Base-Promoted Hydride Transfer: Thermodynamics, Kinetics and Synthetic Applications
Zhen Li, Jin-Dong Yang*, Jin-Pei Cheng*
Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084 China
E-mail: jdyang@mail.tsinghua.edu.cn; jinpei_cheng@mail.tsinghua.edu.cn

Table of Contents

1 General Information S2
2 Synthesis of Hydride Donors S2
3 Synthesis of Hydride Acceptors S3
4 Synthesis of Super Bases S7
$5 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S9
$6 \mathrm{p} K_{\mathrm{aH}}$ Measurement of Hantzsch Pyridine in Acetonitrile S10
7 UV-vis Spectra of Hydride Acceptors and Stability Test S12
8 Hydride Transfer Method for Hydricity Determinations S12
9 Isothermal Titration Calorimetry (ITC) Experiment for Hydricity Determinations S13
10 Base Promoted Hydride Transfer Reactions S14
11 Kinetic Experiments S16
12 References S29

1 General Information

All chemicals were purchased from commercial sources and used as received unless otherwise noted. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 MHz spectrometer. Chemical shifts are reported in ppm with the solvent residual as the internal standard $\left(\mathrm{CDCl}_{3}, \delta: 7.26 \mathrm{ppm} ; \mathrm{DMSO}, \delta: 2.50 \mathrm{ppm}\right.$; acetonitrile- $d_{3}, \delta: 1.94 \mathrm{ppm}$). ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constant (Hz), and integration. HRMS spectra were recorded on an Orbitrap analyzer. UV-vis spectra were recorded on a Hitachi U-3900H spectrometer.

2 Synthesis of Hydride Donors

2.1 Preparation of diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (HEH) ${ }^{[1]}$

To a 250 ml round-bottom flask was added formaldehyde (37% aqueous solution, $3.75 \mathrm{ml}, 50$ mmol, 1.0 eqiv), ammonium acetate ($7.7 \mathrm{~g}, 100 \mathrm{mmol}, 2.0$ eqiv), ethyl acetoacetate ($25.4 \mathrm{ml}, 200$ mmol, 4.0 eqiv) and 100 ml water. The flask was equipped with a reflux condenser and heated to $90^{\circ} \mathrm{C}$ for 2 hours with vigorously stirring. The formed yellow small balls were filtered and washed with cold water and ethanol. The solid was recrystallized from ethanol two times to afford the Hantzsch esters as small needles ($10.5 \mathrm{~g}, 41 \mathrm{mmol}, 83 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.39$ (brs, 1H), 4.15 (q, $J=7.1 \mathrm{~Hz}, 4 \mathrm{H}$), 3.24 (s, 2H), 2.17 ($\mathrm{s}, 6 \mathrm{H}$), $1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 168.2, 145.0, 99.6, 59.8, 24.9, 19.2, 14.6.
The spectral data are in agreement with those reported in literature. ${ }^{[1]}$

2.2 Preparation of diethyl 1,2,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylate (N-Me HEH) ${ }^{[2]}$

N-Me HEH
To a 250 ml flame-dried round-bottom flask was added $\mathrm{NaH}(0.36 \mathrm{~g}, 12 \mathrm{mmol}, 1.2 \mathrm{eqiv})$ and dry THF 60 ml under Ar. The flask was cooled with ice-water bath and Hantzsch esters ($2.53 \mathrm{~g}, 10$ mmol, 1.0 eqiv) was added slowly. After 30 minutes, $\operatorname{MeI}(1.25 \mathrm{ml}, 20 \mathrm{mmol}, 2.0$ eqiv) with 10 ml THF was added and the reaction mixture was heated to reflux for 2 hours. After cooling to room temperature, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to the flask to quench the MeI. The THF was distilled out and the mixture was extracted with diethyl ether. The ether layer was collected and concentrated. Recrystallization from ethanol afforded small needles ($1.44 \mathrm{~g}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.18(\mathrm{qd}, J=7.1,3.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.15(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 4 \mathrm{H})$, $2.44-2.32(\mathrm{~m}, 5 \mathrm{H}), 1.29(\mathrm{td}, J=7.1,1.2 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 168.0,150.6$, 101.5, 59.7, 33.8, 23.9, 15.9, 14.4.
The spectral data are in agreement with those reported in literature. ${ }^{[3]}$

2.3 Preparation of diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate-4,4- $d_{2} \quad\left(d_{2}\right.$ -

 HEH) ${ }^{[4]}$

To a 250 ml round-bottom flask was added paraformaldehyde- $d_{2}(1 \mathrm{~g}, 31 \mathrm{mmol}, 1.0$ eqiv $)$, ammonium acetate ($4.8 \mathrm{~g}, 62 \mathrm{mmol}, 2.0$ eqiv), ethyl acetoacetate ($16.3 \mathrm{~g}, 125 \mathrm{mmol}, 4.0$ eqiv) and 100 ml water. The mixture was heated to $90^{\circ} \mathrm{C}$ for 2 hours with vigorously stirring. The formed precipitate was filtered and recrystallized from ethanol to afford small needles ($6.12 \mathrm{~g}, 77 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 5.33$ (brs, 1 H), 4.15 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}$), 2.18 ($\mathrm{s}, 6 \mathrm{H}$), $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Chloroform-d) δ 168.2, 145.0, 99.5, 61.6, 59.8, 19.2, 14.6.
The spectral data are in agreement with those reported in literature. ${ }^{[4]}$

2.4 Preparation of diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate-1-d (N-D HEH) ${ }^{[2]}$

The solution of Hantzsch esters ($253 \mathrm{mg}, 10 \mathrm{mmol}$) in 5 ml of $\mathrm{CD}_{3} \mathrm{OH}$ was stirred under Ar overnight. After evaporation of the solvent, light green power was obtained ($250 \mathrm{mg}, 98 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.25(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=1.0$ $\mathrm{Hz}, 6 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

The spectral data are in agreement with those reported in literature. ${ }^{[2]}$

3 Synthesis of Hydride Acceptors

3.1 Preparation of 1-benzyl-3-carbamoylpyridin-1-ium bromide ($\left.\mathbf{B N A}^{+}\right)^{[5]}$

Nicotinamide ($3.57 \mathrm{~g}, 29 \mathrm{mmol}, 1.0$ eqiv) was dissolved in 40 ml acetonitrile in a 100 ml roundbottom flask and benzyl bromide ($5 \mathrm{~g}, 29 \mathrm{mmol}, 1.0$ eqiv) was added. The flask was equipped with a reflux condenser and heated to reflux for 8 hours, after which time a white precipitate formed. The reaction mixture was cooled to room temperature and the precipitate was filtered and washed with cold acetonitrile. The filtrate was dried under high vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ and afforded target compound as white powder ($8.11 \mathrm{~g}, 95 \%$ yield $)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.65(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.31(\mathrm{dt}, J=6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.98$ $(\mathrm{dt}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{dd}, J=8.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.52(\mathrm{~m}$, $2 \mathrm{H}), 7.51-7.36(\mathrm{~m}, 3 \mathrm{H}), 5.93(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 162.6,146.3,144.7,143.8,134.0,133.9,129.4,129.2$, 129.0, 128.2, 63.4.

The spectral data are in agreement with those reported in literature. ${ }^{[6]}$

3.2 Preparation of 1-benzyl-1,4-dihydropyridine-3-carboxamide (BNAH) ${ }^{[5]}$

To a 250 ml round-bottom flask was added $\mathrm{BNA}^{+}\left(2.93 \mathrm{~g}, 10 \mathrm{mmol}, 1.0\right.$ eqiv), NaHCO_{3} (4.2 $\mathrm{g}, 50 \mathrm{mmol}$, 5.0 eqiv) and distilled water $(60 \mathrm{ml}) . \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(8.7 \mathrm{~g}, 50 \mathrm{mmol}, 5.0$ eqiv) was added in small portions and the reaction mixture was stirred at room temperature in the dark for 3 hours. The precipitate was filtered, washed with cold water, recrystallized, and dried under high vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ to afford target compound as yellow plates ($1.15 \mathrm{~g}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 7.38(\mathrm{dd}, J=8.3,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{td}, J=7.3,6.7,1.7$ $\mathrm{Hz}, 3 \mathrm{H}), 6.96(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{dt}, J=8.1,3.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.05(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$.

The spectral data are in agreement with those reported in literature. ${ }^{[5]}$

3.3 Preparation of 1,13-dimethoxy-5,9-dimethyl-5,9-dihydro-13bH-quinolino[2,3,4$k l]$ acridin- $13 b$-ylium tetrafluoroborate $\left(2 \mathrm{O}^{+} \mathrm{Me}\right)^{[7]}$

To a flame-dried round-bottom flask was added 1,2-dimethoxybenzene ($9.67 \mathrm{~g}, 70 \mathrm{mmol}, 3.5$ eqiv), TMEDA ($8.13 \mathrm{~g}, 70 \mathrm{mmol}, 3.5$ eqiv), and 35 ml dry benzene under Ar. The flask was immersed in an acetone/liquid nitrogen bath to cool down to $-78^{\circ} \mathrm{C}$ for 30 minutes. Then $n-\mathrm{BuLi}$ $(28 \mathrm{ml}, 2.5 \mathrm{M})$ was added dropwise. The reaction mixture was warmed to room temperature very slowly and then cool down to $-78^{\circ} \mathrm{C}$ again. Diethyl carbonate ($2.36 \mathrm{~g}, 20 \mathrm{mmol}, 1.0$ eqiv) dissolved in 20 ml dry benzene was added slowly and the mixture was stirred overnight. The flask was equipped with a reflux condenser and heated to reflux for 2 hours. The benzene was distilled out and the residue extracted with ethyl acetate. The crude product was used in the next step without further purification.

The crude product was dissolved in ethanol and aqueous HBF_{4} was added slowly, the reaction mixture turned deep blue immediately. The solution was diluted with petroleum ether and precipitate formed. After filtration, the solid was recrystallization from acetonitrile/diethyl ether, dried under vacuum over $\mathrm{P}_{2} \mathrm{O}_{5}$ to afford target compound (1.3 g , two step yield: 12.5%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 7.62(\mathrm{t}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.59(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 3.54$ ($\mathrm{s}, 18 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, Acetonitrile- d_{3}) δ 182.6, 163.7, 143.2, 126.4, 106.0, 57.4.
To a 100 ml round-bottom flask was added tris(2,6-dimethoxyphenyl)methylium tetrafluoroborate ($812 \mathrm{mg}, 1.6 \mathrm{mmol}$), methylamine solution in ethanol ($4.6 \mathrm{~g}, 30 \% \mathrm{wt}$), and NMP $(30 \mathrm{ml})$. The reaction mixture was heated to $90^{\circ} \mathrm{C}$ for 2 hours and cooled to room temperature. Addition of water and small amount of HBF_{4} solution afforded target compound as precipitate, which was filtered, recrystallized from acetonitrile/diethyl ether, dried over P2O5 under high vacuum. The desired product was obtained as dark green powder ($500 \mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.07(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.41$ (dd, $J=8.8,6.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 6 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{CN}\right) ~ \delta 160.1,143.6,142.9,140.2,137.8,137.1,119.8,113.9,108.5$, 105.8, 104.1, 56.4, 38.2.

The spectral data are in agreement with those reported in literature. ${ }^{[7 \mathrm{~d}, ~ 7 e]}$

3.4 Preparation of 1,13-dimethoxy-5,9-dimethyl-9,13b-dihydro-5H-quinolino[2,3,4$k l]$ acridine (2OHMe) ${ }^{[7 \mathrm{~d}]}$

NaBH_{4} ($37 \mathrm{mg}, 1 \mathrm{mmol}, 3.0$ eqiv) was slowly added to a solution of $2 \mathrm{O}^{+} \mathrm{Me}(150 \mathrm{mg}, 0.34$ mmol, 1.0 eqiv) in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{ml})$. After 20 minutes, the mixture was concentrated in vacuo, and the crude residue was purified by flash column chromatography (petroleum/ethyl acetate 20:1) to afford product as white solid ($110 \mathrm{mg}, 91 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.21(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.71$ (dd, $J=8.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.44(\mathrm{~m}, 6 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Chloroform-d) $\delta 160.1,157.2,146.9,146.0,142.2,139.8,127.7,126.5$, $125.7,117.5,111.4,111.3,106.6,106.1,105.5,105.2,103.8,101.3,56.3,55.4,34.5,33.4,32.6$.

The spectral data are in agreement with those reported in literature. ${ }^{[7 \mathrm{~d}]}$

3.5 Preparation of 3-(dimethylamino)-9-(4-(dimethylamino)phenyl)-10-methylacridin-10ium tetrafluoroborate (p3-Acr ${ }^{+}$)

Hydride acceptor $\mathrm{p} 3-\mathrm{Acr}^{+}$was synthesized according to modified literature procedure: ${ }^{[8]}$
To a 500 ml round-bottom flask was added 4 -bromo- N, N-dimethylaniline ($25 \mathrm{~g}, 125 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{SO}_{4}(50 \mathrm{ml})$ and the flask was immersed in an ice-water bath for 30 minutes. $\mathrm{HNO}_{3}(8 \mathrm{ml}, 150$ mmol) was added slowly to the reaction mixture. The ice-water bath was maintained for another 1 hour then the mixture was warmed to rt for 3 hours until TLC indicated complete conversion of starting material. The reaction mixture was poured into ice-water carefully and neutralized with NaOH until orange precipitate formed. The solid was filtered, washed with large amount of water and used in the next step without further purification.

The obtained orange solid ($\sim 125 \mathrm{mmol}$) was dissolved in $\mathrm{HCl}(100 \mathrm{ml})$ and cooled with icewater bath. $\mathrm{SnCl}_{2} \bullet \mathrm{H}_{2} \mathrm{O}(85 \mathrm{~g}, 375 \mathrm{mmol}, 3.0$ eqiv $)$ was dissolved in HCl and added into the reaction mixture slowly. The mixture was stirred for 2 days and TLC indicated complete conversion of starting material. The mixture was diluted with water and filtered. The filtrate was neutralized with NaOH and extracted with ethyl acetate. The organic layers was combined and filtered through a short pad of silica gel. Evaporation of solvent afforded product as yellow solid ($22.3 \mathrm{~g}, 83 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.08(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{~s}$, 2H), 2.91 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform-d) δ 151.0, 144.4, 132.5, 105.2, 99.8, 97.0, 40.6.
To a flame-dried, round-bottom flask was added 4 -bromo- N^{1}, N^{1}-dimethylbenzene-1,3-diamine ($3.9 \mathrm{~g}, 18 \mathrm{mmol}$), 1 -bromo-2-iodobenzene ($5.1 \mathrm{~g}, 18 \mathrm{mmol}$), $t \mathrm{BuONa}(2.6 \mathrm{~g}, 27 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ ($411 \mathrm{mg}, 0.45 \mathrm{mmol}$), dppf ($498 \mathrm{mg}, 0.9 \mathrm{mmol}$), and dry toluene (25 ml) under Ar. The mixture was heated to $105^{\circ} \mathrm{C}$ and stirred overnight. The mixture was cooled to rt and quenched with water, extracted with ethyl acetate and purified by flash column chromatography (petroleum ether/ ethyl acetate $40: 1$ to $20: 1$). The product was obtained as white solid ($5.45 \mathrm{~g}, 82 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.59$ (dd, $\left.J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.40(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36 (dd, $J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22$ (ddd, $J=8.4,7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{ddd}, J=8.0,7.3,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=8.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) δ 150.7, 140.7, 140.0, 133.2, 133.1, 128.1, 121.9, 117.5, 113.8, 108.2, 103.2, 101.6, 40.7.

HRMS (ESI): calcd C $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}_{2}{ }^{+} 370.9576$, found 370.9564 .
To a flame-dried, round-bottom flask was added the above obtained solid ($5.45 \mathrm{~g}, 14.7 \mathrm{mmol}$, 1.0 eqiv), KH ($736 \mathrm{mg}, 18.4 \mathrm{mmol}, 1.25$ eqiv), and dry DMF (40 ml). The mixture was heated to $60^{\circ} \mathrm{C}$ for 30 minutes then $\mathrm{CH}_{3} \mathrm{I}(2.61 \mathrm{~g}, 18.4 \mathrm{mmol}, 1.25$ eqiv) was added. The mixture was stirred for 6 hours and cooled to rt. The mixture was quenched with aqueous NaHCO_{3}, diluted with water and extracted with ethyl acetate. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was purified by flash column chromatography (petroleum ether/ethyl acetate $40: 1$ to $20: 1$). The target compound was obtained as beige oil which solidified overnight as white solid ($5.65 \mathrm{~g}, 98 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, Chloroform- d) $\delta 7.56$ (dd, $J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.28$ $-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.23$ ($\mathrm{s}, 3 \mathrm{H}$), 2.88 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Chloroform- d) $\delta 150.8,149.0,149.0,134.3,134.3,128.1,124.6,124.0$, 120.5, 109.4, 108.3, 106.6, 41.4, 40.7.

HRMS (ESI): calcd $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{2}{ }^{+} 384.9732$, found 384.9724.
To a flame-dried, round-bottom flask was added 4-bromo- N^{3}-(2-bromophenyl)- N^{1}, N^{1}, N^{3} -trimethylbenzene-1,3-diamine ($1 \mathrm{~g}, 2.6 \mathrm{mmol}, 1.0$ eqiv) and dry toluene (30 ml). The flask was immersed in an acetonitrile/liquid nitrogen bath for 30 minutes then $n \operatorname{BuLi}(2.38 \mathrm{ml}, 2.4 \mathrm{M}, 2.2$ eqiv) was added dropwise. The mixture was slowly warmed to rt and stirred for 2 hours. Methyl 4(dimethylamino)benzoate ($350 \mathrm{mg}, 1.95 \mathrm{mmol}, 0.8$ eqiv) was dissolved in dry toluene (20 ml) and added slowly. The reaction mixture was heated to $105^{\circ} \mathrm{C}$ and stirred overnight. The mixture was cooled to rt , quenched with aqueous HBF_{4}, and extracted with dichloromethane. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The crude product was purified by flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH} 30: 1\right)$. Recrystallization from acetonitrile/diethyl ether twice afforded product as brown powder ($210 \mathrm{mg}, 24 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 8.17$ (d, $\left.J=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.03$ (ddd, $J=8.8,6.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=9.9$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}$, 3 H), 3.34 (s, 6H), 3.09 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 158.0,157.3,152.4,145.7,141.6,136.1,133.3,132.5$,

3.6 Preparation of 9-(4-(dimethylamino)phenyl)-N,N,10-trimethyl-9,10-dihydroacridin-3amine (p3-AcrH)

NaBH_{4} ($49 \mathrm{mg}, 1.3 \mathrm{mmol}, 3.0$ eqiv) was slowly added to a solution of $\mathrm{p} 3-\mathrm{Acr}^{+}(190 \mathrm{mg}, 0.43$ mmol, 1.0 eqiv) in $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{ml})$. After 20 minutes, the mixture was concentrated in vacuo, and the crude residue was purified by flash column chromatography (petroleum/ethyl acetate 10:1) to afford product as oily residue ($96 \mathrm{mg}, 62 \%$ yield), which easily turned red when exposed to air.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{dd}, J=8.7,4.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.93-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.42-6.30(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.92$ $(\mathrm{s}, 6 \mathrm{H}), 2.79(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, Acetonitrile- d_{3}) $\delta 151.7,150.5,143.9,143.5,136.1,129.8,129.3,129.2$, 128.4, 127.8, 121.2, 117.3, 113.7, 113.6, 106.6, 98.6, 47.4, 41.1, 41.0, 33.7.

HRMS (ESI): calcd $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3}{ }^{+} 358.2278$, found 358.2268.

4 Synthesis of Super Bases ${ }^{[9]}$

4.1 Preparation of (phenylimino)tripyrrolidinophosphorane

Phosphorous pentachloride ($10.4 \mathrm{~g}, 50 \mathrm{mmol}$) was stirred in dry dichloromethane (75 ml) and immersed in a dry-ice bath under Ar protection. Pyrrolidine ($12.4 \mathrm{ml}, 150 \mathrm{mmol}$) was added dropwise while maintaining the mixture below $-30^{\circ} \mathrm{C}$. Triethylamine ($28 \mathrm{ml}, 200 \mathrm{mmol}$) was added slowly and kept temperature under $-30^{\circ} \mathrm{C}$. The mixture was slowly warm up and stirred for another 2 hours The triethylamine hydrochloride was filtered and the filtrate was concentrated in vacuo. Then dry THF (50 ml) was added to the residue. The mixture was cooled to $-10^{\circ} \mathrm{C}$, then aniline ($5.12 \mathrm{~g}, 55 \mathrm{mmol}$) was mixed with triethylamine $(7.5 \mathrm{ml}, 55 \mathrm{mmol})$ and added dropwise over 30 minutes. After addition, the mixture was heated to $60^{\circ} \mathrm{C}$ for 40 minutes then stirred at room temperature overnight. The triethylamine hydrochloride was filtered and THF was removed in vacuo. The residue was slurred in ethyl acetate and dried to afford white solid ($10 \mathrm{~g}, 60 \%$ yield).

The above obtained white solid ($2.6 \mathrm{~g}, 7.0 \mathrm{mmol}$) was dissolved in dry acetonitrile (20 ml), freshly prepared $\mathrm{CH}_{3} \mathrm{OK}$ (from KH and $\mathrm{CH}_{3} \mathrm{OH}$) was added and white precipitate formed immediately. The solid was filtered and filtrate was concentrated in vacuo. The residue was extracted with petroleum ether/ethyl acetate ($1: 1, \mathrm{v} / \mathrm{v}$) and combined. Evaporation of solvent afforded product as white solid ($2.3 \mathrm{~g}, 98 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 6.97(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.48$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.25-3.03(\mathrm{~m}, 12 \mathrm{H}), 1.87-1.70(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Acetonitrile- d_{3}) $\delta 153.5$, 129.4, 123.6, 123.4, 116.3, 47.5, 47.5, 27.1,
27.0.
${ }^{31} \mathrm{P}$ NMR (162 MHz , Acetonitrile- d_{3}) $\delta 8.0$.
The spectral data are in agreement with those reported in literature. ${ }^{[9 b]}$

4.2 Preparation of (4-bromophenylimino)tripyrrolidinophosphorane

Synthesized from phosphorous pentachloride, pyrrolidine, and 4-bromoanaline. Product was obtained as light yellow solid (3.0 g , two step yield 60%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile $\left.-d_{3}\right) \delta 7.05(\mathrm{dd}, J=8.5,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $3.22-3.05(\mathrm{~m}, 12 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 153.0,132.0,125.2,125.1,107.1,47.5,47.5,27.1$, 27.0.
${ }^{31} \mathrm{P}$ NMR (162 MHz , Acetonitrile- d_{3}) δ 9.1.
The spectral data are in agreement with those reported in literature. ${ }^{9 b}$]

$5 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

$6 \mathrm{p} K_{\mathrm{aH}}$ Measurement of Hantzsch Pyridine in Acetonitrile

Scheme $\mathrm{S} 1 \mathrm{p} K_{\mathrm{aH}}$ determination of diethyl Hantzsch pyridine in acetonitrile: (a) determination of molar extinction coefficient (b) $\mathrm{p} K_{\mathrm{aH}}$ determination using picric acid as indicator
General Information: Acetonitrile (purity $>99.9 \%$, Super Dry, water $\leq 30 \mathrm{ppm}$) was purchased from J\&K Scientific. Picric acid was recrystallized three time prior to use. Hantzsch pyridine was purified by flash column chromatography.

The $\mathrm{p} K_{\mathrm{aH}}$ determination was performed in a two-step procedure that was modified according to literature ${ }^{[10]}$: (a) The molar extinction coefficient of picric acid anion at certain region of UV-vis was determined by titrating a solution of base (DBU) with a solution picric acid and monitoring the
absorbance change. The molar extinction coefficient could be calculated by plotting the absorbance against the concentration of picric acid anion (Figure S1). (b) Several aliquots of the Hantzsch pyridine solution with known concentration were then added to a certain amount of picric acid solution, and the absorbance of picric acid anion was recorded at the same wavelength where molar extinction coefficient was determined (Figure S2). The concentration of picric acid anion could be calculated according to Beer's Law. The concentration of the other three species could be calculated according to the conservation of charge and mass, thus the $\mathrm{p} K_{\mathrm{aH}}$ of Hantzsch pyridine was determined for each aliquot added.

The choice of wavelength should have little influence on the result. To make sure the reproducibility and accuracy, we choose the region from 450 nm to 470 nm to calculate the molar extinction coefficient and $\mathrm{p} K_{\mathrm{aH}}$. This method was verified by measuring 3-acetylpyridine whose $\mathrm{p} K_{\mathrm{a}}$ in acetonitrile was reported to be 10.8 in literature.

At least two independent runs were carried out to measuring the $\mathrm{p} K_{\mathrm{aH}}$ of Hantzsch pyridine in acetonitrile. According to these measurements, the $\mathrm{p} K_{\mathrm{aH}}$ of Hantzsch pyridine in acetonitrile is assigned to be 10.4

Figure S1 Determination of molar extinction coefficient of picric acid anion at 450 nm .

Figure S2 UV-vis spectra of $\mathrm{p} K_{\mathrm{a}}$ determination using picric acid as indicator.

7 UV-vis Spectra of Hydride Acceptors and Stability Tests

Figure S3 UV-vis spectra and stabilities test of $2 \mathrm{O}^{+} \mathrm{Me}$.

Figure S4 UV-vis spectra and stabilities test of p3-Acr ${ }^{+}$.

8 Hydride Transfer Method for Hydricity Determinations

The hydride affinity of compound $\mathrm{p} 3-\mathrm{Acr}^{+}$in acetonitrile was determined by the hydride transfer method using BNAH as reference, whose hydricity was previously reported in acetonitrile $\left(\Delta G_{\mathrm{H}-}=59 \mathrm{kcal} / \mathrm{mol}\right)$. The hydride transfer reaction between $\mathrm{p} 3-\mathrm{Acr}^{+}$and BNAH was monitored by NMR spectrometer and the reaction underwent cleanly over 7 days in acetonitrile- d_{3} (Figure S5). The reaction equilibrium constant was obtained by integration of ${ }^{1} \mathrm{H}$ NMR spectrum. With the calculated $K_{\text {eq }}$ to be 29.1, the free energy for hydride transfer between $\mathrm{p} 3-\mathrm{Acr}^{+}$and BNAH in acetonitrile was $2.0 \mathrm{kcal} / \mathrm{mol}$. However, because the BNAH in the reaction was almost consumed
completely, it is expected that the hydricity of $\mathrm{p} 3-\mathrm{AcrH}$ in acetonitrile is larger than $61.0 \mathrm{kcal} / \mathrm{mol}$.

Figure S5 Hydride transfer method for determination of p3-Acr ${ }^{+}$using BNAH as reference.

9 Isothermal Titration Calorimetry (ITC) Experiment for Hydricity Determinations

The titration experiments were carried out on a MicroCal VP-ITC isothermal titration calorimeter in acetonitrile at 298 K . The heat of reaction was determined following 10-20 automatic injections from a syringe containing $\mathrm{PhXn}^{+} \mathrm{ClO}_{4}^{-}$solution into the reaction cell containing hydride donor solution. Time interval between every two injections was set 200-300 seconds. The reaction heat was obtained by integration of each peak except the first one. The reaction heat for the hydride transfer reaction of $\mathrm{p} 3-\mathrm{AcrH}$ with $\mathrm{PhXn}^{+} \mathrm{ClO}_{4}^{-}$was $26.0 \pm 0.6 \mathrm{kcal} / \mathrm{mol}$, which was the average values of at least three independent runs.

Figure S6 Isothermal titration calorimetry (ITC) for the reaction heat of p3-AcrH with 9phenylxanthylium cation $\left(\mathrm{PhXn}^{+} \mathrm{ClO}^{-}\right)$in acetonitrile at 298 K .

10 Base-Promoted Hydride Transfer Reactions

10.1 BPHyT reaction of HEH and BNA^{+}

To a 100 ml round bottom flask was added Hantzsch ester ($512.0 \mathrm{mg}, 2.0 \mathrm{mmol}$), BNA^{+}(595 $\mathrm{mg}, 2.0 \mathrm{mmol}$, , DBU ($378 \mathrm{mg}, 2.5 \mathrm{mmol}$) and acetonitrile (25 ml) under Ar. The mixture was stirred for 2 hours at room temperature. Flash column chromatography afforded 2,6-dimethylpyridine-3,5-dicarboxylate (400 mg) as white solid. BNA^{+}was reduced as $1,4-$ and $1,2-$ isomers which could not be separated by flash column chromatography. Unreacted Hantzsch esters was recovered $(110 \mathrm{mg})$.

Figure $\mathrm{S} 7{ }^{1} \mathrm{H}$ NMR spectra of BPHyT reaction between N-Me-HEH and BNA^{+}.

10.2 BPHyT reaction of HEH and $2 \mathrm{O}^{+} \mathrm{Me}$

To a reaction tube was added Hantzsch ester ($126.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 5.0 \mathrm{eqiv}$), $2 \mathrm{O}^{+} \mathrm{Me}(44.4 \mathrm{mg}$, $0.1 \mathrm{mmol}, 1.0$ eqiv), DBU ($152.2 \mathrm{mg}, 1 \mathrm{mmol}, 10.0$ eqiv) and acetonitrile (5 ml) under Ar. The mixture was stirred for 30 minutes at room temperature and TLC indicated complete conversion of $2 \mathrm{O}^{+} \mathrm{Me}$. Flash column chromatography afforded 2,6-dimethylpyridine-3,5-dicarboxylate (22.3 mg) and 2OHMe ($30.4 \mathrm{mg}, 85 \%$ yield) as a white solid. Unreacted Hantzsch esters was recovered (91.0 mg).

10.3 BPHyT reaction of HEH and $\mathrm{p} 3-\mathrm{Acr}^{+}$

To a reaction tube was added Hantzsch ester ($126.6 \mathrm{mg}, 0.5 \mathrm{mmol}, 5.0$ eqiv), p3-Acr ${ }^{+}$(44.4 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eqiv), TMG ($115 \mathrm{mg}, 1 \mathrm{mmol}, 10.0$ eqiv) and acetonitrile (5 ml) under Ar. The mixture was stirred for 10 minutes at room temperature and TLC indicated complete conversion of p3-Acr ${ }^{+}$. Flash column chromatography afforded 2,6-dimethylpyridine-3,5-dicarboxylate (23.0 mg) and p3-AcrH ($31.1 \mathrm{mg}, 87 \%$ yield) as a white solid. Unreacted Hantzsch esters was recovered (89 mg).

10.4 BPHyT reaction of $\mathbf{H E H}$ and 2-(9H-fluoren-9-ylidene)malononitrile

To a reaction tube was added Hantzsch ester ($50.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ eqiv), 2-(9H-fluoren-9ylidene)malononitrile ($46.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ eqiv), $\mathrm{DBU}(30.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ eqiv) and acetonitrile (5.0 ml) under Ar. The mixture was stirred until TLC indicated complete conversion of starting material. Flash column chromatography afforded 2-(9H-fluoren-9-yl)malononitrile (36 mg , 77% yield) as a white solid.

10.5 BPHyT reaction of HEH and 2-(diphenylmethylene)malononitrile

To a reaction tube was added Hantzsch ester ($50.6 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ eqiv), 2(diphenylmethylene)malononitrile ($46.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ eqiv), DBU ($30.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ eqiv) and acetonitrile (5.0 ml) under Ar. The mixture was stirred until TLC indicated complete conversion of starting material. Flash column chromatography afforded 2-benzhydrylmalononitrile ($38 \mathrm{mg}, 82 \%$ yield) as a white solid.

11 Kinetic Experiments

Kinetic experiments were performed in acetonitrile using a Hitachi U-3900H spectrometer and a stopped-flow connected to a circulating bath to regulate the temperature of cell compartments. The hydride transfer reaction rate was measured at 293 K by monitoring the absorbance decrease of $\mathbf{2 O}^{+} \mathbf{M e}$ at 620 nm or $\mathbf{p 3 - A c r}{ }^{+}$at 540 nm under pseudo-first-order conditions (base and Hantzsch esters in over 20 -fold excess). The pseudo-first-order rate constants were then converted to k_{3} by linear correlation of k_{obs} against the concentration of bases and Hantzsch ester.

11.1 BPHyT reactions of $\mathbf{2 O}^{+} \mathbf{M e}$ with Hantzsch esters and bases

Table S1 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), $t \mathrm{BuP} 1$ pyrr as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathrm{HEH}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.68×10^{-3}	6.07×10^{-3}	6.85
2	3.68×10^{-3}	1.05×10^{-2}	10.34
3	3.68×10^{-3}	1.68×10^{-2}	14.94

Table S2 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch $\left(d_{2}\right.$-HEH), $t \mathrm{BuP} 1$ pyrr as base, $\lambda=620 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.81×10^{-3}	5.39×10^{-3}	2.04
2	3.81×10^{-3}	1.23×10^{-2}	3.39
3	3.81×10^{-3}	1.78×10^{-2}	4.22
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{4 . 1 0} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S3 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), $t \mathrm{BuP} 1$ pyrr as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathrm{ND}-\mathrm{HEH}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	4.07×10^{-3}	5.39×10^{-3}	7.22
2	4.07×10^{-3}	1.23×10^{-2}	11.87
3	4.07×10^{-3}	1.78×10^{-2}	14.70
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 3 2} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{- 2}} \mathbf{s}^{\mathbf{- 1}}$			

Table S 4 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), $t \mathrm{BuP} 1 \mathrm{dma}$ as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.58×10^{-3}	3.26×10^{-3}	0.29
2	3.58×10^{-3}	6.44×10^{-3}	0.45
3	3.58×10^{-3}	1.02×10^{-2}	0.64
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 3 9} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S5 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch (d_{2}-HEH), $t \mathrm{BuP} 1 \mathrm{dma}$ as base, $\lambda=620 \mathrm{~nm}$.

No.	$\left[d_{2} \text {-HEH }\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.67×10^{-3}	3.26×10^{-3}	0.11
2	3.67×10^{-3}	6.44×10^{-3}	0.17
3	3.67×10^{-3}	1.02×10^{-2}	0.24
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{5 . 0 5} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$			

Table S6 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), $t \mathrm{BuP} 1 \mathrm{dma}$ as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathrm{ND}-\mathrm{HEH}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.58×10^{-3}	3.26×10^{-3}	0.29
2	3.58×10^{-3}	6.44×10^{-3}	0.50
3	3.58×10^{-3}	1.02×10^{-2}	0.69
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 6 0} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$			

Table S7 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.31 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), TBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathrm{HEH}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.38×10^{-3}	5.76×10^{-3}	5.36×10^{-2}
2	3.38×10^{-3}	1.23×10^{-2}	1.14×10^{-1}
3	3.38×10^{-3}	1.84×10^{-2}	1.66×10^{-1}

Table S8 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(6.2 \times 10^{-5} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), TBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	1.45×10^{-3}	5.48×10^{-3}	4.58×10^{-2}
2	2.51×10^{-3}	5.48×10^{-3}	6.12×10^{-2}
3	3.66×10^{-3}	5.48×10^{-3}	7.59×10^{-2}
4	4.68×10^{-3}	5.48×10^{-3}	9.51×10^{-2}
5	5.94×10^{-3}	5.48×10^{-3}	1.10×10^{-1}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{2 . 6 5} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S9 kinetics of the reaction of $\mathbf{2 \mathbf { O } ^ { + }} \mathbf{M e}\left(1.31 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch $\left(d_{2}-\mathrm{HEH}\right)$, TBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.76×10^{-3}	5.76×10^{-3}	2.49×10^{-2}
2	3.76×10^{-3}	1.23×10^{-2}	4.90×10^{-2}
3	3.76×10^{-3}	1.84×10^{-2}	7.16×10^{-2}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{9 . 8 0} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S10 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.31 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), TBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\text { ND-HEH }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.41×10^{-3}	5.76×10^{-3}	7.18×10^{-2}
2	3.41×10^{-3}	1.23×10^{-2}	1.34×10^{-1}
3	3.41×10^{-3}	1.84×10^{-2}	2.15×10^{-1}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{2 . 8 5} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$			

Table S11 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.2 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), MTBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\left[\right.$ Base $_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.12×10^{-3}	2.69×10^{-3}	6.71×10^{-3}
2	2.12×10^{-3}	5.81×10^{-3}	1.20×10^{-2}
3	2.12×10^{-3}	9.27×10^{-3}	1.72×10^{-2}
$\boldsymbol{k}_{\mathbf{3}}=7.53 \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S12 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.2 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch (d_{2}-HEH), MTBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.09×10^{-3}	2.69×10^{-3}	2.70×10^{-3}
2	2.09×10^{-3}	5.81×10^{-3}	4.78×10^{-3}
3	2.09×10^{-3}	9.27×10^{-3}	6.59×10^{-3}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{2 . 8 2} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$			

$2^{+}{ }^{+} \mathrm{Me}$
MTBD
20HM
Table S13 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.2 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), MTBD as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\text { ND-HEH }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.30×10^{-3}	2.69×10^{-3}	6.80×10^{-3}
2	2.30×10^{-3}	5.81×10^{-3}	1.22×10^{-2}
3	2.30×10^{-3}	9.27×10^{-3}	1.73×10^{-2}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{6 . 9 6} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S14 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.20 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), DBU as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.55×10^{-3}	4.87×10^{-3}	1.23×10^{-3}
2	2.55×10^{-3}	8.05×10^{-3}	1.98×10^{-3}
3	2.64×10^{-3}	1.22×10^{-2}	3.23×10^{-3}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 0 0} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S15 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.20 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch (d_{2}-HEH), DBU as base, $\lambda=620 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.78×10^{-3}	7.85×10^{-3}	7.91×10^{-4}
2	2.88×10^{-3}	1.18×10^{-2}	1.12×10^{-3}
3	2.88×10^{-3}	1.42×10^{-2}	1.35×10^{-3}
4	2.88×10^{-3}	2.09×10^{-2}	1.96×10^{-3}

$$
k_{3}=3.06 \times 10^{1} \mathrm{~L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}
$$

Table S16 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), DBU as base, $\lambda=620 \mathrm{~nm}$.

Table S17 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.33 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), TMG as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.47×10^{-3}	1.26×10^{-2}	3.20×10^{-4}
2	3.47×10^{-3}	1.83×10^{-2}	4.77×10^{-4}
3	3.47×10^{-3}	2.19×10^{-2}	5.57×10^{-4}
$\boldsymbol{k}_{\mathbf{3}}=7.4 \times \mathbf{1 0}^{\mathbf{0}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{~ s}^{\mathbf{- 1}}$			

11.2 BPHyT reactions of p3-Acr ${ }^{+}$with Hantzsch esters and bases

Table S18 kinetics of the reaction of p3-Acr ${ }^{+}\left(1.10 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), MTBD as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.36×10^{-3}	3.69×10^{-3}	2.88
2	2.36×10^{-3}	6.09×10^{-3}	4.74
3	2.36×10^{-3}	1.08×10^{-2}	8.52
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{3 . 3 9} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S19 kinetics of the reaction of p3-Acr ${ }^{+}\left(1.10 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch $\left(d_{2}\right.$-HEH $)$, MTBD as base, $\lambda=540 \mathrm{~nm}$.

No.	$\left[d_{2} \text {-HEH }\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.80×10^{-3}	4.04×10^{-3}	1.39
2	3.80×10^{-3}	8.72×10^{-2}	2.70
3	3.80×10^{-3}	1.39×10^{-2}	4.04
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{7 . 0 6} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{\mathbf{- 2}} \mathbf{s}^{\mathbf{- 1}}$			

Table S20 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.26 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}\right)$ with N-D-Hantzsch (ND-HEH), MTBD as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\text { ND-HEH }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.82×10^{-3}	4.04×10^{-3}	3.86
2	3.82×10^{-3}	8.72×10^{-2}	7.70
3	3.82×10^{-3}	1.39×10^{-2}	11.31
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 9 7} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S21 kinetics of the reaction of p3-Acr $\left(1.19 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), DBU as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.58×10^{-3}	5.50×10^{-3}	0.65
2	2.58×10^{-3}	1.11×10^{-2}	1.22
3	2.58×10^{-3}	1.72×10^{-2}	1.83
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{3 . 9 0} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S22 kinetics of the reaction of p3-Acr ${ }^{+}\left(1.52 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch $\left(d_{2}-\mathrm{HEH}\right)$, DBU as base, $\lambda=540 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.61×10^{-3}	4.76×10^{-3}	1.69×10^{-1}
2	3.61×10^{-3}	9.81×10^{-3}	3.46×10^{-1}
3	3.61×10^{-3}	1.50×10^{-2}	5.77×10^{-1}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 1 0} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S23 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.52 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), DBU as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\text { ND-HEH }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
1	3.62×10^{-3}	4.76×10^{-3}	4.41×10^{-1}
2	3.62×10^{-3}	9.81×10^{-3}	9.57×10^{-1}
3	3.62×10^{-3}	1.50×10^{-2}	1.57×10^{0}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{3 . 0 4} \times \mathbf{1 0}^{\mathbf{4}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S24 kinetics of the reaction of p3-Acr ${ }^{+}\left(1.21 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), TMG as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.85×10^{-3}	4.70×10^{-3}	2.91×10^{-2}
2	3.85×10^{-3}	9.66×10^{-3}	5.39×10^{-2}
3	3.85×10^{-3}	1.39×10^{-2}	7.51×10^{-2}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 2 9} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S25 kinetics of the reaction of p3-Acr ${ }^{+}\left(1.21 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch (d_{2}-HEH), TMG as base, $\lambda=540 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.71×10^{-3}	4.70×10^{-3}	1.25×10^{-2}
2	3.71×10^{-3}	9.66×10^{-3}	2.46×10^{-2}
3	3.71×10^{-3}	1.39×10^{-2}	3.54×10^{-2}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{6 . 6 6} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$			

Table S26 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.21 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), TMG as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\text { ND-HEH }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	3.90×10^{-3}	4.70×10^{-3}	3.14×10^{-1}
2	3.90×10^{-3}	9.66×10^{-3}	6.39×10^{-1}
3	3.90×10^{-3}	1.39×10^{-2}	9.73×10^{0}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 8 2} \times \mathbf{1 0}^{\mathbf{3}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S27 kinetics of the reaction of $\mathbf{p 3 - A c r}{ }^{+}\left(1.07 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), PhP1pyrr as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.38×10^{-3}	3.80×10^{-3}	3.50×10^{-3}
2	2.38×10^{-3}	7.38×10^{-3}	5.89×10^{-3}
3	2.38×10^{-3}	1.11×10^{-2}	8.43×10^{-3}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{2 . 8 5} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S28 kinetics of the reaction of p3-Acr ${ }^{+}\left(1.07 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with d_{2}-Hantzsch $\left(d_{2}\right.$-HEH), PhP 1 pyrr as base, $\lambda=540 \mathrm{~nm}$.

No.	$\left[d_{2}-\mathbf{H E H}\right]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.51×10^{-3}	3.32×10^{-3}	1.30×10^{-3}
2	2.28×10^{-3}	5.86×10^{-3}	1.80×10^{-3}
3	2.51×10^{-3}	1.00×10^{-2}	3.36×10^{-3}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 2 4} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-1}$			

Table S29 kinetics of the reaction of $\mathbf{2 O}^{+} \mathbf{M e}\left(1.07 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with ND-Hantzsch (ND-HEH), TMG as base, $\lambda=540 \mathrm{~nm}$.

No.	$[\text { ND-HEH }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.70×10^{-3}	3.32×10^{-3}	3.61×10^{-1}
2	2.70×10^{-3}	5.81×10^{-3}	5.69×10^{-1}
3	2.70×10^{-3}	1.00×10^{-2}	8.78×10^{0}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{2 . 8 5} \times \mathbf{1 0}^{\mathbf{2}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{-\mathbf{1}}$			

Table S30 kinetics of the reaction of p3Acr $\left(1.07 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~L}^{-1}\right)$ with Hantzsch (HEH), pBrPhP 1 pyrr as base, $\lambda=620 \mathrm{~nm}$.

No.	$[\mathbf{H E H}]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$[\text { Base }]_{0}$ $/ \mathrm{mol}^{-1} \mathrm{~L}$	$\boldsymbol{k}_{\text {obs }} / \mathrm{s}^{-1}$
	2.40×10^{-3}	1.32×10^{-2}	5.86×10^{-4}
2	2.89×10^{-3}	1.63×10^{-2}	9.00×10^{-4}
3	2.89×10^{-3}	2.00×10^{-2}	1.08×10^{-3}
$\boldsymbol{k}_{\mathbf{3}}=\mathbf{1 . 9 0} \times \mathbf{1 0}^{\mathbf{1}} \mathbf{L}^{\mathbf{2}} \mathbf{~ m o l}^{-\mathbf{2}} \mathbf{s}^{\mathbf{- 1}}$			

12 References

1. Schneider, L. M.; Schmiedel, V. M.; Pecchioli, T.; Lentz, D.; Merten, C.; Christmann, M., Org. Lett. 2017, 19, 2310-2313.
2. Zhang, D.; Wu, L.-Z.; Zhou, L.; Han, X.; Yang, Q.-Z.; Zhang, L.-P.; Tung, C.-H., J. Am. Chem. Soc. 2004, 126, 3440-3441.
3. Zhang, J.; Li, Y.; Xu, R.; Chen, Y., Angew. Chem. Int. Ed. 2017, 56, 12619-12623.
4. Larraufie, M.-H.; Pellet, R.; Fensterbank, L.; Goddard, J.-P.; Lacôte, E.; Malacria, M.; Ollivier, C., Angew. Chem. Int. Ed. 2011, 50, 4463-4466.
5. Paul, C. E.; Gargiulo, S.; Opperman, D. J.; Lavandera, I.; Gotor-Fernández, V.; Gotor, V.; Taglieber, A.; Arends, I. W. C. E.; Hollmann, F., Org. Lett. 2013, 15, 180-183.
6. van Haren, M. J.; Taig, R.; Kuppens, J.; Sastre Toraño, J.; Moret, E. E.; Parsons, R. B.; Sartini, D.; Emanuelli, M.; Martin, N. I., Org. Biomol. Chem. 2017, 15, 6656-6667.
7. (a) Martin, J. C.; Smith, R. G., J. Am. Chem. Soc. 1964, 86, 2252-2256; (b) Laursen, B. W.; Krebs, F. C., Angew. Chem. Int. Ed. 2000, 39, 3432-3434; (c) W. Laursen, B.; C. Krebs, F., Chem. Eur. J. 2001, 7, 1773-1783; (d) Conreaux, D.; Mehanna, N.; Herse, C.; Lacour, J., J. Org. Chem. 2011, 76, 2716-2722; (e) Ilic, S.; Brown, E. S.; Xie, Y.; Maldonado, S.; Glusac, K. D., J. Phys. Chem. C 2016, 120, 3145-3155.
8. (a) Uchiyama, M.; Matsumoto, Y.; Nakamura, S.; Ohwada, T.; Kobayashi, N.; Yamashita, N.; Matsumiya, A.; Sakamoto, T., J. Am. Chem. Soc. 2004, 126, 8755-8759; (b) Fischer, C.; Sparr, C., Angew. Chem. Int. Ed. 2018, 57, 2436-2440.
9. (a) Schwesinger, R.; Willaredt, J.; Schlemper, H.; Keller, M.; Schmitt, D.; Fritz, H., Chem. Ber. 1994, 127, 2435-2454; (b) Rodima, T.; Mäemets, V.; Koppel, I., J. Chem. Soc., Perkin Trans. 1 2000, 2637-2644; (c) Cunningham, I. D.; Woolfall, M., J. Org. Chem. 2005, 70, 9248-9256.
10. Leito, I.; Rodima, T.; Koppel, I. A.; Schwesinger, R.; Vlasov, V. M., J. Org. Chem. 1997, 62, 84798483.
