH-8), 8.16 (s, 1H, NH). ¹³C NMR (101 MHz, CDCl₃) δ 11.73 (CH₃), 20.99 (CH₂-7), 22.97 (<u>CH₂CH₃), 26.07 (CH₂-2), 29.87 (CH₂-3), 38.29 (CH-1), 42.56 (NCH₂), 59.47 (CH-12b), 110.84 (C-7a), 111.01 (CH-11), 118.29 (CH-8), 119.88 (CH-9), 122.19 (CH-10), 127.10 (C-7b), 133.82 (C-12a), 135.84 (C-11a), 170.00 (C=O). GC-MS (EI, 70eV): m/z = 268 (78), [M⁺], 239 (31), 211 (27), 170 (100), 154 (9), 143 (12), 115 (16).</u>

(1SR,11bSR)-1-Ethyl-1,2,3,6,7,11b-hexahydro-4H-pyrido[2,1-a]isoquinolin-4-one (2k):

Yield 76% (0.151g, conditions **B**, reaction time: 96h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 1.08 (t, *J* = 7.4 Hz, 3H, CH₃), 1.46 – 1.59 (m, 1H, C<u>H</u>HCH₃), 1.60 – 1.70 (m, 1H, C<u>H</u>H-2), 1.71 – 1.82 (m, 1H,

CH<u>H</u>CH₃), 1.91 (dddd, J = 13.2, 9.3, 5.5, 4.0 Hz, 1H, CH<u>H</u>-2), 2.17 – 2.32 (m, 2H, CH-1, C<u>H</u>H-3), 2.48 (ddd, J = 17.4, 9.0, 5.6 Hz, 1H, CH<u>H</u>-3), 2.80 (dt, J = 16.0, 5.5 Hz, 1H, C<u>H</u>H-7), 3.06 (ddd, J = 16.0, 8.3, 5.5 Hz, 1H, CH<u>H</u>-7), 3.19 (ddd, J = 12.9, 8.3, 5.5 Hz, 1H, NC<u>H</u>H), 4.29 (dt, J = 12.9, 6.2 Hz, 1H, NCH<u>H</u>), 4.33 (dd, J = 5.6, 4.3 Hz, 1H, CH-11b), 6.87 – 7.62 (m, 4H, C₆H₄). ¹³C NMR (101 MHz, CDCl₃) δ 11.74 (CH₃), 22.74 (CH₂-2), 25.71 (<u>CH₂CH₃), 28.38</u> (CH₂-7), 29.75 (CH₂-3), 37.13 (CH-1), 42.38 (NCH₂), 60.40 (CH-11b), 123.69, 126.35, 127.25, 128.73, 137.06, 137.47 (C₆H₄), 169.90 (C=O). GC-MS (EI, 70eV): m/z = 229 (49), [M⁺], 173 (21), 145 (100), 132 (30), 131 (60), 130 (45), 117 (14), 103 (11), 77 (13). HRMS (ESI-TOF): *m/z* calcd for C₁₅H₂₀NO[M + H]⁺, 230.1545; found, 230.1537.

(8a*SR*,13a*RS*,14a*SR*)-2,3,10-Trimethoxy-5,8a,13,13a,14,14a-hexahydroindeno[2',1':4,5]py-rido-[2,1-a]isoquinolin-8(6*H*)-one (**9a**):

Yield 69% (0.066g, conditions **A**, reaction time: 5h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave pale purple solid, mp 148-150°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.03 (ddd,

 $J = 14.0, 10.0, 5.3 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-14_{ax}), 2.25 \text{ (dt}, J = 14.0, 3.6 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-14_{eq}), 2.63 \text{ (ddd}, J = 15.4, 3.3, 2.5 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-5_{eq}), 2.74 \text{ (ddd}, J = 12.5, 11.9, 3.3 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-6_{ax}), 2.91 \text{ (ddd}, J = 15.4, 3.3, 2.5 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-5_{eq}), 2.74 \text{ (ddd}, J = 15.5, 6.3 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-6_{ax}), 2.91 \text{ (ddd}, J = 15.4, 11.9, 4.8 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-5_{ax}), 2.95 \text{ (dd}, J = 15.5, 6.3 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-13_{\beta}), 3.07 \text{ (tddd}, J = 8.8, 6.3, 5.3, 3.6 \text{ Hz}, 1\text{H}, CH-13a), 3.23 \text{ (dd}, J = 15.5, 8.8 \text{ Hz}, 1\text{H}, CH\underline{\text{H}}-13_{\alpha}), 3.81 \text{ (s}, 3\text{H}, 10-\text{OCH}_3), 3.87 \text{ (s}, 3\text{H}, \text{OCH}_3), 3.88 \text{ (s}, 3\text{H}, \text{OCH}_3), 4.04 \text{ (d}, J = 8.8 \text{ Hz}, 1\text{H}, \text{CH}-8a), 4.63 \text{ (dd}, J = 10.0, 3.6 \text{ Hz}, 1\text{H}, \text{CH}-14a), 4.83 \text{ (ddd}, J = 12.5, 4.8, 2.5 \text{ Hz}, 1\text{H}, \text{CH}-6_{eq}), 6.61 \text{ (s}, 1\text{H}, \text{CH}-1), 6.63 \text{ (s}, 1\text{H}, \text{CH}-4), 6.79 \text{ (dd}, J = 8.3, 2.5 \text{ Hz}, 1\text{H}, \text{CH}-11), 7.13 \text{ (d}, J = 8.3 \text{ Hz}, 1\text{H}, \text{CH}-12), 7.19 \text{ (d}, J = 2.5 \text{ Hz}, 1\text{H}, \text{CH}-9). ^{13}\text{C} \text{NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 28.53 \text{ (CH}_2-5), 34.63 \text{ (CH}-13a), 36.31 (CH_2-14), 37.14 (CH_2-13), 39.82 (CH_2-6), 51.18 (CH-8a), 52.68 (CH-14a), 55.49 (10-OCH_3), 55.89, 56.20 (two OCH_3), 108.61 (CH-4), 110.04 (CH-9), 111.58 (CH-1), 114.87 (CH-11), 124.91 (CH-12), 127.71 (C-4a), 128.38 (C-14b), 134.24 (C-12a), 142.74 (C-8b), 147.74, 147.78 (C-2, C-3), 159.12 (C-10), 169.86 (C=0). GC-MS (EI, 70eV): m/z = 379 (14), [M^+], 258 (100), 192 (17), 191 (18), 190 (12), 176 (8), 159 (8), 146 (14), 115 (7), 103 (6). HRMS (ESI-TOF): <math>m/z$ calcd for C₂₃H₂₆NO₄[M + H]⁺, 380.1862; found, 380.1860.

(8a*SR*,13a*RS*,14a*RS*)-2,3,10-Trimethoxy-5,8a,13,13a,14,14a-hexahydroindeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(6*H*)-one (**10a**):

Yield 15% (0.0145g, conditions **A**, reaction time: 5h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave brown oil. ¹H NMR (400 MHz, CDCl₃) δ 1.50 (ddd, J = 13.3, 13.0, 11.6 Hz, 1H, CHH-14_{ax}), 2.30 (dt, J = 13.3, 3.9, 3.0 Hz,

1H, CH<u>H</u>-14_{eq}), 2.57 – 3.01 (m, 5H, C<u>H</u>H-13_β, CH-13a, CH₂-5, NC<u>H</u>H), 3.20 (dd, J = 15.6, 7.3 Hz, 1H, C<u>H</u>H-13_α), 3.79 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 4.05 (d, J = 7.0 Hz, 1H, CH-8a), 4.71 (dd, J = 11.6, 3.0 Hz, 1H, CH-14a), 4.88 – 4.98 (m, 1H, NCH<u>H</u>), 6.57 (s, 1H, CH-1), 6.63 (s, 1H, CH-4), 6.73 (ddd, J = 8.2, 2.6, 1.0 Hz, 1H, CH-11), 7.08 (d, J = 8.2 Hz, 1H, CH-12), 7.32 (dd, J = 2.6, 1.2 Hz, 1H, CH-9). ¹³C NMR (101 MHz, CDCl₃) δ 28.64 (CH₂-5), 35.66 (CH₂-14), 36.42 (CH-13a), 37.82 (CH₂-13), 39.31 (CH₂-6), 50.40 (CH-8a), 55.49 (10-OCH₃), 55.80 (CH-14a), 55.90, 56.10 (two OCH₃), 108.45 (CH-4), 109.99 (CH-9), 111.38 (CH-1), 114.35 (CH-11), 125.37 (CH-12), 127.29 (C-4a), 128.50 (C-14b), 132.61 (C-12a), 142.01 (C-8b), 147.71 (2C, C-2, C-3), 159.07 (C-10), 168.94 (C=O). GC-MS (EI, 70eV): m/z = 379 (29), [M⁺], 281 (19), 258 (100), 244 (20), 207 (44), 192 (23), 191 (36), 190 (23), 176 (11), 159 (13), 146 (25), 115 (13), 103 (10). HRMS (ESI-TOF): *m/z* calcd for C₂₃H₂₆NO₄[M + H]⁺, 380.1862; found, 380.1869.

(8*aSR*,13*aRS*,14*SR*,14*aSR*)-2,3,10-Trimethoxy-14-methyl-5,8*a*,13,13*a*,14,14*a*-hexahydroindeno[2',1':4,5]pyrido[2,1-*a*]isoquinolin-8(6*H*)-one (**9b**):

Yield 70% (0.028g, conditions **A**, reaction time: 5h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave grayish-pink solid, mp 173-175°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.01 (d, *J* =

7.0 Hz, 3H, 14-CH₃), 2.27 (dqd, J = 8.3, 7.0, 3.8 Hz, 1H, CH-14), 2.64 (dt, J = 15.0, 3.4 Hz, 1H, CH_{eq}-5), 2.77 (ddd, J = 12.7, 10.8, 3.2 Hz, 1H, CH_{ax}-6), 2.90 (ddd, J = 15.0, 10.8, 4.3 Hz, 1H, CH_{ax}-5), 2.97 – 3.12 (m, 3H, CH₂-13, CH13a), 3.81 (s, 3H, 10-OCH₃), 3.88 (s, 6H, 2-OCH₃, 3-OCH₃), 4.11 (d, J = 8.0 Hz, 1H, CH-8a), 4.34 (d, J = 8.3 Hz, 1H, CH-14a), 4.73 (dt, J = 12.7, 4.3 Hz, 1H, CH_{eq}-6), 6.62 (s, 1H, CH-1), 6.67 (s, 1H, CH-4), 6.79 (ddd, J = 8.3, 2.4, 0.8 Hz, 1H, CH-11), 7.13 (d, J = 8.3 Hz, 1H, CH-12), 7.21 (d, J = 2.4 Hz, 1H, CH-9). ¹³C NMR (101 MHz, CDCl₃) δ 16.96 (14-CH₃), 29.05 (CH₂-5), 32.86 (CH₂-13), 37.63 (CH-14), 40.48 (CH-13a), 41.35 (CH₂-6), 51.36 (CH-8a), 55.51 (10-OCH₃), 55.91, 56.25 (2-OCH₃, 3-OCH₃), 58.14 (CH-14a), 109.42 (CH-9), 110.73 (CH-1), 111.60 (CH-4), 115.01 (CH-11), 124.73 (CH-12), 126.68 (C-14b), 129.80 (C-4a), 133.95 (C-12a), 142.72 (C-8b), 146.88 (C-2), 147.95 (C-12), 126.68 (C-14b), 129.80 (C-4a), 133.95 (C-12a), 142.72 (C-8b), 146.88 (C-2), 147.95 (C-12), 126.68 (C-14b), 129.80 (C-4), 133.95 (C-12), 142.72 (C-8b), 146.88 (C-2), 147.95 (C-12), 126.68 (C-14b), 129.80 (C-4a), 133.95 (C-12a), 142.72 (C-8b), 146.88 (C-2), 147.95 (C-12), 126.68 (C-14b), 129.80 (C-4a), 133.95 (C-12), 142.72 (C-8b), 146.88 (C-2), 147.95 (C-12), 146.88 (C-2), 146.88 (C-2), 146.88 (C-2),

3), 159.15 (C-10), 169.99 (C=O). GC-MS (EI, 70eV): m/z = 393 (10), [M⁺], 272 (100), 219 (17), 207 (18), 192 (68), 191 (61), 159 (29), 176 (21), 146 (43), 115 (11). HRMS (ESI-TOF): *m/z* calcd for C₂₄H₂₈NO₄[M + H]⁺, 394.2018; found, 394.2013.

(8a*SR*,13a*RS*,14*RS*,14a*SR*)-2,3,10-Trimethoxy-14-phenyl-5,8a,13,13a,14,14a-hexahydroindeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(6*H*)-one (**9**c):

Yield 85% (0.124g, conditions **A**, reaction time: 5h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:2) gave white solid, mp 209-211°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.62 – 2.75 (m, 2H, CH<u>H</u>-5,

CH<u>H</u>_α-13), 2.93 – 3.11 (m, 3H, NC<u>H</u>H, CH<u>H</u>-5, CH-13a), 3.21 (s, 3H, 3-OMe), 3.23 (dd, J = 14.8, 10.9 Hz, 1H, CH<u>H</u>_β-13), 3.55 (dd, J = 10.8, 4.1 Hz, 1H, CH-14), 3.81 (s, 3H, OMe), 3.82 (s, 3H, OMe), 3.91 (d, J = 7.7 Hz, 1H, CH-8a), 4.35 (dt, J = 12.1, 4.6 Hz, 1H, NCH<u>H</u>), 5.39 (d, J = 10.8 Hz, 1H, CH-14a), 6.27 (s, 1H, CH-1), 6.61 (s, 1H, CH-4), 6.75 (dd, J = 8.2, 2.5 Hz, 1H, CH-11), 7.03 (d, J = 8.2 Hz, 1H, CH-12), 7.22 (d, J = 2.5 Hz, 1H, CH-9), 7.27 – 7.35 (m, 1H, 14-Ph), 7.37 – 7.48 (m, 4H, 14-Ph). ¹³C NMR (101 MHz, CDCl₃) δ 28.55 (CH₂-5), 32.25 (CH₂-13), 42.71 (NCH₂), 46.01 (CH-13a), 47.27 (CH-14), 51.20 (CH-8a), 55.02 (2-OMe), , 55.43 (10-OMe), 55.79 (3-OMe), 56.24 (CH-14a), 109.97 (CH-1), 111.01 (CH-4), 111.24 (CH-9), 114.68 (C-11), 124.81 (CH-12), 127.15 (5-Ph), 128.27 (5-Ph), 128.75 (C-14b), 129.22 (5-Ph C-4a), 133.60 (C-12a), 142.60 (5-Ph), 143.31 (C-8b), 146.57 (C-2), 147.46 (C-3), 158.91 (C-10), 168.79 (C=O). GC-MS (EI, 70eV): m/z = 455 (18), [M⁺], 364 (5), 334 (35), 281 (91), 236 (12), 220 (8), 207 (34), 192 (100), 191 (85), 190 (22), 178 (9), 176 (28), 146 (67), 145 (57), 131 (9), 115 (12), 91 (27), 77 (7), 73 (7). HRMS (ESI-TOF): *m*/z calcd for C₂₉H₃₀NO₄[M + H]⁺, 456.2175; found, 456.2168.

(8a*SR*,13a*RS*,14*RS*,14a*SR*)-10-Methoxy-14-phenyl-5,6,8a,13,13a,14,14a,15-octahydro-8*H*-indeno[1,2-g]indolo[2,3-a]quinolizin-8-one (**9d**):

Yield 72% (0.036g, conditions **A**, reaction time: 2h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave yellow solid, mp 155-157°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.70 (dd, *J* =

14.8, 8.0 Hz, 1H, CH<u>H</u> $_{\alpha}$ -13), 2.72–2.79 (m, 1H, CH<u>H</u> $_{eq}$ -5), 2.82 (td, J = 12.0, 3.0 Hz, 1H,

CH<u>Hax</u>-6), 2.95 (dddd, J = 14.3, 12.0, 4.6, 2.3 Hz, 1H, CH<u>Hax</u>-5), 2.99–3.08 (m, 1H, CH-13a), 3.28 (dd, J = 14.8, 11.2 Hz, 1H, CH<u>H</u>_B-13), 3.53 (dd, J = 11.3, 4.0 Hz, 1H, CH-14), 3.82 (s, 3H, OCH₃), 3.97 (d, J = 7.9 Hz, 1H, CH-8a), 5.09 (ddd, J = 12.0, 4.6, 1.2 Hz, 1H, CH<u>H</u>_{eq}-6), 5.54 (d, J = 11.3 Hz, 1H, CH-14a), 6.66 (s, 1H, NH), 6.77 (dd, J = 8.3, 2.5 Hz, 1H, CH-11), 6.91 – 6.96 (m, 1H, CH-1), 7.02 – 7.09 (m, 3H, CH-2, CH-3, CH-12), 7.25 (d, J = 2.5 Hz, 1H, CH-9), 7.42 – 7.61 (m, 6H, CH-4, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 21.03 (CH₂-5), 31.76 (CH₂-13), 41.55 (NCH₂), 45.25 (CH-13a), 47.16 (CH-14, 51.53 (CH-8a), 54.50 (CH-14a), 55.45 (OCH₃), 110.82 (CH-1), 110.96 (C-4b), 111.42 (CH-9), 114.80 (CH-11), 118.18 (CH-4), 119.63 (CH-3), 122.13 (CH-2), 124.85 (CH-12), 126.02 (C-4a), 128.42, 129.78 br, 129.82 br (C₆H₅) 132.68 (C-14b), 133.40 (C-12a), 135.32 (C-15a), 140.60 (C₆H₅), 143.02 (C-8b), 158.99 (C-10), 168.73 (C=O). GC-MS (EI, 70eV): m/z = 434 (63), [M⁺], 343 (9), 313 (24), 291 (7), 281 (7), 260 (33), 245 (12), 235 (7), 230 (7), 217 (11), 207 (17), 191 (8), 171 (43), 170 (79), 169 (100), 157 (16), 146 (36), 145 (42), 143 (20), 115 (19), 103 (8), 91 (22), 77 (6). HRMS (ESI-TOF): *m/z* calcd for C₂₉H₂₇N₂O₂[M + H]⁺, 435.2073; found, 435.2072.

(8a*RS*,12a*SR*,13*RS*,13a*SR*)-2,3-Dimethoxy-13-phenyl-5,6,8a,9,12,12a,13,13a-octahydro-8*H*-isoquinolino[3,2-a]isoquinolin-8-one (**9e**):

Yield 80% (0.080g, conditions: **A**, reaction time: 7h). The crude product purified by cristalization from ethyl acetate gave white solid, mp 186-188°C. ¹H NMR (400 MHz, DMSO-d₆) δ 1.30 (dt, *J* = 17.8, 0.7 Hz, 1H, CH<u>Heq</u>-12), 1.63 (dd, *J* = 17.8, 11.2 Hz, 1H, CH<u>H ax</u> -12), 1.95 (dd, *J* =

15.8, 11.2 Hz, 1H, CH<u>Hax</u>-9), 2.08 (qd, J = 11.2, 4.7 Hz, 1H, CH-12a), 2.24 (td, J = 11.2, 4.6 Hz, 1H, CH-8a), 2.57 (br d, J = 15.8 Hz, 1H, CH<u>Heq</u>-9), 2.70 (dt, J = 15.2, 5.1 Hz, 1H, CH<u>Heq</u>-5), 2.79 (ddd, J = 15.2, 8.7, 5.1 Hz, 1H, CH<u>Hax</u>-5), 2.96 (dd, J = 11.1, 10.3 Hz, 1H, CH-13), 3.05 (ddd, J = 12.7, 8.7, 5.1 Hz, 1H, NCH<u>Hax</u>), 3.25 (s, 3H, OCH₃), 3.67 (s, 3H, OCH₃), 4.23 (dt, J = 12.7, 5.1 Hz, 1H, NCH<u>Heq</u>), 5.12 (d, J = 10.3 Hz, 1H, CH-13a), 5.47 – 5.54 (m, 1H, =CH-11), 5.64 – 5.72 (m, 1H, =CH-10), 6.34 (s, 1H, CH-1), 6.72 (s, 1H, CH-4), 7.29 (t, J = 7.5 Hz, 1H, C₆H₅), 7.41 (t, J = 7.5 Hz, 2H, C₆H₅), 7.50 (d, J = 7.5 Hz, 2H, C₆H₅). ¹³C NMR (101 MHz, DMSO-d₆) δ 28.36 (CH₂-5), 28.66 (CH₂-9), 30.89 (CH₂-12), 38.38 (CH-12a), 41.76 (CH-8a), 41.82 (NCH₂), 51.72 (CH-13), 55.23, 55.88 (2 OCH₃), 59.86 (CH-13a), 110.44 (CH-1), 112.13 (CH-4), 126.18 (=CH-11), 126.57 (=CH-10), 127.37 (C₆H₅), 129.21 (C-13b), 129.32 br (C₆H₅), 129.97 (C-4a), 142.69 (C₆H₅), 146.62, 147.56 (C-1, C-2), 170.18 (C=O). GC-MS (EI, 70eV): m/z = 389 (39), [M⁺], 361 (35), 298 (26), 281 (33), 259 (10), 233 (17), 232 (17), 192

(100), 191 (94), 176 (41), 165 (8), 128 (9), 115 (14), 91 (25), 79 (15), 77 (16). HRMS (ESI-TOF): m/z calcd for C₂₅H₂₇NO₃Na [M + Na]⁺, 412.1889; found, 412.1883.

(8a*SR*,13a*RS*,14*RS*,14a*SR*)-10-Methoxy-3-methyl-14-phenyl-5,8a,13,13a,14,14a-hexahydroindeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(6*H*)-one (**9f**):

Yield 27% (0.026g, conditions: neat/100°C; reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave pale beige solid, mp 232-234°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.25 (s, 3H,

3-CH₃), 2.46 – 2.61 (m, 1H, C<u>H</u>H-13), 2.86 (ddd, J = 15.2, 10.0, 4.8 Hz, 1H, CH<u>H_{ax}-5</u>), 2.98 (ddd, J = 15.2, 6.3, 4.8 Hz, 1H, CH<u>H_{eq}-5</u>), 3.05 – 3.17 (m, 2H, CHH-13, CH-13a), 3.42 (ddd, J = 12.6, 6.3, 4.8 Hz, 1H, 6-C<u>H</u>H), 3.70 (dd, J = 10.7, 3.5 Hz, 1H, CH-14), 3.81 (s, 3H, 10-OCH₃), 3.85 – 3.97 (m, 2H, CH-8a, 6-CH<u>H</u>), 5.34 (d, J = 10.7 Hz, 1H, CH-14a), 6.65 – 6.79 (m, 3H, CH-1, CH-2, CH-11), 6.90 – 7.05 (m, 2H, CH-4, CH-12), 7.21 (d, J = 2.5 Hz, 1H, CH-9), 7.26 – 7.43 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 20.85 (3-CH₃), 28.65 (CH₂-5), 32.23 (CH₂-13), 43.32 (NCH₂), 45.23 (CH-14), 46.12 (CH-13a), 50.95 (CH-8a), 54.99 (CH-14a), 55.44 (OCH₃), 111.20 (CH-9), 114.68 (CH-11), 124.76 (CH-12), 125.90 (CH-2), 126.79 (CH-1), 126.99, 127.68 (C₆H₅), 128.48 (CH-4), 129.06 (C₆H₅), 133.58 (C-14b), 134.00 (C-12a), 136.86 (C-4a), 137.62 (C-3), 142.07 (C₆H₅), 143.38 (C-8b), 158.88 (C-10), 168.91 (C=O).GC-MS (EI, 70eV): m/z = 409 (10), [M⁺], 288 (11), 235 (42), 207 (17), 146 (100), 145 (39), 91 (17). HRMS (ESI-TOF): *m*/z calcd for C₂₈H₂₈NO₂ [M + H]⁺, 410.2120; found, 410.2127.

(8a*SR*,13a*RS*,14*SR*,14a*RS*)-10-Methoxy-3-methyl-14-phenyl-5,8a,13,13a,14,14a-hexahydroindeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(6*H*)-one (**10f**):

Yield 24.2% (0.023g, conditions: neat/100°C; reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave reddish solid, mp 95-97°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.18 (s,

3H, 3-CH₃), 2.51 (dd, J = 16.0, 2.7 Hz, 1H, CH<u>H</u>_B-13), 2.63 – 2.76 (m, 2H, C<u>H</u>H-5, CH-14), 2.80 – 2.92 (m, 2H, CH<u>H</u>-5, CH<u>H</u> α -13), 2.98 (ddd, J = 12.2, 11.1, 3.4 Hz, 1H, NC<u>H</u>H), 3.24 (dddd, J = 11.4, 8.0, 2.7 Hz, 1H, CH-13a), 3.81 (10-OCH₃), 4.18 (d, J = 8.0 Hz, 1H, CH-8a), 4.75 (ddd, J = 12.2, 4.8, 3.7 Hz, 1H, NCHH), 5.00 (d, J = 10.1 Hz, 1H, CH-14a), 6.10 (d, J = 10.1 Hz, 1H, CH-14a), 6 8.1 Hz, 1H, CH-1), 6.50 (dd, J = 8.1, 1.6 Hz, 1H, CH-2), 6.75 (dd, J = 8.1, 2.8 Hz, 1H, CH-11), 6.87 (d, J = 1.6 Hz, 1H, CH-4), 7.02 (d, J = 8.1 Hz, 1H, CH-12), 7.04 – 7.13 (m, 2H, C₆H₅), 7.26 – 7.37 (m, 4H, C₆H₅, CH-9). ¹³C NMR (101 MHz, CDCl₃) δ 20.76 (3-CH₃), 29.88 (CH₂-5), 35.92 (CH₂-13), 41.14 (NCH₂) 43.90 (CH-13a), 50.12 (CH-8a), 50.60 (CH-14), 55.51 (10-OCH₃), 61.46 (CH-14a), 110.45 (CH-9), 114.38 (CH-11), 125.10 (CH-12), 125.91 (CH-2), 127.21 (C₆H₅), 127.57 (CH-1), 128.71 (C₆H₅), 128.80 (CH-4), 129.44 (C₆H₅), 131.94 (C-14b), 132.89 (C-12a) 136.19 (C-4a), 136.88 (C-3), 141.50 (C₆H₅), 142.02 (C-8b), 158.98 (C-10), 169.10 (C=O). GC-MS (EI, 70eV): m/z = 409 (8), [M⁺], 281 (39), 253 (17), 235 (25), 207 (100), 191 (14), 146 (63), 145 (24), 133 (12), 91 (13), 73 (25). HRMS (ESI-TOF): *m/z* calcd for C₂₈H₂₈NO₂[M + H]⁺, 410.2120; found, 410.2129.

(8a*SR*,13a*RS*,14*SR*,14a*SR*)-10-Methoxy-3-methyl-14-phenyl-5,8a,13,13a,14,14a-hexahydroindeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(6*H*)-one (**11f**):

Yield 14% (0.0135g, conditions: neat/100°C; reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave brownish solid, mp 199-201°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ

1.15 – 1.38 (m, 1H, CH<u>H_{ax}</u>=5), 2.14 (ddd, J = 15.2, 2.9, 2.1 Hz, 1H, CH<u>H_{eq}</u>=5), 2.28 (s, 3H, 3-CH₃), 2.55 (td, J = 12.7, 2.9 Hz, 1H, CH<u>H_{ax}</u>=6), 3.11 (dd, J = 16.6, 4.8 Hz, 1H, CH<u>H_β</u>-13), 3.23 (dd, J = 2.5, 0.8 Hz, 1H, CH-14), 3.35 (tdd, J = 9.9, 4.8, 0.8 Hz, 1H, CH-13a), 3.67 (dd, J = 16.6, 9.9 Hz, 1H, CH<u>H_α</u>=13), 3.81 (s, 3H, 10-OCH₃), 4.54 (d, J = 9.9 Hz, 1H, CH-8a), 4.55 (ddd, J = 12.7, 4.6, 2.1 Hz, 1H, CH<u>H_{eq}</u>=6), 4.80 (d, J = 2.5 Hz, 1H, CH-14a), 6.56 – 6.63 (m, 2H, C₆H₅), 6.66 (s, 1H, CH-4), 6.84 (ddd, J = 8.2, 2.5, 0.9 Hz, 1H, CH-11), 7.01 – 7.11 (m, 4H, CH-1, CH-2, C₆H₅), 7.13-7.14 (m, 2H, CH-9, C₆H₅), 7.19 (d, J = 8.2 Hz, 1H, CH-12). ¹³C NMR (101 MHz, CDCl₃) δ 21.02 (3-CH₃), 27.57 (CH₂-5), 38.47 (CH₂-6), 40.31 (CH-13a), 41.11 (CH₂-13), 52.18 (CH-8a), 55.58 (10-OCH₃), 55.96 (CH-14a), 56.64 (CH-14), 109.11 (CH-9), 115.39 (CH-11), 124.79 (CH-12), 126.63, 127.26, 127.67, 128.48, 128.88, (C₆H₅, CH-1, CH-2, CH-4), 130.97 (C-14b), 134.40 (C-12a) 136.23 (C-4a), 136.98 (C-3), 139.80 (Ph), 142.02 (C-8b), 159.48 (C-10), 170.56 (C=O). GC-MS (EI, 70eV): m/z = 409 (12), [M⁺], 281 (13), 235 (44), 207 (35), 146 (100), 145 (41), 115 (10), 91 (18). HRMS (ESI-TOF): *m*/z calcd for C₂₈H₂₈NO₂ [M + H]⁺, 410.2120; found, 410.2119.

(8a*SR*,13a*RS*,14*RS*,14a*SR*)-10-Methoxy-14-phenyl-3,5,6,8a,13,13a,14,14a-octahydrofuro[3,2-g]indeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(2*H*)-one (**9**g):

Yield 30.3% (0.029g, conditions: **B**, reaction time: 48h,). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave pale beige solid, mp 239-241°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.49 – 2.56

(m, 1H, CH<u>H-13 α </u>), 2.82 – 2.87 (m, 1H, C<u>H</u>H-5), 2.93 (dt, *J* = 15.3, 5.2 Hz, 1H, CH<u>H</u>-5), 3.03 – 3.10 (m, 3H, CH₂CH₂O, CH<u>H-13 β </u>), 3.10 (qd, *J* = 9.2, 8.1, 7.1, 3.8 Hz, 1H, CH-13a), 3.47 (dt, *J* = 12.7, 5.2 Hz, 1H, NC<u>H</u>H), 3.72 (dd, *J* = 10.7, 3.8 Hz, 1H, CH-14), 3.77 – 3.86 (m, 1H, NCHH), 3.80 (s, 3H, OCH₃), 3.90 (d, *J* = 7.1 Hz, 1H, CH-8a), 4.41 – 4.49 (m, 2H, OCH₂), 5.28 (d, *J* = 10.7 Hz, 1H, CH-14a), 6.36 (s, 1H, CH-1), 6.72 (dd, *J* = 8.3, 2.5 Hz, 1H, CH-11), 6.98 (d, *J* = 8.3 Hz, 1H, CH-12), 7.00 (s, 1H, CH-4), 7.20 (d, *J* = 2.5 Hz, 1H, CH-9), 7.27 – 7.38 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 28.21 (CH₂-5), 29.37 (CH₂CH₂O), 32.21 (CH₂-13), 43.91 (NCH₂), 44.77 (CH-14), 46.14 (CH-13a), 50.87 (CH-8a), 55.02 (CH-14a), 55.44 (OCH₃), 71.09 (OCH₂), 107.39 (CH-1), 111.21 (CH-9), 114.65 (CH-11), 124.00 (CH-4), 124.73 (CH-12), 125.86 (C-3), 127.10, 127.53, 129.15 (C₆H₅), 129.88 (C-4a), 133.56 (C-12a), 136.71 (C-14b), 141.76 (C₆H₅), 143.38 (C-8b), 158.50 (C-2), 158.86 (C-10), 168.95 (C=O). GC-MS (EI, 70eV): m/z = 437 (26), [M⁺], 316 (23), 281 (36), 263 (72), 253 (14), 236 (15), 207 (97), 191 (21), 174 (100), 173 (35), 146 (98), 145 (69), 133 (14), 115 (20), 103 (13), 96 (12), 91 (35), 73 (26). HRMS (ESI-TOF): *m/z* calcd for C₂₉H₂₈NO₃ [M + H]⁺, 438.2069; found, 438.2061.

(8a*SR*,13a*RS*,14*SR*,14a*RS*)-10-Methoxy-14-phenyl-3,5,6,8a,13,13a,14,14a-octahydrofuro[3,2-g]indeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(2*H*)-one (**10**g):

NMR (101 MHz, CDCl₃) δ 29.38 (CH₂-5), 29.42 (CH₂CH₂O), 35.84 (CH₂-13), 41.74 (NCH₂), 44.04 (CH-13a), 49.93 (CH-14), 50.10 (CH-8a), 55.51 (OCH₃), 61.51 (CH-14a), 71.04 (OCH₂), 108.63 (CH-1), 110.40 (CH-9), 114.34 (CH-11), 124.32 (CH-4), 125.15 (CH-12), 125.55 (C-3), 127.38, 128.84 (C₆H₅), 129.09 (C-4a), 129.25 (C₆H₅), 132.88 (C-12a), 134.81 (C-14b), 141.43 (C₆H₅), 142.02 (C-8b), 157.86 (C-2), 158.98 (C-10), 169.03 (C=O). GC-MS (EI, 70eV): m/z = 437 (19), [M⁺], 316 (13), 281 (35), 263 (38), 253 (16), 207 (100), 191 (18), 174 (49), 173 (12), 146 (45), 145 (31), 133 (13), 115 (10), 96 (11), 91 (20), 73 (28). HRMS (ESI-TOF): *m/z* calcd for C₂₉H₂₈NO₃[M + H]⁺, 438.2069; found, 438.2068.

(8a*SR*,13a*RS*,14*SR*,14a*SR*)-10-Methoxy-14-phenyl-3,5,6,8a,13,13a,14,14a-octahydrofuro[3,2-g]indeno[2',1':4,5]pyrido[2,1-a]isoquinolin-8(2*H*)-one (**11g**):

Yield 15% (0.014g, conditions: **B**, reaction time: 48h). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave pale orange solid, mp 117-119°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.20 (ddd, *J*

= 15.2, 12.6, 4.6 Hz, 1H, CH<u>H_{ax}-5</u>), 2.11 (dt, J = 15.2, 2.7 Hz, 1H, CH<u>H_{eq}-5</u>), 2.53 (td, J = 12.6, 3.0 Hz, 1H, CH<u>H_{ax}-6</u>), 3.08 (dd, J = 16.6, 4.8 Hz, 1H, CH<u>H-13</u>_β), 3.12 – 3.22 (m, 2H, CH₂CH₂O), 3.23 (dd, J = 2.7, 0.9 Hz, 1H, CH-14), 3.34 (tdd, J = 10.0, 4.8, 0.9 Hz, 1H, CH-13a), 3.67 (dd, J = 16.6, 10.0 Hz, 1H, CH<u>H-13</u>_α), 3.81 (s, 3H, OCH₃), 4.48 – 4.65 (m, 4H, NCH<u>H</u>, CH₂O, CH-8a), 4.73 (d, J = 2.7 Hz, 1H, CH-14a), 6.58 (s, 1H, CH-1), 6.63 – 6.69 (m, 3H, CH-4, C₆H₅), 6.84 (ddd, J = 8.3, 2.5, 0.9 Hz, 1H, CH-11), 7.06 – 7.16 (m, 4H, C₆H₅, CH-9), 7.19 (d, J = 8.3 Hz, 1H, CH-12). ¹³C NMR (101 MHz, CDCl₃) δ 27.25 (CH₂CH₂N), 29.46 (CH₂CH₂O), 38.77 (NCH₂), 40.26 (CH-13a), 41.07 (CH₂-13), 52.16 (CH-8a), 55.58 (OCH₃), 56.39 (CH-14a), 56.55 (CH-14), 71.34 (OCH₂), 107.01 (CH-1), 109.13 (CH-9), 115.37 (CH-11), 124.25 (CH-4), 124.83 (CH-12), 125.91 (C-3), 126.66, 127.65, 128.89 (C₆H₅), 129.25 (C-4a), 133.48 (C-12a), 134.40 (C-14b), 139.78 (C₆H₅), 141.96 (C-8b), 158.91 (C-2), 159.48 (C-10), 170.53 (C=O). GC-MS (EI, 70eV): m/z = 437 (22), [M⁺], 316 (25), 281 (34), 263 (73), 253 (12), 236 (15), 207 (100), 191 (17), 174 (97), 173 (30), 146 (86), 145 (65), 133 (13), 115 (21), 96 (11), 91 (33), 73 (23). HRMS (ESI-TOF): *m*/z calcd for C₂₉H₂₈NO₃[M + H]⁺, 438.2069; found, 438.2078.

6b. Procedure 15. General procedure for intermolecular arylation of enelactams with 1,3,5trimethoxybenzene using TIPSOTf

A representative procedure is presented for the synthesis of **3a**. Enelactam **1n** (0.21g, 0.85mmol) and TMB (0.359g, 2.14mmol) were dissolved in 3 mL of anhydrous DCM placed in a dry Schlenk flask. TIPSOTf (0.654g, 2.14mmol) was added to the resulting solution with a syringe and the mixture was stirred at room temperature. Reaction time was monitored by GC-MS. After completation of the reaction 10 mL of saturated sodium bicarbonate solution was added to the reaction flask and the resulting mixture was stirred for 5 minutes. The aqueous layer was extracted with ethyl acetate (3x80mL), and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica (*n*-hexane/ethyl acetate = 1:3) giving product **3a** with 77% yield (0.2761g) as a white solid.

(5RS,6SR)-1,5-Diphenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2-one (**3a**):

Yield 77% (0.276g, reaction time: 18h, substrate: **1n** (0.21g, 0.85 OMe mmol), TIPSOTf (0.655g, 2.14 mmol)). The crude product purified by Ρh column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:3) gave white 3a MeO solid, mp 200-202°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.06 – 2.19 (m, 1H, CH<u>H</u>_{eq}-4), 2.37 (tdd, J = 12.8, 11.2, 5.9 Hz, 1H, CH<u>H</u>_{ax}-4), 2.69 - 2.85 (m, 2H, CH₂-3), 3.08 [br s, 3H, 2'(6')-OCH₃], 3.60 (ddd, J = 12.8, 10.0, 3.5 Hz, 1H, CH_{ax}-5), 3.65 (s, 3H, 4'-OCH₃), 3.92 (br s, 3H, OCH₃), 5.47 (d, J = 10.0 Hz, 1H, CH_{ax}-6), 5.59 [br s, 1H, CH-3'(5')], 6.00 [br s, 1H, CH-5'(3')], 6.97 – 7.21 (m, 10H, two C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 28.08 (CH₂-4), 33.53 (CH₂-3), 45.05 (CH-5), 54.99 (4'-OCH₃), 55.59 br (2'-OCH₃, 6'-OCH₃), 61.23 (CH-6), 90.39 br (CH-3', CH-5'), 108.36 (C-1'), 126.28, 126.50, 127.20, 127.79, 127.92, 128.09, 141.35, 142.79 (two C₆H₅), 158.89 br (C-2', C-6'), 160.44 (C-4'), 170.75 (C=O). GC-MS (EI, 70eV): m/z = 417 (90), [M⁺], 325 (13), 282 (81), 272 (100), 194 (12), 181 (32), 179 (70), 121 (13), 91 (12). HRMS (ESI-TOF): m/z calcd for C₂₆H₂₈NO₄[M + H]⁺, 418.2018; found, 418.2023.

(4*RS*,6*SR*)-4-Benzyl-1-phenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2-one (**3b**):

Yield 21% (0.035g, reaction time: 2h, substrate: **1o** (0.1g, 0.38 mmol), TIPSOTF (0.292g, 0.95 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 1.94 (ddd, *J* = 13.3, 8.5, 6.0 Hz, 1H, CH<u>H</u>_{ax}-

5), 2.16 (ddd, J = 13.3, 6.0, 3.6, 1.2 Hz, 1H, CH $\underline{\text{H}_{eq}}$ -5), 2.32 (ddd, J = 16.9, 7.5, 0.9 Hz, 1H, CH $\underline{\text{H}_{ax}}$ -3), 2.39 – 2.49 (m, 1H, CH-4), 2.60 – 2.72 (m, 2H, CH $\underline{\text{H}_{eq}}$ -6, 4-C $\underline{\text{H}}$ H), 2.80 (dd, J = 13.5, 6.6 Hz, 1H, 4-CH $\underline{\text{H}}$), 3.72 (br s, 6H, 2'-OCH₃, 6'-OCH₃), 3.75 (s, 3H, 4'-OCH₃), 5.53 (t, J = 6.0 Hz, 1H, CH-6), 6.01 (br s, 2H, CH-3', CH-5'), 7.06 – 7.13 (m, 2H, C₆H₅), 7.20 (m, 6H, C₆H₅), 7.24 – 7.32 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 32.60 (CH-4), 34.36 (CH₂-5), 38.56 (CH₂-3), 41.15 (4-CH₂), 54.31 (CH-6), 55.18 (4'-OCH₃), 55.62 br (2'-OCH₃, 6'-OCH₃), 90.68 (CH-3', CH-5'), 109.44 (C-1'), 126.09, 126.26, 126.80, 128.37, 128.46, 129.12, 139.75, 142.39 (two C₆H₅), 158.88 br (C-2', C-6'), 160.38 (C-4'), 170.75 (C=O). GC-MS (EI, 70eV): m/z = 431 (14), [M⁺], 340 (100), 272 (13), 221 (48), 181 (37), 179 (24), 168 (17), 151 (12), 146 (23), 121 (20), 117 (12), 115 (11), 91 (31), 77 (15). HRMS (ESI-TOF): *m/z* calcd for C₂₇H₃₀NO₄[M + H]⁺, 432.2175; found, 432.2179.

(4*SR*,6*SR*)-4-Benzyl-1-phenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2-one (**4b**):

Yield 48% (0.079g, reaction time: 2h, substrate: **1o** (0.1g, 0.38 mmol), TIPSOTf (0.292g, 0.95 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white semi-solid.

^{4b} ¹H NMR (400 MHz, CDCl₃) δ 1.96 – 2.19 (m, 2H, CH₂-5), 2.27 – 2.42 (m, 2H, CH-4, C<u>H</u>H-3), 2.55 – 2.73 (m, 3H, CH<u>H</u>-3, 4-CH₂), 3.52 (br s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 3.83 (br s, 3H, OCH₃), 5.46 (dd, J = 10.8, 6.5 Hz, 1H, CH-6), 5.80 and 5.98 (two br s, 2H, CH-3' or CH-5'), 6.96 – 7.04 (m, 3H, ArH), 7.08 – 7.14 (m, 2H, ArH), 7.16 – 7.23 (m, 3H, ArH), 7.25 – 7.33 (m, 2H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 34.03 (CH₂-5), 34.98 (CH-4), 39.76 (CH₂-3), 42.54 (4-CH₂), 54.40 (CH-6), 55.11 (OCH₃), 55.33 br and 55.89 br (two OCH₃), 90.10 br and 90.91 br (CH-3', CH-5') , 109.28 (C-1'), 126.17, 126.23, 127.14, 128.00, 128.38, 129.20, 139.46, 141.15 (two C₆H₅), 158.10 br and 159.29 br (C-2', C-6'), 160.52 (C-4'), 170.42 (C=O). GC-MS (EI, 70eV): m/z = 431 (16), [M⁺], 340 (100), 272 (13), 221 (48), 181 (36), 179 (24), 168 (17), 151 (11), 146 (23), 121 (20), 91 (31), 77 (15). HRMS (ESI-TOF): *m/z* calcd for C₂₇H₃₀NO4[M + H]⁺, 432.2175; found, 432.2179.

(4*SR*,5*RS*,6*SR*)-4-Benzyl-1,5-diphenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2-one (**3c**):

Yield 34% (0.050g, reaction time: 48h, substrate: **1p** (0.098g, 0.29 mmol), TIPSOTf (0.221g, 0.72 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white solid, mp 89-91°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 2.41

(dd, J = 13.2, 10.1 Hz, 1H, 4-C<u>H</u>H), 2.46 – 2.50 (m, 1H, C<u>H</u>H-3), 2.62 – 2.71 (m, 2H, CH<u>H</u>-3, CH-4), 2.78 (dd, J = 13.2, 3.8 Hz, 1H, 4-CH<u>H</u>), 3.53 (s, 3H, OCH₃), 3.67 – 3.73 (m, 4H, OCH₃, CH-5), 3.85 (s, 3H, OCH₃), 5.75 (d, J = 6.3 Hz, 1H, CH-6), 5.85 and 6.08 (two s, 2H, CH-3' and CH-5'), 7.00 (d, J = 7.5 Hz, 2H, C₆H₅), 7.07 – 7.30 (m, 7H, C₆H₅), 7.34 (t, J = 7.5 Hz, 2H, C₆H₅), 7.42 (d, J = 7.5 Hz, 2H,). ¹³C NMR (101 MHz, CDCl₃) δ 36.23 (4-CH₂), 36.83 (CH₂-3), 38.55 (CH-4), 48.82 (CH-5), 55.12 br (OCH₃), 55.43 (OCH₃), 55.75 br (OCH₃), 59.03 (CH-6), 90.44, 91.04 (CH-3', CH-5'), 108.96 (C-1'), 125.97, 126.50, 126.79, 127.09, 128.31, 128.35, 128.48, 128.76, 129.00, 139.95, 141.11, 142.15 (three C₆H₅), 158.36 br, 159.60 br (C-2', C-6'), 160.53 (C-4'), 170.66 (C=O). HRMS (ESI-TOF): *m/z* calcd for C₃₃H₃₄NO₄[M + H]⁺, 508.2488; found, 508.2485.

(4*RS*,5*RS*,6*SR*)-4-Benzyl-1,5-diphenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2-one (**4c**):

Yield 22% (0.0325g, reaction time: 48h, substrate: **1p** (0.098g, 0.29 mmol), TIPSOTf (0.221g, 0.72 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave 25 : 75 mixture of **3c** : **4c** isomers as white solid. Analyses for **4c** were performed

from 25 : 75 mixture of **3c** : **4c** isomers. ¹H NMR (400 MHz, CDCl₃) δ 2.11 (dd, *J* = 13.9, 10.2 Hz, 1H, 4-C<u>H</u>H), 2.42 (dd, *J* = 16.7, 12.2 Hz, 1H, CH_{<u>Hax}-3), 2.60 – 2.72 (m, 3H, CH-4, CH<u><u>Heq</u>-3, 4-CH<u>H</u>), 3.00 (s, 3H, OCH₃), 3.35 (dd, *J* = 11.6, 10.2 Hz, 1H, CH_{ax}-5), 3.64 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃), 5.50 (d, *J* = 10.2 Hz, 1H, CH_{ax}-6), 5.54 and 5.99 (two d, *J* = 2.2 Hz, 2H, CH-3', CH-5'), 6.94 – 7.27 (m, 15H, three C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 38.55 (CH₂-3), 39.04 (CH-4), 39.96 (4-CH₂), 51.30 (CH-5), 54.97 (OCH₃), 55.41 br, 55.71 br (two OCH₃), 61.30 (CH-6), 90.11, 90.87 (CH-3', CH-5'), 108.40 (C-1'), 126.09, 126.36, 126.63, 127.21 (2C), 128.09 (2C), 128.13 (2C), 128.31 (2C), 128.70 (2C), 129.11 (2C), 139.38, 141.03, 141.10 (three C₆H₅), 158.59, 159.00 (C-2', C-6'), 160.41 (C-4'), 170.35 (C=O). GC-MS (EI, 70eV): m/z = 507 (16), [M⁺], 282 (46), 272 (100), 257 (19), 207 (14), 194 (11), 181 (19), 179 (86), 151 (12), 121 (15), 117 (19), 115 (15), 91 (33), 77 (8). HRMS (ESI-TOF): *m/z* calcd for C₃₃H₃₄NO₄[M + H]⁺, 508.2488; found, 508.2493.</sub></u></u>

(4*SR*,5*RS*,6*SR*)-1-Benzyl-4-(2-fluorobenzyl)-5-phenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2one (**3d**):

(4*RS*,5*RS*,6*SR*)-1-Benzyl-4-(2-fluorobenzyl)-5-phenyl-6-(2,4,6-trimethoxyphenyl)piperidin-2one (**4d**):

Yield 75% (0.076g, reaction time: 18h, substrate: 1q (0.07g, 0.27 mmol), TIPSOTf (0.206g, 0.67 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave 82 : 18 mixture of 3d :

4d isomers as pale yellow solid. Analyses for 3d and 4d were performed from 82 : 18 mixture of **3d** : **4d** isomers. ¹H NMR (400 MHz, CDCl₃) δ 2.09 [dd, J = 13.4, 10.4 Hz, 0.22H, 4-CHH (4d)], 2.25 [dd, J = 13.2, 10.9 Hz, 1H, 4-CHH (3d)], 2.31 [dd, J = 17.3, 7.0 Hz, 1H, CHH_{ax}-3 (3d)], 2.33-2.37 [m, 0.22, CHH-3 (4d)], 2.51 [dd, J = 17.2, 5.2 Hz, 1H, CHH_{eq}-3 (3d)], 2.52-2.56 [m, 0.44, CH-4, CHH-3 (**4d**)], 2.55 – 2.62 [m, 1H, CH-4 (**3d**)], 2.65 [dd, *J* = 13.5, 3.9 Hz, 1H, 4-CH<u>H</u> (**3d**)]), 3.02 [s, 0.66H, OCH₃ (**4d**)], 3.15 [dd, *J* = 11.6, 10.1 Hz, 0.22H, CH-5 (**4d**)], 3.55 [dd, *J* = 6.4, 4.0 Hz, 1H, CH-5 (**3d**)], 3.59 [d, *J* = 14.6 Hz, 1H, NCHH (**3d**)], 3.60 [s, 3H, OCH₃ (**3d**)], 3.70 [s, 3H, OCH₃ (**3d**)], 3.73 [s, .0.66H, OCH₃ (**4d**)], 3.74 [s, 0.66H, OCH₃ (**4d**)]), 3.75 [d, *J* = 14.6 Hz, 0.22, NC<u>H</u>H (**4d**)], 3.78 [s, 3H, OCH₃ (**3d**)]), 4.88 [d, *J* = 14.6 Hz, 0.22H, NCHH (**4d**)]), 5.00 [d, *J* = 10.1 Hz, 0.22H, CH-6 (**4d**)], 5.29 [d, *J* = 6.4 Hz, 1H, CH-6 (**3d**)], 5.32 [d, J = 14.3 Hz, 1H, NCHH (**3d**)], 5.78 [d, J = 2.2 Hz, 0.22H, CH-3'(5') (**4d**)], 5.98 [d, J= 2.2 Hz, 0.22H, CH-5'(3') (4d)], 6.03 (d, J = 2.3 Hz, 1H, CH-3'(5') (3d)], 6.05 (d, J = 2.3 Hz, 1H, CH-5'(3') (3d)], 6.87 – 7.29 [m, 17.08H, ArH(3d), ArH(4d)]. ¹³C NMR (101 MHz, CDCl₃) δ 29.86 (3d, CH₂-3), 33.25 (4d, CH₂-3), 35.50 (3d, 4-CH₂), 36.71 (3d, CH-4), 37.57 (4d, CH-4), 38.10 (4d, 4-CH₂), 47.23 (4d, NCH₂), 47.69 (3d, NCH₂), 48.84 (3d, CH-5A), 52.24 (4d, CH-5), 54.39 (3d, CH-6), 55.18, 55.19 (4d, two OCH₃), 55.22, 55.41 (3d, two OCH₃), 55.56 (4d, OCH₃), 55.65 (3d, OCH₃), 58.38 (4d, CH-6), 90.12 (4d, CH-3'(5') 90.40 (3d, CH-5'(3') 90.94 (4d, CH-5'(3'), 91.11 (3d, CH-5'(3'), 107.89 (4d, CH-1'), 108.34 (3d, CH-1'), 115.22 (**3d**, d, *J*=22.0 Hz, CH-3") 115.27 (**4d**, d, *J*=22.0 Hz, CH-3"), 123.89 (**3d**, **4d**, d, *J* = 3.6 Hz), 126.41 (**3d**, **4d**, d, *J* = 12.8 Hz, C-1"), 126.50 (**4d**, ArH), 126.55 (**3d**, ArH), 126.81 (**4d**, ArH), 126.98 (3d, ArH), 127.65, 127.73, 127.80 (4d, three ArH), 127.87 (3d, ArH), 127.88 (3d, B C-4' overlapped), 127.95 (3d, ArH), 128.44 (4d, ArH), 128.76, 129.21 (3d, two ArH), 131.29 (**3d**, d, *J* = 4.9 Hz, CH-6"), 131.35 (**4d**, d, *J* = 5.0 Hz, CH-6"), 137.71 (**3d**, Ar), 138.14 (**4d**, Ar), 140.51 (**3d**, Ar), 140.96 (**4d**, Ar), 158.74 (**3d**, Ar), 158.93, 159.49, (**4d**, two Ar), 159.80, 160.74 (**3d**, two Ar), 160.80 (**4d**, Ar), 162.39 (**4d**, d, J = 243.9 Hz, CF-2"), 162.43 (**3d**, d, J = 245.0 Hz, CF-2"), 170.66 (**3d**, C=O), 170.88 (**4d**, C=O). **3d**: GC-MS (EI, 70eV): m/z = 539 (8), [M⁺], 448 (66), 371 (25), 296 (23), 286 (47), 284 (16), 281 (18), 257 (16), 207 (45), 181 (98), 179 (24), 117 (16), 109 (29), 91 (100), 73 (13). **4d**: GC-MS (EI, 70eV): m/z = 539 (7), [M⁺], 448 (61), 371 (23), 296 (21), 286 (46), 284 (17), 281 (17), 257 (16), 207 (41), 181 (100), 179 (23), 117 (19), 109 (27), 91 (99), 73 (12). HRMS (ESI-TOF): *m/z* calcd for C₃₄H₃₄FNO₄[M + H]⁺, 540.2550; found, 540.2552.

(3*SR*,4a*RS*,9b*SR*)-2-Phenyl-3-(2,4,6-trimethoxyphenyl)-2,3,4,4a,5,9b-hexahydro-1*H*-indeno[1,2-c]pyridin-1-one (**3e**):

Yield 41% (0.030g, reaction time: 5h, substrate: 1r (0.045g, 0.17 mmol), TIPSOTF (0.132g, 0.43 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave 71 : 29 mixture of **3e** : **4e** isomers as white solid. Analyses for **3e** were performed from

71 : 29 mixture of **3e** : **4e** isomers. ¹H NMR (400 MHz, CDCl₃) δ 1.89 (ddd, *J* = 13.2, 4.3, 2.8 Hz, 1H, CH<u>H</u>_{eq}-4), 2.06 (td, *J* = 13.2, 5.1 Hz, 1H, CH<u>H</u>_{ax}-4), 2.61 (dd, *J* = 15.9, ~1.0 Hz, 1H, CH<u>H</u>_β-5), 2.90 – 3.06 (m, 1H, CH-4a), 3.17 (ddd, *J* = 15.9, 6.3, 1.2 Hz, 1H, CH<u>H</u>_a-5), 3.80 (br. s, 9H, three OCH₃), 4.17 (d, *J* = 7.4 Hz, 1H, CH-9b), 5.32 (dd, *J* = 5.1, 2.8 Hz, 1H, CH-3), 6.11 [br. s, 2H, C₆H₂(OMe)₃], 7.07 – 7.31 (m, 8H, ArH), 7.78 – 7.85 (m, 1H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 33.63 (CH₂-4), 35.23 (CH-4a), 38.20 (CH₂-5), 52.01 (CH-9b), 55.25 (OCH₃), 55.65 (two OCH₃), 56.14 (CH-3), 90.72, 109.15 [C₆H₂(OMe)₃], 124.88, 126.08, 126.19, 126.54, 126.59, 127.07, 128.65, 141.24, 141.76, 143.14 (C₆H₅, C₆H₄), 158.98 br., 160.40 [C₆H₂(OMe)₃], 171.24 (C=O). GC-MS (EI, 70eV): m/z = 429 (9), [M⁺], 398 (5), 308 (5), 281 (10), 261 (87), 248 (9), 214 (7), 207 (24), 194 (90), 181 (100), 179 (82), 168 (17), 165 (10), 151 (17), 142 (12), 128 (9), 121 (29), 115 (24), 91 (12), 77 (16). HRMS (ESI-TOF): *m/z* calcd for C₂₇H₂₈NO₄[M + H]⁺, 430.2018; found, 430.2058.

(3*SR*,4a*SR*,9b*RS*)-2-Phenyl-3-(2,4,6-trimethoxyphenyl)-2,3,4,4a,5,9b-hexahydro-1*H*-indeno[1,2-c]pyridin-1-one (**4e**):

Yield 29% (0.0223g, reaction time: 5h, substrate: **1r** (0.045g, 0.17 mmol), TIPSOTf (0.132g, 0.43 mmol)). The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 94-97°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz,

CDCl₃) δ 1.76 (dtd, *J* = 13.4, 4.6, 1.4 Hz, 1H, CH<u>Heq</u>-4), 2.33 (ddd, *J* = 13.4, 13.1, 11.6 Hz, 1H, CH<u>Hax</u>-4), 2.63 (dd, *J* = 15.6, ~1.0 Hz, 1H, CH<u>Ha</u>-5), 3.01 (dtd, *J* = 13.1, 6.5, 4.5 Hz, 1H, H-4a), 3.22 (dd, *J* = 15.5, 6.5 Hz, 1H, CH<u>Hβ</u>-5), 3.31 (s, 3H, OCH₃), 3.63 (s, 3H, OCH₃), 3.67 (s, 3H, OCH₃), 4.15 (d, *J* = 6.5 Hz, 1H, CH-9b), 5.64 (dd, *J* = 11.6, 4.6 Hz, 1H, CH-3), 5.73 [d, *J* = 2.3 Hz, 1H, C₆H₂(OMe)₃], 5.80 [d, *J* = 2.3 Hz, 1H, C₆H₂(OMe)₃], 6.96 – 7.04 (m, 1H, ArH), 7.09 – 7.15 (m, 4H, ArH), 7.18 – 7.30 (m, 3H, ArH), 7.78 – 7.85 (m, 1H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 30.34 (CH₂-4), 36.83 (CH-4a), 38.61 (CH₂-5), 51.20 (CH-9b), 53.62 (CH-3), 54.46, 55.05, 55.90 (three OCH₃), 89.86, 90.60, 108.85 [C₆H₂(OMe)₃], 125.06, 125.07, 125.98, 126.32, 126.82, 126.89, 127.66, 140.89, 141.30, 141.59 (C₆H₅, C₆H₄), 157.90, 159.19, 160.41 [C₆H₂(OMe)₃], 169.54 (C=O). GC-MS (EI, 70eV): m/z = 429 (6), [M⁺], 398 (5), 308 (5), 281 (5), 261 (100), 248 (8), 214 (5), 207 (12), 194 (67), 181 (79), 179 (65), 168 (15), 165 (7), 151 (13), 142 (7), 128 (8), 121 (24), 115 (21), 91 (9), 77 (11). HRMS (ESI-TOF): *m/z* calcd for C₂₇H₂₈NO₄[M + H]⁺, 430.2018; found, 430.2058.

6c. Procedure 16. General procedure for the cyclisation of 4-benzyl enelactams using TIPSOTf

Enelactam (1t-z) (0.36-0.97 mmol) was dissolved in anhydrous MeCN or PhCl (1s) (to obtain 0.07M solution) in a dry Schlenk flask. TIPSOTf (2.5 equiv.) was added with a syringe and the mixture was stirred at room temperature for 5 minutes. Subsequently, the reaction was refluxed for 9-96h. Reaction time was monitored by ¹H NMR by sampling the reactions at the time intervals. After full conversion the reaction mixture was allowed to cool to room temperature and 10 mL of saturated sodium bicarbonate solution was added to the reaction flask and the mixture was stirred for 5 minutes. The aqueous layer was extracted with ethyl acetate (3×80 mL), and the combined organic layers were dried over MgSO4. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using a mixture of appropriate mixture of *n*-hexane/AcOEt to give desired products **12a-h**, **13a-e**, **14a-b** and by-product **15**.

(1*SR*,5*RS*,11*SR*)-11-Methyl-2-phenyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2*H*)one (**12a**):

Yield 61% [0.061g; reaction conditions: substrate **1s** (0.36 mmol, 0.1g), neat/100°C/24h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 176-178°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.46 (d, *J* = 6.9 Hz,

3H, 11-CH₃), 2.32 – 2.40 (m, 1H, CH-11), 2.38 (dd, J = 18.8, 0.8 Hz, 1H, CH_{Hβ}-4), 2.45 (dddt, J = 7.8, 6.1, 2.0, 0.8, 0.8 Hz, 1H, CH-5), 2.93 (dd, J = 17.4, 0.8 Hz, 1H, CH_{Hα}-6), 2.90 – 2.98 (m, 1H, CH_{Hα}-4), 3.25 (ddd, J = 17.4, 6.1, 0.8 Hz, 1H, CH_{Hβ}-6), 4.38 (t, J = 2.0 Hz, 1H, CH-1), 6.50 (dd, J = 7.7, 1.2 Hz, 1H, CH-10), 6.91 – 7.07 (m, 3H, C₆H₅, CH-9), 7.12 – 7.25 (m, 2H, CH-7, CH-8), 7.25 – 7.33 (m, 1H, C₆H₅), 7.35 – 7.43 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 17.16 (11-CH₃), 31.62 (CH-5), 32.67 (CH-11), 35.87 (CH₂-4), 38.38 (CH₂-6), 64.96 (CH-1), 125.46 (CH-9), 127.08, 128.08 (C₆H₅), 128.20 (CH-8), 128.55 (CH-10), 129.18 (C₆H₅), 129.98 (CH-7), 132.89 (C-6a), 136.90 (C-10a), 142.38 (C₆H₅), 169.47 (C=O). GC-MS (EI, 70eV): m/z = 277 (100), [M⁺], 172 (22), 157 (10), 143 (41), 141 (29), 135 (39), 134 (42), 129 (35), 128 (56), 115 (29), 92 (48), 91 (19), 77 (23). HRMS (ESI-TOF): *m/z* calcd for C₁₉H₂₀NO [M + H]⁺, 278.1545; found, 278.1539. HRMS (ESI-TOF): *m/z* calcd for C₁₉H₁₉NONa[M + Na]⁺, 300.1364; found, 300.1373.

(1*SR*,5*RS*,11*RS*)-11-Methyl-2-phenyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2*H*)one (**13a**):

13a

Yield 4% [0.0044g; reaction conditions: substrate **1s** (0.36 mmol, 0.1g), neat/100°C/18h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 195-197°C (ethyl acetate:petroleum ether). ¹H NMR (400 MHz, CDCl₃) δ 1.04 (d, *J* = 7.1 Hz,

3H, 11-CH₃), 2.46 (ddddt, J = 7.6, 6.8, 2.4, 1.7, 0.8 Hz, 1H, CH-5), 2.55 (dd, J = 18.6, 0.8 Hz, 1H, CH<u>H</u>_β-4), 2.77 (m, 1H, CH-11), 2.83 (dd, J = 18.2, 0.8 Hz, 1H, CH<u>H</u>_α-6), 3.01 (ddd, J = 18.6, 7.6, 1.4 Hz, 1H, CH<u>H</u>_α-4), 3.25 (dddd, J = 18.1, 6.8, 1.4, 0.8 Hz, 1H, CH<u>H</u>_β-6), 4.33 (dd, J = 3.0, 1.7 Hz, 1H, CH-1), 6.42 (d, J = 7.6 Hz, 1H CH-10), 6.92 – 7.00 (m, 3H, C₆H₅, CH-9), 7.17 (d, J = 7.4 Hz, 1H, CH-7), 7.22 (td, J = 7.4, 1.3 Hz, 1H, CH-8), 7.26 – 7.31 (m, 1H, C₆H₅), 7.33 – 7.40 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 16.11 (11-CH₃), 30.99 (CH-5), 32.17 (CH₂-6), 33.61 (CH-11), 41.20 (CH₂-4), 64.64 (CH-1), 125.47 (CH-9), 127.22 (C₆H₅), 128.15 (CH-8), 128.23 (C₆H₅), 129.15 (C₆H₅), 129.70 (CH-7), 129.74 (CH-10), 132.77 (C-6a), 133.91 (C-10a), 142.07 (C₆H₅), 169.78 (C=O). GC-MS (EI, 70eV): m/z = 277 (72), [M⁺], 207 (16),

172 (22), 143 (32), 141 (36), 135 (94), 134 (82), 129 (31), 128 (71), 115 (34), 92 (100), 91 (26), 77 (29). HRMS (ESI-TOF): m/z calcd for C₁₉H₂₀NO [M + H]⁺, 278.1545 found, 278.1537

(1SR,5RS,11SR)-2-Benzyl-11-methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)one (12b):

Yield 73% [0.079g; reaction conditions: substrate 1t (0.37 mmol, 0.109g), MeCN/reflux/24h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave white solid, mp 147-149°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 1.00 (d, J = 6.9 Hz, 3H, 12b 11-CH₃), 2.09 - 2.17 (m, 1H, CH-11), 2.26 - 2.37 (m, 2H, CH-5, CHH_β-4), 2.88 (d, J = 17.9Hz, 1H, CH<u>H α </u>-6), 2.98 (ddd, J = 18.7, 8.1, 1.3 Hz, 1H, CH<u>H α </u>-4), 3.21 (dd, J = 17.9, 6.1 Hz, 14.9 Hz, 1H, NCHH), 7.07 - 7.11 (m, 1H, CH-10), 7.12 - 7.19 (m, 2H, CH-7, CH-9), 7.21 -7.27 (m, 1H, CH-8), 7.28 – 7.41 (m, 5H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 16.56 (11-CH₃), 31.24 (CH-5), 32.35 (CH-11), 35.82 (CH₂-4), 38.11 (CH₂-6), 46.85 (NCH₂), 57.73 (CH-1), 125.57 (CH-9), 127.53 (C₆H₅), 127.97 (CH-8), 128.18 (CH-10), 128.61, 129.03 (C6H5), 130.14

(CH-7), 133.69 (C-6a), 137.00 (C-10a), 137.24 (C₆H₅), 169.63 (C=O). GC-MS (EI, 70eV): m/z = 291 (62), [M⁺], 207 (11), 149 (45), 148 (100), 143 (35), 129 (55), 128 (56), 118 (18), 115 (30), 107 (45), 104 (28), 91 (78), 77 (16), 65 (17). HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₂NO $[M + H]^+$, 292.1701; found, 292.1700.

(1SR,5RS,11RS)-2-benzyl-11-methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)one (13b):

Yield 9% [0.0097g; reaction conditions: substrate 1t (0.37 mmol, 0.109g), MeCN/reflux/24h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 0.86 (d, J = 6.8 Hz, 3H, 11-CH₃), 2.26 – 2.44 (m, 2H, CH-5, CH-

11), 2.49 (d, J = 18.4 Hz, 1H, CH<u>H</u>_B-4), 2.78 (d, J = 18.2 Hz, 1H, CH<u>H</u> α -6), 2.97 (ddd, J = 18.4, 7.2, 1.5 Hz, 1H, $CH\underline{H}_{\alpha}$ -4), 3.19 (dd, J = 18.2, 7.1 Hz, 1H, $CH\underline{H}_{\beta}$ -6), 3.71 (d, J = 15.4 Hz, 1H, NCHH), 3.84 (dd, *J* = 3.0, 1.8 Hz, 1H, CH-1), 5.49 (d, *J* = 15.4 Hz, 1H, NCHH), 7.07 (dd, *J* = 7.8, 1.4 Hz, 1H, CH-10), 7.12 – 7.20 (m, 2H, CH-7, CH-9), 7.20 – 7.28 (m, 1H, CH-8), 7.32 (d, J = 8.1 Hz, 3H, C₆H₅), 7.35 – 7.41 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 16.14 (11-CH₃), 30.85 (CH-5), 32.19 (CH₂-6), 33.34 (CH-11), 41.17 (CH₂-4), 46.76 (NCH₂), 58.07 (CH-1), 125.73 (CH-9), 127.34, 127.98 (C₆H₅), 128.14 (CH-8), 128.76 (C₆H₅), 129.19 (CH-10), 129.86 (CH-7), 133.58 (C-6a), 134.17 (C-10a), 137.35 (C₆H₅), 169.80 (C=O). GC-MS (EI, 70eV): m/z = 291 (96), $[M^+]$, 186 (19), 147 (32), 146 (67), 144 (70), 143 (59), 141 (21), 129 (100), 128 (67), 119 (28), 115 (35), 106 (57), 104 (55), 91 (91), 77 (19), 65 (23). HRMS (ESI-TOF): m/z calcd for C₂₀H₂₂NO [M + H]⁺, 292.1701; found, 292.1700.

1,4-Dibenzyl-5-methylpyridin-2(1*H*)-one (**14b**):

Yield 28% [0.035g; reaction conditions: substrate 1t (0.43 mmol, 0.126g), PhCl/110°C/24h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave yellow solid, mp 123-125°C (ethyl 14b acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 1.91 (d, J = 1.0 Hz, 3H, CH₃), 3.76 (s, 2H, 4-CH₂), 5.10 (s, 2H, NCH₂), 6.36 (s, 1H, CH-3), 6.98 (q, J = 1.0 Hz, 1H, CH-6), 7.15 (dd, J = 7.0, 1.7 Hz, 2H, C₆H₅), 7.18 – 7.40 (m, 8H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 15.56 (CH₃), 39.33 (4-CH₂), 51.24 (NCH₂), 115.53 (C-5), 120.35 (CH-3), 126.70, 127.89, 128.09, 128.71, 128.84, 129.04 (two C₆H₅), 134.65 (CH-6), 136.75, 137.30 (two C₆H₅), 153.42 (C-4), 162.34 (C=O). GC-MS (EI, 70eV): m/z = 289 (57), $[M^+]$, 281 (23), 253 (11), 212 (14), 207 (60), 183 (30), 91 (100), 65 (18). HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₀NO [M + H]⁺, 290.1545; found, 290.1544.

(1SR,5RS,11SR)-2,11-Dimethyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)-one (12c):

Yield 40% [0.080g; reaction conditions: substrate **1u** (0.94 mmol, 0.203g), MeCN/reflux/96h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 1.24 (d, J = 7.0 Hz, 3H, 11-CH₃), 2.20 (d, J = 18.7 Hz, 1H,

 CHH_{α} -4), 2.21 – 2.29 (m, 1H, CH-11), 2.35 (dddd, J = 7.4, 6.6, 2.1, 1.5 Hz, 1H, CH-5), 2.79 $(dd, J = 18.7, 7.4 Hz, 1H, CHH_{\beta}-4), 2.84 (d, J = 17.6 Hz, 1H, CHH_{\alpha}-6), 2.97 (s, 1H, NCH_3),$ $3.21 (dd, J = 17.6, 6.6 Hz, 1H, CHH_{\beta}-6), 3.91 (t, J = 2.1 Hz, 1H, CH-1), 7.08 - 7.16 (m, 3H, 3.91 (t, J = 2.1 Hz, 1H, CH-1))$ CH-7, CH-9, CH-10), 7.22 (ddd, *J* = 8.0, 6.0, 2.5 Hz, 1H, CH-8). ¹³C NMR (101 MHz, CDCl₃) δ 16.75 (11-CH₃), 31.61 (CH-5), 32.72 (CH-11), 34.06 (NCH₃), 35.55 (CH₂-4), 38.08 (CH₂-6), 62.98 (CH-1), 125.61 (CH-9), 127.81 (CH-10), 128.14 (CH-8), 130.08 (CH-7), 133.27 (C-6a), 137.16 (C-10a), 169.69 (C=O). GC-MS (EI, 70eV): m/z = 215 (96), [M⁺], 200 (32), 160 (16),

144 (72), 143 (54), 141 (38), 129 (100), 128 (74), 124 (31), 115 (51), 91 (18), 77 (13), 73 (93), 65 (9). HRMS (ESI-TOF): m/z calcd for C₁₄H₁₈NO [M + H]⁺, 216.1388; found, 216.1382.

(1SR,5RS,11RS)-2,11-Dimethyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)-one (13c):

Yield 13% [0.027g; reaction conditions: substrate **1u** (0.94 mmol, 0.203g),

MeCN/reflux/96h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 1:1) gave white semi-solid. ¹H NMR (400 13c MHz, CDCl₃) δ 0.97 (d, J = 7.0 Hz, 3H, 11-CH₃), 2.31 – 2.37 (m, 1H, CH-5), 2.37 (d, J = 18.1 Hz, 1H, CHH $_{\alpha}$ -4), 2.45 – 2.55 (m, 1H, CH-11), 2.73 (d, J = 18.3 Hz, 1H, $CH\underline{H}_{\alpha}$ -6), 2.83 (dd, J = 18.1, 7.3 Hz, 1H, $CH\underline{H}_{\beta}$ -4), 2.92 (s, 3H, NCH₃), 3.18 (dd, J = 18.3, 7.4Hz, 1H, CH<u>H</u> $_{\beta}$ -6), 3.87 (dd, J = 3.1, 1.7 Hz, 1H, CH-1), 7.04 – 7.18 (m, 3H, C₆H₄), 7.23 (td, J= 7.3, 1.8 Hz, 1H, C₆H₄). ¹³C NMR (101 MHz, CDCl₃) δ 16.06 (11-CH₃), 31.05 (CH-5), 32.09 (CH₂-6), 33.04 (CH-11), 33.45 (NCH₃), 40.94 (CH₂-4), 62.67 (CH-1), 125.72, 128.10, 129.04, 129.84, 133.24, 134.05 (C₆H₄), 169.93 (C=O). GC-MS (EI, 70eV): m/z = 215 (72), $[M^+]$, 200 (9), 160 (11), 144 (44), 143 (42), 142 (36), 141 (32), 129 (61), 128 (53), 127 (13), 124 (31), 115 (28), 91 (11), 73 (100). HRMS (ESI-TOF): m/z calcd for C₁₄H₁₈NO [M + H]⁺, 216.1388; found, 216.1381.

(1RS,5RS,11SR)-11-Chloro-2-methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)one (12d):

Yield 49% [0.0854g; reaction conditions: substrate **1v** (0.73 mmol, 0.173g), MeCN/reflux/17h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave white solid, mp 126-128°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.31 (dd, J = 18.4, 0.6 Hz,

1H, CH<u>H</u>_B-4), 2.82 (dddd, *J* = 7.6, 6.7, 3.1, 1.9 Hz, 1H, CH-5), 3.00 (s, 3H, NCH₃), 3.01 (dd, *J* = 17.8, 0.6 Hz, 1H, CH<u>H</u> $_{\alpha}$ -6), 3.08 (dd, J = 18.6, 7.6 Hz, 1H, CH<u>H</u> $_{\alpha}$ -4), 3.34 (ddd, J = 17.8, 6.7, 1.3 Hz, 1H, CHH_{β}-6), 4.28 (dd, J = 3.1, 1.9 Hz, 1H, CH-1), 4.57 (t, J = 3.1 Hz, 1H, CH-11), 7.13 (dd, J = 7.7, 1.5 Hz, 1H, CH-10), 7.15 – 7.22 (m, 2H, CH-7, CH-9), 7.28 (td, J = 7.3, 1.5 Hz, 1H, CH-8). ¹³C NMR (101 MHz, CDCl₃) δ 33.87 (NCH₃), 34.07 (CH-5), 35.28 (CH₂-4), 37.55 (CH₂-6), 57.59 (CH-11), 63.48 (CH-1), 126.38 (CH-9), 128.02 (CH-10), 129.04 (CH-8), 129.86 (CH-7), 131.63, 135.20 (C-6a, CH-10a), 168.38 (C=O). GC-MS (EI, 70eV): m/z = 235 (39), [M⁺], 200 (19), 155 (13), 143 (22), 142 (41), 141 (52), 132 (12), 129 (44), 128 (100),

118 (17), 115 (30). HRMS (ESI-TOF): m/z calcd for C₁₃H₁₅ClNO [M + H]⁺, 236.0842; found, 236.0845.

(1RS,5RS,11RS)-11-Chloro-2-methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)one (13d):

Yield 47% [0.081g; reaction conditions: substrate 1v (0.73 mmol, 0.173g), MeCN/reflux/17h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave white solid, mp 192-194°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.51 (dd, J = 18.2, 0.8 Hz, 1H, CHH_{β}-4), 2.74 – 2.80 (m, 1H, CH-5), 2.79 (dd, J = 17.8, 0.8 Hz, 1H, CHH_{α}-6), 2.90 (dd, J

= 18.2, 6.9 Hz, 1H, CH<u>H</u> $_{\alpha}$ -4), 2.94 (s, 3H, NCH₃), 3.45 (dd, *J* = 18.0, 6.5 Hz, 1H, CH<u>H</u> $_{\beta}$ -6), 4.25 (dd, J = 3.5, 1.8 Hz, 1H, CH-1), 4.72 (t, J = 3.5 Hz, 1H, CH-11), 7.12 – 7.21 (m, 3H, CH-7, CH-9, CH-10), 7.24 – 7.31 (m, 1H, CH-8). ¹³C NMR (101 MHz, CDCl₃) δ 32.05 (CH₂-6), 32.99 (CH-5), 33.69 (NCH₃), 39.41 (CH₂-4), 55.35 (CH-11), 61.72 (CH-1), 126.16 (CH-9), 128.65 (CH-8), 128.92 (CH-7), 129.82 (CH-10), 132.06, 132.32 (C-6a, C-10a), 168.41 (C=O). GC-MS (EI, 70eV): m/z = 235 (41), $[M^+]$, 200 (31), 160 (12), 155 (13), 143 (30), 142 (49), 141 (63), 132 (15), 129 (53), 128 (100), 118 (21), 115 (41), 89 (10), 73 (27). HRMS (ESI-TOF): m/z calcd for C₁₃H₁₅ClNO [M + H]⁺, 236.0842; found, 236.0846.

(1RS,5RS,11SR)-2-Benzyl-11-chloro-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)one (12e):

Yield 51% [0.0653g; reaction conditions: substrate **1w** (0.41 mmol, 0.128g), MeCN/reflux/19h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave white solid, mp 172-174°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.44 (dd, J = 18.6, 0.8 Hz,

1H, CHH_{β}-4), 2.74 – 2.86 (m, 1H, CH-5), 3.06 (dd, J = 17.8, 0.8 Hz, 1H, CHH_{α}-6), 3.23 (ddd, J = 18.6, 7.6, 1.4 Hz, 1H, CH<u>H</u> $_{\alpha}$ -4), 3.35 (ddd, J = 17.8, 7.0, 0.8 Hz, 1H, CH<u>H</u> $_{\beta}$ -6), 3.75 (d, J =15.2 Hz, 1H, NCHH), 4.24 (t, J = 3.2, 2.1 Hz, 1H, CH-1), 4.47 (t, J = 3.2 Hz, 1H, CH-11), 5.55 (d, J = 15.2 Hz, 1H, NCHH), 7.02 (dd, J = 8.0, 1.4 Hz, 1H, CH-10), 7.14 – 7.20 (m, 2H, CH-7, CH-9), 7.24 – 7.42 (m, 6H, CH-8, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 33.72 (CH₂-5), 35.67 (CH₂-4), 37.44 (CH₂-6), 46.77 (NCH₂), 57.26 (CH-11), 58.50 (CH-1), 126.18 (CH-9), 127.59 (C₆H₅), 128.20 (CH-10), 128.57 (2C), 128.90 (2C), (C₆H₅), 129.00 (CH-8), 129.81 (CH-7), 132.05 (C-6a), 135.13 (C₆H₅), 135.94 (CH-10a), 168.47 (C=O). GC-MS (EI, 70eV): m/z = 311

(25), $[M^+]$, 275 (13), 147 (79), 146 (68), 142 (100), 141 (90), 129 (73), 128 (93), 127 (25), 119 (31), 118 (40), 115 (35), 106 (30), 104 (55), 91 (85), 77 (18), 65 (22). HRMS (ESI-TOF): m/z calcd for C₁₉H₁₉ClNO [M + H]⁺, 312.1155; found, 312.1147.

(1*RS*,5*RS*,11*RS*)-2-Benzyl-11-chloro-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2*H*)one (**13e**):

Yield 37% [0.047g; reaction conditions: substrate **1w** (0.41 mmol, 0.128g), MeCN/reflux/19h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 2:1) gave white solid, mp 134-140°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.64 (dd,

J = 18.4, 0.8 Hz, 1H, CH<u>H</u>_b-4), 2.71 – 2.82 (m, 1H, CH-5), 2.84 (d, J = 18.0 Hz, 1H, CH<u>H</u>_{α}-6), 3.05 (ddd, J = 18.4, 7.6, 1.4 Hz, 1H, CH<u>H</u>_{α}-4), 3.46 (ddd, J = 18.0, 6.5, 0.8 Hz, 1H, CH<u>H</u>_{β}-6), 3.73 (d, J = 15.3 Hz, 1H, NC<u>H</u>H), 4.21 (dd, J = 3.5, 1.8 Hz, 1H, CH-1), 4.58 (t, J = 3.5 Hz, 1H, CH-11), 5.47 (d, J = 15.3 Hz, 1H, NCH<u>H</u>), 7.12 (dd, J = 7.8, 1.4 Hz, 1H, CH-10), 7.17 – 7.24 (m, 2H, CH-9, CH-7), 7.27 – 7.44 (m, 6H, CH-8, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 32.18 (CH₂-6), 32.84 (CH-5), 39.64 (CH₂-4), 47.19 (NCH₂), 55.73 (CH-11), 57.26 (CH-1), 126.20 (CH-9), 127.81, 128.14 (2C) (C₆H₅), 128.73 (CH-8), 129.00 (2C) (C₆H₅), 129.12 (CH-7), 129.87 (CH-10), 132.40, 132.42 (C-6a, C-10a), 136.46 (C₆H₅), 168.25 (C=O). GC-MS (EI, 70eV): m/z = 311 (11), [M⁺], 275 (14), 147 (82), 146 (54), 142 (94), 141 (82), 129 (94), 128 (92), 127 (27), 119 (25), 118 (28), 115 (35), 106 (53), 104 (45), 91 (100), 77 (18), 65 (23). HRMS (ESI-TOF): *m/z* calcd for C₁₉H₁₉CINO [M + H]⁺, 312.1155; found, 312.1151.

(1SR,5SR)-2-Methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2H)-one (12f):

Yield 32% [0.038g; reaction conditions: substrate **1x** (0.59 mmol, 0.118g), MeCN/reflux/24h]. The crude product purified by column chromatography (SiO₂, ethyl acetate) gave colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 2.08 (dq, *J* = 12.8, 2.9 Hz, 1H, C<u>H</u>H-11), 2.29 (dtd, *J* = 12.8, 3.4, 1.3 Hz, 1H,

CH<u>H</u>-11), 2.36 (dt, J = 18.4, 1.3 Hz, 1H, C<u>H</u>H-6), 2.61 – 2.70 (m, 1H, CH-5), 2.81 (d, J = 18.4, 1H, CH<u>H</u>-6), 2.82 (d, J = 17.9 Hz, 1H, C<u>H</u>H-4), 2.96 (s, 3H, NCH₃), 3.21 (ddt, J = 17.9, 7.0, 1.0 Hz, 1H, CH<u>H</u>-4), 4.18 (ddd, J = 3.4, 2.9, 1.3 Hz, 1H, CH-1), 7.08 – 7.17 (m, 3H, C₆H₄), 7.20 – 7.26 (m, 1H, C₆H₄). ¹³C NMR (101 MHz, CDCl₃) δ 25.61 (CH-5), 29.43 (CH-11), 33.57 (NCH₃), 35.94 (CH₂-4), 39.57 (CH₂-6), 57.30 (CH-1), 125.60, 127.90, 128.25, 130.14, 133.81, 136.12 (C₆H₄), 170.29 (C=O). GC-MS (EI, 70eV): m/z = 201 (96), [M⁺], 141 (19), 130 (44),

129 (75), 128 (77), 115 (37), 110 (21), 73 (100). HRMS (ESI-TOF): *m*/*z* calcd for C₁₃H₁₆NO [M + H]⁺, 202.1232; found, 202.1234.

(1*SR*,5*SR*)-2-Phenyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2*H*)-one (**12g**):

Yield 50% [0.127g; reaction conditions: substrate **1y** (0.97 mmol, 0.254g), MeCN/reflux/23h]. The crude product purified by column chromatography (Al₂O₃, *n*-hexane:ethyl acetate, 1:1) gave white solid, mp 171-173°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.23 (dq, *J* = 12.9, 3.2, 1.7 Hz, 1H, C<u>H</u>H-11), 2.52 (dt, *J* = 18.7, 1.4 Hz, 1H, C<u>H</u>H-6), 2.54 (dq, *J* = 12.9, 3.2, 1.3 Hz, 1H, CH<u>H</u>-11), 2.70 – 2.82 (m, 1H, CH-5), 2.92 (d, *J* = 17.8 Hz, 1H, C<u>H</u>H-4), 2.98 (ddd, *J* = 18.6, 7.8, 1.4 Hz, 1H, CH<u>H</u>-6), 3.26 (dd, *J* = 17.8, 6.5 Hz, 1H, CH<u>H</u>-4), 4.66 (td, *J* = 3.2, 1.3 Hz, 1H, CH-1), 6.47 (dd, *J* = 7.5, 1.3 Hz, 1H, C₆H₄), 6.89 – 7.03 (m, 3H, C₆H₅, C₆H₄), 7.14 – 7.32 (m, 3H, C₆H₅, C₆H₄), 7.34 – 7.40 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 25.68 (CH-5), 30.01 (CH-11), 36.32 (CH₂-4), 39.84 (CH₂-6), 59.29 (CH-1), 125.38, 127.20, 128.11 (2C), 128.24, 128.62, 129.19 (2C), 129.98, 133.37, 135.98, 142.2 (C₆H₅, C₆H₄), 169.79 (C=O). GC-MS (EI, 70eV): m/z = 263 (65), [M⁺], 141 (23), 135 (78), 134 (79), 129 (53), 128 (80), 115 (28), 93 (28), 92 (100), 77 (29). HRMS (ESI-TOF): *m*/z calcd for C₁₈H₁₈NO [M + H]⁺, 264.1388; found, 264.1390.

(1*SR*,5*SR*)-2-Benzyl-1-methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2*H*)-one (**12h**):

Yield 35% [0.060g; reaction conditions: substrate **1z** (0.58 mmol, 0.169g), MeCN/reflux/51h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white semi-solid. ¹H NMR (400 MHz, CDCl₃) δ 1.54 (s, 3H, 1-CH₃), 2.12 (dt, *J* = 13.2, 3.6, 2.3 Hz, 1H, C<u>H</u>H-

11), 2.25 (ddd, J = 13.2, 3.3, 1.3 Hz, 1H, CH<u>H</u>-11), 2.51 (dt, J = 18.1, 1.9 Hz, 1H, C<u>H</u>H-6), 2.57 – 2.70 (m, 1H, CH-5), 2.88 (d, J = 17.9 Hz, 1H, C<u>H</u>H-4), 2.96 (ddd, J = 18.1, 7.1, 1.2 Hz, 1H, CH<u>H</u>-6), 3.28 (ddd, J = 17.9, 7.5, 1.2 Hz, 1H, CH<u>H</u>-4), 4.06 (d, J = 16.2 Hz, 1H, NC<u>H</u>H), 5.03 (d, J = 16.2 Hz, 1H, NCH<u>H</u>), 7.10 – 7.31 (m, 8H, C₆H₅, C₆H₄), 7.40 (dd, J = 7.0, 2.2 Hz, 1H, CH-10). ¹³C NMR (101 MHz, CDCl₃) δ 24.25 (CH₂-5), 25.82 (1-CH₃), 36.27 (CH₂-4), 39.36 (CH₂-11), 40.00 (CH₂-6), 45.32 (NCH₂), 56.26 (C-1), 124.13, 125.63, 126.48, 126.60 (2C), 127.71, 128.38 (2C), 130.20, 133.88, 139.77, 139.81 (C₆H₅, C₆H₄), 171.74 (C=O). GC-MS (EI, 70eV): m/z = 291 (30), [M⁺], 186 (15), 158 (12), 149 (64), 148 (100), 143 (76), 142

(67), 130 (34), 129 (34), 128 (76), 115 (34), 107 (50), 106 (72), 91 (89), 77 (19), 65 (18). HRMS (ESI-TOF): *m*/*z* calcd for C₂₀H₂₂NO [M + H]⁺, 292.1701; found, 292.1703.

(2'*RS*)-N-benzyl-2-(4-methyl-1,2-dihydronaphthalen-2-yl)acetamide (15):

Yield 40% [0.068g; reaction conditions: substrate 1z (0.58 mmol, 0.169g), MeCN/reflux/51h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 3:1) gave white solid, mp 140-142°C (ethyl acetate:hexane). ¹H NMR (400 MHz, CDCl₃) δ 2.04 (t, *J* = 1.4 Hz, 3H, 4'-CH₃),

2.17 (dd, J = 14.1, 7.6 Hz, 1H, C<u>H</u>H-2), 2.24 (dd, J = 14.1, 6.8 Hz, 1H, CH<u>H</u>-2), 2.59 (dd, J = 17.5, 10.3 Hz, 1H, C<u>H</u>H-1'), 2.88 – 3.05 (m, 2H, CH<u>H</u>-1', CH-2'), 4.44 (d, J = 5.7 Hz, 2H, NCH₂), 5.72 (t, J = 5.7 Hz, 1H, NH), 5.77 (dd, J = 4.2, 1.4 Hz, 1H, =CH-3'), 7.07 (dt, J = 7.1, 0.9 Hz, 1H, CH-8'), 7.11 – 7.16 (m, 1H, C₆H₄), 7.17 – 7.24 (m, 2H, C₆H₄), 7.25 – 7.30 (m, 3H, C₆H₅), 7.31 – 7.38 (m, 2H, C₆H₅). ¹³C NMR (101 MHz, CDCl₃) δ 19.27 (CH₃), 31.03 (CH-2'), 34.04 (CH₂-1'), 40.76 (CH₂-2), 43.58 (NCH₂), 122.91, 126.57, 127.07, 127.56, 127.83 (2C), 127.94 (C₆H₅, C₆H₄), 128.50 (=CH-3), 128.73 (2C), 132.55 (=C-4'), 134.61, 135.12, 138.34 (C₆H₅, C₆H₄), 171.46 (C=O). GC-MS (EI, 70eV): m/z = 291 (1<), [M⁺], 155 (12), 149 (100), 148 (22), 141 (22), 128 (29), 115 (13), 106 (23), 91 (52). HRMS (ESI-TOF): *m/z* calcd for C₂₀H₂₂NO [M + H]⁺, 292.1701; found, 292.1704.

(1*SR*,4*RS*,5*SR*)-2,4-Dibenzyl-4-methyl-1,4,5,6-tetrahydro-1,5-methanobenzo[c]azocin-3(2*H*)one (**12i**):

Yield 72% [0.108 g; reaction conditions: substrate **1aa** (0.39 mmol, 0.150g), MeCN/reflux/2h]. The crude product purified by column chromatography (SiO₂, *n*-hexane:ethyl acetate, 6:1) gave colorless thick oil. ¹H NMR (400 MHz, CDCl₃) δ 1.28 (s, 3H, 4-CH₃), 1.69 – 1.83 (m, 2H, CH₂-11), 2.44 (dtd,

J = 6.2, 2.8, 1.4 Hz, 1H, CH-5), 2.79 (d, J = 13.0 Hz, 1H, 4-C<u>H</u>HPh), 2.86 (dd, J = 18.0, 6.2 Hz, 1H, CH<u>H</u>_b-6), 3.06 (d, J = 18.0 Hz, 1H, CH<u>H</u>_a-6), 3.45 (d, J = 13.0 Hz, 1H, 4-CH<u>H</u>Ph), 3.75 (d, J = 15.4 Hz, 1H, NC<u>H</u>H), 3.98 (ddd, J = 3.0, 1.4 Hz, 1H, CH-1), 5.57 (d, J = 15.4 Hz, 1H, NCH<u>H</u>), 7.03 (dd, J = 7.4, 1.6 Hz, 1H, ArH), 7.11 (t, J = 7.6 Hz, 2H, ArH), 7.17 – 7.39 (m, 11H, ArH). ¹³C NMR (101 MHz, CDCl₃) δ 24.53 (CH₃), 27.91 (CH₂-11), 32.49 (CH₂-6), 33.17 (CH-5), 46.00 (C-4), 47.23 (NCH₂), 48.46 (4-CH₂Ph), 52.69 (CH-1), 125.64, 126.64, 127.28, 127.88, 128.09 (2C), 128.14, 128.17 (2C), 128.66 (2C), 129.59, 130.61 (2C) (ArH), 134.43, 136.68, 137.39, 138.39 (Ar), 175.69 (C=O). GC-MS (EI, 70eV): m/z = 381 (24), [M⁺], 290

(44), 252 (20), 199 (15), 129 (41), 128 (23), 115 (17), 91 (100), 65 (12). HRMS (ESI-TOF): m/z calcd for C₂₇H₂₇NO [M + H]⁺, 382.2171; found, 382.2169.

6d. Procedure 17. Procedure for the cyclisation of compound 16 using TIPSOTf

Bicyclic enelactam **16** (0.05g, 0.152 mmol) was dissolved in 2 mL of anhydrous DCM, in a dry Schlenk flask. TIPSOTf (0.1163 g, 0.38 mmol, 2.5 equiv.) was added with a syringe and the mixture was stirred at room temperature. After 72h, 5 mL of saturated sodium bicarbonate solution was added to the reaction flask and the mixture was stirred for 5 minutes. The aqueous layer was extracted with ethyl acetate (3×50 mL), and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using mixture of n-hexane/AcOEt (1:1) to give product **17** with 95% as a light beige solid. ¹H and ¹³C NMR spectra of **17** are in agreement with literature data.²²

7. Procedure 18. Procedure for the cyclisation of compound 1a using

TIPSOTf in presence of DIPEA

Enelactam **1a** (0.05g, 0.17 mmol) was dissolved in 2 mL of anhydrous DCM, which was placed in a dry Schlenk flask. TIPSOTf (0.1588 g, 0.52 mmol, 3.0 equiv.) was added to the resulting solution using syringe and stirred at room temperature for 15 min. Subsequently, N,Ndiisopropylethylamine (DIPEA), 0.0223g, 0.17 mmol, 1.0 equiv.) was added and resulting yellow solution was stirred for 18h at room temperature. After this time, 10 mL of saturated sodium bicarbonate solution was added to the reaction flask and stirred for 5 minutes. The aqueous layer was extracted with ethyl acetate (3×50 mL), and the combined organic layers were dried over MgSO₄. The mixture was filtered, and the solvents were evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel using mixture of *n*-hexane/AcOEt (1:3) to give desired product **2a** with 80% yield (0.04g, 0.14mmol) as a white solid.

8. Antiproliferative activity

The antiproliferative activity of compounds was evaluated using the Cell Proliferation Reagent WST-1 assay (Sigma-Aldrich, Germany). The WST-1 test is based on the reduction of the tetrazolium salt WST-1 to a soluble red formazan by mitochondrial dehydrogenase. The amount of formazan dye is directly correlated to the number of metabolically active cells. In the present study, A375 cells were seeded in 96-well plate at an initial density of 1.5×103 cells/well and then cultured in 100 µL medium in standard conditions. After 24 h the culture medium was removed and the cells were treated with compounds at a single dose 10 µM for 48 h. All the tested compounds were dissolved in DMSO. In the final concentrations the amount of DMSO did not exceed 0.2%. The cells without the tested compounds were used as controls. After 48 h, WST-1 reagent was added, incubated with the cells for 30 min and absorbance was measured at 450 nm (with 620 nm background correction), using a spectrophotometric microplate reader (Infinite 200 Pro, Tecan, Switzerland). The interaction between compounds (without cells) and WST-1 reagents was also determined (Ablank). Results were normalized to the control cells, and the cell viability was calculated using the following formula: number of viable cells (% of control) = $[(Atest - Ablank)/(Acontrol - Ablank)] \times 100\%$. The readings were acquired from three independent experiments (each conducted in triplicate). Results are expressed as mean \pm standard deviation. Only compounds which satisfy pre-determined cytotoxicity (viability at 10 µM less than 80%) will progress to the further study in order to estimate the inhibitory concentration causing 50% growth inhibition (IC50) using an online calculator (AAT Bioquest, Inc., 2020, September 10, Quest Graph[™] IC50 Calculator (v.1). Retrieved from https://www.aatbio.com/tools/ic50-calculator-v1). Statistical analysis was carried out using Statistica 13.3 (StatSoft Inc., Tulsa, Oklahoma, USA). Experimental data were assessed using the Student's t-test. A p-value level of < 0.05 was considered statistically significant.

9. Conformational analysis data for representative compounds

(Calculated $J^{3}_{H,H}$ coupling constants were obtained using Haasnoot's correlation 27 on the basis of dihedral angles read from PM3 optimized structure.)

Table S1. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for 3a

Vicinal hydrogen atoms 3a	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-6 _{ax} vs CH-5 _{ax}	10.0	11.0
CH-5 _{ax} vs CH-4 _{ax}	12.8	12.3
CH-4 _{ax} vs CH-3 _{ax}	11.2	13.5
CH-4 _{ax} vs CH-3 _{eq}	5.9	3.6
CH-5 _{ax} vs CH-4 _{eq}	3.5	3.7
CH-5 _{eq} vs CH-4 _{eq}	_a	3.0

^a – Could not be assigned.

Table S2. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **4c**

Vicinal hydrogen atoms 4c	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-6 _{ax} vs CH-5 _{ax}	10.2	11.0
CH-5 _{ax} vs CH-4 _{ax}	11.6	12.2
CHH-3 _{ax} vs CH-4 _{ax}	12.2	12.3
CHH-3 _{eq} vs CH-4 _{ax}	_ ^a	3.2

^a – Could not be assigned.

Table S3. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **3e**

Vicinal hydrogen atoms 3e	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-3 _{eq} vs CH-4 _{ax}	5.1	6.2
CH-3 _{eq} vs CH-4 _{eq}	2.8	1.4
CH-4a vs CH-9b	7.4	9.4
CH-4a vs CHH-5 _β	~1	1.9
CH-4a vs CHH-5 _α	6.3	9.7
CH-4a vs CH <u>H</u> -4 _{ax}	13.2	12.2
CH-4a vs C <u>H</u> H-4 _{eq}	4.3	3.7

Table S4. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **4e**

Vicinal hydrogen atoms 4e	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-3 _{ax} vs CH-4 _{ax}	11.6	11.8
CH-3 _{ax} vs CH-4 _{eq}	4.6	2.5
CH-4a vs CH-9b	6.6	8.2
CH-4a vs CH-5 _α	~1	1.3
CH-4a vs CH-5 _β	6.5	8.9
CH-4a vs CH-4 _{ax}	13.1	12.1
CH-4a vs CH-4 _{eq}	4.5	4.1

Table S5. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **9a**

Vicinal hydrogen atoms	Experimental	Calculated
9a	J [°] нн [Hz]	J [°] нн [Hz]
CH-8a vs CH-13a	8.8	10.2
CH-14a vs CH-14 _{ax}	10.0	11.8
CH-14a vs CH-14 _{eq}	3.6	2.3
CH-13a vs CH-13 _β	6.3	7.5
CH-13a vs CH-13 $_{\alpha}$	8.8	9.5
CH-13a vs CH-14 _{eq}	3.6	2.7
CH-13a vs CH-14 _{ax}	5.3	3.9
CH-5 _{ax} vs CH-6 _{ax}	11.9	12.6
CH-5 _{ax} vs CH-6 _{eq}	4.8	3.3
CH-6 _{ax} vs CH-5 _{eq}	3.3	3.0
CH-6 _{eq} vs CH-5 _{eq}	2.5	2.6

Table S6. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **9b**

Experimental	Calculated
<i>Ј</i> ³ нн [Hz]	Ј ³ нн [Hz]
8.0	8.5
3.8	4.4
8.3	8.2
_ ^a	9.5
_ a	8.2
10.8	11.7
3.4	5.1
4.3	6.1
3.2	1.1
	Experimental J ³ HH [Hz] 8.0 3.8 8.3 - ^a - ^a 10.8 3.4 4.3 3.2

^a – Could not be assigned.

Table S7. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **9c**

Vicinal hydrogen atoms	Experimental	Calculated
9с	<i>Ј³</i> нн [Hz]	<i>Ј</i> ³ нн [Hz]
CH-8a vs CH-13a	7.7	9.2
CH-14 _{ax} vs CH-13a	4.1	3.8
CH-14a _{ax} vs CH-14 _{ax}	10.8	9.8
CH-13a vs CH-13 $_{\beta}$	10.9	8.7
CH-13a vs CH-13 $_{\alpha}$	_ a	8.8
CH-5 _{ax} vs CH-6 _{ax}	12.1	12.3
CH-5 _{ax} vs CH-6 _{eq}	_ ^a	5.0
CH-6 _{ax} vs CH-5 _{eq}	4.6	4.0
CH-6 _{eq} vs CH-5 _{eq}	_a	1.7

^a – Could not be assigned.

Table S8. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **9d**

Vicinal hydrogen atoms	Experimental	Calculated
9d	<i>Ј</i> ³ нн [Hz]	<i>Ј</i> ³ нн [Hz]
CH-8a vs CH-13a	7.9	9.3
CH-14 _{ax} vsCH-13a	4.0	3.3
CH-14a _{ax} vs CH-14 _{ax}	11.3	10.7
CH-13a vs CH-13 _β	11.2	8.6
CH-13a vs CH-13 $_{\alpha}$	8.0	8.8
CH-5 _{ax} vs CH-6 _{ax}	12.0	12.1
CH-5 _{ax} vs CH-6 _{eq}	4.6	5.4
CH-6 _{ax} vs CH-5 _{eq}	3.0	4.6
CH-6 _{eq} vs CH-5 _{eq}	1.2	1.3

Table S9. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **9f**

Vicinal hydrogen atoms	Experimental	Calculated
9f	<i>Ј</i> ³ нн [Hz]	<i>Ј</i> ³ _{нн} [Hz]
CH-8a vs CH-13a	_ ^a	9.2
CH-14 _{ax} vs CH-13a	3.5	3.8
CH-14a _{ax} vs CH-14 _{ax}	10.7	9.7
CH-13a vs CH-13 $_{\beta}$	_a	8.7
CH-13a vs CH-13 _{α}	_a	8.7
CH-5 _{ax} vs CH-6 _{ax}	10.0	12.2
CH-5 _{ax} vs CH-6 _{eq}	4.8	5.2
CH-6 _{ax} vs CH-5 _{eq}	6.3	4.2
CH-6 _{eq} vs CH-5 _{eq}	_a	1.6

^a – Could not be assigned.

Table S10. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for 9g

Vicinal hydrogen atoms	Experimental	Calculated
9g	<i>Ј</i> ³ нн [Hz]	<i>Ј</i> ³ нн [Hz]
CH-8a vs CH-13a	7.1	9.1
CH-14 _{ax} vsCH-13a	3.8	3.9
CH-14a _{ax} vs CH-14 _{ax}	10.7	9.5
CH-13a vs C <u>H</u> H-13 _β	~9.2	8.7
CH-13a vs CH <u>H</u> -13 _α	~8.2	8.7
CH-5 _{ax} vs CH-6 _{ax}	12.7	12.1
CH-5 _{ax} vs CH-6 _{eq}	5.2	5.4
CH-6 _{ax} vs CH-5 _{eq}	5.2	4.4
CH-6 _{eq} vs CH-5 _{eq}	_a	1.5

^a – Could not be assigned.

Table S11. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **10a**

Vicinal hydrogen atoms 10a	Experimental <i>J</i> ³ нн [Hz]	Calculated _{J³нн [Hz]}
CH-8a vs CH-13a _{ax}	7.0	8.8
CH-14 _{ax} vs CH-13a _{ax}	13.0	12.2
CH-14 _{eq} vs CH-13a _{ax}	3.9	3.8
CH-13a _{ax} vs CH-13 _β	7.3	9.3
$CH-13a_{ax}$ vs $CH-13_{\alpha}$	_a	1.6
CH-14a _{ax} vs CH-14 _{ax}	11.6	11.7
CH-14a _{ax} vs CH-14 _{eq}	3.0	1.9
CH-5 _{ax} vs CH-6 _{ax}	_a	12.1
CH-5 _{ax} vs CH-6 _{eq}	_ ^a	5.1
CH-6 _{ax} vs CH-5 _{eq}	_a	4.3
CH-6 _{eq} vs CH-5 _{eq}	_a	1.7

^a – Could not be assigned.

Table S12. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **10f**

Vicinal hydrogen atoms 10f	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-8a vs CH-13a _{ax}	8.0	9.3
CH-14 _{ax} vs CH-13a _{ax}	11.4	11.7
$CH-13a_{ax}$ vs $CH-13_{\beta}$	2.7	1.9
$CH-13a_{ax}$ vs $CH-13_{\alpha}$	7.8	9.7
CH-14a _{ax} vs CH-14 _{ax}	10.1	11.4
CH-5 _{ax} vs CH-6 _{ax}	11.1	12.1
CH-5 _{ax} vs CH-6 _{eq}	4.2	5.0
CH-6 _{ax} vs CH-5 _{eq}	3.4	4.3
CH-6 _{eq} vs CH-5 _{eq}	3.7	1.7

Table S13. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **10g**

Vicinal hydrogen atoms 10g	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]	
CH-8a vs CH-13a _{ax}	7.7	8.4	
CH-14a _{ax} vs CH-14 _{ax}	10.0	10.8	
$CH-13a_{ax}$ vs $CH-13_{\beta}$	2.7	1.3	
CH-13 a_{ax} vs CH-13 α	7.3	8.9	
CH-13a _{ax} vs CH-14 _{ax}	11.5	12.3	
CH-5 _{ax} vs CH-6 _{ax}	_a	12.4	
CH-5 _{ax} vs CH-6 _{eq}	4.6	4.3	
CH-6 _{ax} vs CH-5 _{eq}	_a	3.7	
CH-6 _{eq} vs CH-5 _{eq}	4.0	2.1	

^a – Could not be assigned.

Table S14. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **11f**

Vicinal hydrogen atoms 11f	Experimental J ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-8a vs CH-13a	9.9	10.1
CH-14a vs CH-14	2.5	3.0
CH-13a vs CH-13 _β	4.8	8.2
CH-13a vs CH-13 _α	9.9	9.1
CH-13a vs CH-14	0.8	0.9
CH-5 _{ax} vs CH-6 _{ax}	12.7	12.6
CH-5 _{ax} vs CH-6 _{eq}	4.6	3.0
CH-6 _{ax} vs CH-5 _{eq}	2.9	2.4
CH-6 _{eq} vs CH-5 _{eq}	2.1	3.2

Table S15. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **11g**

Vicinal hydrogen atoms 11g	Experimental J ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-8a vs CH-13a	10.0	10.8
CH-14a vs CH-14	2.7	2.6
CH-13a vs CH-13 _β	4.8	4.7
CH-13a vs CH-13 _{α}	10.0	10.3
CH-13a vs CH-14	0.9	0.5
CH-5 _{ax} vs CH-6 _{ax}	12.6	12.6
CH-5 _{ax} vs CH-6 _{eq}	4.6	3.3
CH-6 _{ax} vs CH-5 _{eq}	3.0	2.6
CH-6 _{eq} vs CH-5 _{eq}	2.7	3.0

Table S16. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for 9e

Vicinal hydrogen atoms 9e	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-13aax vs CH-13ax	10.3	9.7
CH-13 _{ax} vs CH-12a _{ax}	11.2	12.3
CH-12a _{ax} vsCH-8a _{ax}	11.2	12.4
CH-8a _{ax} vs CH-9 _{ax}	11.2	11.9
CH-8a _{ax} vs CH-9 _{eq}	4.6	4.7
CH-12a _{ax} vs CH-12 _{ax}	11.2	11.9
CH-12a vs CH-12 _{eq}	4.7	4.6
CH-6 _{eq} vs CH-5 _{eq}	5.1	1.6
CH-6 _{eq} vs CH-5 _{ax}	5.1	5.1
CH-6 _{ax} vs CH-5 _{eq}	5.1	4.1
CH-6 _{ax} vs CH-5 _{ax}	8.7	12.1

Table S17. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **12a**

Vicinal hydrogen atoms 12a	Experimental Ј ³ нн [Hz]	Calculated <i>Ј</i> ³ нн [Hz]
CH-1 vs CH-11	2.0	1.8
CH-11 vs CH-5	2.0	1.9
CH-5 vs CH-4 $_{\alpha}$	7.8	6.1
CH-5 vs CH-4 _β	0.8	1.4
CH-5 vs CH- 6_{α}	0.8	1.0
CH-5 vs CH-6 _β	6.1	7.1

Table S18. Experimental and calculated ${}^{3}J_{H,H}$ coupling constants for **13a**

Vicinal hydrogen atoms 13a	Experimental Ј ³ нн [Hz]	Calculated Ј ³ нн [Hz]
CH-1 vs CH-11	3.0	2.4
CH-11 vs CH-5	2.4	2.4
CH-5 vs CH-4 $_{\alpha}$	7.6	5.9
CH-5 vs CH-4 _β	0.8	1.4
CH-5 vs CH-6 _α	0.8	1.0
CH-5 vs CH-6 _β	6.8	7.2

10. ¹H NMR, ¹³C NMR, ¹³C DEPT-135 spectra of monitoring the cyclization of enelactam 1a in presence of 0.5, 1.5 and 2.5 fold excess of TIPSOTf

Figure S4. ¹H NMR spectra recorded at different time intervals of the cyclization reaction of 1a in the presence of 0.5 equiv. of TIPSOTf in $CDCl_3$ (23 °C)

Figure S5. Partial ¹³C NMR spectra (0-62.5ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 0.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S6. Partial ¹³C NMR spectra (100-175ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 0.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S7. ¹H NMR spectra recorded at different time intervals of the cyclization reaction of 1a in the presence of 1.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S8. Partial ¹³C NMR spectra (0-62.5ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 1.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S9. Partial ¹³C NMR spectra (100-175ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 1.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S10. ¹H NMR spectra recorded at different time intervals of the cyclization reaction of **1a** in the presence of 2.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S11. Partial ¹³C NMR spectra (0-62.5ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 2.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S12. Partial ¹³C NMR spectra (100-180ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 2.5 equiv. of TIPSOTf in CDCl₃ (23 °C)

Figure S13. ¹H NMR spectra recorded at different time intervals of the cyclization reaction of 1a in the presence of 0.5 equiv. of TfOH in CDCl₃

(23 °C)

Figure S14. Partial ¹³C NMR spectra (0-62.5ppm) recorded at different time intervals of the cyclization reaction of **1a** in the presence of 0.5 equiv. of TfOH in CDCl₃ (23 °C)

Figure S15. Partial ¹³C NMR spectra (100-180ppm) recorded at different time intervals of the cyclization reaction of 1a in the presence of 0.5 equiv. of TfOH in CDCl₃ (23 °C)

Figure S16. ¹⁹F NMR spectra (with C_6F_6 as the internal standard) of TfOH, the mixture of **1a** and TfOH, TIPSOTf, and the mixtures of **1a** and TIPSOTf (0.5 eq.; 1.5 eq.; and 2.5 eq.) recorded at the end of the reaction conducted in CDCl₃ (23°C)

11. ¹H, ¹³C, ¹³C DEPT-135 and ¹⁹F NMR spectra

S93

S97

S112

S116

S127

S134

S147

90 80 Chemical shift [ppm]

S153

S157

90 80 Chemical shift [ppm]

12. ¹H, ¹H NOESY spectra for selected compounds

13. Computational results

Compound 3a

HyperChem, Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 160 in which Number of Alpha Electrons = 80 Number of Beta Electrons = 80 Charge on the System = 0 Total Orbitals = 151

Energy=-6272.176049 kcal/mol Gradient=0.027885 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-111428.7909618 (kcal/mol)
Total Energy	=	-177.573059536 (a.u.)
Binding Energy		= -6272.1760488 (kcal/mol)
Isolated Atomic Energy		= -105156.6149130 (kcal/mol)
Electronic Energy		= -1070440.8592002 (kcal/mol)
Core-Core Interaction		= 959012.0682383 (kcal/mol)
Heat of Formation		= -71.0460488 (kcal/mol)
Gradient	=	0.0278849 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Ato	m	Z Charge	Coordi	Coordinates(Angstrom)		
		Х	y z	2		
1	6	-0.044548	-3.20494	-0.72084	0.55880	12.01100
2	6	0.040908	-1.80122	-1.18955	0.09969	12.01100
3	7	0.001529	-1.77939	-1.73032	-1.30603	14.00700
4	6	0.254217	-2.75510	-1.32452	-2.26583	12.01100
5	6	-0.119598	-4.07359	-0.76698	-1.77863	12.01100
6	6	-0.103987	-3.89566	0.08296	-0.54000	12.01100
7	8	-0.371341	-2.51918	-1.50760	-3.45200	15.99900
8	6	-0.073764	-3.08670	0.11832	1.80358	12.01100
10	6	-0.18444	1 -1.24793	-2.22443	1.05583	12.01100
14	6	0.163804	-0.13856	-1.91354	1.86912	12.01100
15	6	0.164309	-1.79306	-3.51922	1.19486	12.01100

16	6	-0.263128	-1.27361	-4.44703	2.10358	12.01100
17	6	0.164878	-0.18221	-4.08988	2.90112	12.01100
18	6	-0.298520	0.39506	-2.82540	2.78890	12.01100
19	8	-0.193384	0.44531	-0.67494	1.66748	15.99900
20	8	-0.187311	0.23260	-5.08209	3.76344	15.99900
21	8	-0.193614	-2.91562	-3.82186	0.44357	15.99900
22	6	0.045769	-3.07933	-5.17516	0.08571	12.01100
23	6	0.050828	1.32681	-4.80072	4.60116	12.01100
24	6	0.047019	1.17586	-0.13630	2.74413	12.01100
25	6	-0.102133	-2.61068	1.42983	1.73319	12.01100
26	6	-0.092182	-3.46415	-0.40726	3.03997	12.01100
27	6	-0.103054	-3.35833	0.36795	4.19012	12.01100
28	6	-0.106348	-2.87841	1.67061	4.11452	12.01100
29	6	-0.100829	-2.50573	2.20137	2.88351	12.01100
47	6	-0.044714	-0.43791	-2.04073	-1.80718	12.01100
48	6	-0.098586	0.52414	-1.04171	-1.98717	12.01100
49	6	-0.074243	-0.13609	-3.37071	-2.11456	12.01100
50	6	-0.102279	1.12803	-3.69464	-2.59534	12.01100
51	6	-0.100560	2.08787	-2.70376	-2.76875	12.01100
52	6	-0.098093	1.78465	-1.38072	-2.46494	12.01100
32	1	0.034053	-2.99163	-5.85746	0.94457	1.00800
33	1	0.031954	-2.35516	-5.46441	-0.68497	1.00800
34	1	0.050727	-4.09408	-5.19486	-0.31836	1.00800
35	1	0.028031	1.12391	-3.96842	5.28507	1.00800
36	1	0.029596	2.24302	-4.59763	4.03472	1.00800
37	1	0.051522	1.43276	-5.73159	5.16480	1.00800
38	1	0.030973	1.90211	-0.84672	3.16643	1.00800
39	1	0.032656	0.50459	0.21065	3.53717	1.00800
40	1	0.051225	1.69195	0.70948	2.28371	1.00800
41	1	0.110136	-2.33325	1.84321	0.75300	1.00800
42	1	0.111158	-3.83996	-1.43516	3.10681	1.00800
43	1	0.102974	-3.65568	-0.05068	5.15714	1.00800
44	1	0.102497	-2.79710	2.27886	5.02103	1.00800
45	1	0.102568	-2.13246	3.22853	2.81955	1.00800
46	1	0.060761	-3.30969	1.00228	-0.76164	1.00800
9	1	0.093277	-3.84197	-1.61100	0.78998	1.00800
11	1	0.078467	-1.13782	-0.28202	0.10302	1.00800
12	1	0.078392	-4.75773	-1.61647	-1.57615	1.00800
13	1	0.079747	-4.55504	-0.17829	-2.58471	1.00800
30	1	0.140238	-1.72742	-5.44765	2.18451	1.00800
31	1	0.136842	1.26614	-2.52930	3.39393	1.00800
53	1	0.063456	-4.88098	0.43952	-0.18143	1.00800
54	1	0.106811	0.29698	0.00596	-1.75781	1.00800
55	1	0.112113	-0.89129	-4.15623	-1.98610	1.00800
56	1	0.101322	1.36542	-4.73471	-2.84131	1.00800
57	1	0.100920	3.08107	-2.96398	-3.14839	1.00800
58	1	0.100980	2.53969	-0.60076	-2.60666	1.00800

ATOMIC GRADIENT	S
-----------------	---

Atom Z	Gradients(kcal/	/mol/	(Angstrom)	
--------	-----------------	-------	------------	--

	х	У		z
-	-	 	-	

	1	6	0.01464	-0.01081	0.00435
--	---	---	---------	----------	---------

2	6	-0.01668	-0.01589	-0.02458
3	7	0.07593	-0.00089	0.01628
4	6	-0.10521	0.01466	0.03820
5	6	0.03911	0.00191	0.00116
6	6	-0.01780	0.02473	-0.00993
7	8	0.00174	0.00142	-0.04057
8	6	0.00964	-0.04428	0.02366
10	6	0.03256	-0.04265	-0.01254
14	6	-0.02011	-0.08805	0.05087
15	6	0.01801	0.03789	0.02039
16	6	0.04982	0.02167	0.06273
17	6	-0.03854	0.04045	-0.05496
18	6	-0.05496	0.04251	-0.01195
19	8	0.02279	0.05600	-0.02456
20	8	-0.00760	-0.01020	0.07931
21	8	-0.04192	-0.00342	0.00190
22	6	0.02269	-0.00714	-0.02278
23	6	-0.01209	0.00253	0.00807
24	6	0.00547	-0.00289	-0.00405
25	6	-0.03707	0.03304	0.03828
26	6	-0.02830	0.01177	-0.05682
27	6	0.06264	0.01269	0.02789
28	6	-0.03976	-0.03616	-0.00066
29	6	0.05337	-0.03288	-0.03483
47	6	-0.04214	-0.03406	0.00558
48	6	0.02282	-0.04194	-0.00102
49	6	0.01520	0.03323	-0.01550
50	6	0.01122	-0.00164	-0.05688
51	6	-0.05263	-0.00866	0.01607
52	6	-0.02108	0.01361	-0.00750
32	1	0.02227	-0.02085	-0.00091
33	1	0.04571	-0.02520	-0.03299
34	1	0.02298	0.02071	0.00232
35	1	-0.00698	0.00087	-0.00420
36	1	-0.01794	0.00604	0.01796
37	1	-0.00668	0.03556	0.01389
38	1	-0.00263	0.01402	-0.02873
39	1	-0.00051	-0.01729	-0.03175
40	1	0.00412	0.02150	0.03084
41	1	0.01276	0.00855	-0.00204
42	1	0.01720	-0.01545	0.00235
43	1	-0.00652	-0.02122	-0.00160
44	1	0.00776	-0.00686	0.01968
45	1	-0.01437	0.00579	0.00539
46	1	0.02573	-0.00250	0.03546
9	1	-0.01042	0.01708	0.00045
11	1	0.03115	-0.00391	0.00947
12	1	0.02334	0.00506	-0.03344
13	1	-0.00486	0.00151	-0.01096
30	1	-0.00739	0.01491	0.00481
31	1	-0.00632	0.01200	0.00391
53	1	0.00730	-0.01112	0.01347

54	1	0.0	0572	0.01833	3 (0.009	920	
55	1	-0.0	04086	0.0038	2 -	0.03	117	
56	1	-0.0	02535	0.0077	6 -	0.02	590	
57	1	0.0	00321	-0.0091	1 (0.00	133	
58	1	-0.0	00016	-0.0265	1	0.01	754	
Dipo	ole (D	Deby	/es) x	У	z	T	otal	
Poir	nt-Ch	g.	0.786	-0.216	4	.235	4.3	313
sp H	lybrio	b	0.713	0.426	0.	695	1.0	83
pd F	lybri	d	0.000	0.000	0.	000	0.0	000
Sum	า		1.499	0.210	4.93	30	5.15	8

Compound 4c

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 194 in which Number of Alpha Electrons = 97 Number of Beta Electrons = 97 Charge on the System = 0 Total Orbitals = 185

Starting PM3 calculation with 185 orbitals

Energy=-7755.279949 kcal/mol Gradient=0.030956 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-132676.2787903 (kcal/mol)
Total Energy	=	-211.433082503 (a.u.)
Binding Energy		= -7755.2799493 (kcal/mol)
Isolated Atomic Energy		= -124920.9988410 (kcal/mol)
Electronic Energy		= -1431119.4910750 (kcal/mol)
Core-Core Interaction		= 1298443.2122847 (kcal/mol)
Heat of Formation		= -45.3079493 (kcal/mol)
Gradient	=	0.0309561 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1 NET CHARGES AND COORDINATES

Ato	m	Z Charge	Coordi	nates(Angs [.]	trom)	Mass
		х	y z			
1	6	-0.043417	-2.92212	-0.27603	0.69677	12.01100
2	6	0.038099	-1.41685	-0.41302	0.34617	12.01100
3	7	0.003119	-1.12649	-0.44194	-1.12913	14.00700
4	6	0.253842	-2.01913	0.17612	-2.05263	12.01100
5	6	-0.128413	-3.46922	0.33113	-1.66072	12.01100
6	6	-0.071662	-3.63672	0.74650	-0.20309	12.01100
7	8	-0.370322	-1.60103	0.48523	-3.15986	15.99900
8	6	-0.045914	0.30192	-0.42398	-1.45704	12.01100
9	6	-0.068714	-3.06165	0.09737	2.15126	12.01100
11	6	-0.182819	-0.84293	-1.65170	1.00300	12.01100
15	6	-0.059977	-5.13859	0.84044	0.12521	12.01100
16	6	0.162969	0.10357	-1.52948	2.04064	12.01100
17	6	0.163757	-1.21394	-2.96398	0.63534	12.01100
18	6	-0.262395	-0.69546	-4.08872	1.28477	12.01100
19	6	0.164329	0.22069	-3.91847	2.32747	12.01100
20	6	-0.295866	0.63110	-2.64191	2.70922	12.01100
21	8	-0.195117	0.55163	-0.25054	2.32501	15.99900
22	8	-0.187305	0.64877	-5.09810	2.89771	15.99900
23	8	-0.193823	-2.17008	-3.10094	-0.35630	15.99900
24	6	0.045829	-2.10406	-4.27771	-1.12883	12.01100
25	6	0.050580	1.56308	-5.01164	3.96301	12.01100
26	6	0.045475	0.99477	-0.01526	3.64114	12.01100
27	6	-0.090813	-2.54920	1.29710	2.65111	12.01100
28	6	-0.098379	-3.72294	-0.77417	3.02004	12.01100
29	6	-0.105372	-3.86167	-0.45403	4.36609	12.01100
30	6	-0.106514	-3.34359	0.73880	4.85769	12.01100
31	6	-0.102240	-2.68858	1.61355	3.99746	12.01100
48	6	-0.075027	0.85457	-1.55511	-2.06482	12.01100
49	6	-0.095531	1.10269	0.68869	-1.18068	12.01100
50	6	-0.097857	2.45380	0.65935	-1.50635	12.01100
51	6	-0.099684	3.00697	-0.46684	-2.10669	12.01100
52	6	-0.102791	2.20761	-1.56975	-2.38593	12.01100
59	6	-0.076729	-5.52380	2.13572	0.76474	12.01100
60	6	-0.105366	-5.31623	3.34481	0.09715	12.01100
61	6	-0.098836	-5.69891	4.54358	0.68687	12.01100
62	6	-0.106895	-6.29692	4.54510	1.94305	12.01100
63	6	-0.099669	-6.51115	3.34371	2.60917	12.01100
64	6	-0.097258	-6.12566	2.14266	2.02409	12.01100
39	1	0.051547	1.71767	-6.06269	4.22161	1.00800
40	1	0.031267	1.70546	-0.77602	3.99708	1.00800
41	1	0.034046	0.14647	0.04407	4.33202	1.00800
42	1	0.050583	1.48696	0.95665	3.55755	1.00800
43	1	0.109779	-2.03501	1.99733	1.98107	1.00800
44	1	0.109240	-4.13243	-1.71789	2.64003	1.00800
45	1	0.102860	-4.38006	-1.14445	5.03927	1.00800
46	1	0.102469	-3.45372	0.99068	5.91721	1.00800
47	1	0.102969	-2.28546	2.55739	4.37884	1.00800
12	1	0.079380	-0.89818	0.49986	0.74849	1.00800
13	1	0.080717	-3.98476	-0.63238	-1.85562	1.00800
14	1	0.081833	-3.95707	1.07549	-2.32375	1.00800

10	1	0.092971	-3.42468	-1.26487	0.53971	1.00800
32	1	0.140142	-1.01325	-5.09674	0.97385	1.00800
53	1	0.111931	0.22788	-2.42662	-2.29213	1.00800
54	1	0.106584	0.67811	1.58452	-0.71291	1.00800
55	1	0.101258	3.08320	1.52917	-1.29236	1.00800
56	1	0.100979	4.07117	-0.48320	-2.36281	1.00800
57	1	0.101388	2.64307	-2.45360	-2.86327	1.00800
58	1	0.081036	-3.16571	1.75111	-0.05672	1.00800
33	1	0.136763	1.36565	-2.48397	3.51427	1.00800
34	1	0.034320	-2.04778	-5.18959	-0.51551	1.00800
35	1	0.031813	-1.24837	-4.24543	-1.81327	1.00800
36	1	0.050427	-3.04168	-4.24953	-1.68878	1.00800
37	1	0.028392	1.15089	-4.46985	4.82220	1.00800
38	1	0.029585	2.51253	-4.55513	3.66016	1.00800
65	1	0.065371	-5.43802	-0.00743	0.77660	1.00800
66	1	0.062716	-5.74814	0.72947	-0.79592	1.00800
67	1	0.107942	-4.85206	3.34388	-0.89631	1.00800
68	1	0.102558	-5.53053	5.48864	0.16035	1.00800
69	1	0.102344	-6.59865	5.48978	2.40641	1.00800
70	1	0.102104	-6.98202	3.34081	3.59757	1.00800
71	1	0.109392	-6.28705	1.19854	2.55818	1.00800

ATOMIC GRADIENTS

ATOMIC GRADIENTS									
Ato	m	Z Grad	lients(kcal/r	mol/Angstrom)					
		х у	Z						
1	6	0.00688	0.00121	-0.00451					
2	6	0.00256	-0.01038	-0.00805					
3	7	0.06107	0.07556	0.00455					
4	6	-0.01540	-0.03992	-0.02526					
5	6	0.01572	-0.01449	-0.05414					
6	6	-0.00806	0.01611	-0.00090					
7	8	-0.00254	-0.00332	-0.02477					
8	6	-0.01961	-0.06618	-0.02806					
9	6	0.01852	0.01785	-0.02243					
11	6	-0.00449	0.02965	-0.00539					
15	6	-0.01924	0.00905	-0.02788					
16	6	0.02216	-0.04513	0.04029					
17	6	-0.01993	-0.01738	-0.01975					
18	6	-0.00803	-0.01529	0.02422					
19	6	0.00421	0.00403	0.01976					
20	6	-0.03839	0.06027	-0.03874					
21	8	0.02669	0.03014	-0.00659					
22	8	-0.02554	0.01642	0.01813					
23	8	0.02251	0.00787	-0.00451					
24	6	0.00659	-0.02709	0.01259					
25	6	-0.02113	-0.00926	0.00594					
26	6	-0.00239	-0.00412	0.01642					
27	6	-0.00581	0.05364	0.04816					
28	6	-0.01271	0.00277	-0.03529					
29	6	0.02063	0.07113	0.01967					
30	6	0.00490	-0.01475	-0.00673					
31	6	0.00426	0.02338	-0.08262					

48	6	0.0	5451	0.018	19	-0.02	288
49	6	-0.0	0523	0.040	78	-0.00	192
50	6	0.04	4587	-0.005	64	-0.00	884
51	6	-0.0	1570	-0.036	39	0.00	739
52	6	-0.0	1807	0.015	99	0.02	775
59	6	-0.0	0236	0.022	87	-0.01	538
60	6	-0.0	2684	0.049	55	0.07	880
61	6	-0.0	0537	-0.072	50	0.07	509
62	6	0.0	2350	-0.070	05	-0.00	971
63	6	-0.0	4366	-0.031	.88	0.07	110
64	6	-0.0	1871	-0.090	73	-0.00	344
39	1	-0.0	3040	0.007	81	0.01	737
40	1	-0.0	1254	-0.016	46	0.00	865
41	1	-0.0	0418	0.014	69	0.00	893
42	1	-0.0	1196	0.005	78	-0.01	943
43	1	-0.0	0116	0.022	35	-0.03	399
44	1	0.0	1068	0.030	66	0.010	000 017
45	1	0.0	1385	0.030	12	-0.00	939
46	1	0.0	1121	0.033	<u>12</u> 21	-0.01	236
40	1	-0.0	0785	0.042	11	-0.02	200
12	1	0.0	0106	0.004	98	-0.02	057
12	1	0.0	1887	0.000	56	-0.01	765
1/	1	_0.0	U808	_0.031	13	_0.01	218
10	1	0.0	0000	0.013	η ΠΩ	_0.02	612
22	1	_0.0	1550	0.025	70	0.00	012 1/1
52	1	-0.0	12/0	0.004	60	0.01	441 100
55	1	-0.0	10549	-0.025	100	-0.01	100
54	1	0.0	1904	-0.002	40	-0.01	220
55	1	0.0	0100	-0.031	40 1 E	-0.01	220 000
50	1	0.0	2471	-0.020	10	-0.00	200
57 E0	1	0.0	1200	-0.025	09	0.01	200
20	1	-0.0	1300	-0.020	22	-0.04	019 707
33 24	1	0.0	1400	0.010	33	-0.01	587 041
34 25	1	-0.0	10481	-0.023	00	-0.01	041
35	1	0.0	1044	0.006	18	0.010	03Z 750
30	1	-0.0	1318	-0.026	11	0.02	/52
37	1	-0.0	1314	0.003	45	0.01	585
38	1	-0.0	1900	0.011	14	0.01	606
65	1	-0.0	2228	0.031	95	-0.02	061
66	1	-0.0	0256	0.070	63	-0.05	870
6/	1	0.04	4084	0.019	03	0.00	/45
68	1	0.04	4121	0.045	14	0.079	949
69	1	0.0	0168	-0.078	77	0.11	747
70	1	-0.0	1138	-0.087	97	0.02	839
71	1	-0.0	2330	-0.070	34	-0.03	400
Dipo	ole ([Deby	es) x	У	Z	Т	otal
Poir	nt-Ch	g.	0.283	-1.77	7	4.019	4.403
sp H	lybri	d	0.494	0.21	5	0.902	1.050
pd F	lybri	d	0.000	0.00	0	0.000	0.000
Sum	۱	0	.777	-1.561	4	.921	5.221

Compound

HyperChem log start -- Thu Oct 01 04:01:29 2020. Single Point, SemiEmpirical, molecule = C:\Users\user\Desktop\Hyper obliczenia\strukt\ti219_19f3a.ent. PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 164 in which Number of Alpha Electrons = 82 Number of Beta Electrons = 82 Charge on the System = 0 Total Orbitals = 155

Starting PM3 calculation with 155 orbitals Energy=-6441.205822 kcal/mol Gradient=0.025971 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-114162.8957653 (kcal/mol)
Total Energy	=	-181.930132344 (a.u.)
Binding Energy		= -6441.2058223 (kcal/mol)
Isolated Atomic Energy		= -107721.6899430 (kcal/mol)
Electronic Energy		= -1093005.2936271 (kcal/mol)
Core-Core Interaction		= 978842.3978618 (kcal/mol)
Heat of Formation		= -69.1858223 (kcal/mol)
Gradient	=	0.0259709 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Atc	m	Z Charge	Coordi	Coordinates(Angstrom)			
		х	y z	2			
1	6	-0.122159	-0.18189	1.18447	1.01414	12.01100	
2	6	0.040137	-0.57019	-0.26582	1.30046	12.01100	
3	7	0.011091	0.00971	-1.19363	0.27155	14.00700	
4	6	0.265266	1.30684	-0.92656	-0.25980	12.01100	
5	6	-0.042778	1.99846	0.40850	-0.03378	12.01100	

6	6	-0.072103	1.32763	1.36399	0.98365	12.01100
7	8	-0.375219	1.83524	-1.81274	-0.91898	15.99900
8	6	-0.041771	-0.37525	-2.59951	0.41826	12.01100
11	6	-0.191904	-2.07514	-0.39087	1.37630	12.01100
13	6	-0.078231	2.15294	1.24686	-1.27116	12.01100
14	6	-0.047295	1.67389	2.78757	0.48972	12.01100
17	6	-0.090187	1.98897	2.60735	-0.95791	12.01100
18	6	-0.073650	2.45161	0.85312	-2.56456	12.01100
19	6	-0.106812	2.57730	1.83738	-3.54783	12.01100
20	6	-0.101534	2.41250	3.18185	-3.23766	12.01100
21	6	-0.090660	2.11648	3.58123	-1.93280	12.01100
28	6	0.159549	-2.69354	-0.65859	2.61366	12.01100
29	6	-0.302387	-4.08028	-0.80875	2.74254	12.01100
30	6	0.168806	-4.88127	-0.68019	1.60814	12.01100
31	6	-0.267931	-4.31405	-0.38371	0.36481	12.01100
32	6	0.173350	-2.92744	-0.23344	0.25994	12.01100
33	8	-0.198144	-1.85931	-0.70633	3.71806	15.99900
34	6	0.048637	-2.32024	-1.43810	4.82952	12.01100
35	8	-0.186957	-6.25311	-0.80980	1.58241	15.99900
36	6	0.050964	-6.89902	-1.13850	2.78779	12.01100
37	8	-0.181361	-2.33452	0.13398	-0.93104	15.99900
38	6	0.041811	-3.04193	-0.15520	-2.11424	12.01100
39	6	-0.071852	-1.06720	-3.21578	-0.62859	12.01100
40	6	-0.101568	-1.44524	-4.54914	-0.51168	12.01100
41	6	-0.101225	-1.13918	-5.26754	0.63865	12.01100
42	6	-0.100613	-0.44692	-4.65414	1.67750	12.01100
43	6	-0.108527	-0.05950	-3.32341	1.57302	12.01100
22	1	0.059913	2.55028	3.19839	1.02542	1.00800
23	1	0.065463	0.84749	3.50416	0.65156	1.00800
24	1	0.128685	2.58341	-0.20703	-2.81134	1.00800
25	1	0.102388	2.80848	1.54129	-4.57645	1.00800
26	1	0.100596	2.51369	3.93801	-4.02304	1.00800
27	1	0.105440	1.98415	4.63912	-1.68614	1.00800
12	1	0.069823	-0.12368	-0.55671	2.28946	1.00800
10	1	0.087558	-0.61748	1.53619	0.05650	1.00800
9	1	0.066607	-0.62215	1.83270	1.79807	1.00800
15	1	0.092442	3.02916	0.16524	0.32985	1.00800
16	1	0.068366	1.74198	1.18847	2.00294	1.00800
44	1	0.136513	-4.50862	-1.01728	3.73508	1.00800
45	1	0.141187	-4.94956	-0.26039	-0.52660	1.00800
46	1	0.030697	-2.26445	-2.51529	4.63909	1.00800
47	1	0.031972	-3.34794	-1.17354	5.12002	1.00800
48	1	0.050925	-1.61554	-1.15147	5.61369	1.00800
49	1	0.028473	-6.77287	-0.36260	3.55176	1.00800
50	1	0.028798	-6.57033	-2.10538	3.18604	1.00800
51	1	0.051778	-7.94702	-1.19562	2.48128	1.00800
52	1	0.034781	-4.09735	0.15271	-2.07296	1.00800
53	1	0.030887	-2.98446	-1.22499	-2.34679	1.00800
54	1	0.054815	-2.50024	0.42691	-2.86361	1.00800
55	1	0.116082	-1.30496	-2.65661	-1.54224	1.00800
56	1	0.101915	-1.98336	-5.03461	-1.33234	1.00800
57	1	0.101454	-1.43873	-6.31684	0.72510	1.00800

58	1	0.100568	-0.19989	-5.22265	2.57988	1.00800
59	1	0.107133	0.49073	-2.85486	2.39740	1.00800

ATOMIC GRADIENTS

Ato	m	Z	Grad	lients(l	kcal/r	nol/An	gstrom)
		х	У	z			
1	6	0.02	2498	0.034	140	-0.002	87
2	6	0.00	0091	0.062	291	-0.001	25
3	7	0.00)484	0.004	481	0.004	94
4	6	0.01	469	-0.01	172	-0.005	06
5	6	-0.00)508	-0.03	814	0.082	03
6	6	-0.00	0826	-0.01	056	0.039	16
7	8	0.01	809	0.003	310	-0.008	84
8	6	0.04	1704	-0.03	392	-0.008	77
11	6	0.0	0206	-0.01	691	0.000	096
13	6	-0.0	0460	-0.02	2341	0.01	195
14	6	-0.0	1562	-0.01	L057	0.103	397
17	6	-0.0	1233	0.00)542	0.005	532
18	6	-0.0	3356	-0.03	3590	-0.02	652
19	6	-0.0	4144	-0.01	L075	-0.01	723
20	6	-0.0	5127	-0.00)952	-0.01	725
21	6	-0.0	3386	0.00)644	-0.00	916
28	6	-0.0	0021	0.03	328	-0.004	433
29	6	0.0	0072	0.00	220	0.000)97
30	6	-0.0	0245	0.02	561	-0.044	169
31	6	0.0	0032	-0.01	259	0.003	844
32	6	0.0	1290	0.03	486	0.002	14
33	8	-0.0	2165	0.00	1389	0.002	212
34	6	-0.0	1796	0.00	817	0.002	-12 R12
25	8	0.0	0/130	-0.01	542	-0.01)12))7
36	6	0.0	0433	_0.01	166	_0.012	201
30	Q Q	0.0	1072	0.01	78/	0.013	201
38	6	0.0	2601	0.01	12/	0.013	180
20	6	0.0	2094 0202	_0.01	000	0.013	500
10	6	0.0	2466	0.02	602	0.00	103
40	6	0.0	2400	-0.02		0.00	060
41	6	-0.0	0025	-0.00		-0.00	009
42	6	0.0	0925	-0.02	2009	-0.01	54⊥ 722
43	0	-0.0	2102	-0.03	0401	0.01	/ 33
22	1	0.0	310Z	0.00	001	-0.010	514
23	1	0.0	1214	0.0-	1001	0.026	
24	T	-0.0	1880	-0.05	9//3	-0.02	/23
25	T	-0.0	3272	-0.03	3479	-0.06	939
26	1	-0.0	4166	0.03	8814	-0.05	589
27	1	-0.0	3702	0.07	858	0.025	996 277
12	1	0.0	25/5	0.00	124	-0.019	927
10	1	0.0	1316	0.02	528	0.035	96
9	1	0.02	26/6	-0.03	65/	0.003	/5
15	1	0.0	2/84	0.01	027	-0.004	129
16	1	0.0	1187	-0.00	1624	-0.002	288
44	1	-0.0	1629	0.01	.373	-0.024	4/1
45	1	0.0	1970	-0.00)463	-0.01	039
46	1	-0.0	4070	0.01	.347	0.038	378

47	1	-0.01325	0.01687	0.02975
48	1	-0.00047	0.04664	-0.02385
49	1	-0.00855	-0.02057	-0.01319
50	1	0.01088	-0.01194	-0.03256
51	1	-0.00124	-0.02228	0.01082
52	1	0.03266	0.01802	0.03388
53	1	0.01614	0.01005	0.00263
54	1	0.03569	0.01272	0.01134
55	1	0.03537	0.01432	-0.00806
56	1	0.01609	0.02063	-0.00850
57	1	-0.03272	0.03325	-0.01087
58	1	-0.02587	-0.00318	-0.02558
59	1	0.00537	-0.02319	0.00221

Dipole (Del	oyes) x	У	z T	otal				
Point-Chg.	-3.178	0.981	2.308	4.049				
sp Hybrid	-0.330	-0.282	1.083	1.167				
pd Hybrid	0.000	0.000	0.000	0.000				
Sum	-3.508	0.699	3.391	4.929				
HyperChem log stop Thu Oct 01 04:07:10 2020.								

Compound 3e

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 164 in which Number of Alpha Electrons = 82 Number of Beta Electrons = 82 Charge on the System = 0 Total Orbitals = 155

Starting PM3 calculation with 155 orbitals Energy=-6440.423192 kcal/mol Gradient=0.016234 Symmetry=C1

ENERGIES AND GRADIENT Total Energy = -114162.1131351 (kcal/mol)

Total Energy	=	-181.928885143 (a.u.)
Binding Energy		= -6440.4231921 (kcal/mol)
Isolated Atomic Energy		= -107721.6899430 (kcal/mol)
Electronic Energy		= -1085630.3233886 (kcal/mol)
Core-Core Interaction		= 971468.2102536 (kcal/mol)
Heat of Formation		= -68.4031921 (kcal/mol)
Gradient	=	0.0162341 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Ato	m	Z Charge	Coordi	Mass		
		х	y z			
1	6	-0.113992	-0.09463	1.14304	0.72502	12.01100
2	6	0.035240	-0.35465	-0.29489	1.17947	12.01100
3	7	0.006878	0.31996	-1.28776	0.28985	14.00700
4	6	0.274505	1.24311	-0.87507	-0.71458	12.01100
5	6	-0.033092	1.97985	0.44756	-0.56932	12.01100
6	6	-0.074048	1.37324	1.43183	0.46410	12.01100
7	8	-0.380534	1.48468	-1.67507	-1.60874	15.99900
8	6	-0.045126	-0.44517	-2.51735	0.07394	12.01100
11	6	-0.182316	-0.03996	-0.48380	2.64965	12.01100
12	6	-0.082563	2.08713	1.25199	-1.83389	12.01100
13	6	-0.048896	1.54302	2.84471	-0.13607	12.01100
16	6	-0.090093	1.85411	2.61249	-1.57472	12.01100
17	6	-0.070567	2.41567	0.83008	-3.11249	12.01100
18	6	-0.108925	2.49361	1.78151	-4.13161	12.01100
19	6	-0.100739	2.25494	3.12607	-3.87367	12.01100
20	6	-0.094466	1.93343	3.55553	-2.58548	12.01100
27	6	-0.101647	-1.63532	-2.50970	-0.66102	12.01100
28	6	-0.098319	-2.34156	-3.69416	-0.83446	12.01100
29	6	-0.100218	-1.86824	-4.88039	-0.28292	12.01100
30	6	-0.101940	-0.68301	-4.88582	0.44402	12.01100
31	6	-0.076894	0.03419	-3.70805	0.62653	12.01100
38	6	0.149428	-1.05867	-0.20594	3.58870	12.01100
39	6	0.164981	1.19443	-0.91770	3.17628	12.01100
40	6	-0.261477	1.38702	-1.11418	4.54924	12.01100
41	6	0.162314	0.34145	-0.85088	5.43742	12.01100
42	6	-0.297591	-0.88569	-0.38427	4.96602	12.01100
43	8	-0.196719	-2.23735	0.31086	3.07658	15.99900
44	6	0.049056	-3.39570	0.14987	3.86095	12.01100
45	8	-0.186652	0.65228	-1.08262	6.76019	15.99900
46	6	0.050929	-0.35401	-0.85183	7.71542	12.01100
47	8	-0.193352	2.24920	-1.07859	2.29728	15.99900
48	6	0.045011	3.21350	-2.04751	2.64009	12.01100
33	1	0.102192	-3.27081	-3.69307	-1.41344	1.00800
34	1	0.101781	-2.42690	-5.81086	-0.42617	1.00800
35	1	0.101820	-0.30863	-5.82148	0.87190	1.00800
36	1	0.112504	0.97323	-3.71974	1.19400	1.00800
37	1	0.080016	-1.45589	-0.48622	1.05448	1.00800
22	1	0.063425	0.64075	3.47163	-0.00656	1.00800
23	1	0.131314	2.60343	-0.22923	-3.32364	1.00800

24	1	0.102506	2.74627	1.45987	-5.14733	1.00800
25	1	0.100373	2.31979	3.85687	-4.68621	1.00800
26	1	0.105020	1.74715	4.61332	-2.37662	1.00800
9	1	0.071777	-0.48242	1.84131	1.49356	1.00800
14	1	0.095264	3.01728	0.17682	-0.24775	1.00800
15	1	0.083216	1.93117	1.35475	1.42640	1.00800
10	1	0.062258	-0.68462	1.35057	-0.19228	1.00800
21	1	0.060656	2.37029	3.39292	0.35282	1.00800
32	1	0.108808	-2.01112	-1.58272	-1.10986	1.00800
49	1	0.140712	2.36249	-1.46811	4.91985	1.00800
50	1	0.136744	-1.71616	-0.14593	5.64864	1.00800
51	1	0.031154	-3.25315	0.47254	4.90308	1.00800
52	1	0.030576	-3.73766	-0.89056	3.84919	1.00800
53	1	0.052059	-4.11793	0.79539	3.35563	1.00800
54	1	0.028391	-1.22854	-1.49476	7.56240	1.00800
55	1	0.028758	-0.66854	0.19791	7.74341	1.00800
56	1	0.052116	0.14812	-1.11762	8.64964	1.00800
57	1	0.031034	2.81414	-3.05971	2.50713	1.00800
58	1	0.034457	3.58763	-1.93354	3.66850	1.00800
59	1	0.052890	4.01021	-1.85435	1.91752	1.00800

ATC	омі	C GRADIENT	S					
Atom Z Gradients(kcal/mol/Angstrom)								
		х у	Z					
1	6	-0.00102	-0.00046	-0.00438				
2	6	0.00438	0.00713	0.01801				
3	7	-0.00353	0.01215	-0.01748				
4	6	-0.00064	-0.03988	0.00092				
5	6	0.00763	0.02517	-0.02493				
6	6	0.01013	-0.01727	0.00804				
7	8	-0.00051	0.01083	0.01389				
8	6	-0.00055	-0.01553	-0.02160				
11	6	0.01022	-0.00817	0.00850				
12	6	0.00574	-0.01552	0.01916				
13	6	0.00952	-0.03302	-0.04049				
16	6	-0.02377	-0.01483	0.04226				
17	6	-0.01781	-0.03655	0.00370				
18	6	0.00979	-0.00980	-0.04269				
19	6	-0.01773	0.02434	-0.02941				
20	6	-0.00707	0.02290	0.00562				
27	6	0.00912	0.00310	0.00108				
28	6	0.00643	-0.01490	-0.02249				
29	6	-0.00144	0.01001	0.00191				
30	6	-0.00429	-0.01152	-0.02054				
31	6	-0.01166	0.00949	0.00784				
38	6	-0.00430	-0.00471	-0.02658				
39	6	0.00969	-0.00476	-0.00290				
40	6	0.01058	-0.00040	0.00694				
41	6	0.00253	0.00777	-0.00078				
42	6	0.01140	0.00008	0.00750				
43	8	0.00317	-0.01209	-0.00454				
44	6	0.00077	0.01988	0.01728				

45	8	-0.00854	0.02073	0.00324
46	6	-0.01838	0.00044	0.00991
47	8	-0.00761	0.00350	0.01388
48	6	0.00770	-0.00329	0.00005
33	1	0.01273	0.00401	-0.01184
34	1	0.01136	0.00810	-0.01749
35	1	0.01093	0.00499	-0.01058
36	1	0.00835	0.00040	-0.00097
37	1	-0.00696	0.00878	-0.00339
22	1	-0.02962	-0.00536	0.01574
23	1	-0.01193	-0.01912	-0.00634
24	1	-0.01510	0.00940	0.01074
25	1	-0.00888	-0.00618	0.02360
26	1	-0.02456	0.00449	0.01295
9	1	-0.00765	0.00710	-0.02218
14	1	0.00969	-0.01712	0.00043
15	1	0.01326	-0.00880	0.02311
10	1	0.02080	-0.01311	-0.01885
21	1	0.00062	0.02019	0.02127
32	1	0.02928	0.00229	-0.03478
49	1	-0.00819	-0.00209	0.01060
50	1	-0.00982	-0.00364	0.00297
51	1	0.03647	0.06177	-0.00747
52	1	-0.00684	0.02958	0.06473
53	1	0.00348	0.00995	0.00177
54	1	-0.00674	-0.00804	0.00654
55	1	-0.03482	-0.01011	0.01908
56	1	-0.00730	-0.00669	0.00419
57	1	0.01157	-0.00586	0.00034
58	1	0.01326	-0.00273	-0.00365
59	1	0.00662	0.00295	-0.01143

Dipole (Del	oyes) x	У	z T	otal
Point-Chg.	-1.630	0.789	4.123	4.504
sp Hybrid	-0.809	0.193	0.567	1.007
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-2.439	0.982	4.690	5.377

Compound 9a

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation: Singlet state calculation Number of electrons = 134 in which Number of Alpha Electrons = 67 Number of Beta Electrons = 67 Charge on the System = 0 Total Orbitals = 127

Starting PM3 calculation with 127 orbitals Energy=-5319.977913 kcal/mol Gradient=0.391836 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-92337.8710323 (kcal/mol)
Total Energy	=	-147.149745849 (a.u.)
Binding Energy		= -5319.9779133 (kcal/mol)
Isolated Atomic Energy		= -87017.8931190 (kcal/mol)
Electronic Energy		= -773932.7546351 (kcal/mol)
Core-Core Interaction		= 681594.8836028 (kcal/mol)
Heat of Formation		= -70.3749133 (kcal/mol)
Gradient	=	0.3918358 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Ato	m	Z Ch	arge	Coordinates(Angstrom)			Mass				
			х	У	Z						
1	6	-0.119	9337	-1.614	00	-0.2940	0	0.4530	0	12.011	L00
2	6	0.012	2680	-0.166	00	-0.7790	0	0.6060	0	12.011	.00
3	7	-0.056	5809	0.682	00	-0.3160	0	-0.5420	0	14.007	700
4	6	0.269	9550	0.159	00	0.70700	0	-1.3940	0	12.011	.00
5	6	-0.040)598	-0.809	00	1.7400	0	-0.8250	0	12.011	L00
6	6	-0.075	5361	-1.666	00	1.2200	0	0.3550	0	12.011	.00
7	8	-0.378	3096	0.569	00	0.7870	0	-2.5440	0	15.999	00
8	6	-0.063	3661	1.611	00	-1.3280	0	-1.1040	0	12.011	L00
10	6	-0.09	1176	-0.16	900	-2.270	00	0.8270	00	12.01	100
13	6	-0.08	7890	-0.05	800	2.9080	00	-0.2560	00	12.01	100
15	6	-0.05	5040	-1.13	700	1.9170	00	1.6290	00	12.01	100
16	6	-0.07	2033	0.919	900	-2.6550	00	-1.3840	00	12.01	100
19	6	-0.06	1181	0.300	000	-3.1670	00	-0.1280	00	12.01	100
20	6	-0.15	4345	-0.68	100	-2.7510	00	2.0400	00	12.01	100
21	6	0.05	8406	-0.760	000	-4.1200	00	2.2780	00	12.01	100
22	6	0.06	7174	-0.310	000	-5.0340	00	1.2860	00	12.01	100
23	6	-0.15	7625	0.226	500	-4.5460	00	0.0970	00	12.01	100
27	8	-0.16	6347	-1.24	700	-4.6990	00	3.4330	00	15.99	900
28	8	-0.16	6682	-0.44	300	-6.3690	00	1.6090	00	15.99	900
30	6	-0.08	2516	-0.26	200	3.0150	00	1.1280	00	12.01	100
33	6	-0.09	0277	0.322	L00	4.0420)0	1.8520	00	12.01	100
34	6	-0.09	6711	1.115	500	4.9670)0	1.1730	0	12.01	100
35	6	-0.10	5275	1.317	700	4.8610)0	-0.1990	00	12.01	100
36	6	-0.06	9663	0.729	900	3.8270	00	-0.9300	00	12.01	100
42	6	0.04	6991	-1.788	300	-3.8420	00	4.4070	00	12.01	100

43	6	0.046975	-0.00200	-7.31000	0.66200	12.01100
18	1	0.060814	2.41600	-1.46100	-0.35400	1.00800
9	1	0.067548	-2.21000	-0.63500	1.32300	1.00800
29	1	0.121102	0.60000	-5.22700	-0.67800	1.00800
14	1	0.072177	-2.72600	1.52700	0.18800	1.00800
31	1	0.068165	-0.54200	1.20900	2.24800	1.00800
32	1	0.063199	-1.95400	2.29300	2.26900	1.00800
11	1	0.082248	0.27400	-0.27800	1.51500	1.00800
12	1	0.096603	-1.46800	2.08600	-1.65600	1.00800
17	1	0.088770	2.09600	-0.93800	-2.02100	1.00800
24	1	0.064561	1.65500	-3.38000	-1.78500	1.00800
37	1	0.106214	0.16000	4.12600	2.93100	1.00800
38	1	0.101877	1.58400	5.78600	1.72900	1.00800
39	1	0.104000	1.94400	5.59600	-0.71500	1.00800
40	1	0.120149	0.88800	3.73900	-2.01100	1.00800
41	1	0.068306	-2.09100	-0.75200	-0.43600	1.00800
25	1	0.069507	0.14300	-2.55000	-2.16800	1.00800
26	1	0.119107	-1.01600	-2.02900	2.79600	1.00800
44	1	0.026108	-2.64000	-3.26300	4.03100	1.00800
45	1	0.026440	-1.03800	-3.16100	4.82800	1.00800
46	1	0.053458	-2.12300	-4.54800	5.17100	1.00800
47	1	0.027797	1.07400	-7.23200	0.46500	1.00800
48	1	0.027609	-0.55500	-7.24500	-0.28200	1.00800
49	1	0.053088	-0.22400	-8.25700	1.16200	1.00800

ATOMIC GRADIENTS

Atom Z Gradients(kcal/mol/Angstrom)					
			х у	Z	
1	6		-0.43962	-0.49817	-0.30956
2	6		-0.18334	0.28361	0.42084
3	7		-0.18982	0.19632	0.01647
4	6		0.07443	0.09758	-0.14234
5	6		-0.51527	0.22638	-0.65861
6	6		0.90237	-0.00037	0.57186
7	8		-0.16500	0.02455	0.34238
8	6		0.78993	-0.19680	0.35584
10	6		0.76964	-0.71132	-1.32095
13	6		0.17620	-0.24042	-0.23341
15	6		0.24538	-0.04563	-0.06201
16	6		-0.70530	-0.09181	-0.35335
19	6		-0.38774	1.47579	0.64408
20	6		-0.53208	0.30125	0.82353
21	6		0.25125	-0.69247	0.10020
22	6		-0.83994	-0.07643	1.38034
23	6		0.57718	-0.46275	-0.98005
27	8		0.19611	0.10154	-0.58825
28	8		0.12570	0.15725	-0.12995
30	6		-0.22251	0.14251	-0.13759
33	6		0.55489	0.46395	0.06928
34	6		-0.61863	-0.59650	0.47591
35	6		0.10065	0.08868	-0.35684
36	6		-0.38065	-0.31319	0.70217

42	6	-0.44343	-0.62250	0.56350
43	6	-0.33298	-0.26991	-0.33787
18	1	-0.29547	0.09542	-0.26757
9	1	0.25422	0.11407	-0.16842
29	1	0.00884	-0.03727	-0.01316
14	1	-0.59465	0.14287	-0.18777
31	1	-0.10262	0.08002	-0.12964
32	1	0.02928	0.01686	-0.02192
11	1	0.05181	0.01778	-0.13736
12	1	0.38127	-0.18323	0.40675
17	1	-0.02813	0.03531	-0.03047
24	1	0.07511	-0.00079	-0.08466
37	1	-0.01580	0.01622	-0.03563
38	1	0.13065	0.22491	0.13046
39	1	0.11971	0.12755	-0.13027
40	1	0.04521	-0.02243	-0.50449
41	1	0.08060	0.11800	0.24285
25	1	0.43963	-0.10390	0.32833
26	1	0.07344	-0.13080	-0.14546
44	1	-0.11784	0.06780	-0.08507
45	1	0.27553	0.31794	0.10109
46	1	0.07347	0.30329	-0.37482
47	1	0.22977	0.12981	-0.02363
48	1	0.13829	0.02971	0.21960
49	1	-0.05975	-0.10027	0.05566

Dipole (Del	byes) x	У	z To	otal
Point-Chg.	-0.752	-0.549	2.300	2.481
sp Hybrid	-0.452	-0.144	-0.209	0.519
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-1.203	-0.693	2.090	2.510

Compound 9b

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 152 in which Number of Alpha Electrons = 76 Number of Beta Electrons = 76 Charge on the System = 0 Total Orbitals = 143 Starting PM3 calculation with 143 orbitals

Energy=-5968.619459 kcal/mol Gradient=0.029129 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	105995.0843120 (kcal/mol)
Total Energy	=	- 168.913897877 (a.u.)
Binding Energy		= -5968.6194590 (kcal/mol)
Isolated Atomic Energy		= -100026.4648530 (kcal/mol)
Electronic Energy		= -940514.2553124 (kcal/mol)
Core-Core Interaction		= 834519.1710003 (kcal/mol)
Heat of Formation		= -109.2694590 (kcal/mol)
Gradient	=	0.0291287 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

NET CHARGES AND COORDINATES								
Ato	Mass							
		х	y z					
1	6	-0.074375	-1.31514	-0.19676	1.39760	12.01100		
2	6	0.020600	0.06748	-0.89329	1.37535	12.01100		
3	7	-0.074136	1.04521	-0.18259	0.49275	14.00700		
4	6	0.277889	0.53054	0.48234	-0.67910	12.01100		
5	6	-0.042591	-0.63064	1.43962	-0.46121	12.01100		
6	6	-0.069687	-1.32116	1.25100	0.90873	12.01100		
7	8	-0.357095	1.08813	0.35076	-1.75597	15.99900		
8	6	-0.059857	2.32932	-0.91580	0.37138	12.01100		
9	6	-0.124613	-1.92181	-0.24271	2.79706	12.01100		
10	6	-0.073083	-0.02566	-2.37365	1.03731	12.01100		
13	6	-0.055309	-0.09804	2.84521	-0.39230	12.01100		
15	6	-0.041477	-0.67333	2.28911	1.85378	12.01100		
16	6	-0.079126	2.15743	-2.28967	-0.25369	12.01100		
19	6	-0.083801	0.96975	-3.01306	0.28910	12.01100		
20	6	-0.185883	-1.09144	-3.13308	1.53079	12.01100		
21	6	0.073600	-1.19609	-4.49761	1.25919	12.01100		
22	6	0.028009	-0.20098	-5.12790	0.47890	12.01100		
23	6	-0.093378	0.87510	-4.38021	0.01069	12.01100		
27	8	-0.174398	-2.20323	-5.31952	1.72298	15.99900		
28	8	-0.193644	-0.32293	-6.45436	0.07625	15.99900		
30	6	-0.117423	-0.12329	3.32081	0.92640	12.01100		
33	6	-0.055468	0.31953	4.59971	1.22494	12.01100		
34	6	-0.138361	0.78983	5.40757	0.19303	12.01100		
35	6	0.085569	0.80920	4.92415	-1.12485	12.01100		
36	6	-0.145884	0.36206	3.63002	-1.43569	12.01100		
39	8	-0.190322	1.29202	5.83504	-2.04481	15.99900		
42	6	0.048393	-3.31575	-4.70393	2.32345	12.01100		
43	6	0.055252	0.24369	-7.37254	0.98558	12.01100		
50	6	0.049349	1.39316	5.41314	-3.38233	12.01100		

11	1	0.079369	0.52233	-0.82728	2.39852	1.00800
31	1	0.070217	0.13723	1.84675	2.46507	1.00800
32	1	0.058871	-1.40576	2.71173	2.56539	1.00800
17	1	0.077409	3.04016	-0.30036	-0.21413	1.00800
18	1	0.057907	2.74757	-0.99246	1.39543	1.00800
24	1	0.064207	3.07483	-2.88913	-0.08715	1.00800
25	1	0.081509	2.04845	-2.20738	-1.35549	1.00800
37	1	0.105502	0.29838	4.96968	2.25476	1.00800
38	1	0.119516	1.14370	6.42169	0.41213	1.00800
26	1	0.131571	-1.85589	-2.64614	2.15577	1.00800
40	1	0.131241	0.37913	3.23107	-2.45649	1.00800
41	1	0.074776	-1.98679	-0.76348	0.70233	1.00800
14	1	0.069166	-2.39446	1.54144	0.78533	1.00800
12	1	0.094940	-1.35703	1.32396	-1.29886	1.00800
44	1	0.024240	-3.05652	-4.19854	3.26175	1.00800
45	1	0.053269	-3.96777	-5.55779	2.52709	1.00800
46	1	0.029831	-3.81801	-3.99743	1.65257	1.00800
47	1	0.029389	-0.24957	-7.34518	1.96339	1.00800
48	1	0.019567	1.31966	-7.20824	1.11383	1.00800
49	1	0.045813	0.06357	-8.33423	0.49886	1.00800
29	1	0.119784	1.65425	-4.86630	-0.59066	1.00800
51	1	0.050914	-1.28652	0.26222	3.53844	1.00800
52	1	0.046415	-2.06973	-1.27657	3.14636	1.00800
53	1	0.046048	-2.90317	0.25018	2.81752	1.00800
54	1	0.027606	0.41565	5.17291	-3.81654	1.00800
55	1	0.032959	2.06921	4.55844	-3.50107	1.00800
56	1	0.049214	1.81345	6.29548	-3.87254	1.00800

	ATOMIC	GRADIEN	ΤS
--	--------	----------------	----

ATOMIC GRADIENTS					
Atom 2	Z Grad	lients(kcal/r	mol/Angstrom)		
	х у	z			
16	0.01200	-0.00899	0.00578		
26	0.00353	-0.00319	0.00186		
37	0.00481	-0.02344	0.01378		
46	0.06650	-0.00663	-0.10349		
56	0.01311	0.01109	0.00610		
66	-0.00247	0.02283	-0.01438		
78	-0.04938	0.01281	0.10251		
86	-0.00392	0.01038	-0.00874		
96	-0.00701	-0.00567	0.00671		
10 6	0.05400	0.00613	-0.01748		
13 6	-0.03317	-0.03574	0.14425		
15 6	0.01064	0.00787	-0.01983		
16 6	0.01501	0.00770	-0.00067		
19 6	-0.03684	-0.04777	0.00206		
20 6	-0.01191	-0.07536	-0.01537		
21 6	0.01425	0.04885	-0.00059		
22 6	-0.00137	0.05467	0.02110		
23 6	-0.00897	0.03890	0.02449		
27 8	0.04716	-0.01152	-0.02606		
28 8	-0.00366	-0.02376	-0.02498		
30 6	-0.01324	-0.08124	-0.06053		

33	6	0.00193	0.03472	0.04324
34	6	0.00258	0.00475	-0.06871
35	6	0.01714	0.07712	0.07696
36	6	0.01221	-0.02677	-0.14657
39	8	-0.00971	-0.01679	-0.01623
42	6	-0.03045	0.04220	0.00845
43	6	-0.00940	0.00785	0.01732
50	6	-0.00967	0.01652	0.00920
11	1	0.00119	0.00094	0.00176
31	1	0.00603	0.00043	0.00243
32	1	-0.00431	0.00064	0.00646
17	1	0.00541	0.00032	0.00698
18	1	0.00333	-0.00053	0.01474
24	1	-0.00475	0.00529	0.00473
25	1	0.00831	-0.00402	0.01791
37	1	0.00144	-0.00313	-0.01103
38	1	-0.00362	-0.00216	-0.00369
26	1	-0.00208	0.00070	0.00585
40	1	0.00217	0.01147	0.04036
41	1	0.00031	-0.00037	0.00191
14	1	0.00686	-0.00164	0.00259
12	1	-0.00213	-0.00550	-0.00224
44	1	-0.00337	-0.00741	-0.01694
45	1	-0.01091	-0.00465	-0.00801
46	1	0.00295	-0.00458	0.00422
47	1	-0.01318	-0.00756	-0.00910
48	1	-0.01505	-0.01176	0.00776
49	1	-0.00746	-0.00711	-0.01010
29	1	0.00130	0.00316	-0.00500
51	1	0.00779	0.00363	0.00194
52	1	0.00766	0.00250	-0.00105
53	1	0.00187	0.00157	0.00392
54	1	-0.01568	-0.00443	-0.00583
55	1	-0.00649	-0.00148	-0.00306
56	1	-0.01133	-0.00185	-0.00767

Dipole (Del	oyes) x	У	z T	otal
Point-Chg.	-1.015	0.358	2.951	3.142
sp Hybrid	-0.347	-0.692	-0.020	0.774
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-1.362	-0.334	2.932	3.250

Compound 9c

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 174 in which Number of Alpha Electrons = 87 Number of Beta Electrons = 87 Charge on the System = 0 Total Orbitals = 165

Starting PM3 calculation with 165 orbitals

Energy=-6892.493836 kcal/mol Gradient=0.665784 Symmetry=C1

ENERGIES AND GRADIENT

=	-120347.2867453 (kcal/mol)
=	-191.785585483 (a.u.)
	= -6892.4938363 (kcal/mol)
	= -113454.7929090 (kcal/mol)
	= -1172347.0606393 (kcal/mol)
	= 1051999.7738940 (kcal/mol)
	= -74.4898363 (kcal/mol)
=	0.6657837 (kcal/mol/Ang)
	=

MOLECULAR POINT GROUP C1

Ato	m	Z Charge	Coordi	Coordinates(Angstrom)		
		х	y z			
1	6	-0.030316	-1.53243	-0.22745	1.07444	12.01100
2	6	0.016683	-0.14199	-0.90684	1.13385	12.01100
3	7	-0.072434	0.84068	-0.25477	0.20962	14.00700
4	6	0.275795	0.33271	0.47966	-0.92155	12.01100
5	6	-0.043388	-0.75218	1.50763	-0.64469	12.01100
6	6	-0.069220	-1.50469	1.25368	0.68054	12.01100
7	8	-0.358952	0.84760	0.34747	-2.02008	15.99900
8	6	-0.059761	2.06856	-1.06421	0.01094	12.01100
9	6	-0.078519	-2.30493	-0.33535	2.36800	12.01100
10	6	-0.073136	-0.24108	-2.40827	0.91626	12.01100
13	6	-0.055071	-0.11433	2.85466	-0.44422	12.01100
15	6	-0.043123	-0.88609	2.21462	1.72052	12.01100
16	6	-0.079228	1.76792	-2.41155	-0.62273	12.01100
19	6	-0.086729	0.65246	-3.10095	0.08742	12.01100
20	6	-0.186043	-1.21633	-3.13215	1.61310	12.01100
21	6	0.075184	-1.33888	-4.51560	1.46066	12.01100
22	6	0.025755	-0.46360	-5.19790	0.58185	12.01100
23	6	-0.093022	0.52811	-4.48383	-0.08790	12.01100
27	8	-0.173255	-2.26959	-5.30380	2.10386	15.99900
28	8	-0.193217	-0.62969	-6.54750	0.28897	15.99900

30	6	-0.115951	-0.19217	3.24777	0.89978	12.01100
33	6	-0.055665	0.33301	4.46324	1.31376	12.01100
34	6	-0.137990	0.93932	5.29084	0.37191	12.01100
35	6	0.085331	1.00997	4.89083	-0.97354	12.01100
36	6	-0.147699	0.48026	3.66190	-1.40047	12.01100
39	8	-0.190035	1.63068	5.81205	-1.79466	15.99900
42	6	0.044139	-3.08534	-4.68887	3.07049	12.01100
43	6	0.055216	0.05413	-7.40397	1.17775	12.01100
50	6	0.049246	1.77917	5.47376	-3.15133	12.01100
54	6	-0.103921	-3.70092	-0.39701	2.31275	12.01100
55	6	-0.097933	-4.44725	-0.45838	3.48371	12.01100
56	6	-0.103770	-3.80998	-0.45832	4.72035	12.01100
57	6	-0.095206	-2.42197	-0.39932	4.78293	12.01100
58	6	-0.110945	-1.67319	-0.33859	3.61343	12.01100
24	1	0.064837	2.67967	-3.04156	-0.60748	1.00800
25	1	0.081709	1.50063	-2.29639	-1.69394	1.00800
37	1	0.105880	0.27064	4.76741	2.36323	1.00800
38	1	0.119577	1.36002	6.25444	0.68193	1.00800
26	1	0.137604	-1.89149	-2.59486	2.29487	1.00800
40	1	0.131634	0.53418	3.32885	-2.44349	1.00800
41	1	0.081004	-2.11784	-0.76281	0.28145	1.00800
14	1	0.072933	-2.57027	1.56049	0.53218	1.00800
12	1	0.095478	-1.45838	1.52832	-1.50761	1.00800
44	1	0.029137	-2.50554	-4.25645	3.89442	1.00800
45	1	0.052020	-3.68234	-5.53023	3.43317	1.00800
46	1	0.031431	-3.74065	-3.92265	2.63943	1.00800
47	1	0.028927	-0.30283	-7.30365	2.20865	1.00800
48	1	0.019242	1.13737	-7.23994	1.14839	1.00800
49	1	0.045607	-0.18859	-8.39618	0.78944	1.00800
29	1	0.119547	1.21809	-5.01032	-0.75965	1.00800
51	1	0.027966	0.81386	5.35280	-3.65650	1.00800
52	1	0.032616	2.38503	4.57127	-3.29288	1.00800
53	1	0.049296	2.30436	6.34530	-3.55144	1.00800
11	1	0.084042	0.29546	-0.75264	2.16115	1.00800
31	1	0.068729	-0.16799	1.69847	2.38755	1.00800
32	1	0.064050	-1.65632	2.65594	2.37906	1.00800
17	1	0.078326	2.78773	-0.48673	-0.60235	1.00800
18	1	0.058454	2.53181	-1.18813	1.01046	1.00800
59	1	0.110435	-4.20994	-0.39278	1.34133	1.00800
60	1	0.106183	-5.54008	-0.50476	3.43070	1.00800
61	1	0.106246	-4.39996	-0.50403	5.64150	1.00800
62	1	0.106193	-1.91571	-0.39933	5.75387	1.00800
63	1	0.118075	-0.57295	-0.30317	3.65438	1.00800

Atom Z Gradients(kcal/mol/Angstrom) x y z

		х у	Z	
1	6	0.00403	-0.01707	0.02432
2	6	-0.03200	-0.02543	-0.09145
3	7	-0.00933	-0.00967	-0.01057
4	6	0.03848	0.02825	-0.04668
5	6	0.01335	0.01962	0.03729

6	6	0.01254	0.03267	-0.05817
7	8	-0.01892	-0.00096	0.04873
8	6	-0.00608	-0.00187	-0.02642
9	6	0.11432	-0.01425	-0.10292
10	6	-0.64784	3.48331	0.97996
13	6	-0.51710	-1.37711	-0.82568
15	6	0.01578	0.04159	-0.10671
16	6	-0.08358	-0.08188	0.20435
19	6	2.81945	0.87284	-2.07718
20	6	-1.46858	1.63566	1.60198
21	6	-2.49509	-1.58257	1.90109
22	6	-0.24578	-3.42801	-0.43431
23	6	1.98704	-1.10561	-1.90072
27	8	0.21671	0.10702	-0.16152
28	8	-0.01929	0.21879	-0.01714
30	6	-0 71027	-0.95506	1 31757
33	6	0.00701	0.555500	1 47207
34	6	0.51161	1 31264	0 80895
25	6	0.69783	0 82148	-1 42182
36	6	0.00785	-0 51113	-1 21251
30	8	-0.03426	-0.01608	0 10149
12	6	0.05420	0.01000	0.10145
42	6	-0.00476	0.00231	0.00303
4J 50	6	-0.00470	-0.02010	0.05356
50	6	-0.02834	0.02019	0.05250
54	6	-0.09243	0.01044	-0.10306
55	6	-0.14328	0.01304	-0.01933
50	6	-0.02554	0.00190	0.00405
57	0	0.01763	-0.01273	0.02840
20	1	0.06208	0.03105	0.01057
24	1	-0.03711	-0.03343	-0.01244
25	1	-0.09164	-0.05/16	-0.01318
3/	1	0.01929	-0.00786	0.01649
38	T	0.02224	0.02347	0.00795
26	1	-0.01948	0.03085	0.08706
40	1	0.00912	-0.00602	-0.03130
41	1	0.00280	-0.00224	-0.03153
14	1	-0.00811	-0.00310	-0.01/29
12	1	0.01801	0.03148	-0.00665
44	1	0.04433	-0.02952	0.01//2
45	1	0.04765	-0.00/34	0.04430
46	1	0.01770	-0.02159	0.06544
47	1	0.00504	-0.00370	0.02213
48	1	-0.00947	0.00614	-0.00341
49	1	-0.01715	0.00249	-0.00449
29	1	-0.00478	-0.00775	-0.03039
51	1	-0.00370	0.01635	0.03776
52	1	-0.01633	0.01241	0.02241
53	1	0.00197	0.01667	-0.00030
11	1	0.01296	-0.03189	0.01365
31	1	0.01099	0.00035	-0.01774
32	1	0.00038	0.01872	0.00516
17	1	-0.00253	-0.01301	-0.01965

18	1	0.01252	-0.02615	-0.01321
59	1	0.00610	0.00454	-0.01523
60	1	0.00005	-0.00373	-0.03254
61	1	-0.02040	-0.01966	-0.02829
62	1	-0.01088	0.00559	0.00068
63	1	0.00804	-0.00042	-0.01093

Dipole (Del	byes) x	У	z T	otal
Point-Chg.	-0.774	0.517	3.263	3.393
sp Hybrid	-0.341	-0.586	-0.035	0.679
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-1.116	-0.069	3.228	3.416

Compound 9d

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 164 in which Number of Alpha Electrons = 82 Number of Beta Electrons = 82 Charge on the System = 0 Total Orbitals = 158

Starting PM3 calculation with 158 orbitals

Energy=-6641.143364 kcal/mol Gradient=0.037641 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-109481.2116436 (kcal/mol)
Total Energy	=	-174.469394718 (a.u.)
Binding Energy		= -6641.1433636 (kcal/mol)
Isolated Atomic Energy		= -102840.0682800 (kcal/mol)
Electronic Energy		= -1061475.7009313 (kcal/mol)
Core-Core Interaction		= 951994.4892877 (kcal/mol)
Heat of Formation		= 14.4366364 (kcal/mol)
Gradient	=	0.0376407 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Ato	m	Z Charge	Coordi	nates(Angs	trom)	Mass
		х	y z			
1	6	-0.038514	-1.71856	1.90656	0.50502	12.01100
2	6	0.051238	-1.27018	0.43538	0.64263	12.01100
3	7	-0.067610	-0.48230	-0.04887	-0.54179	14.00700
4	6	0.273318	-0.54250	0.72322	-1.75308	12.01100
5	6	-0.044584	-0.38169	2.23354	-1.63762	12.01100
6	6	-0.067398	-0.71035	2.78948	-0.23158	12.01100
7	8	-0.361273	-0.60694	0.15666	-2.83263	15.99900
8	6	-0.094500	-2.04780	2.53223	1.83686	12.01100
10	6	-0.253852	-2.45126	-0.45799	0.87236	12.01100
13	6	-0.052109	1.06192	2.59977	-1.83824	12.01100
15	6	-0.042155	0.64449	3.01533	0.47459	12.01100
16	6	-0.056834	-0.39779	-1.53274	-0.65100	12.01100
17	6	-0.117874	-2.67734	-1.66180	0.23025	12.01100
18	6	-0.043365	-1.75438	-2.22501	-0.77281	12.01100
19	6	-0.107721	-1.34724	2.20390	2.99912	12.01100
20	6	-0.092934	-1.65402	2.82396	4.20460	12.01100
21	6	-0.098620	-2.66354	3.77896	4.26024	12.01100
22	6	-0.097044	-3.36645	4.11101	3.10668	12.01100
23	6	-0.103890	-3.06176	3.49206	1.89991	12.01100
33	6	-0.115941	1.63790	3.04138	-0.63794	12.01100
34	6	-0.056781	2.96359	3.44302	-0.59369	12.01100
35	6	-0.148660	1.79212	2.55945	-3.01191	12.01100
36	6	0.081888	3.13490	2.96725	-2.95848	12.01100
37	6	-0.134614	3.72131	3.40402	-1.76236	12.01100
42	8	-0.192362	3.96293	3.02516	-4.06513	15.99900
44	7	0.280993	-3.46590	-0.25763	1.84451	14.00700
45	6	-0.072173	-3.90880	-2.21182	0.72976	12.01100
46	6	-0.161202	-4.40989	-1.30057	1.69913	12.01100
47	6	-0.101118	-5.61567	-1.53669	2.37417	12.01100
48	6	-0.087081	-6.29905	-2.69495	2.06277	12.01100
49	6	-0.128695	-5.80593	-3.60886	1.11136	12.01100
50	6	-0.046695	-4.61899	-3.38359	0.44334	12.01100
56	6	0.044376	3.55227	2.29121	-5.19493	12.01100
9	1	0.078076	-2.65295	1.91339	-0.11649	1.00800
14	1	0.073426	-1.19341	3.78975	-0.36018	1.00800
11	1	0.085761	-0.57172	0.33903	1.52260	1.00800
24	1	0.057680	0.12995	-1.87281	0.26277	1.00800
38	1	0.067556	0.88297	2.20568	1.19171	1.00800
39	1	0.063903	0.65041	3.95425	1.05761	1.00800
40	1	0.105898	3.40873	3.78793	0.34485	1.00800
41	1	0.134544	1.34539	2.22049	-3.95862	1.00800
25	1	0.077944	0.25321	-1.79124	-1.50869	1.00800
43	1	0.119704	4.77060	3.72030	-1.74584	1.00800
26	1	0.073700	-2.18229	-2.09747	-1.78791	1.00800
27	1	0.063821	-1.64122	-3.31682	-0.62578	1.00800
28	1	0.118962	-0.55431	1.44066	2.94670	1.00800
29	1	0.107645	-1.09801	2.55898	5.11006	1.00800
30	1	0.107142	-2.90417	4.26885	5.20943	1.00800

31	1	0.106922	-4.16090	4.86370	3.14703	1.00800
32	1	0.109958	-3.61416	3.76473	0.99259	1.00800
51	1	0.077867	-3.68631	0.63630	2.20909	1.00800
52	1	0.106701	-5.99788	-0.82885	3.11571	1.00800
53	1	0.099262	-7.24742	-2.91501	2.56419	1.00800
54	1	0.101785	-6.38333	-4.51555	0.90289	1.00800
55	1	0.105753	-4.22978	-4.09325	-0.29331	1.00800
12	1	0.095444	-1.02148	2.71784	-2.41256	1.00800
57	1	0.036327	2.47721	2.39057	-5.40806	1.00800
58	1	0.029390	3.79741	1.23068	-5.07310	1.00800
59	1	0.048615	4.14536	2.72784	-6.00182	1.00800

ATOMIC GRADIENTS						
Ato	Atom Z Gradients(kcal/mol/Angstrom)					
		х у	Z			
1	6	0.04107	0.04824	-0.02020		
2	6	-0.05143	-0.01667	-0.03406		
3	7	0.05887	0.01039	0.04250		
4	6	-0.02991	0.02096	0.02385		
5	6	0.00775	-0.02807	0.01655		
6	6	0.02334	-0.00192	0.01917		
7	8	0.02085	-0.04280	-0.01993		
8	6	-0.03944	0.00970	0.02767		
10	6	0.08591	0.16124	0.06068		
13	6	0.01855	0.00544	-0.01093		
15	6	0.01362	-0.01524	0.00659		
16	6	-0.03188	-0.02904	0.01526		
17	6	-0.03621	-0.18384	-0.10411		
18	6	-0.01333	-0.02624	0.00266		
19	6	-0.00780	0.00513	-0.03363		
20	6	-0.01718	0.03140	0.02818		
21	6	-0.01700	0.02314	-0.00684		
22	6	0.00563	0.00055	-0.01042		
23	6	0.03991	-0.01383	0.00582		
33	6	-0.05797	-0.02729	0.03806		
34	6	-0.00785	-0.00676	0.03816		
35	6	-0.00554	0.00475	0.03260		
36	6	-0.00811	-0.00996	-0.01033		
37	6	-0.00226	0.00900	-0.02826		
42	8	0.02432	0.03342	-0.02616		
44	7	-0.01541	0.04173	0.04075		
45	6	0.06225	0.03027	-0.03015		
46	6	-0.03891	0.00130	0.00571		
47	6	0.06021	0.15958	0.04543		
48	6	-0.09508	-0.10996	-0.01414		
49	6	-0.08983	0.01136	0.03874		
50	6	0.08233	-0.07627	-0.10348		
56	6	-0.00668	0.02782	-0.02375		
9	1	-0.00677	0.00043	-0.00717		
14	1	0.02113	-0.02895	0.00009		
11	1	0.00326	-0.02371	0.03302		
24	1	0.01299	-0.01246	0.03376		

38	1	-0.00130	0.00514	-0.01779	
39	1	0.01383	-0.03968	-0.01151	
40	1	0.00631	-0.00704	-0.00813	
41	1	-0.01063	-0.00098	-0.02402	
25	1	0.00971	-0.01508	-0.00059	
43	1	0.03606	0.00888	-0.01054	
26	1	0.01033	0.00271	0.03328	
27	1	-0.00705	-0.00190	0.01834	
28	1	0.01069	-0.01370	0.00194	
29	1	-0.00591	0.00605	0.00082	
30	1	0.00218	-0.00432	-0.03391	
31	1	0.01677	-0.01059	-0.01276	
32	1	0.00816	-0.01463	-0.00576	
51	1	-0.00828	0.02220	0.00184	
52	1	-0.01782	0.00014	0.00908	
53	1	-0.02784	-0.00705	0.00118	
54	1	-0.01968	-0.01714	-0.02342	
55	1	0.00936	0.01685	0.04205	
12	1	0.00640	-0.02605	0.00858	
57	1	-0.01511	0.03830	-0.01380	
58	1	-0.00422	0.03342	-0.02970	
59	1	-0.01537	0.04165	0.00315	
Dipo	ole ([Debves) x	v z	Total	
Poir	nt-Ch	g. 0.024	1.791	2.906 3.413	3
					_

sp Hybrid	-1.203	0.105	-0.254	1.234
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-1.179	1.895	2.652	3.466

Compound 9f

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 156 in which Number of Alpha Electrons = 78 Number of Beta Electrons = 78 Charge on the System = 0 Total Orbitals = 151 Starting PM3 calculation with 151 orbitals Energy=-6435.624497 kcal/mol Gradient=0.431782 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-103377.3577462 (kcal/mol)
Total Energy	=	-164.742285574 (a.u.)
Binding Energy		= -6435.6244972 (kcal/mol)
Isolated Atomic Energy		= -96941.7332490 (kcal/mol)
Electronic Energy		= -982463.9520988 (kcal/mol)
Core-Core Interaction		= 879086.5943526 (kcal/mol)
Heat of Formation		= -11.8324972 (kcal/mol)
Gradient	=	0.4317825 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Atom Z Charge Coordinates(Angstrom) Ma						Mass
		х	y z			
1	6	-0.030388	-1.53971	-0.19101	1.08981	12.01100
2	6	0.019257	-0.15325	-0.87809	1.13931	12.01100
3	7	-0.072866	0.83348	-0.22044	0.22423	14.00700
4	6	0.276437	0.32816	0.50715	-0.91152	12.01100
5	6	-0.043648	-0.75857	1.53477	-0.63839	12.01100
6	6	-0.068298	-1.50853	1.28823	0.69054	12.01100
7	8	-0.361128	0.84504	0.37063	-2.00878	15.99900
8	6	-0.058940	2.07121	-1.01864	0.04421	12.01100
9	6	-0.078127	-2.30121	-0.29844	2.39006	12.01100
10	6	-0.110878	-0.25855	-2.37425	0.90169	12.01100
13	6	-0.055158	-0.12134	2.88340	-0.44647	12.01100
15	6	-0.043293	-0.88508	2.25278	1.72404	12.01100
16	6	-0.084013	1.79664	-2.37786	-0.57581	12.01100
19	6	-0.054706	0.66652	-3.06992	0.10894	12.01100
20	6	-0.101960	-1.26634	-3.10676	1.53762	12.01100
21	6	-0.106329	-1.37600	-4.48122	1.37513	12.01100
22	6	-0.065945	-0.46773	-5.16688	0.56765	12.01100
23	6	-0.109373	0.55178	-4.45210	-0.05787	12.01100
28	6	-0.115073	-0.19574	3.28325	0.89574	12.01100
31	6	-0.056046	0.32821	4.50211	1.30132	12.01100
32	6	-0.138063	0.93223	5.32483	0.35375	12.01100
33	6	0.084711	1.00164	4.91684	-0.98936	12.01100
34	6	-0.147874	0.47089	3.68580	-1.40840	12.01100
37	8	-0.190259	1.62043	5.83372	-1.81705	15.99900
40	6	0.049246	1.78800	5.47795	-3.16701	12.01100
44	6	-0.103692	-3.69760	-0.35653	2.34696	12.01100
45	6	-0.096810	-4.43401	-0.42164	3.52391	12.01100
46	6	-0.102323	-3.78624	-0.42888	4.75484	12.01100
47	6	-0.093935	-2.39770	-0.37310	4.80549	12.01100
48	6	-0.108575	-1.65910	-0.30857	3.62988	12.01100
55	6	-0.064950	-0.57118	-6.63563	0.37560	12.01100
11	1	0.084321	0.28655	-0.73968	2.16769	1.00800
17	1	0.077421	2.78867	-0.43954	-0.56949	1.00800
18	1	0.058711	2.52679	-1.12487	1.04929	1.00800
35	1	0.105934	0.26698	4.81262	2.34902	1.00800

36	1	0.119364	1.35226	6.29068	0.65748	1.00800
24	1	0.065359	2.71310	-2.99939	-0.52883	1.00800
38	1	0.131325	0.52263	3.34733	-2.44973	1.00800
39	1	0.079726	-2.13442	-0.72422	0.30217	1.00800
25	1	0.081020	1.55600	-2.27894	-1.65494	1.00800
41	1	0.027770	0.82981	5.34900	-3.68365	1.00800
42	1	0.032593	2.39692	4.57465	-3.28911	1.00800
43	1	0.049044	2.31719	6.34507	-3.57139	1.00800
26	1	0.121957	-1.98797	-2.59487	2.18823	1.00800
27	1	0.109657	1.27677	-4.98375	-0.68637	1.00800
14	1	0.072270	-2.57361	1.59752	0.54393	1.00800
29	1	0.069444	-0.16367	1.73869	2.38913	1.00800
30	1	0.064100	-1.65198	2.69621	2.38504	1.00800
49	1	0.108597	-4.21521	-0.34786	1.38024	1.00800
50	1	0.105002	-5.52722	-0.46729	3.48024	1.00800
51	1	0.105386	-4.36810	-0.47954	5.68085	1.00800
52	1	0.105347	-1.88294	-0.38056	5.77185	1.00800
53	1	0.117003	-0.55872	-0.27675	3.66300	1.00800
54	1	0.107630	-2.17754	-5.02699	1.88581	1.00800
12	1	0.094833	-1.46665	1.54969	-1.49981	1.00800
56	1	0.046987	0.36689	-7.13508	0.65292	1.00800
57	1	0.048005	-0.77526	-6.87673	-0.67637	1.00800
58	1	0.044196	-1.37418	-7.07855	0.97938	1.00800

ATOMIC GRADIENTS							
Ato	m	Z	Grad	lients(kcal/r	nol/Angstro	om)
		х	у	Z			
1	6	0.02	550	-0.03	804	-0.05004	
2	6	-0.04	042	-0.03	006	-0.00849	
3	7	-0.01	509	0.01	835	-0.02267	
4	6	-0.02	134	0.03	754	0.08395	
5	6	0.05	105	0.01	609	0.04219	
6	6	0.00	777	0.02	252	0.00477	
7	8	0.03	590	0.02	463	-0.06364	
8	6	0.00	992	-0.02	792	-0.04044	
9	6	-0.08	467	0.00	293	-0.02472	
10	6	0.06	5313	1.75	916	0.23023	
13	6	-0.56	5103	-1.3	3627	-0.72248	
15	6	0.00)318	0.07	467	-0.10299	
16	6	-0.07	7843	-0.04	4518	0.05967	
19	6	1.30)828	0.70)416	-0.82603	
20	6	-1.02	1237	0.57	7207	0.90235	
21	6	-1.12	2077	-0.64	4359	0.77548	
22	6	-0.13	3139	-1.73	3521	-0.20013	
23	6	1.03	3613	-0.72	2468	-0.91298	
28	6	-0.68	8245	-0.9	5374	1.31011	
31	6	-0.00	0094	0.62	2372	1.40701	
32	6	0.51	L108	1.34	431	0.87065	
33	6	0.68	3969	0.76	507	-1.46983	
34	6	0.04	1017	-0.43	3506	-1.36220	
37	8	-0.03	3068	-0.03	3077	0.08493	
40	6	-0.00	0036	0.01	1221	0.02936	

44	6	0.07519	-0.00971	-0.02835
45	6	-0.00984	-0.01072	0.06934
46	6	-0.04532	-0.00372	-0.08000
47	6	0.06701	0.00976	-0.04697
48	6	-0.00659	-0.00740	0.08441
55	6	0.02188	0.05858	0.03398
11	1	0.00095	-0.02821	-0.04114
17	1	-0.02182	-0.02341	-0.00811
18	1	-0.00592	-0.01399	-0.03893
35	1	0.00304	0.01382	0.01017
36	1	0.00994	0.01424	0.00519
24	1	-0.01738	-0.01285	-0.03866
38	1	0.01336	0.01885	-0.01265
39	1	0.00974	0.01695	0.00971
25	1	-0.05259	-0.01602	-0.00762
41	1	0.01527	0.02008	0.00481
42	1	-0.00303	0.00719	-0.00320
43	1	0.00793	-0.00465	-0.00164
26	1	0.00514	-0.00177	0.04244
27	1	-0.02416	-0.03643	-0.01272
14	1	-0.00197	0.00361	0.01146
29	1	0.02382	0.02661	-0.00055
30	1	0.00504	0.03493	0.00181
49	1	-0.00562	-0.01008	-0.00604
50	1	-0.01113	-0.02159	-0.00897
51	1	-0.01904	-0.00561	-0.00633
52	1	-0.01833	0.00851	-0.01181
53	1	-0.04212	0.02282	-0.00498
54	1	-0.00468	-0.00464	0.04661
12	1	-0.02047	0.04277	-0.00884
56	1	0.01220	-0.00636	0.02095
57	1	0.03242	0.00323	0.02559
58	1	0.00523	-0.01172	0.00700
Dipo	ole (E	Debyes) x	y z	Total
Poir	nt-Ch	g1.055	-0.507	2.033 2.3

	, ,	,		
Point-Chg.	-1.055	-0.507	2.033	2.346
sp Hybrid	-0.381	-0.966	-0.462	1.137
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-1.436	-1.474	1.571	2.589

Compound 9d

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 164 in which Number of Alpha Electrons = 82 Number of Beta Electrons = 82 Charge on the System = 0 Total Orbitals = 158 Starting PM3 calculation with 158 orbitals Energy=-6641.143364 kcal/mol Gradient=0.037641 Symmetry=C1 MOLECULAR POINT GROUP C1

ENERGIES AND GRADIENT

Total Energy	=	-109481.2116436 (kcal/mol)
Total Energy	=	-174.469394718 (a.u.)
Binding Energy		= -6641.1433636 (kcal/mol)
Isolated Atomic Energy		= -102840.0682800 (kcal/mol)
Electronic Energy		= -1061475.7009313 (kcal/mol)
Core-Core Interaction		= 951994.4892877 (kcal/mol)
Heat of Formation		= 14.4366364 (kcal/mol)
Gradient	=	0.0376407 (kcal/mol/Ang)

Ato	m	Z Charge	Coordi	Mass		
		х	y z			
1	6	-0.038514	-1.71856	1.90656	0.50502	12.01100
2	6	0.051238	-1.27018	0.43538	0.64263	12.01100
3	7	-0.067610	-0.48230	-0.04887	-0.54179	14.00700
4	6	0.273318	-0.54250	0.72322	-1.75308	12.01100
5	6	-0.044584	-0.38169	2.23354	-1.63762	12.01100
6	6	-0.067398	-0.71035	2.78948	-0.23158	12.01100
7	8	-0.361273	-0.60694	0.15666	-2.83263	15.99900
8	6	-0.094500	-2.04780	2.53223	1.83686	12.01100
10	6	-0.253852	-2.45126	-0.45799	0.87236	12.01100
13	6	-0.052109	1.06192	2.59977	-1.83824	12.01100
15	6	-0.042155	0.64449	3.01533	0.47459	12.01100
16	6	-0.056834	-0.39779	-1.53274	-0.65100	12.01100
17	6	-0.117874	-2.67734	-1.66180	0.23025	12.01100
18	6	-0.043365	-1.75438	-2.22501	-0.77281	12.01100
19	6	-0.107721	-1.34724	2.20390	2.99912	12.01100
20	6	-0.092934	-1.65402	2.82396	4.20460	12.01100
21	6	-0.098620	-2.66354	3.77896	4.26024	12.01100
22	6	-0.097044	-3.36645	4.11101	3.10668	12.01100
23	6	-0.103890	-3.06176	3.49206	1.89991	12.01100
33	6	-0.115941	1.63790	3.04138	-0.63794	12.01100
34	6	-0.056781	2.96359	3.44302	-0.59369	12.01100
35	6	-0.148660	1.79212	2.55945	-3.01191	12.01100
36	6	0.081888	3.13490	2.96725	-2.95848	12.01100

37	6	-0.134614	3.72131	3.40402	-1.76236	12.01100
42	8	-0.192362	3.96293	3.02516	-4.06513	15.99900
44	7	0.280993	-3.46590	-0.25763	1.84451	14.00700
45	6	-0.072173	-3.90880	-2.21182	0.72976	12.01100
46	6	-0.161202	-4.40989	-1.30057	1.69913	12.01100
47	6	-0.101118	-5.61567	-1.53669	2.37417	12.01100
48	6	-0.087081	-6.29905	-2.69495	2.06277	12.01100
49	6	-0.128695	-5.80593	-3.60886	1.11136	12.01100
50	6	-0.046695	-4.61899	-3.38359	0.44334	12.01100
56	6	0.044376	3.55227	2.29121	-5.19493	12.01100
9	1	0.078076	-2.65295	1.91339	-0.11649	1.00800
14	1	0.073426	-1.19341	3.78975	-0.36018	1.00800
11	1	0.085761	-0.57172	0.33903	1.52260	1.00800
24	1	0.057680	0.12995	-1.87281	0.26277	1.00800
38	1	0.067556	0.88297	2.20568	1.19171	1.00800
39	1	0.063903	0.65041	3.95425	1.05761	1.00800
40	1	0.105898	3.40873	3.78793	0.34485	1.00800
41	1	0.134544	1.34539	2.22049	-3.95862	1.00800
25	1	0.077944	0.25321	-1.79124	-1.50869	1.00800
43	1	0.119704	4.77060	3.72030	-1.74584	1.00800
26	1	0.073700	-2.18229	-2.09747	-1.78791	1.00800
27	1	0.063821	-1.64122	-3.31682	-0.62578	1.00800
28	1	0.118962	-0.55431	1.44066	2.94670	1.00800
29	1	0.107645	-1.09801	2.55898	5.11006	1.00800
30	1	0.107142	-2.90417	4.26885	5.20943	1.00800
31	1	0.106922	-4.16090	4.86370	3.14703	1.00800
32	1	0.109958	-3.61416	3.76473	0.99259	1.00800
51	1	0.077867	-3.68631	0.63630	2.20909	1.00800
52	1	0.106701	-5.99788	-0.82885	3.11571	1.00800
53	1	0.099262	-7.24742	-2.91501	2.56419	1.00800
54	1	0.101785	-6.38333	-4.51555	0.90289	1.00800
55	1	0.105753	-4.22978	-4.09325	-0.29331	1.00800
12	1	0.095444	-1.02148	2.71784	-2.41256	1.00800
57	1	0.036327	2.47721	2.39057	-5.40806	1.00800
58	1	0.029390	3.79741	1.23068	-5.07310	1.00800
59	1	0.048615	4.14536	2.72784	-6.00182	1.00800

Atom 2		Ζ	Gradients(kcal/mol/Angstrom					
			x y	Z				
1	6		0.04107	0.04824	-0.02020			
2	6		-0.05143	-0.01667	-0.03406			
3	7		0.05887	0.01039	0.04250			
4	6		-0.02991	0.02096	0.02385			
5	6		0.00775	-0.02807	0.01655			
6	6		0.02334	-0.00192	0.01917			
7	8		0.02085	-0.04280	-0.01993			
8	6		-0.03944	0.00970	0.02767			
10	6		0.08591	0.16124	0.06068			
13	6		0.01855	0.00544	-0.01093			
15	6		0.01362	-0.01524	0.00659			
16	6		-0.03188	-0.02904	0.01526			

17	6	-0.03621	-0.18384	-0.104	11
18	6	-0.01333	-0.02624	0.002	66
19	6	-0.00780	0.00513	-0.033	63
20	6	-0.01718	0.03140	0.028	18
21	6	-0.01700	0.02314	-0.006	84
22	6	0.00563	0.00055	-0.010	42
23	6	0.03991	-0.01383	0.005	82
33	6	-0.05797	-0.02729	0.038	06
34	6	-0.00785	-0.00676	0.038	16
35	6	-0.00554	0.00475	0.032	60
36	6	-0.00811	-0.00996	-0.010)33
37	6	-0.00226	0.00900	-0.028	26
42	8	0.02432	0.03342	-0.026	16
44	7	-0.01541	0.04173	0.040	75
45	6	0.06225	0.03027	-0.030	15
46	6	-0.03891	0.00130	0.005	71
47	6	0.06021	0.15958	0.045	43
48	6	-0.09508	-0.10996	-0.014	14
49	6	-0.08983	0.01136	0.038	74
50	6	0.08233	-0.07627	-0.103	48
56	6	-0.00668	0 02782	-0.023	75
9	1	-0.00677	0.00043	-0.007	17
14	1	0.02113	-0 02895	0.007	<u>09</u>
11	1	0.00326	-0 02371	0.000	02
24	1	0.00320	-0.01246	0.033	76
22	1	-0.01233	0.01240	-0.033	70 70
30	1	0.00130	-0.00314	-0.017	51
10	1	0.01303	0.03908	0.011	.51
40	1	0.00051	0.00704	0.000	02
41 25	1		-0.00096	-0.024	
25 42	1	0.00971	-0.01508	-0.000	159 F 4
43	1	0.03000	0.00888	-0.010	54 20
20	1	0.01055	0.00271	0.055	20
27	1	-0.00705	-0.00190	0.018	04
28	1	0.01069	-0.01370	0.001	94 02
29	1	-0.00591	0.00605	0.000	82
30	1	0.00218	-0.00432	-0.033	91
31	1	0.016//	-0.01059	-0.012	76
32	1	0.00816	-0.01463	-0.005	0/6
51	1	-0.00828	0.02220	0.001	84
52	1	-0.01/82	0.00014	0.009	08
53	1	-0.02/84	-0.00705	0.001	.18
54	1	-0.01968	-0.01/14	-0.023	342
55	1	0.00936	0.01685	0.042	05
12	1	0.00640	-0.02605	0.008	58
57	1	-0.01511	0.03830	-0.013	80
58	1	-0.00422	0.03342	-0.029	70
59	1	-0.01537	0.04165	0.003	15
Dip	ole (D	Debyes) x	y z	то	tal
Poir	nt-Ch	g. 0.024	1.791	2.906	3.413
sp F	lybrio	d -1.203	0.105	-0.254	1.234
pd ł	lybri	d 0.000	0.000	0.000	0.000

Compound 9e

HyperChem log start -- Mon Sep 21 06:29:24 2020. Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation: Singlet state calculation Number of electrons = 150 in which Number of Alpha Electrons = 75 Number of Beta Electrons = 75 Charge on the System = 0 Total Orbitals = 143

Energy=-6024.712408 kcal/mol Gradient=0.507064 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	101943.7364288 (kcal/mol)
Total Energy	=	- 162.457664864 (a.u.)
Binding Energy		= -6024.7124078 (kcal/mol)
Isolated Atomic Energy		= -95919.0240210 (kcal/mol)
Electronic Energy		= -944068.1902365 (kcal/mol)
Core-Core Interaction		= 842124.4538077 (kcal/mol)
Heat of Formation		= -54.0314078 (kcal/mol)
Gradient	=	0.5070639 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Atc	m	Ζ	Charge	Coc	rdi	nates(Angs	strom)		Mass
			х	У	z				
1	6	-0).039928	-1.5104	15	0.03125	0.5185	4	12.01100
2	6	0	.008830	-1.6913	86	1.56123	0.6279	3	12.01100
3	7	-C).065587	-0.6605	58	2.25127	1.4703	9	14.00700
4	6	0	.259118	0.1639	7	1.50900	2.3675	0	12.01100
5	6	-C	0.093003	0.4543	86	0.04760	2.0696	1	12.01100
6	6	-C	0.070009	-0.0397	72	-0.37223	0.6835	1	12.01100
7	8	-0).375572	0.6721	0	2.10457	3.3084	0	15.99900

8	6	-0.077281	-2.03918	-0.46421	-0.80578	12.01100
10	6	-0.075593	-3.08353	1.95979	1.05219	12.01100
13	6	-0.064626	0.15086	-1.88264	0.52490	12.01100
14	6	-0.055387	-0.95854	3.67048	1.83796	12.01100
15	6	-0.096196	-3.32283	3.33019	1.23650	12.01100
16	6	-0.056186	-2.16015	4.25125	1.10219	12.01100
17	6	-0.102005	-1.71830	0.18971	-1.99698	12.01100
18	6	-0.091228	-2.19237	-0.28807	-3.21227	12.01100
19	6	-0.100758	-2.99624	-1.42294	-3.24845	12.01100
20	6	-0.098240	-3.32776	-2.07440	-2.06545	12.01100
21	6	-0.108749	-2.85365	-1.59821	-0.84806	12.01100
31	6	-0.081089	-4.59678	3.79197	1.55842	12.01100
32	6	0.030801	-5.65094	2.88231	1.70009	12.01100
33	6	-0.051858	1.95469	-0.23303	2.18847	12.01100
35	6	-0.152818	1.50275	-2.33229	0.94675	12.01100
36	6	-0.144216	2.31302	-1.59098	1.70344	12.01100
43	6	0.066796	-5.40931	1.49908	1.54335	12.01100
44	6	-0.164781	-4.12057	1.04960	1.23043	12.01100
45	8	-0.176235	-6.47207	0.64556	1.77182	15.99900
46	6	0.041272	-6.39403	-0.61813	1.15295	12.01100
47	8	-0.193379	-6.88266	3.37457	2.11766	15.99900
48	6	0.055281	-7.82828	3.49101	1.07690	12.01100
30	1	0.105788	-3.11857	-2.11922	0.08086	1.00800
9	1	0.081905	-2.11427	-0.45572	1.33369	1.00800
11	1	0.086428	-1.52285	1.99792	-0.40043	1.00800
12	1	0.089687	-0.08847	-0.55387	2.84220	1.00800
34	1	0.083827	0.56685	0.14668	-0.10025	1.00800
22	1	0.063285	-0.04467	4.25360	1.60772	1.00800
23	1	0.070948	-1.12247	3.75844	2.93375	1.00800
37	1	0.067278	-0.02790	-2.16978	-0.53105	1.00800
38	1	0.058311	-0.60711	-2.43493	1.11944	1.00800
39	1	0.075807	2.27603	-0.11399	3.24241	1.00800
40	1	0.065924	2.53661	0.51156	1.60750	1.00800
41	1	0.100789	1.80469	-3.32993	0.60904	1.00800
42	1	0.101666	3.30429	-1.95791	1.99233	1.00800
24	1	0.062875	-1.93910	4.40867	0.02623	1.00800
25	1	0.066709	-2.39107	5.25436	1.51169	1.00800
26	1	0.114768	-1.10541	1.10268	-1.94833	1.00800
27	1	0.105551	-1.93427	0.23162	-4.14073	1.00800
28	1	0.105493	-3.36970	-1.80071	-4.20578	1.00800
29	1	0.104116	-3.96341	-2.96570	-2.09085	1.00800
49	1	0.120460	-4.77399	4.86430	1.70786	1.00800
50	1	0.134004	-3.92706	-0.03479	1.12707	1.00800
51	1	0.052727	-7.16528	-1.19149	1.67233	1.00800
52	1	0.027666	-6.62909	-0.54203	0.08564	1.00800
53	1	0.031338	-5.41012	-1.09874	1.27122	1.00800
54	1	0.046371	-8.70982	3.87478	1.59649	1.00800
55	1	0.019314	-7.50183	4.20180	0.30939	1.00800
56	1	0.029589	-8.05576	2.52697	0.60854	1.00800

Atom Z Gradients(kcal/mol/Angstrom)

		х	У	Z			
1	6	0.01	777	0.07	7693	-0.01452	
2	6	0.04	251	-0.0	8056	0.08694	
3	7	-0.13	371	-0.0	0255	-0.15935	
4	6	0.02	685	-0.0	8282	0.02804	
5	6	0.02	629	-0.0	5990	0.02537	
6	6	-0.04	084	0.04	4026	-0.06915	
7	8	0.06	963	0.04	1829	0.07038	
8	6	-0.08	911	-0.1	5577	0.11548	
10	6	2.33	385	-1.2	7388	-0.66369	
13	6	0.00)818	-0.0	3393	0.01405	
14	6	-0.05	5174	0.0)1104	0.03309	
15	6	1.64	436	1.9	9901	-0.22382	
16	6	0.06	593	0.0	4999	0.12205	
17	6	-0.03	3010	-0.0	0643	-0.14728	
18	6	0.05	190	0.0	8727	0.05385	
19	6	-0.07	7815	-0.0	0727	0 07904	
20	6	0.07	1527	0.0	2381	-0 10236	
21	6	0.08	2009	0.0	0295	0.10250	
31	6	-0.27	7796	2 3	0295	0.26030	
32	6	-7 48	2287	1 3	3502	0.57929	
22	6	0.07	7611	-0.0	0822	0.07223	
35	6	-0.01	1121	-0.0	14516	-0.02221	
36	6	0.01	1951	0.0	6036	0.00520	
13	6	_2 00	1071	_2 2	00000	0.00555	
43	6	-2.00	0702	-2.2	1860	-0.21604	
44	0	0.52	705	-2.2	5/26	-0.21004	
45	6	0.17	1/07	0.2	12220	-0.01727	
40	0	-0.04	+40Z	-0.0	0271	-0.01220	
47	0 6	0.10	1233	0.0	0271	-0.04522	
40 20	1	0.07	440	-0.0	0102	-0.04070	
5U 0	1	0.00	562	-0.0	10102	0.01522	
9 11	1	0.00	JUZ	-0.0.	2302	0.01097	
11	1	-0.02	2051	0.0	10000	0.00500	
71	1	0.02	21015	0.0	1000	-0.01100	
54 22	1	-0.01	007	0.0	1007	0.02276	
22	1	0.01	536	0.0	1987	0.00225	
23	1	0.01	422	0.0	1030	0.01105	
3/	1	0.01	423	0.0	0531		
30	1	0.03	939	0.0	1421	-0.00155	
39	1	0.00		-0.0	1431	-0.00150	
40	T	-0.00	1518	-0.0	02200	-0.00514	
41	1	0.01	.281	-0.0	0692	-0.00802	
42	1	-0.01	1916	0.0	02064	-0.03/30	
24	1	-0.06	2/9	0.0	0278	0.03749	
25	1	0.01	199	-0.0	03145	0.03331	
26	1	0.00	1385	0.0	1241	0.00548	
27	1	-0.04	1499	-0.0)1903	0.04830	
28	1	-0.03	3332	-0.0	0263	0.02416	
29	1	-0.01	1686	-0.0	12582	0.02592	
49	1	-0.01	183	0.0	0/546	0.01102	
50	1	-0.00)575	-0.0)1439	0.04519	
51	1	0.01	.727	0.0	2586	-0.06061	

52	1	-0.02214	-0.01595	-0.04158	
53	1	-0.01163	0.00166	-0.03887	
54	1	-0.03460	-0.00795	0.00121	
55	1	-0.04292	-0.00219	0.00194	
56	1	-0.01479	0.00810	-0.02362	
Dipo	ole (E	Debyes) x	y z	Total	
Poir	nt-Ch	g0.968	-1.604	-4.022 4.4	37

Point-Cng.	-0.968	-1.604	-4.022	4.437
sp Hybrid	-0.451	-0.493	-0.242	0.710
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-1.419	-2.096	-4.264	4.959

Compound 9g

Single Point, SemiEmpirical,PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 166 in which Number of Alpha Electrons = 83 Number of Beta Electrons = 83 Charge on the System = 0 Total Orbitals = 159

Starting PM3 calculation with 159 orbitals Energy=-6693.100054 kcal/mol Gradient=0.542003 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-112872.4241947 (kcal/mol)
Total Energy	=	-179.873635247 (a.u.)
Binding Energy		= -6693.1000537 (kcal/mol)
Isolated Atomic Energy		= -106179.3241410 (kcal/mol)
Electronic Energy		= -1082903.9967977 (kcal/mol)
Core-Core Interaction		= 970031.5726030 (kcal/mol)
Heat of Formation		= -38.8590537 (kcal/mol)
Gradient	=	0.5420031 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1 NET CHARGES AND COORDINATES Atom Z Charge Coordinates(Angstrom) Mass x y z

1	6	-0.029327	-2.37413	-0.93090	-1.58435	12.01100
2	6	0.012835	-1.73260	-1.35289	-0.23966	12.01100
3	7	-0.075643	-0.37465	-0.75178	-0.05301	14.00700
4	6	0.276128	0.38294	-0.41678	-1.23401	12.01100
5	6	-0.043084	-0.32022	0.44814	-2.26785	12.01100
6	6	-0.068268	-1.86099	0.39679	-2.15252	12.01100
7	8	-0.354000	1.55872	-0.72917	-1.32075	15.99900
8	6	-0.079834	-3.88164	-0.84902	-1.52245	12.01100
10	6	-0.069861	-1.73423	-2.86234	-0.06195	12.01100
12	6	-0.059172	0.35522	-1.33514	1.09873	12.01100
13	6	-0.059189	0.01179	1.89219	-2.01011	12.01100
14	6	-0.043768	-2.27934	1.66474	-1.37583	12.01100
15	6	-0.108078	-4.56081	-0.46910	-0.36328	12.01100
16	6	-0.093976	-5.94712	-0.36869	-0.35930	12.01100
17	6	-0.101182	-6.67009	-0.64698	-1.51393	12.01100
18	6	-0.095220	-6.00188	-1.02927	-2.67251	12.01100
19	6	-0.102236	-4.61579	-1.13068	-2.67884	12.01100
20	6	-0.097543	-0.64340	-3.54062	0.50451	12.01100
21	6	-0.078790	0.59352	-2.82603	0.93650	12.01100
22	6	-0.137337	-2.88939	-3.57965	-0.42043	12.01100
23	6	0.082566	-2.89420	-4.95060	-0.22199	12.01100
24	6	-0.159657	-1.79330	-5.63876	0.32539	12.01100
25	6	-0.048158	-0.66665	-4.93510	0.69229	12.01100
26	8	-0.185630	-3.95552	-5.78399	-0.52735	15.99900
27	6	0.051476	-3.56245	-7.12528	-0.16831	12.01100
28	6	-0.057439	-2.12660	-7.08992	0.40135	12.01100
46	6	-0.113972	-1.10647	2.57645	-1.50119	12.01100
47	6	-0.053287	-1.03147	3,92279	-1.19458	12.01100
48	6	-0.180537	0.17310	4,59946	-1.40044	12.01100
49	6	0.084787	1 27938	3 91380	-1 91138	12.01100
50	6	-0 105089	1 21276	2 53952	-2 22497	12 01100
55	8	-0.187093	2.51784	4.47297	-2.16027	15,99900
57	6	0.050610	2 67343	5 84650	-1 90614	12 01100
34	1	0.104921	-6.56811	-1.25268	-3.58274	1.00800
35	1	0.108665	-4.09572	-1.43116	-3.59640	1.00800
36	1	0.079832	1 39569	-3 01819	0 19336	1 00800
37	1	0.062993	0.96391	-3 24675	1 89286	1 00800
38	1	0 140825	-3 76987	-3 07513	-0.83841	1 00800
39	1	0.110191	0.19802	-5.44829	1,12718	1.00800
40	1	0 050443	-3 65384	-7 72699	-1 08679	1 00800
41	1	0.050273	-4.31165	-7.47986	0.55777	1.00800
42	1	0.066220	-1 42569	-7 70488	-0 19106	1 00800
43	1	0.065695	-2 07754	-7 47043	1 43728	1 00800
44	1	0.095775	0.01521	0.13982	-3.28574	1.00800
45	1	0 072456	-2 28306	0 48169	-3 18514	1 00800
11	1	0.085875	-2 34237	-0.92621	0.60666	1.00800
9	1	0.080554	-2 10677	-1 72423	-2 33120	1 00800
29	<u>-</u> 1	0 057827	-0 25658	-1 17498	1 99903	1 00800
30	1	0.077415	1.31150	-0.79223	1.23134	1.00800
31	1	0.115950	-3,98498	-0.26118	0.55216	1.00800
51	1	0.069870	-2,49402	1.44664	-0.31120	1.00800
52	1	0.063851	-3,20060	2,11304	-1.79042	1.00800
22	-	5.565555T	3.20000	2.11020	1.7 5 5 7 2	1.00000

53	1	0.105212	-1.90288	4.45356	-0.79854	1.00800
54	1	0.115120	0.22920	5.66614	-1.15605	1.00800
32	1	0.104834	-6.46832	-0.07123	0.55647	1.00800
56	1	0.134529	2.08455	2.00170	-2.61606	1.00800
33	1	0.105072	-7.76191	-0.56792	-1.51078	1.00800
58	1	0.027321	2.52892	6.09415	-0.84800	1.00800
59	1	0.026964	2.00809	6.46255	-2.52227	1.00800
60	1	0.050285	3.71465	6.01902	-2.19178	1.00800

ATOMIC GRADIENTS						
Ato	m	Z Grad	lients(kcal/r	mol/Angstrom)		
		х у	Z			
1	6	0.07021	-0.06294	0.01786		
2	6	0.01370	-0.08619	-0.01752		
3	7	-0.03485	-0.02330	0.01812		
4	6	-0.07245	0.02655	0.00047		
5	6	-0.02942	0.04299	0.01902		
6	6	-0.01764	0.04420	-0.00426		
7	8	0.12353	-0.05748	-0.02581		
8	6	0.03527	0.00417	-0.04416		
10	6	-1.01156	2.93534	-0.93948		
12	6	-0.00002	0.03930	0.00533		
13	6	-0.11209	-0.98250	-0.18758		
14	6	0.04511	0.01366	-0.03157		
15	6	-0.05686	0.00160	0.02726		
16	6	-0.01812	0.02586	0.00109		
17	6	-0.03725	-0.00618	-0.02345		
18	6	-0.06841	0.04531	0.02694		
19	6	0.00677	-0.00533	0.01582		
20	6	2.78527	0.57801	1.06915		
21	6	-0.17036	0.02503	0.03335		
22	6	-1.61827	1.64192	-0.85949		
23	6	-1.98629	-1.65926	-0.55381		
24	6	-0.27671	-2.64771	0.26203		
25	6	2.12465	-0.95238	1.00173		
26	8	0.09041	0.09806	0.02931		
27	6	0.01622	0.04881	0.02543		
28	6	-0.01977	0.14794	-0.01995		
46	6	-0.85055	-0.65012	0.11231		
47	6	-0.48565	0.73960	0.33866		
48	6	-0.44902	0.86209	0.35639		
49	6	1.05482	0.27661	-0.22327		
50	6	0.81235	-0.36243	-0.33306		
55	8	-0.01049	-0.03819	0.03107		
57	6	-0.04274	-0.00689	0.00983		
34	1	0.00744	0.00789	-0.01106		
35	1	0.02752	-0.00814	-0.03107		
36	1	0.00817	-0.06277	-0.08917		
37	1	0.01716	-0.04751	0.01253		
38	1	-0.01103	-0.00238	0.01424		
39	1	0.04404	-0.02181	0.00489		
40	1	-0.01510	-0.01138	0.00585		

41	1	-0.01156	-0.00307	0.03513
42	1	0.00238	0.02311	0.00793
43	1	0.00920	0.03467	0.01672
44	1	0.01166	-0.00300	-0.02361
45	1	0.01377	0.01020	-0.00926
11	1	0.02809	-0.03371	-0.01813
9	1	-0.01062	0.01962	-0.01697
29	1	0.03148	-0.00828	-0.03027
30	1	0.01238	-0.02374	-0.01146
31	1	0.01842	0.00114	0.02044
51	1	0.00164	0.01893	-0.01382
52	1	-0.00282	-0.00499	-0.01741
53	1	-0.03051	-0.00116	0.01405
54	1	0.00349	0.01875	0.02445
32	1	0.01983	-0.00242	-0.02545
56	1	-0.00893	-0.00908	0.04819
33	1	0.07443	0.01220	-0.01134
58	1	-0.01252	0.04417	-0.01013
59	1	-0.00831	-0.01906	-0.01614
60	1	-0.02948	0.01567	-0.00690

Dipole (Del	oyes) x	У	z T	otal
Point-Chg.	-2.204	0.608	0.931	2.468
sp Hybrid	-0.100	-0.693	0.062	0.702
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-2.304	-0.084	0.992	2.510

Compound 10a

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 146 in which Number of Alpha Electrons = 73 Number of Beta Electrons = 73 Charge on the System = 0 Total Orbitals = 137

Starting PM3 calculation with 137 orbitals

Energy=-5690.543565 kcal/mol Gradient=0.793462 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-102548.9804817 (kcal/mol)
Total Energy	=	-163.422182537 (a.u.)
Binding Energy		= -5690.5435647 (kcal/mol)
Isolated Atomic Energy		= -96858.4369170 (kcal/mol)
Electronic Energy		= -873060.2276258 (kcal/mol)
Core-Core Interaction		= 770511.2471441 (kcal/mol)
Heat of Formation		= -106.2875647 (kcal/mol)
Gradient	=	0.7934618 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Atom Z Charge			Coordii	Mass		
		х	y z			
1	6	-0.124008	-1.78064	1.20887	-1.63485	12.01100
2	6	0.028225	-0.30387	0.83353	-1.52601	12.01100
3	7	-0.051662	0.18810	1.23917	-0.16893	14.00700
4	6	0.266431	-0.18320	2.51414	0.33320	12.01100
5	6	-0.040450	-1.32317	3.30961	-0.28783	12.01100
6	6	-0.071169	-1.94969	2.71805	-1.57663	12.01100
7	8	-0.394830	0.43463	2.93530	1.30583	15.99900
9	6	-0.087104	-0.05487	-0.62890	-1.77981	12.01100
10	6	-0.044289	-2.49841	3.51132	0.62877	12.01100
11	6	-0.039510	-3.44873	3.08602	-1.52156	12.01100
14	6	-0.132450	-3.70136	3.40527	-0.08769	12.01100
15	6	-0.055066	-4.92430	3.58942	0.53986	12.01100
16	6	-0.141925	-4.94674	3.87885	1.90175	12.01100
17	6	0.088036	-3.74045	3.98207	2.61439	12.01100
18	6	-0.152005	-2.49795	3.80572	1.98289	12.01100
23	8	-0.191186	-3.90976	4.27270	3.95401	15.99900
25	6	0.048906	-2.75675	4.31698	4.75823	12.01100
31	6	-0.053670	1.43100	0.59755	0.34539	12.01100
32	6	-0.070221	1.16416	-1.17466	-1.36773	12.01100
33	6	-0.059736	2.13500	-0.28017	-0.68053	12.01100
38	6	-0.153530	-0.98046	-1.42910	-2.45592	12.01100
39	6	0.059829	-0.70250	-2.77515	-2.69707	12.01100
40	6	0.065174	0.53295	-3.33106	-2.25990	12.01100
41	6	-0.150902	1.45895	-2.51994	-1.60117	12.01100
42	8	-0.166657	-1.53937	-3.64728	-3.36346	15.99900
43	6	0.047009	-2.84049	-3.19800	-3.64881	12.01100
44	8	-0.166187	0.71244	-4.66779	-2.54863	15.99900
45	6	0.046833	1.87566	-5.28379	-2.05475	12.01100
29	1	0.066534	-2.19657	0.80552	-2.58510	1.00800
30	1	0.061511	0.28079	1.39463	-2.30452	1.00800
12	1	0.093782	-0.90533	4.32131	-0.52099	1.00800
19	1	0.061594	-4.09800	2.26766	-1.88475	1.00800
20	1	0.059697	-3.67196	3.96309	-2.15784	1.00800
34	1	0.062603	1.12998	-0.00507	1.22629	1.00800
35	1	0.073799	2.14130	1.36592	0.71817	1.00800

36	1	0.061391	2.65162	0.33688	-1.44492	1.00800
37	1	0.064717	2.93133	-0.86182	-0.17534	1.00800
21	1	0.104608	-5.85716	3.50491	-0.02617	1.00800
22	1	0.119583	-5.90448	4.02348	2.41468	1.00800
13	1	0.068783	-1.47042	3.17407	-2.47383	1.00800
24	1	0.144230	-1.54912	3.88951	2.52827	1.00800
8	1	0.080572	-2.36859	0.72229	-0.82878	1.00800
26	1	0.048184	-3.17243	4.52468	5.74796	1.00800
27	1	0.032909	-2.21816	3.36230	4.76887	1.00800
28	1	0.030720	-2.07458	5.12196	4.46112	1.00800
46	1	0.126430	-1.92336	-0.96965	-2.79356	1.00800
47	1	0.120266	2.42077	-2.92039	-1.25731	1.00800
48	1	0.053139	-3.29673	-4.08652	-4.09397	1.00800
49	1	0.028880	-3.39197	-2.90206	-2.74879	1.00800
50	1	0.024189	-2.84633	-2.37326	-4.37139	1.00800
51	1	0.053010	1.74333	-6.31799	-2.38451	1.00800
52	1	0.026412	2.78842	-4.86455	-2.49422	1.00800
53	1	0.028570	1.94124	-5.24349	-0.96117	1.00800

Ato	m	Ζ	Gra	di	ients(ko	:al/r	mol/Angstrom)
			x y		z		
1	6		0.00667		-0.005	02	-0.00288
2	6		-0.03892		0.011	55	0.13500
3	7		-0.02170		-0.024	99	-0.07419
4	6		0.05730		0.0884	43	0.10364
5	6		-0.05184		-0.016	27	0.00987
6	6		0.00937		0.0183	36	0.00472
7	8		-0.04902		-0.032	35	-0.10254
9	6		-2.10854		3.250	53	-0.09581
10	6		1.64464	•	-0.195	53	-0.54570
11	6		0.04588		-0.007	'92	0.07085
14	6		-0.13202	<u>)</u>	-0.301	L02	-1.72863
15	6		-1.44994	ŀ	-0.102	242	-0.65559
16	6		-1.56540)	0.182	234	0.39602
17	6		0.31362		0.293	97	1.72177
18	6		1.28310)	0.146	74	0.71557
23	8		-0.03478	3	-0.052	254	-0.08398
25	6		-0.02177	7	-0.042	216	-0.04222
31	6		0.02517	,	-0.024	47	-0.03658
32	6		3.39079		0.823	19	1.71387
33	6		-0.05475	5	-0.030)68	0.02264
38	6		-2.34842	<u>)</u>	1.920)13	-0.62987
39	6		-2.75380)	-2.340	002	-1.94478
40	6		0.86613		-3.913	80	-0.66735
41	6		2.81246	,	-0.377	22	1.22040
42	8		0.42462		0.351	17	0.33500
43	6		-0.02920)	0.022	264	0.01630
44	8		-0.13747	7	0.503	312	0.08399
45	6		-0.00125	5	0.017	'14	0.02744
29	1		0.00590)	0.016	12	0.01409
30	1		0.01099		-0.058	394	-0.06008

12	1	0.00107	0.01749	0.01156
19	1	-0.01549	-0.00066	0.00524
20	1	-0.01943	0.02396	0.01612
34	1	0.00888	-0.00249	-0.01610
35	1	0.00790	-0.00294	-0.02317
36	1	0.00193	-0.03657	-0.05291
37	1	-0.00303	-0.01047	-0.01286
21	1	0.00893	-0.01552	-0.02541
22	1	-0.00696	-0.01917	0.00282
13	1	0.00953	0.00287	-0.00966
24	1	0.00805	-0.00669	0.00944
8	1	0.00686	0.02676	0.01707
26	1	0.01580	-0.02696	0.02984
27	1	-0.02324	-0.02564	0.01198
28	1	-0.02537	-0.03186	0.00365
46	1	-0.02395	0.04813	-0.01977
47	1	0.03109	0.00270	0.02803
48	1	-0.02380	0.00034	0.02150
49	1	-0.01064	-0.01715	0.01070
50	1	-0.00682	-0.01018	0.02721
51	1	-0.00429	-0.00268	0.03011
52	1	-0.02641	-0.01535	0.01734
53	1	-0.00845	-0.01800	-0.00368

Compound 10f

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 156 in which Number of Alpha Electrons = 78 Number of Beta Electrons = 78 Charge on the System = 0 Total Orbitals = 151

Starting PM3 calculation with 151 orbitals Energy=-6433.889115 kcal/mol Gradient=0.375422 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-103375.6223643 (kcal/mol)
Total Energy	=	-164.739520067 (a.u.)
Binding Energy		= -6433.8891153 (kcal/mol)
Isolated Atomic Energy		= -96941.7332490 (kcal/mol)
Electronic Energy		= -981120.5907371 (kcal/mol)
Core-Core Interaction		= 877744.9683729 (kcal/mol)
Heat of Formation		= -10.0971153 (kcal/mol)
Gradient	=	0.3754216 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Atom Z Charge Coordinates(Angstrom) Mass						Mass
		х	y z			
1	6	-0.036546	-1.40270	1.57676	-1.91833	12.01100
2	6	0.021456	0.03941	1.04194	-1.82467	12.01100
3	7	-0.047790	0.75017	1.56693	-0.61314	14.00700
4	6	0.265321	0.48223	2.86043	-0.10426	12.01100
5	6	-0.042127	-0.64697	3.70828	-0.65004	12.01100
6	6	-0.072744	-1.44912	3.11198	-1.82937	12.01100
7	8	-0.393639	1.21219	3.26037	0.79789	15.99900
9	6	-0.088529	0.15576	-0.46625	-1.80818	12.01100
10	6	-0.045551	-1.68413	4.09771	0.36488	12.01100
11	6	-0.048536	-2.90387	3.60053	-1.62384	12.01100
14	6	-0.130177	-2.96490	4.04744	-0.20485	12.01100
15	6	-0.056528	-4.08680	4.40599	0.52811	12.01100
16	6	-0.140983	-3.92411	4.83651	1.84220	12.01100
17	6	0.086216	-2.63703	4.90286	2.40181	12.01100
18	6	-0.150011	-1.49842	4.52903	1.66904	12.01100
23	8	-0.191448	-2.62061	5.35270	3.70793	15.99900
25	6	0.048943	-1.36428	5.58761	4.29518	12.01100
29	6	-0.077301	-2.02123	1.19163	-3.24368	12.01100
31	6	-0.053553	2.10039	0.98746	-0.33167	12.01100
32	6	-0.074160	1.44926	-0.98997	-1.64573	12.01100
33	6	-0.063852	2.55180	-0.02753	-1.37453	12.01100
38	6	-0.085489	-0.90687	-1.35341	-1.96071	12.01100
39	6	-0.104984	-0.68212	-2.72586	-2.01002	12.01100
40	6	-0.067620	0.60962	-3.23896	-1.89653	12.01100
41	6	-0.097043	1.67699	-2.36099	-1.69678	12.01100
42	6	-0.065330	0.85369	-4.70091	-1.98919	12.01100
49	6	-0.104906	-3.32757	0.70058	-3.29929	12.01100
50	6	-0.106474	-1.30267	1.35788	-4.43040	12.01100
51	6	-0.091110	-1.88229	1.04836	-5.65394	12.01100
52	6	-0.101454	-3.18714	0.56801	-5.70371	12.01100
53	6	-0.096856	-3.90581	0.39242	-4.52641	12.01100

20	1	0.062143	-3.13968	4.44249	-2.30194	1.00800
21	1	0.104813	-5.08344	4.35534	0.07881	1.00800
34	1	0.068139	2.03935	0.51252	0.66856	1.00800
35	1	0.067245	2.85900	1.79491	-0.25036	1.00800
36	1	0.060344	2.84717	0.47083	-2.32113	1.00800
37	1	0.066950	3.46139	-0.54583	-1.01205	1.00800
22	1	0.119328	-4.79902	5.12548	2.43577	1.00800
13	1	0.072804	-1.04213	3.52285	-2.78493	1.00800
24	1	0.144725	-0.48916	4.56941	2.09855	1.00800
8	1	0.093504	-2.00439	1.14510	-1.07898	1.00800
26	1	0.047922	-1.63771	5.98435	5.27666	1.00800
43	1	0.118809	-1.93575	-0.98350	-2.05589	1.00800
44	1	0.109598	2.69357	-2.75359	-1.57412	1.00800
45	1	0.106717	-1.52975	-3.40815	-2.14121	1.00800
46	1	0.047953	1.12494	-4.97749	-3.01745	1.00800
47	1	0.045559	-0.03468	-5.28436	-1.71357	1.00800
48	1	0.045730	1.67605	-5.01774	-1.33414	1.00800
27	1	0.032853	-0.78145	4.66649	4.41134	1.00800
28	1	0.030454	-0.77616	6.32807	3.74064	1.00800
12	1	0.093405	-0.16650	4.65807	-0.99979	1.00800
30	1	0.066104	0.58052	1.39467	-2.75403	1.00800
19	1	0.071081	-3.65194	2.81388	-1.84189	1.00800
54	1	0.111209	-3.90158	0.55385	-2.37543	1.00800
55	1	0.111124	-0.26365	1.71723	-4.37151	1.00800
56	1	0.104628	-1.31027	1.18126	-6.57798	1.00800
57	1	0.105028	-3.64571	0.32551	-6.66781	1.00800
58	1	0.104634	-4.93103	0.00945	-4.56337	1.00800

ATOMIC		c
ATUMIC	GRADIENT	з

AIC	JM	IC GRADIENT	S	
Ato	m	Z Grad	ients(kcal/r	mol/Angstrom)
		х у	Z	
1	6	0.00828	0.00991	0.00067
2	6	-0.00079	0.01053	0.05702
3	7	-0.00904	-0.06986	-0.00249
4	6	0.00142	0.01681	0.08763
5	6	-0.03407	-0.03265	0.02949
6	6	0.01050	-0.00811	0.00869
7	8	-0.04887	-0.03292	-0.00250
9	6	-0.19021	1.11305	-0.02707
10	6	1.50947	-0.47905	-0.76684
11	6	0.05915	-0.02056	0.08103
14	6	-0.27485	-0.49316	-1.67698
15	6	-1.56171	0.01260	-0.41491
16	6	-1.55627	0.34831	0.55507
17	6	0.53958	0.58153	1.69228
18	6	1.40640	0.04716	0.59524
23	8	-0.04636	-0.00495	-0.07793
25	6	-0.00814	0.06762	-0.05086
29	6	-0.06194	-0.02874	0.02101
31	6	-0.03143	-0.02169	0.01832
32	6	0.90340	0.58407	0.12804
33	6	-0.03657	-0.01675	0.06060

38	6	-0.94244	0.17147	-0.08191			
39	6	-0.90143	-0.45485	-0.14277			
40	6	0.32410	-1.18198	-0.10402			
41	6	0.90841	-0.34759	0.08179			
42	6	-0.00517	0.05314	-0.03567			
49	6	0.04630	0.01330	0.03074			
50	6	0.00048	-0.00697	-0.04487			
51	6	0.01936	0.02507	0.02416			
52	6	-0.01067	-0.00856	0.02561			
53	6	0.00123	0.00856	-0.04689			
20	1	-0.00798	-0.01210	0.01237			
21	1	-0.01448	-0.02866	0.02826			
34	1	-0.01816	-0.02083	0.01050			
35	1	-0.00464	-0.01939	0.01791			
36	1	-0.01434	-0.00873	-0.00162			
37	1	-0.00738	-0.01780	0.00790			
22	1	-0.02035	0.00878	0.01196			
13	1	0.00470	0.00374	0.00684			
24	1	0.00604	-0.00401	0.02160			
8	1	0.00492	-0.02485	-0.00789			
26	1	0.01033	0.09899	-0.01994			
43	1	-0.01174	0.00429	-0.00744			
44	1	0.01199	-0.02090	-0.01020			
45	1	-0.01860	-0.00710	-0.02962			
46	1	0.02844	0.01238	-0.04128			
47	1	0.02903	-0.01034	-0.05441			
48	1	0.00755	0.00662	-0.04474			
27	1	0.04022	0.09968	-0.00099			
28	1	-0.01731	0.07570	-0.02555			
12	1	0.00154	0.01137	0.01795			
30	1	-0.01205	-0.01224	0.00798			
19	1	-0.01633	-0.01722	0.05108			
54	1	-0.02240	-0.00577	0.00567			
55	1	-0.00024	0.01160	0.01244			
56	1	0.00559	0.01714	0.01192			
57	1	0.01267	0.00230	0.01024			
58	1	0.00488	0.00259	-0.01262			
D :							
Dipo De:	oie (Debyes) X	y z		cc		
2011	1T-UI	⊔vU.494	+ -1.5/X	-1.78/ 3.0	nn		

Point-Cng.	-0.494	-1.578	-2.582	3.066
sp Hybrid	0.492	0.091	-0.682	0.846
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-0.002 ·	-1.487	-3.264	3.587

Compound 10g

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 166 in which Number of Alpha Electrons = 83 Number of Beta Electrons = 83 Charge on the System = 0 Total Orbitals = 159

Starting PM3 calculation with 159 orbitals Energy=-6692.805369 kcal/mol Gradient=0.506084 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-112872.1295105 (kcal/mol)
Total Energy	=	-179.873165638 (a.u.)
Binding Energy		= -6692.8053695 (kcal/mol)
Isolated Atomic Energy		= -106179.3241410 (kcal/mol)
Electronic Energy		= -1091668.7163846 (kcal/mol)
Core-Core Interaction		= 978796.5868741 (kcal/mol)
Heat of Formation		= -38.5643695 (kcal/mol)
Gradient	=	0.5060836 (kcal/mol/Ang)

MOLECULAR POINT GROUP

C1

Ato	m	Z Charge Coordinates(Angstrom) Mass				
		х	y z			
1	6	-0.040569	-1.04706	1.85723	-2.34788	12.01100
2	6	0.014480	0.39404	1.30465	-2.39809	12.01100
3	7	-0.078014	1.36353	2.11018	-1.58406	14.00700
4	6	0.276336	0.87779	3.08837	-0.66203	12.01100
5	6	-0.044832	-0.28678	3.94853	-1.10299	12.01100
6	6	-0.065156	-1.06960	3.39395	-2.31851	12.01100
7	8	-0.376816	1.52086	3.29771	0.35737	15.99900
9	6	-0.063756	0.49879	-0.16885	-2.07106	12.01100
10	6	-0.048019	-1.34365	4.21841	-0.07044	12.01100
11	6	-0.053117	-2.50867	3.93002	-2.13286	12.01100
14	6	-0.130820	-2.60996	4.23645	-0.67771	12.01100

15	6	-0.056222	-3.75116	4.51433	0.05903	12.01100
16	6	-0.141691	-3.62691	4.77046	1.42243	12.01100
17	6	0.085930	-2.35862	4.74584	2.02579	12.01100
18	6	-0.150167	-1.19673	4.47628	1.28277	12.01100
23	8	-0.191347	-2.38243	5.01726	3.38010	15.99900
25	6	0.048930	-1.16884	4.91234	4.08306	12.01100
29	6	-0.078079	-1.82682	1.37873	-3.55024	12.01100
31	6	-0.054223	2.66131	1.45216	-1.24773	12.01100
32	6	-0.115925	1.79556	-0.70848	-2.00467	12.01100
33	6	-0.055639	2.93951	0.23863	-2.12316	12.01100
38	6	-0.120658	-0.61499	-0.99714	-1.88912	12.01100
39	6	0.086117	-0.37675	-2.34928	-1.67960	12.01100
40	6	-0.162283	0.91978	-2.89713	-1.63798	12.01100
41	6	-0.037098	2.01885	-2.07460	-1.79278	12.01100
42	6	-0.057863	0.81064	-4.36648	-1.40836	12.01100
45	8	-0.185938	-1.36935	-3.29517	-1.49715	15.99900
46	6	-0.102844	-3.12005	0.87346	-3.39247	12.01100
47	6	-0.105586	-1.27474	1.45165	-4.83085	12.01100
48	6	-0.092577	-2.00440	1.03567	-5.93741	12.01100
49	6	-0.101026	-3.29392	0.54001	-5.77458	12.01100
50	6	-0.095534	-3.84825	0.45756	-4.50189	12.01100
56	6	0.051745	-0.71839	-4.57172	-1.32673	12.01100
34	1	0.068266	2.68760	1.15223	-0.17800	1.00800
35	1	0.061645	3.44757	2.22138	-1.38119	1.00800
36	1	0.063667	3.08102	0.52503	-3.18569	1.00800
37	1	0.063732	3.89106	-0.23382	-1.80936	1.00800
22	1	0.119497	-4.51846	4.98923	2.02122	1.00800
13	1	0.077008	-0.63228	3.77485	-3.27088	1.00800
24	1	0.144349	-0.20086	4.46217	1.74354	1.00800
8	1	0.090308	-1.54512	1.48580	-1.41501	1.00800
26	1	0.048016	-1.47715	5.12486	5.11030	1.00800
43	1	0.137182	-1.64049	-0.60827	-1.92572	1.00800
44	1	0.110159	3.03655	-2.47622	-1.74728	1.00800
27	1	0.032933	-0.73475	3.90774	4.02017	1.00800
28	1	0.030279	-0.43234	5.65347	3.75146	1.00800
12	1	0.096501	0.15929	4.93768	-1.38069	1.00800
30	1	0.083221	0.76204	1.42310	-3.46003	1.00800
19	1	0.074921	-3.27947	3.20657	-2.46063	1.00800
20	1	0.062645	-2.67059	4.84632	-2.73158	1.00800
51	1	0.112129	-3.56607	0.80007	-2.39214	1.00800
52	1	0.112365	-0.24322	1.82010	-4.94026	1.00800
53	1	0.104120	-1.56128	1.09511	-6.93678	1.00800
54	1	0.104667	-3.86965	0.21106	-6.64571	1.00800
55	1	0.105104	-4.86057	0.06127	-4.37001	1.00800
21	1	0.105388	-4.73362	4.52956	-0.42297	1.00800
57	1	0.066355	1.32537	-4.67818	-0.48192	1.00800
58	1	0.065829	1.26779	-4.94632	-2.23011	1.00800
59	1	0.051285	-1.05648	-4.95999	-0.35264	1.00800
60	1	0.050686	-1.11436	-5.22547	-2.12045	1.00800

Atom Z Gradients(kcal/mol/Angstrom)

		х у	Z	
1	6	0.00993	0.01757	0.01410
2	6	0.00789	-0.01059	0.01048
3	7	-0.02491	-0.00224	-0.04119
4	6	-0.06402	0.00318	-0.04233
5	6	-0.03316	0.01267	0.03614
6	6	0.02582	0.01615	0.00969
7	8	0.05521	0.03613	0.05955
9	6	-0.97443	2,11513	-0.34857
10	6	1 6134	9 -0 31201	-0 81487
11	6	0.0577	-0.00996	0.06166
11	6	-0.2603	8 -0.27627	-1 83609
15	6	-1 5846	0 0.27027	-0 47407
16	6	-1 6/00	7 0 32087	0.47407
17	6	0 6323	5 0.26830	1 75871
10	6	1 2270	-0.01640	0.67827
22	0	1.30730		0.07837
25	0 6	-0.0403	1 0.02733	-0.00413
20	6	-0.0310	1 -0.05141	-0.04527
29	6	0.0505		-0.01307
21	6	-0.0297		0.02100
32	0	2.00494		-0.23001
33	6	0.00320		0.11621
38	6	-1.6/6/	/ 0.9532/	-0.05950
39	6	-1.6569	8 -1.26045	0.24868
40	6	0.4013	9 -2.07202	0.31072
41	6	1.91509	9 -0.66626	0.02670
42	6	-0.0556	3 0.07303	-0.02663
45	8	0.08034	4 0.05065	-0.02310
46	6	-0.0417	7 -0.00451	0.00344
47	6	-0.0139	4 -0.01750	0.07065
48	6	-0.0602	1 -0.03200	0.00768
49	6	0.02573	3 -0.01892	0.01265
50	6	-0.0128	5 0.01052	0.08017
56	6	-0.0251	0 0.03735	-0.03694
34	1	0.0127	7 -0.00265	0.02058
35	1	0.0050	7 0.00118	0.01884
36	1	-0.0259	4 -0.03382	-0.00013
37	1	0.00824	4 -0.00713	0.01934
22	1	-0.0144	1 0.01366	-0.00809
13	1	0.00702	1 0.00741	-0.01732
24	1	0.01903	3 0.02190	0.00497
8	1	0.00672	0.03219	0.00553
26	1	-0.0103	7 -0.03720	0.00109
43	1	-0.0335	4 0.00229	0.00160
44	1	0.00792	0.00749	0.00593
27	1	-0.0292	7 -0.02851	-0.00354
28	1	-0.0073	7 -0.03942	0.02591
12	1	-0.0145	3 0.01781	0.01594
30	1	0.00112	2 -0.00635	-0.00016
19	1	0.00260	0.01929	-0.01065
20	1	-0.0030	4 0.03470	0.01479
51	1	-0.0075	2 0.01153	0.02913

52	1	-0.0	1505	-0.03	8003	0.0	0696	;
53	1	-0.0	1065	-0.05	5272	0.0	1012	-
54	1	-0.0	1937	-0.03	3766	0.0	3804	ŀ
55	1	-0.0	2054	-0.01	230	0.0	4353	
21	1	0.0	1085	0.02	988	-0.0	3388	
57	1	0.0	1022	0.02	172	-0.0	1849	
58	1	0.0	1724	0.03	125	-0.0	2760	
59	1	0.0	0439	-0.01	429	-0.0	3307	,
60	1	0.0	1428	0.00	799	-0.0	3382	
Dipo	ole (I	Deby	es) x	У	z		Tota	I
Poir	nt-Ch	ng.	0.308	-1.6	687	-2.56	9 3	3.089
sp H	lybri	d	0.300	-0.7	25	0.143	30	.798
pd F	lybri	id	0.000	0.0	00	0.00	0 0	0.000
Sum	ı	0	.608	-2.412	2 -2	2.426	3.4	175

Compound 11g

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 166 in which Number of Alpha Electrons = 83 Number of Beta Electrons = 83 Charge on the System = 0 Total Orbitals = 159

Starting PM3 calculation with 159 orbitals Energy=-6693.727176 kcal/mol Gradient=0.507860 Symmetry=C1

ENERGIES AND GRADIENT

= -112873.0513170 (kcal/mol)
= -179.874634630 (a.u.)
= -6693.7271760 (kcal/mol)
= -106179.3241410 (kcal/mol)
= -1095662.1311751 (kcal/mol)
= 982789.0798581 (kcal/mol)

Hea Gra	Heat of Formation= -39.4861760 (kcal/mol)Gradient= 0.5078605 (kcal/mol/Ang)					
мс	LEC	CULAR POINT	GROUP C1			
NET	L CF	ARGES AND	COORDINA	TES		
Ato	m	Z Charge	Coordi	nates(Angs	trom)	Mass
		x	v z		,	
1	6	-0.046013	, -1.76918	-1.11442	-2.22145	12.01100
2	6	0.014234	-1.06169	-1.32532	-0.86133	12.01100
3	7	-0.040746	0.42597	-1.23981	-0.95272	14.00700
4	6	0.265479	0.98138	-0.37525	-1.93167	12.01100
5	6	-0.046608	0.09994	0.64181	-2.64391	12.01100
6	6	-0.074536	-1.38955	0.24496	-2.81965	12.01100
7	8	-0.386698	2.18889	-0.42589	-2.13897	15.99900
8	6	-0.078467	-1.60539	-2.24747	-3.20046	12.01100
9	6	-0.051872	-1.57401	-2.57601	-0.19647	12.01100
11	6	-0.061975	1.21984	-2.38435	-0.43562	12.01100
12	6	-0.053390	0.07570	1.95641	-1.92224	12.01100
13	6	-0.043584	-2.22953	1.38624	-2.19344	12.01100
14	6	-0.094325	-0.80912	-3.74782	-0.15322	12.01100
15	6	-0.074037	0.56415	-3.72585	-0.73038	12.01100
16	6	-0.128421	-2.86004	-2.53666	0.36832	12.01100
17	6	0.083335	-3.33561	-3.70671	0.94036	12.01100
18	6	-0.161273	-2.57796	-4.89583	0.97362	12.01100
19	6	-0.038777	-1.30830	-4.92168	0.43324	12.01100
20	8	-0.187069	-4.58037	-3.84202	1.52799	15,99900
21	6	0.052133	-4.68851	-5.20373	1.99343	12.01100
22	6	-0.058424	-3.38264	-5.95392	1.64960	12.01100
35	6	-0.126836	-1.24266	2.37949	-1.68847	12.01100
36	6	-0.051193	-1.49790	3.59180	-1.07057	12.01100
37	6	-0.181730	-0.42459	4.39701	-0.68490	12.01100
38	6	0.088577	0.88660	3.97217	-0.92611	12.01100
39	6	-0.109323	1.15530	2.73622	-1.55029	12.01100
44	8	-0.185800	2.02632	4.67801	-0.59488	15.99900
46	6	0.050213	1.86041	5.96222	-0.04814	12.01100
51	6	-0.096492	-2.62053	-3.20730	-3.27937	12.01100
52	6	-0.100409	-2.53037	-4.26022	-4.18129	12.01100
53	6	-0.101857	-1.42540	-4.36999	-5.01870	12.01100
54	6	-0.098255	-0.41370	-3.41957	-4.95000	12.01100
55	6	-0.107474	-0.50393	-2.36334	-4.04964	12.01100
34	1	0.079647	-1.60707	0.20193	-3.91374	1.00800
10	1	0.081305	-1.34236	-0.45635	-0.20683	1.00800
23	1	0.060204	1.31765	-2.23339	0.65872	1.00800
24	1	0.089563	2.24855	-2.36199	-0.84963	1.00800
25	1	0.074739	0.50494	-3.91236	-1.82361	1.00800
26	1	0.064581	1.18487	-4.54312	-0.31361	1.00800
40	1	0.062322	-2.88167	1.02881	-1.37180	1.00800
41	1	0.061476	-2.90464	1.84296	-2.94074	1.00800
42	1	0.104753	-2.52673	3.91803	-0.88890	1.00800
43	1	0.115725	-0.62975	5.35666	-0.19734	1.00800
27	1	0.124380	-3.45953	-1.61980	0.35546	1.00800
45	1	0.140248	2.18406	2.40239	-1.73551	1.00800

28	1	0.110941	-0.70209	-5.83341	0.45960	1.00800
47	1	0.026991	1.35299	5.93840	0.92326	1.00800
48	1	0.027558	1.32719	6.63944	-0.72544	1.00800
49	1	0.050949	2.89404	6.29579	0.07808	1.00800
50	1	0.082594	-2.86687	-1.06743	-1.98293	1.00800
29	1	0.050372	-5.57830	-5.62593	1.49929	1.00800
30	1	0.051618	-4.88563	-5.14243	3.07575	1.00800
31	1	0.066026	-3.55956	-6.82104	0.98822	1.00800
32	1	0.066931	-2.87542	-6.34595	2.54932	1.00800
33	1	0.098540	0.54829	0.81232	-3.65515	1.00800
56	1	0.110474	-3.49289	-3.13383	-2.61786	1.00800
57	1	0.103661	-3.33251	-5.00370	-4.23194	1.00800
58	1	0.104014	-1.35411	-5.19929	-5.72962	1.00800
59	1	0.106008	0.45870	-3.49845	-5.60725	1.00800
60	1	0.115992	0.29934	-1.61647	-4.01948	1.00800

Ato	m	Ζ	Grad	ients(kcal/r	nol/Angstrom)
			x y	Z	
1	6		-0.00796	0.01234	0.06203
2	6		-0.02849	-0.07084	-0.02768
3	7		-0.01269	0.03284	0.05074
4	6		-0.08334	-0.03169	0.00058
5	6		0.02007	0.05517	0.05528
6	6		-0.01098	0.01812	0.04102
7	8		0.06179	0.00140	-0.00243
8	6		-0.06136	-0.00482	0.02642
9	6		0.07977	2.49852	-0.82705
11	6		-0.03005	0.00578	0.00323
12	6		0.05398	-1.24112	-0.63450
13	6		0.08758	0.06948	0.03902
14	6		2.29191	-0.90519	-0.77757
15	6		-0.05538	0.03854	0.14397
16	6		-0.76149	2.03380	-0.27018
17	6		-2.07162	-0.30219	1.00108
18	6		-0.96344	-1.82703	0.96446
19	6		1.41772	-1.65724	-0.11319
20	8		0.08798	-0.02411	-0.06583
21	6		0.01352	0.03806	-0.02407
22	6		0.00430	0.08947	-0.05227
35	6		-0.93404	-1.15810	-0.54026
36	6		-1.08834	0.85881	0.44754
37	6		-0.74309	0.99371	0.50978
38	6		1.30905	0.67906	0.28981
39	6		1.32568	-0.28505	-0.17541
44	8		-0.00826	-0.02775	-0.04012
46	6		0.00256	0.02671	-0.03479
51	6		0.02280	0.04187	0.02901
52	6		0.01967	-0.01719	-0.05379
53	6		-0.05913	-0.02335	0.02210
54	6		0.03181	0.05650	0.03265
55	6		0.05649	-0.04373	-0.02576

34	1	-0.00854	0.00037	-0.00975
10	1	-0.00113	-0.02704	0.02871
23	1	-0.02848	-0.00522	0.00186
24	1	-0.00147	0.00491	0.02228
25	1	-0.04302	-0.02028	-0.01419
26	1	0.00758	-0.02352	0.01047
40	1	0.02766	0.01412	0.01654
41	1	-0.00024	0.02720	0.04419
42	1	-0.02082	-0.01087	-0.01478
43	1	-0.01250	0.04579	0.01038
27	1	-0.01144	-0.00821	0.01659
45	1	0.02462	0.01726	-0.01015
28	1	0.00770	-0.04140	-0.02506
47	1	0.03596	0.03975	-0.05298
48	1	0.03095	0.00595	-0.02487
49	1	-0.00887	0.02187	-0.04702
50	1	-0.00384	-0.00043	0.00636
29	1	-0.00150	-0.02463	-0.01797
30	1	0.00230	-0.02356	-0.00997
31	1	0.02266	-0.00280	-0.04829
32	1	0.01888	-0.02519	-0.02222
33	1	-0.00595	-0.00650	0.00683
56	1	-0.01964	0.03025	0.01128
57	1	-0.01546	0.04429	-0.01625
58	1	-0.00631	0.04068	0.01258
59	1	0.00952	-0.00272	0.03147
60	1	0.03436	-0.00085	0.04013

Dipole (Del	byes) x	У	z To	otal
Point-Chg.	-2.576	-0.979	0.899	2.899
sp Hybrid	-0.708	-0.328	-0.126	0.790
pd Hybrid	0.000	0.000	0.000	0.000
Sum	-3.284	-1.306	0.773	3.618

Compound 12a

Single Point, SemiEmpirical, PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 106 in which Number of Alpha Electrons = 53 Number of Beta Electrons = 53 Charge on the System = 0 Total Orbitals = 103

Starting PM3 calculation with 103 orbitals

Energy=-4407.414202 kcal/mol Gradient=0.032336 Symmetry=C1

ENERGIES AND GRADIENT

Total Energy	=	-69179.1446945 (kcal/mol)
Total Energy	=	-110.243970822 (a.u.)
Binding Energy		= -4407.4142015 (kcal/mol)
Isolated Atomic Energy		= -64771.7304930 (kcal/mol)
Electronic Energy		= -554459.7360955 (kcal/mol)
Core-Core Interaction		= 485280.5914009 (kcal/mol)
Heat of Formation		= 1.9927985 (kcal/mol)
Gradient	=	0.0323357 (kcal/mol/Ang)

MOLECULAR POINT GROUP C1

Ato	m	n Z Charge Coordinates(Angstrom)				Mass
		х	y z			
1	6	0.015061	-1.02413	1.96628	-0.17525	12.01100
2	6	-0.082498	-0.17242	3.24539	-0.15205	12.01100
3	7	-0.001586	-0.16776	0.76274	0.07861	14.00700
4	6	0.263932	1.05070	0.63245	-0.65894	12.01100
5	6	-0.122705	1.76344	1.90211	-1.08281	12.01100
6	6	-0.067090	0.87155	3.12730	-1.26607	12.01100
7	8	-0.366575	1.53908	-0.47503	-0.82512	15.99900
8	6	-0.055720	-0.89297	-0.41559	0.54214	12.01100
9	6	-0.084843	-1.26698	-1.45562	-0.31327	12.01100
10	6	-0.097943	-1.94921	-2.55381	0.20001	12.01100
11	6	-0.100903	-2.26165	-2.61828	1.55316	12.01100
12	6	-0.102812	-1.88921	-1.58173	2.40311	12.01100
13	6	-0.097202	-1.20509	-0.47942	1.90546	12.01100
14	6	-0.116708	-1.72899	1.87424	-1.50709	12.01100
16	6	-0.110652	0.43754	3.52979	1.20760	12.01100
19	6	-0.056358	0.16790	3.12770	-2.62641	12.01100
26	6	-0.053360	-1.13623	2.39848	-2.66080	12.01100
27	6	-0.079667	-2.98049	1.26096	-1.58829	12.01100
28	6	-0.109379	-3.63038	1.14974	-2.81073	12.01100
29	6	-0.087471	-3.03341	1.65245	-3.96291	12.01100
30	6	-0.110267	-1.79522	2.27560	-3.88753	12.01100
22	1	0.104284	-2.23750	-3.37269	-0.46736	1.00800
23	1	0.102967	-2.79676	-3.48646	1.95117	1.00800
24	1	0.102984	-2.12975	-1.63616	3.46985	1.00800
25	1	0.110769	-0.91076	0.33179	2.58208	1.00800
17	1	0.082841	2.33446	1.70787	-2.01401	1.00800
18	1	0.078424	2.52763	2.11240	-0.30497	1.00800

15	1	0.084156	-1.77703	1.99928	0.65245	1.00800
20	1	0.069238	1.53672	4.02541	-1.23048	1.00800
21	1	0.120040	-1.01386	-1.42168	-1.37961	1.00800
31	1	0.066963	0.84100	2.71135	-3.40382	1.00800
32	1	0.060722	-0.03031	4.17615	-2.93144	1.00800
33	1	0.110948	-3.44762	0.85759	-0.68178	1.00800
34	1	0.105990	-4.61004	0.66414	-2.86728	1.00800
35	1	0.103913	-3.54091	1.55965	-4.92872	1.00800
36	1	0.106770	-1.32796	2.67790	-4.79363	1.00800
37	1	0.076969	-0.85003	4.10076	-0.40117	1.00800
38	1	0.051196	1.13017	2.74238	1.53461	1.00800
39	1	0.043638	-0.34165	3.61830	1.97643	1.00800
40	1	0.041935	0.99948	4.47329	1.19451	1.00800

ATOMIC GRADIENTS						
Ato	m Z	. Grad	ients(kcal/r	mol/Angstrom)		
		х у	Z			
1	6	-0.02533	0.00690	-0.00654		
2	6	0.00294	-0.00030	0.01757		
3	7	0.01086	0.02235	0.02251		
4	6	0.01130	-0.07076	0.00133		
5	6	0.02039	0.00861	0.02412		
6	6	0.00238	0.01154	0.00656		
7	8	-0.03525	0.05131	0.00113		
8	6	-0.02111	-0.06046	-0.05580		
9	6	0.00668	0.05655	0.04105		
10	6	-0.04919	0.00919	0.03009		
11	6	-0.01336	0.00956	-0.05273		
12	6	0.03618	0.05273	0.00771		
13	6	0.01075	-0.04317	0.00454		
14	6	-0.02520	-0.02838	0.08205		
16	6	0.00035	-0.00135	0.00292		
19	6	-0.02135	0.00510	0.02098		
26	6	0.04950	0.05166	-0.06985		
27	6	0.01146	-0.00529	0.05785		
28	6	-0.03822	-0.03280	-0.10129		
29	6	-0.07582	-0.03772	-0.02844		
30	6	0.06444	-0.00239	-0.01070		
22	1	-0.02950	0.00236	0.02227		
23	1	0.00502	0.00254	0.01199		
24	1	0.07924	-0.02604	0.00267		
25	1	0.05332	-0.01247	0.01998		
17	1	-0.02079	0.02208	0.01055		
18	1	0.03300	-0.04117	0.00232		
15	1	-0.03409	0.04137	-0.02435		
20	1	0.00198	0.00508	0.03210		
21	1	-0.05856	-0.00182	-0.03483		
31	1	-0.04519	0.00709	-0.01948		
32	1	0.00563	0.01147	-0.02004		
33	1	0.05474	0.00749	0.00218		
34	1	-0.01479	-0.03628	-0.00866		
35	1	0.00301	0.01746	-0.04632		

36	1	0.04860		-0.01646		0.02470)
37	1	0.00401		-0.01523		-0.0	-0.01814	
38	1	0.00132		0.00058		0.0	0.00163	
39	1	-0.00441		0.01	610	0.0	1353	3
40	1	-0.00493		0.01	299	0.0	3283	3
Dipole (Debyes) x				у	z		Tota	d
Poir	nt-Ch	g1	L.413	2.8	808	0.33	1	3.161
sp Hybrid -0.30		.304	0.0	46	-0.52	0 (0.604	
pd Hybrid 0.000		0.0	00	0.00	0 (0.000		
Sum -1.717		2.854	4 -0).189	3.	336		

Compound 13a

HyperChem log start -- Mon Sep 28 07:01:45 2020. Single Point, SemiEmpirical, molecule = C:\Users\user\Desktop\Hyper obliczenia\strukt\TI250_19B.hin. PM3 Convergence limit = 0.0100000 Iteration limit = 50 Accelerate convergence = YES UHF Calculation:

Singlet state calculation Number of electrons = 106 in which Number of Alpha Electrons = 53 Number of Beta Electrons = 53 Charge on the System = 0 Total Orbitals = 103

Starting PM3 calculation with 103 orbitals

Energy=-4407.278198 kcal/mol Gradient=0.034747 Symmetry=C1

ENERGIES AND GRADIENT

= -69179.0086912 (kcal/mol)
= -110.243754087 (a.u.)
= -4407.2781982 (kcal/mol)
= -64771.7304930 (kcal/mol)
= -554483.9032553 (kcal/mol)
= 485304.8945641 (kcal/mol)
= 2.1288018 (kcal/mol)
C1

NET CHARGES AND COORDINATES

MOLECULAR POINT GROUP

Atom		Z	Charge	Coordi	Mass		
			х	y z			
1	6	0.	015733	-1.05029	2.02321	-0.14115	12.01100
2	6	-0.	081202	-0.17119	3.28347	-0.07748	12.01100
3	7	-0.	008829	-0.18165	0.83317	0.14716	14.00700
4	6	0.	263211	1.05354	0.71668	-0.56920	12.01100
5	6	-0.	122488	1.75602	1.99265	-0.99728	12.01100
6	6	-0.	068037	0.84304	3.19772	-1.22204	12.01100
7	8	-0.	363604	1.56128	-0.38458	-0.71401	15.99900
8	6	-0.	055968	-0.89967	-0.35814	0.58935	12.01100
9	6	-0.	085053	-1.28056	-1.37682	-0.28875	12.01100
10	6	-0	.098430	-1.95709	-2.48833	0.20228	12.01100
11	6	-0	.099898	-2.25511	-2.58833	1.55675	12.01100
12	6	-0	.103485	-1.87474	-1.57392	2.42924	12.01100
13	6	-0	.093566	-1.19733	-0.45751	1.95331	12.01100
14	6	-0	.113009	-1.73142	1.90296	-1.48103	12.01100
17	6	-0	.114310	-1.00147	4.55264	-0.11795	12.01100
20	6	-0	.055914	0.16431	3.15655	-2.59175	12.01100
27	6	-0	.051521	-1.12685	2.40823	-2.63617	12.01100
28	6	-0	.080600	-2.97645	1.27613	-1.57005	12.01100
29	6	-0	.109956	-3.60374	1.13017	-2.80036	12.01100
30	6	-0	.087941	-2.99184	1.61177	-3.95395	12.01100
31	6	-0	.110633	-1.76263	2.25103	-3.87148	12.01100
22	1	0	.119145	-1.03860	-1.31384	-1.35629	1.00800
23	1	0	.104258	-2.25267	-3.28923	-0.48342	1.00800
24	1	0	.102961	-2.78518	-3.46731	1.93750	1.00800
25	1	0	.103090	-2.10389	-1.65648	3.49673	1.00800
26	1	0	.110699	-0.89712	0.33520	2.64846	1.00800
15	1	0	.083615	-1.82135	2.06126	0.66920	1.00800
18	1	0	.082789	2.35401	1.79233	-1.90983	1.00800
19	1	0	.076317	2.49450	2.23183	-0.20388	1.00800
16	1	0	.076654	0.39240	3.28354	0.89007	1.00800
21	1	0	.068984	1.48587	4.11239	-1.19959	1.00800
32	1	0	.067157	0.85992	2.73423	-3.34605	1.00800
33	1	0	.062173	-0.04425	4.19487	-2.92476	1.00800
34	1	0	.110898	-3.45656	0.88925	-0.66308	1.00800
35	1	0	.105872	-4.57757	0.63371	-2.86245	1.00800
36	1	0	.103941	-3.48111	1.48993	-4.92586	1.00800
37	1	0	.106808	-1.28461	2.63980	-4.77786	1.00800
38	1	0	.044206	-1.67944	4.60744	0.74390	1.00800
39	1	0	.052952	-1.61828	4.61281	-1.02539	1.00800
40	1	0	.042983	-0.36023	5.44350	-0.09485	1.00800

ATOMIC GRADIEN	ΤS
----------------	----

Atom Z Gradients(kcal/mol/Angstrom)

х У z

2 (6	-0.00646	0.00628	0.0023	30	
3	7	-0.01010	0.00614	0.045	15	
4 (6	0.01722	-0.04385	-0.030	59	
5 (6	0.00384	0.01040	0.0116	55	
6 (6	0.00784	0.00787	-0.001	17	
7 8	8 ·	-0.01938	0.04498	0.0020	03	
8 (6	-0.03611	0.01830	0.088	52	
9 (6	-0.07002	-0.07038	0.009	61	
10	6	0.00377	0.07392	-0.029	95	
11	6	-0.00195	0.04587	0.063	18	
12	6	0.01619	-0.06619	-0.025	569	
13	6	0.04460	-0.01494	-0.058	335	
14	6	-0.03790	-0.05572	0.101	L69	
17	6	-0.00526	0.00117	-0.000)32	
20	6	-0.02810	-0.00158	0.001	L07	
27	6	0.09344	0.05314	-0.058	804	
28	6	0.03615	-0.01500	0.057	20	
29	6	-0.04263	-0.01535	-0.065	580	
30	6	-0.06174	-0.06304	-0.054	117	
31	6	0.09092	0.04492	-0.052	86	
22	1	-0.06448	0.03267	0.005	51	
23	1	-0.07511	0.04311	-0.004	106	
24	1	0.00623	-0.00293	0.010)72	
25	1	0.06508	-0.03250	0.018	89	
26	1	0.05895	-0.02502	0.016	59	
15	1	-0.00694	0.00411	-0.009	983	
18	1	0.00175	-0.00181	0.016	81	
19	1	0.00600	0.00983	0.012	83	
16	1	0.00204	-0.00334	-0.004	195	
21	1	0.00109	0.00784	-0.003	43	
32	1	0.01037	0.02034	0.002	20	
33	1	-0.01892	-0.00074	0.004	123	
34	1	-0.00342	0.00204	-0.011	15	
35	1	0.00191	-0.01690	-0.020)29	
36	1	0.02600	-0.01839	-0.015	548	
37	1	0.00580	0.02428	-0.001	.18	
38	1	-0.00915	-0.00963	0.002	255	
39	1	-0.01227	-0.00192	-0.006	532	
40	1	-0.00073	0.00568	-0.005	502	
Dipole (Debyes) x y z Total						
Poin	t-Ch	g1.493	2.797	0.240	3.179	
sp H	ybrid	d -0.288	0.023	-0.546	0.618	
pd H	lybri	d 0.000	0.000	0.000	0.000	
Sum -1.781 2.820 -0.306 3.349						

14. References

¹ Franzmann, P., Beil, S. B., Schollmeyer, D.; Waldvogel, S., Mo-Based oxidizers as powerful tools for the synthesis of thia- and selenaheterocycles, *Chem. Eur. J.* **2019**, *25*,1936–1940.

² Norman M.H., Heathcock C.H., Improved synthesis of *N*-benzyl-5-ethyl-1,2,3,4-tetrahydropyridine, *J. Org. Chem.* **1988**, *53*, 3370-3371.

³ Wadsworth D. H., Detty M. R., Murray B. J. Weidner C. H., Haley N. F., Enamines from iodine oxidation of trialkylamines. 1. Electrophilic capture by cationic heterocyclic rings, *J. Org. Chem.* **1984**, *49*, 2676-2681.

⁴ G. Stork, A. Brizzolara, H. Landesman, J. Szmuszkovicz, R. Terrell., The enamine alkylation and acylation of C carbonyl compounds, *J. Am. Chem. Soc.* **1963**, *85*, 207-222.

⁵ Xie S., Lopez S.A., Ramström O., Yan M., Houk K.N., 1,3-Dipolar cycloaddition reactivities of perfluorinated aryl azides with enamines and strained dipolarophiles, *J. Am. Chem. Soc.* **2015**, 137, 8, 2958–2966.

⁶ McCabe P. H., Milne N. J., Sim G. A., Conformational study of bridgehead lactams. Preparation and X-ray structural analysis of 1-azabicyclo[3.3.1]nonane-2,6-dione, *J. Chem. Soc.*, *Perkin Trans.* **1989**, 2, 1459-1462.

⁷ Danishefsky S., Cavanaugh R., Reaction of piperidone enamines with methyl .beta.-vinylacrylate. A route to quinolines and isoquinolines, *J. Org. Chem.* **1968**, *33*, 7, 2959–2962.

⁸ Amat M., Guignard G., Llor N., Bosch J., Access to enantiopure 4-Substituted 1,5-aminoalcohols from phenylglycinol-derived δ -lactams: synthesis of Haliclona alkaloids, *J. Org. Chem.* **2014**, 79, 6, 2792–2802.

⁹ Amat M., Cantó M., Llor N., Escolano C., Molins E. Espinosa E., Bosch J., Dynamic kinetic resolution of racemic γ-Aryl-δ-oxoesters. Enantioselective synthesis of 3-arylpiperidines, *J. Org. Chem.* **2002**, *67*, 15, 5343–5351.

¹⁰ Berson J. A., Walia J. S., Synthetic approaches to Ipecac alkaloids. III. Studies on the synthesis and partial reduction of pyridones, *J. Org. Chem.* **1959**, *24*, 6, 756–760.

¹¹ Massiot G., Oliveira F. S., Levy J., Synthesis in the indole series viii (1): a novel approach to indoloquinolizidines through alkylation-cyclization of an enamine derived from tryptamine, *Tetrahedron Lett.* **1982**, *23*, 177-180.

¹² Sośnicki J. G., Idzik T., Borzyszkowska A., Wróblewski E., Maciejewska G., Struk Ł., Addition of novel benzylmagnesium "ate" complexes of BnR₂MgLi type to 2-(thio)pyridones and related compounds, *Tetrahedron* **2017**, *73*, 481-493.

¹³ Sośnicki J.G., Idzik T. J., Borzyszkowska A., Maciejewska G., Struk, Ł., Synthesis of Polycyclic δ-Lactams with Bridged Benzomorphan Skeleton: Selectivity and Diversity Driven by Substituents, *J. Org. Chem.* **2018**, 83, 1745-1760.

¹⁴ Idzik T. J., Borzyszkowska-Ledwig A., Struk Ł., Sośnicki J. G., Magnesiate-utilized/benzyne-mediated approach to indenopyridones from 2-pyridones: an attempt to synthesize the indenopyridine core of haouamine, *Org. Lett.* **2019**, 21, 9667–9671.

¹⁵ Krasovskiy A., Knochel P., Convenient titration method for organometalic compounds, *Synthesis* **2006**, 5, 0890–0891.

¹⁶ Austin K. A. B., Herdtweck E., Bach T., Intramolecular [2+2] photocycloaddition of substituted isoquinolones: enantioselectivity and kinetic resolution induced by a hiral Template, *Angew. Chem. Int. Ed.* **2011**, 50, 8416 – 8419.

¹⁷ Dai W., Wang C., Zhang X., Zhang J., Lang M., Michael addition reactions of cyclanones with acrylamides: Producing 2-carbamoylethyl derivatives or ene-lactams, *China Ser B-Chem.* **2008**, 51, 1044-1050.

¹⁸ Brown R. E., Lustgarten D. M., Stanaback R. J., Osborne M. W., Meltzer R. I., Synthesis of a new class of antishock agents, *J. Med. Chem.* **1964**, *7*, 2, 232–235.

¹⁹ Hideo I., Kensuke, K., Toyohiko K., Fumio Y., Studies on the synthesis of isocarbostyril derivatives. (1). A novel synthesis of isocarbostyril derivatives and synthesis of protoberberine and dibenzoquinolizine derivatives, *Yakugaku Zasshi* **1976**, *96*, 176-179.

²⁰ Han X., Wang X., Pei T., Widenhoefer R. A., Palladium-catalyzed intramolecular hydroalkylation of alkenylβ- keto esters, α-aryl ketones, and alkyl ketones in the presence of Me₃SiCl or HCl, *Chem. Eur. J.* **2004**, 10, 6333 – 6342.

²¹ House H. O., Roelofs W. L., Trost B. M., The chemistry of carbanions. XI. Michael reactions with 2-methylcyclopentanone and 2-methylcyclohexanonela, *J. Org. Chem.* **1966**, 31, 646–655.

²² Padwa A., Lee H. I., Rashatasakhon P., Rose M., Electrophilic-induced cyclization reaction of hexahydroindolinone derivatives and its application toward the synthesis of (\pm) -erysotramidine, *J. Org. Chem.* **2004**, 69, 8209-8218.

²³ Tourwé D., van Binst G., Benzo- and indoloquinolizine derivatives - VIII: A Two-step carbostyril preparation in the synthesis of dibenzo[a, f]-and benz[f]indolo[2,3-a]quinolizines, *Bull. Soc. Chim. Belg.*, **1976**, 85, 11-22.

²⁴ El Bialy S. A. A., Braun H., Tietze L. F., A highly efficient synthesis of the erythrina and B-homoerythrina skeleton by an AlMe₃-mediated domino reaction, *Angew. Chem. Int. Ed.* **2004**, 43, 5391–5393.

²⁵ Rodriguez G., Castedo L., Dominguez D., Saa C., Dioxirane epoxidation of 10-membered-ring stilbene lactams as synthetic precursors to protoberberines, *J. Org. Chem.* **1999**, 64, 877-883.

²⁶ Kalaus G., Györy P., Kajtár-Peredy M., Radics L., Szabó L., Szántay C., Synthesis of vinca alkaloids and related compounds, XIII: syntheses starting from 2-(ethoxycarbonyl)tryptamine, *Chem. Ber.* **1981**, 114, 1476-1483.

²⁷ Haasnoot, C. A. G.; DeLeeuw, F. A. A. M.; Altona C., The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation, *Tetrahedron* **1980**, *36*, 2783-2792.