Supporting Information

Fushuai Li,[†] Shuai Liang,[†] Yepeng Luan,[†] Xuling Chen,[‡] Hanhui Zhao,[†] Anqi Huang,[†] Pengfei Li,^{*,‡} Wenjun Li^{*,†}

[†]Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China.

[‡]Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.

2
2
3
4
67

A: General Information and Starting Materials

General Information. Proton nuclear magnetic resonance (¹H NMR) spectra and carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker ACF300 spectrometer (400 MHz and 100 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26; (CD₃)₂SO: δ 2.50). Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.16; (CD₃)₂SO: δ 39.50). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). All high resolution mass spectra were obtained on a Finnigan/MAT 95XL-T mass spectrometer. For thin layer chromatography (TLC), Merck pre-coated TLC plates (Merck 60 F254) were used, and compounds were visualized with a UV light at 254 nm. Flash chromatography separations were performed on Merck 60 (0.040-0.063 mm) mesh silica gel.

Starting Materials. All solvents, inorganic reagents were from commercial sources and used without purification unless otherwise noted. β , γ -alkynyl- α -imino esters and isoxazol-5(4*H*)-ones were prepared following the literature procedures.¹⁻²

B: General Procedure

To a solution of CHCl₃ (0.3 mL) were added β , γ -alkynyl- α -imino esters **1** (0.05 mmol), isoxazol-5(4*H*)-ones **2** (0.06 mmol) and catalyst **CPA-5** (0.005 mmol). The reaction mixture was stirred at -20 °C for 1 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product **3**.

C: The Optimization of Conditions.^a

CPA-1 Ar = phenanthryl **CPA-2** Ar = 9-anthryl

CPA-3 Ar = 9-phenanthryl **CPA-4** Ar = 9-anthryl **CPA-5** Ar = $2,4,6-(iPr)_3C_6H_2$

 $\label{eq:CPA-6} \begin{array}{l} \textbf{CPA-6} \text{ Ar} = 2,4,6\textbf{-}(\text{Cy})_3\text{C}_6\text{H}_2\\ \text{Cy} = \text{cyclohexyl} \end{array}$

entry	CPA	solvent	yield, % ^b	ee, % ^{<i>c</i>}	dr^d
1	CPA-1	CH_2Cl_2	78	12	15:1
2	CPA-2	CH_2Cl_2	84	7	15:1
3	CPA-3	CH_2Cl_2	87	36	15:1
4	CPA-4	CH_2Cl_2	76	20	15:1
5	CPA-5	CH_2Cl_2	86	64	15:1
6	CPA-6	CH_2Cl_2	83	-55	15:1
7	CPA-5	CHCl ₃	90	54	>20:1
8	CPA-5	CCl_4	85	56	15:1
9	CPA-5	DCE	93	53	>20:1
10	CPA-5	toluene	92	60	>20:1
11	CPA-5	PhCl	80	62	15:1
12	CPA-5	THF	91	40	>20:1
13	CPA-5	PhCF ₃	91	64	>20:1
14	CPA-5	xylenes	86	60	15:1
15	CPA-5	Et_2O	87	64	15:1
16	CPA-5	anisole	77	60	15:1
17	CPA-5	MTBE	96	64	>20:1

^{*a*} Unless noted, a mixture of **1a** (0.05 mmol), **2a** (0.06 mmol) and **CPA** (1 mol %) in the solvent (0.3 mL) was stirred at 25 °C for 1 h. ^{*b*} Isolated yield. ^{*c*} Determined by chiral-HPLC analysis. ^{*d*} Determined by NMR analysis.

D: Characterization Data

(*R*)-ethyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phen yl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3aa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 24:1. Yellow oil, 27.2 mg, 96% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.19 (d, *J* = 4.0 Hz, 2H), 7.52-7.49 (m, 1H), 7.47-7.44 (m, 2H),

7.29-7.28 (m, 2H), 7.21-7.20 (m, 3H), 6.92 (d, J = 4.0 Hz, 2H), 6.68 (d, J = 4.0 Hz, 2H), 6.49 (s, 1H), 4.50-4.44 (m, 1H), 4.35-4.28 (m, 1H), 3.51 (d, J = 12.0 Hz, 1H), 3.41 (d, J = 12.0 Hz, 1H), 2.25 (s, 3H), 1.59 (s, 9H), 1.47 (t, J = 8.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.9, 177.5, 165.6, 164.3, 151.6, 137.4, 133.9, 131.7, 130.1, 129.6, 129.1, 129.0, 128.9, 128.7, 128.5, 127.9, 127.7, 114.4, 106.1, 81.2, 63.0, 60.3, 41.5, 28.3, 21.1, 14.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₄H₃₄N₂O₆Na) requires m/z 589.2309, found m/z 589.2307. The enantiomeric excess was determined to be 64% by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 6.6 min (major), 7.8 min (minor). [α]²²_D = +224.27 (c = 1.00, CH₂Cl₂).

(*R*)-isopropyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ba)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 24:1. White oil, 15.7 mg, 54% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.24-8.22 (m, 2H), 7.53-7.46 (m, 3H), 7.30-7.27 (m, 2H), 7.22-7.20 (m, 3H),

6.93 (d, *J* = 8.0 Hz, 2H), 6.68 (d, *J* = 8.0 Hz, 2H), 6.50 (s, 1H), 5.24-5.18 (m, 1H), 3.51 (d, *J* = 16.0 Hz, 1H), 3.40 (d, *J* = 16.0 Hz, 1H), 2.25 (s, 3H), 1.59 (s, 9H), 1.52 (d, *J* = 8.0 Hz, 3H), 1.39 (d, *J* = 8.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.8, 177.5, 165.6, 163.8, 151.6, 137.4, 134.0, 131.8, 130.2, 129.6, 129.1, 129.0, 128.7, 128.6, 128.0, 127.9, 127.8, 114.2, 106.2, 81.2, 71.1, 60.5, 41.4, 28.4, 21.9, 21.7, 21.2. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₃₅H₃₆N₂O₆Na) requires m/z 603.2466, found m/z 603.2464. The enantiomeric excess was determined to be 71% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 5.7 min (minor), 6.5 min (major). [α]²²_D = +146.9 (c = 1.00, CH₂Cl₂).

(*R*)-*tert*-butyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ca)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 24:1. White oil, 9.1 mg, 31% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.24-8.22 (m, 2H), 7.52-7.45 (m, 3H), 7.30-7.28 (m, 2H), 7.22-7.20 (m,

3H), 6.93 (d, J = 8.0 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 6.48 (s, 1H), 3.51 (d, J = 12.0 Hz, 1H), 3.39 (d, J = 12.0 Hz, 1H), 2.25 (s, 3H), 1.63 (s, 9H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.7, 177.6, 165.7, 163.4, 151.6, 137.4, 134.2, 131.7, 130.2, 129.6, 129.1, 129.0, 128.7, 128.5, 128.0, 127.8, 127.7, 113.7, 106.9, 84.2, 81.0, 60.6, 41.5, 28.4, 28.1, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₆H₃₈N₂O₆Na) requires m/z 617.2622, found m/z 617.2625. The enantiomeric excess was determined to be 78% by HPLC. [ID column, 254 nm, *n*-hexane:IPA = 98:2, 1.0 mL/min]: 5.4 min (minor), 6.1 min (major). [α]²²_D = +131.5 (c = 1.00, CH₂Cl₂).

(*R*)-benzyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-ph enyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3da)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 21.9 mg, 70% yield. mp 158.2-159.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.22-8.20 (m, 2H), 7.61-7.59 (m,

2H), 7.51-7.44 (m, 3H), 7.39-7.36 (m, 3H), 7.27-7.25 (m, 2H), 7.20-7.17 (m, 3H), 6.93 (d, J = 8.0 Hz, 2H), 6.66 (d, J = 8.0 Hz, 2H), 6.48 (s, 1H), 5.47 (d, J = 12.0 Hz, 1H), 5.35 (d, J = 12.0 Hz, 1H), 3.49 (d, J = 16.0 Hz, 1H), 3.39 (d, J = 16.0 Hz, 1H), 2.25 (s, 3H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 203.0, 177.6, 165.7, 164.2, 151.6, 137.4, 135.2, 133.8, 131.8, 130.1, 129.6, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 127.9, 127.8, 114.7, 106.1, 81.3, 68.3, 60.5, 41.5, 28.3, 21.2. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₉H₃₆N₂O₆Na) requires m/z 651.2466, found m/z 651.2466. The enantiomeric excess was determined to be 81% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 6.9 min (minor), 7.9 min (major). [α]²²_D = +112.27 (c = 1.00, CH₂Cl₂).

(*R*)-cyclohexyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3 -phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ea)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 17.3 mg, 56% yield. mp 189.2-190.6 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.24-8.22 (m, 2H), 7.52-7.45 (m, 3H), 7.31-7.28 (m, 2H), 7.22-7.20 (m, 3H), 6.93 (d, J = 8.0 Hz, 2H), 6.68 (d, *J* = 8.0 Hz, 2H), 6.51 (s, 1H), 5.00-4.94 (m, 1H), 3.52 (d, *J* = 16.0 Hz, 1H), 3.41 (d, *J* = 16.0 Hz, 1H), 2.25 (s, 3H), 2.05-2.02 (m, 1H), 1.91-1.78 (m, 4H), 1.70-1.64 (m, 1H), 1.59 (s, 9H), 1.49-1.30 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.8, 177.5, 165.7, 163.8, 151.6, 137.4, 134.0, 131.7, 130.2, 129.6, 129.1, 129.0, 128.7, 128.6, 128.0, 127.8, 114.3, 106.3, 81.2, 75.9, 60.6, 41.4, 31.5, 31.3, 28.4, 25.2, 23.7, 23.6, 21.2. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₃₈H₄₀N₂O₆Na) requires m/z 643.2779, found m/z 643.2777. The enantiomeric excess was determined to be 84% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 5.6 min (minor), 6.3 min (major). [α]²²_D = +197.41 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f a)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow solid, 27.3 mg, 84% yield. mp 87.7-88.7 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23 (d, *J* = 8.0 Hz, 2H), 7.54-7.51 (m, 1H), 7.49-7.46 (m, 2H), 7.36-7.35 (m, 1H), 7.27-7.23 (m, 3H), 7.14-7.11 (m, 1H),

7.03-7.00 (m, 2H), 6.98-6.96 (m, 2H), 6.89 (d, J = 8.0 Hz, 2H), 6.54 (d, J = 4.0 Hz, 2H), 6.45 (s, 1H), 5.69-5.68 (m, 1H), 3.58-3.55 (m, 1H), 3.47-3.36 (m, 3H), 3.31-3.23 (m, 2H), 2.24 (m, 3H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 177.0, 165.3, 164.3, 151.5, 140.3, 140.0, 137.3, 133.6, 131.7, 130.1, 129.6, 129.0, 128.6, 128.4, 128.1, 127.9, 127.8, 126.8, 126.7, 125.0, 124.8, 114.2, 110.0, 105.6, 81.2, 78.7, 60.8, 41.0, 39.6, 39.1, 28.3, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₁H₃₈N₂O₆Na) requires m/z 677.2622, found m/z 677.2620. The enantiomeric excess was determined to be 90% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 0.8 mL/min]: 9.4 min (major), 10.4 min (minor). [α]²²_D = +135.11 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-fluorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3ga)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 28.8 mg, 86% yield. mp 101.1-101.7 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23-8.21 (m, 2H), 7.57-7.53 (m, 1H), 7.51-7.47 (m, 2H), 7.40-7.38 (m, 1H), 7.30-7.27 (m, 3H), 6.91-6.86 (m, 4H), 6.69-6.65 (m, 2H), 6.56 (d, *J* = 8.0 Hz, 2H), 6.47 (s, 1H), 5.72-5.68 (m, 1H), 3.63-3.58 (m, 1H), 3.46-3.45 (m, 1H), 3.43-3.36 (m, 2H), 3.31-3.28

(m, 1H), 3.24-3.20 (m, 1H), 2.24 (s, 3H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.5, 177.0, 165.2, 164.2, 162.6 (d, J = 246.0 Hz), 151.6, 140.5, 140.0, 137.4, 131.9, 130.1, 129.9 (d, J = 9.0 Hz), 129.6, 129.2, 129.1, 128.1, 127.8, 127.0, 126.9 (d, J = 15.0 Hz), 125.1, 124.8, 124.7, 115.6 (d, J = 22.0 Hz), 113.2, 105.6, 81.4, 78.9, 61.0, 40.8, 39.8, 39.1, 28.3, 21.1. HRMS (ESI): exact

mass calculated for $[M+Na]^+$ (C₄₁H₃₇N₂O₆FNa) requires m/z 695.2528, found m/z 695.2529. The enantiomeric excess was determined to be 90% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 90:10, 1.0 mL/min]: 5.8 min (major), 6.6 min (minor). $[\alpha]^{22}_{D} = +109.29$ (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-chlorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3ha)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow solid, 27.5 mg, 80% yield. mp 130.0-130.5 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.21-8.18 (m, 2H), 7.56-7.52 (m, 1H), 7.49-7.45 (m, 2H), 7.38-7.36 (m, 1H), 7.26-7.24 (m, 4H), 6.98-6.95 (m, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.86-6.83 (m, 2H), 6.54 (d, *J* = 8.0 Hz, 2H), 6.46 (s, 1H),

5.71-5.67 (m, 1H), 3.60-3.55 (m, 1H), 3.45-3.44 (m, 1H), 3.41-3.34 (m, 2H), 3.29-3.26 (m, 1H), 3.23-3.18 (m, 1H), 2.24 (m, 3H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.6, 176.9, 165.2, 164.1, 151.6, 140.4, 140.0, 137.4, 134.5, 132.0, 131.9, 129.9, 129.6, 129.3, 129.1, 129.0, 128.8, 128.0, 127.7, 126.9, 126.8, 125.1, 124.8, 113.2, 105.9, 81.4, 78.9, 60.7, 40.9, 39.7, 39.1, 28.3, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₁H₃₇N₂O₆ClNa) requires m/z 711.2232 and 713.2203(³⁷Cl), found m/z 711.2230 and 713.2211(³⁷Cl). The enantiomeric excess was determined to be 91% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 90:10, 1.0 mL/min]: 5.7 min (major), 6.6 min (minor). [α]²²_D = +103.86 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-(4-bromophenyl)-2-((*tert*-butoxycarbonyl)amin o)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-di enoate (3ia)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow solid, 25.5 mg, 70% yield. mp 98.3-99.2 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.20-8.18 (m, 2H), 7.56-7.52 (m, 1H), 7.50-7.46 (m, 2H), 7.38-7.36 (m, 1H), 7.27-7.24 (m, 4H), 7.13-7.10 (m, 2H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.80-6.77 (m, 2H), 6.54 (d, *J* = 8.0 Hz, 2H), 6.46 (s, 1H), 5.71-5.67 (m, 1H),

3.59-3.55 (m, 1H), 3.45-3.44 (m, 1H), 3.41-3.34 (m, 2H), 3.29-3.26 (m, 1H), 3.23-3.18 (m, 1H), 2.24 (m, 3H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.6, 176.9, 165.2, 164.1, 151.6, 140.4, 140.0, 137.4, 132.5, 131.9, 131.8, 129.9, 129.6, 129.5, 129.2, 129.1, 128.0, 127.7, 126.9, 126.8, 125.1, 124.8, 122.9, 113.2, 105.9, 81.5, 78.9, 60.7, 40.9, 39.7, 39.1, 28.3, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₁H₃₇N₂O₆BrNa) requires m/z 755.1727 and 757.1707(⁸¹Br), found m/z 755.1723 and 757.1708(⁸¹Br). The enantiomeric excess was determined to be 91% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 90:10, 1.0 mL/min]: 5.8 min (major), 6.8 min (minor). [α]²²_D = +140.15 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(*p*-tolyl)buta-2,3-dienoate (3j a)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 25.6 mg, 77% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23 (d, *J* = 8.0 Hz, 2H), 7.55-7.51 (m, 1H), 7.49-7.46 (m, 2H), 7.37-7.35 (m, 1H), 7.30-7.28 (m, 1H), 7.25-7.24 (m, 1H), 6.90-6.83 (m, 7H), 6.53 (d, *J* = 8.0 Hz, 2H), 6.45 (s, 1H), 5.70-5.65 (m, 1H), 3.58-3.53 (m, 1H), 3.47-3.46 (m, 1H),

3.42-3.35 (m, 2H), 3.29-3.28 (m, 1H), 3.26-3.23 (m, 1H), 2.24 (s, 3H), 2.19 (s, 3H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.3, 177.1, 165.4, 164.4, 151.5, 140.4, 140.1, 138.4, 137.3, 131.7, 130.6, 130.2, 129.6, 129.4, 129.0, 128.2, 127.9, 127.8, 126.9, 126.8, 125.0, 124.8, 114.2, 105.5, 81.2, 78.7, 60.8, 40.9, 39.5, 39.2, 28.3, 21.2, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₄₀N₂O₆Na) requires m/z 691.2779, found m/z 691.2780. The enantiomeric excess was determined to be 90% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 95:5, 1.0 mL/min]: 6.4 min (major), 7.2 min (minor). [α]²²_D = +158.57 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-methoxyphe nyl)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoate (3ka)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 20:1. Yellow oil, 28.1 mg, 82% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23 (d, *J* = 4.0 Hz, 2H), 7.53-7.46 (m, 3H), 7.37-7.35 (m, 1H), 7.30-7.28 (m, 1H), 7.25-7.23 (m, 2H), 6.90-6.87 (m, 4H), 6.54-6.52 (m, 4H), 6.45 (s, 1H), 5.70-5.65 (m, 1H), 3.67 (s, 3H), 3.59-3.54 (m, 1H), 3.46-3.44 (m, 1H), 3.42-3.35

(m, 2H), 3.28-3.22 (m, 2H), 2.23 (s, 3H), 1.56 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.3, 177.1, 165.4, 164.4, 159.6, 151.6, 140.5, 140.1, 137.3, 131.7, 130.2, 129.6, 129.2, 129.1, 129.0, 128.2, 127.8, 126.9, 126.7, 125.7, 125.0, 124.8, 114.0, 113.9, 105.2, 81.2, 78.7, 60.9, 55.1, 40.9, 39.6, 39.1, 28.3, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₄₀N₂O₇Na) requires m/z 707.2728, found m/z 707.2727. The enantiomeric excess was determined to be 84% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 95:5, 1.0 mL/min]: 12.1 min (major), 15.1 min (minor). $[\alpha]^{22}_{D} = +131.91$ (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(3-fluorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3la)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow oil, 26.3 mg, 78% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.19 (d, *J* = 8.0 Hz, 2H), 7.55-7.51 (m, 1H), 7.49-7.45 (m, 2H), 7.35-7.33 (m, 1H), 7.25-7.22 (m, 3H), 7.01-6.96 (m, 1H), 6.89 (d, *J* = 8.0 Hz, 2H), 6.85-6.79 (m, 2H), 6.74-6.72 (m, 1H), 6.52 (d, *J* = 8.0 Hz, 2H), 6.48 (s, 1H), 5.71-5.66 (m, 1H),

3.56-3.51 (m, 1H), 3.47-3.44 (m, 1H), 3.42-3.35 (m, 2H), 3.29-3.22 (m, 2H), 2.24 (s, 3H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 203.0, 177.0, 165.2, 164.1, 162.3 (d, *J* = 246.0 Hz), 151.6, 140.2, 140.0, 137.4, 135.7 (d, *J* = 8.0 Hz), 131.9, 130.3 (d, *J* = 8.0 Hz), 129.9, 129.6, 129.1 (d, *J* = 4.0 Hz), 127.9, 127.7, 126.9, 126.8, 124.9, 124.8, 123.4 (d, *J* = 4.0 Hz), 115.7, 115.5, 115.2 (d, *J* = 23.0 Hz), 113.3, 106.1, 81.5, 78.9, 60.5, 41.2, 39.5, 39.2, 28.3, 21.1. HRMS (ESI): exact mass calculated for

 $[M+Na]^+$ (C₄₁H₃₇N₂O₆FNa) requires m/z 695.2528, found m/z 695.2527. The enantiomeric excess was determined to be 93% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 0.8 mL/min]: 10.2 min (major), 11.1 min (minor). $[\alpha]^{22}_{D} = +177.78$ (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-(3-bromophenyl)-2-((*tert*-butoxycarbonyl)amin o)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-di enoate (3ma)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow oil, 26.4 mg, 72% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.18-8.15 (m, 2H), 7.54-7.51 (m, 1H), 7.49-7.45 (m, 2H), 7.34-7.32 (m, 1H), 7.28-7.27 (m, 2H), 7.25-7.21 (m, 3H), 6.91-6.85 (m, 4H), 6.51 (d, *J* = 8.0 Hz, 2H), 6.47 (s, 1H), 5.69-5.66 (m, 1H), 3.49-3.43 (m, 2H), 3.41-3.36 (m, 2H),

3.27-3.23 (m, 2H), 2.23 (s, 3H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 203.1, 177.0, 165.2, 164.1, 151.6, 140.2, 140.0, 137.4, 135.7, 131.9, 131.6, 131.3, 130.2, 129.8, 129.6, 129.1, 129.0, 127.8, 127.7, 126.9, 126.8, 126.0, 124.9, 124.7, 122.5, 113.0, 106.3, 81.5, 78.8, 60.4, 41.2, 39.4, 39.2, 28.3, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₁H₃₇N₂O₆BrNa) requires m/z 755.1727 and 757.1701(⁸¹Br), found m/z 755.1721 and 757.1701(⁸¹Br). The enantiomeric excess was determined to be 92% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 0.5 mL/min]: 14.8 min (major), 16.1 min (minor). [α]²²_D = +120.10 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(*m*-tolyl)buta-2,3-dienoate (3 na)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow oil, 29.2 mg, 87% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23-8.21 (m, 2H), 7.54-7.51 (m, 1H), 7.49-7.45 (m, 2H), 7.36-7.34 (m, 1H), 7.29-7.27 (m, 1H), 7.25-7.22 (m, 2H), 6.96-6.93 (m, 2H), 6.91-6.88 (m, 3H), 6.82-6.81 (m, 1H), 6.53 (d, *J* = 8.0 Hz, 2H), 6.46 (s, 1H), 5.70-5.65 (m, 1H),

3.58-3.53 (m, 1H), 3.48-3.46 (m, 1H), 3.44-3.37 (m, 2H), 3.30-3.25 (m, 2H), 2.24 (s,

3H), 2.09 (s, 3H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 177.2, 165.4, 164.5, 151.6, 140.3, 140.1, 138.2, 137.3, 133.5, 131.7, 130.1, 129.6, 129.4, 129.1, 129.0, 128.6, 128.5, 128.2, 127.9, 126.9, 126.8, 124.9, 124.8, 124.7, 114.4, 105.6, 81.2, 78.6, 60.7, 41.1, 39.5, 39.2, 28.3, 21.4, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₂H₄₀N₂O₆Na) requires m/z 691.2779, found m/z 691.2780. The enantiomeric excess was determined to be 90% by HPLC. [IC column, 254 nm, *n*-hexane:IPA = 98:2, 1.2 mL/min]: 7.5 min (major), 8.6 min (minor). [α]²²_D = +89.72 (c = 1.00, CH₂Cl₂).

(S)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(2-chlorophenyl) -4-((S)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3oa)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 28.4 mg, 83% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.18 (d, *J* = 4.0 Hz, 2H), 7.50-7.46 (m, 1H), 7.43-7.39 (m, 2H), 7.33-7.31 (m, 1H), 7.24-7.18 (m, 4H), 7.08-7.02 (m, 2H), 6.97-6.93 (m, 1H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.60 (d, *J* = 8.0 Hz, 2H),

6.36 (s, 1H), 5.68-5.63 (m, 1H), 3.80-3.76 (m, 1H), 3.44-3.42 (m, 2H), 3.38-3.33 (m, 2H), 3.25-3.20 (m, 1H), 2.23 (s, 3H), 1.55 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 204.5, 177.0, 165.1, 164.2, 151.4, 140.2, 140.0, 137.2, 133.2, 131.8, 131.6, 130.3, 130.2, 129.8, 129.7, 129.5, 129.0, 128.7, 128.1, 128.0, 126.9, 126.8, 124.8, 124.7, 110.3, 106.2, 81.2, 78.4, 60.5, 41.0, 39.4, 39.2, 28.3, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₁H₃₇N₂O₆ClNa) requires m/z 711.2232 and 713.2203(³⁷Cl), found m/z 711.2229 and 713.2208(³⁷Cl). The enantiomeric excess was determined to be 92% by HPLC. [ID column, 254 nm, *n*-hexane:IPA = 90:10, 1.0 mL/min]: 7.5 min (minor), 8.2 min (major). [α]²²_D = +134.58 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(2-methoxyphe nyl)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoate (3pa)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 20:1. White oil, 30.7 mg, 89% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.09-8.07 (m, 2H), 7.43-7.31 (m, 4H), 7.21-7.17 (m, 3H), 7.11-7.08 (m, 1H), 7.06-7.01 (m, 1H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.65 (d, *J* = 8.0 Hz, 2H), 6.61-6.55 (m, 2H), 6.42 (s, 1H), 5.69-5.64 (m, 1H), 3.63-3.60 (m, 1H), 3.56-3.46 (m, 2H), 3.43-3.41 (m, 1H), 3.39 (s, 3H), 3.38-3.34

(m, 1H), 3.17-3.12 (m, 1H), 2.22 (s, 3H), 1.58 (s, 9H). 13 C NMR (CDCl₃, 100 MHz): δ (ppm) 203.3, 177.1, 165.3, 164.5, 156.7, 151.6, 140.5, 140.1, 137.1, 132.3, 131.0, 130.6, 129.7, 128.9, 128.4, 128.3, 127.8, 126.8, 126.6, 124.8, 124.6, 122.9, 120.4, 112.5, 110.7, 105.1, 81.1, 78.1, 59.8, 54.2, 42.5, 39.5, 38.9, 28.3, 21.1. HRMS (ESI): exact

mass calculated for $[M+Na]^+$ (C₄₀H₄₀N₂O₇Na) requires m/z 707.2728, found m/z 707.2725. The enantiomeric excess was determined to be 89% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 98:2, 0.6 mL/min]: 12.7 min (minor), 13.8 min (major). $[\alpha]^{22}_{D}$ = -3.03 (c = 1.00, CH₂Cl₂).

(S)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((S)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(thiophen-3-yl)buta-2,3-dieno ate (3qa)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow oil, 28.7 mg, 87% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.21-8.19 (m, 2H), 7.54-7.44 (m, 3H), 7.31-7.29 (m, 2H), 7.25-7.20 (m, 2H), 7.04-7.02 (m, 1H), 6.92-6.87 (m, 3H), 6.74-6.73 (m, 1H), 6.52-6.48 (m, 3H), 5.70-5.65 (m, 1H), 3.53-3.44

(m, 2H), 3.41-3.35 (m, 2H), 3.31-3.20 (m, 2H), 2.24 (s, 3H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.8, 177.1, 165.9, 164.2, 151.6, 140.3, 140.1, 137.4, 133.1, 131.8, 130.0, 129.6, 129.1, 129.0, 128.0, 127.7, 127.3, 126.9, 126.8, 125.8, 125.0, 124.9, 123.8, 110.4, 105.6, 81.3, 78.9, 60.3, 40.9, 39.5, 39.2, 28.3, 21.2. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₉H₃₆N₂O₆SNa) requires m/z 683.2186, found m/z 683.2186. The enantiomeric excess was determined to be 90% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 8.2 min (major), 9.1 min (minor). [α]²²_D = +216.33 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-cyclopropyl-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoa te (3ra)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 24.7 mg, 80% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.17-8.15 (m, 2H), 7.55-7.45 (m, 3H), 7.32-7.28 (m, 1H), 7.26-7.23 (m, 1H), 7.22-7.17 (m, 2H), 6.87 (d, *J*

= 8.0 Hz, 2H), 6.55-6.53 (m, 2H), 6.42 (s, 1H), 5.66-5.61 (m, 1H), 3.40-3.34 (m, 4H), 3.17-3.10 (m, 2H), 2.22 (s, 3H), 1.54 (s, 9H), 1.02-0.96 (m, 1H), 0.46-0.35 (m, 3H), 0.12-0.08 (m, 1H) . 13 C NMR (CDCl₃, 100 MHz): δ (ppm) 197.7, 177.6, 165.9, 164.4, 151.5, 140.3, 139.9, 137.1, 131.8,

130.6, 129.5, 129.1, 129.0, 128.0, 127.6, 126.9, 126.7, 124.9, 124.6, 116.5, 106.3, 81.0, 78.3, 60.9, 40.1, 39.6, 38.9, 28.3, 21.1, 11.5, 8.3, 5.7. HRMS (ESI): exact mass calculated for $[M+Na]^+(C_{38}H_{38}N_2O_6Na)$ requires m/z 641.2622, found m/z 641.2615. The enantiomeric excess was determined to be 70% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 98:2, 1.0 mL/min]: 6.9 min (major), 9.8 min (minor). $[\alpha]^{22}_{D} = +74.1$ (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-(((benzyloxy)carbonyl)amino)-4-((*S*)-4-(4-methy lbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3s a)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 22.7 mg, 66% yield. ¹H NMR ((CD₃)₂SO, 400 MHz): δ (ppm) 9.16 (s, 1H), 8.06 (d, *J* = 8.0 Hz, 2H), 7.62-7.58 (m, 1H), 7.51-7.45 (m, 4H), 7.40-7.29 (m, 5H), 7.26-7.19 (m, 3H), 7.14-7.11 (m, 2H), 6.94-6.92 (m, 4H), 6.41 (d, *J* = 8.0 Hz, 2H),

5.63-5.61 (m, 1H), 5.30-5.23 (m, 2H), 3.43-3.38 (m, 2H), 3.33-3.29 (m, 2H), 3.23-3.13 (m, 2H), 2.19 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.2, 176.9, 165.1, 164.1, 152.4, 140.3, 140.0, 137.4, 135.7, 133.3, 131.8, 130.0, 129.6, 129.2, 129.1, 128.8, 128.7, 128.6, 128.5, 128.4, 128.1, 127.9, 127.7, 126.9, 126.8, 125.0, 124.8, 115.2, 105.4, 79.0, 67.7, 60.7, 41.0, 39.6, 39.1, 21.1. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₄H₃₆N₂O₆Na) requires m/z 711.2466, found m/z 711.2464. The enantiomeric excess was determined to be 32% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 95:5, 1.0 mL/min]: 12.8 min (major), 14.4 min (minor). [α]²²_D = +41.24 (c = 1.00, CH₂Cl₂).

tert-butyl (1,1,1-trifluoro-2-(4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxa zol-4-yl)-4-phenylbut-3-yn-2-yl)carbamate (3ta)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 50:1. White oil, 23.6 mg, 84% yield. ¹H NMR ((CD₃)₂SO, 500 MHz): δ (ppm) 9.72 (s, 1H), 8.05 (d,

J = 5.0 Hz, 2H), 7.62-7.59 (m, 1H), 7.50-7.47 (m, 2H), 7.31-7.28 (m, 2H), 7.27-7.24 (m, 1H), 7.15-7.13 (m, 2H), 6.96 (d, J = 10.0 Hz, 2H), 6.60 (d, J = 5.0 Hz, 2H), 3.57 (d, J = 15.0 Hz, 1H), 3.26 (d, J = 15.0 Hz, 1H), 2.19 (s, 3H), 1.56 (s, 9H). ¹³C NMR ((CD₃)₂SO, 125 MHz): δ (ppm) 177.6, 165.8, 153.3, 137.7, 133.5, 133.0, 129.8, 129.6,

129.6, 129.5, 129.5, 127.4, 127.3, 127.2, 122.5, 120.4, 115.4, 81.6, 59.8, 41.6, 28.4, 28.2, 21.0. 19 F NMR ((CD₃)₂SO, 470 MHz): δ (ppm) -64.49. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₂H₂₉O₄N₂F₃Na) requires m/z 585.1972, found m/z 585.1976.

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-metho xybenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3 fb)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 20:1. White oil, 26.6 mg, 79% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.24-8.22 (m, 2H), 7.53-7.45 (m, 3H), 7.37-7.35 (m, 1H), 7.28-7.23 (m, 3H), 7.15-7.11 (m, 1H), 7.04-6.96 (m, 4H), 6.63-6.56 (m, 4H), 6.46 (s, 1H), 5.70-5.67 (m, 1H), 3.72 (s,

3H), 3.59-3.54 (m, 1H), 3.46-3.35 (m, 3H), 3.30-3.22 (m, 2H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.5, 177.1, 165.3, 164.4, 159.0, 151.6, 140.4, 140.1, 133.6, 131.8, 130.9, 129.1, 128.6, 128.5, 128.1, 127.9, 127.8, 126.9, 126.8, 125.2, 125.0, 124.8, 114.2, 113.7, 105.6, 81.3, 78.8, 60.8, 55.1, 40.6, 39.6, 39.2, 28.3. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₁H₃₈N₂O₇Na) requires m/z 693.2571, found m/z 693.2575. The enantiomeric excess was determined to be 86% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 13.3 min (minor), 14.6 min (major). [α]²²_D = +146.30 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-(4-bromobenzyl)-5-oxo-3-phenyl-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f c)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 28.1 mg, 78% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23-8.21 (m, 2H), 7.54-7.46 (m, 3H), 7.36-7.34 (m, 1H), 7.30-7.28 (m, 1H), 7.25-7.24 (m, 2H), 7.22-7.19 (m, 2H), 7.16-7.12 (m, 1H), 7.05-7.01 (m, 2H), 6.98-6.95 (m, 2H), 6.49-6.46 (m, 3H),

5.70-5.66 (m, 1H), 3.56-3.51 (m, 1H), 3.46-3.45 (m, 1H), 3.42-3.35 (m, 2H), 3.29-3.24 (m, 2H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 176.8, 165.0, 164.2, 151.6, 140.3, 140.1, 133.4, 132.4, 132.0, 131.5, 129.2, 128.7, 128.6, 128.0, 127.9, 127.8, 126.9, 126.8, 125.0, 124.9, 124.7, 122.0, 114.0, 105.8, 81.4, 78.9, 60.5,

40.6, 39.6, 39.3, 28.3. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₀H₃₅N₂O₆BrNa) requires m/z 741.1571 and 743.1550(⁸¹Br), found m/z 741.1572 and 743.1550(⁸¹Br). The enantiomeric excess was determined to be 88% by HPLC. [ID column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 9.0 min (minor), 9.8 min (major). $[\alpha]^{22}_{D} = +164.35$ (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-nitrob enzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fd)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 30.6 mg, 89% yield. mp 214.7-215.6 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.24-8.21 (m, 2H), 7.95-7.92 (m, 2H), 7.59-7.55 (m, 1H), 7.52-7.48 (m, 2H), 7.36-7.27 (m, 4H), 7.17-7.13

(m, 1H), 7.07-7.03 (m, 2H), 6.98-6.96 (m, 2H), 6.74 (d, J = 8.0 Hz, 2H), 6.48 (s, 1H), 5.71-5.67 (m, 1H), 3.60-3.57 (m, 1H), 3.54-3.46 (m, 2H), 3.43-3.35 (m, 2H), 3.31-3.27 (m, 1H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.3, 176.5, 164.8, 164.1, 151.6, 147.5, 141.0, 140.2, 133.1, 132.3, 130.8, 129.4, 128.7, 127.9, 127.7, 127.6, 127.5, 126.9, 126.8, 125.0, 124.9, 123.5, 113.8, 106.0, 81.5, 79.0, 60.3, 40.8, 39.6, 39.4, 28.3. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₅N₃O₈Na) requires m/z 708.2316, found m/z 708.2315. The enantiomeric excess was determined to be 90% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 9.7 min (minor), 10.4 min (major). [α]²²_D = +132.83 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(3-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f e)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 28.6 mg, 88% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.22-8.20 (m, 2H), 7.56-7.50 (m, 3H), 7.39-7.37 (m, 1H), 7.28-7.27 (m, 1H), 7.26-7.23 (m, 2H), 7.15-7.11

(m, 1H), 7.04-7.00 (m, 2H), 6.98-6.96 (m, 4H), 6.49-6.46 (m, 2H), 6.46 (s, 1H), 5.71-5.67 (m, 1H), 3.61-3.56 (m, 1H), 3.48-3.47 (m, 1H), 3.43-3.36 (m, 2H), 3.31-3.22 (m, 2H), 2.13 (s, 3H), 1.58 (s, 9H). 13 C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 177.1, 165.3, 164.4, 151.6, 140.4, 140.1, 137.8, 133.6,

133.2, 131.7, 130.5, 129.0, 128.6, 128.5, 128.4, 128.3, 128.2, 128.0, 127.9, 126.9, 126.8, 125.0, 124.8, 124.7, 114.2, 105.6, 81.3, 78.8, 60.7, 41.2, 39.6, 39.1, 28.4, 21.3. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₁H₃₈N₂O₆Na) requires m/z 677.2622, found m/z 677.2619. The enantiomeric excess was determined to be 86% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 95:5, 1.0 mL/min]: 6.2 min (major), 7.1 min (minor). $[\alpha]^{22}_{D} = +106.42$ (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(3-fluoro benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ff)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 27.4 mg, 83% yield. mp 167.5-168.8 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23-8.21 (m, 2H), 7.56-7.47 (m, 3H), 7.37-7.34 (m, 1H), 7.29-7.26 (m, 1H), 7.25-7.24 (m, 2H), 7.16-7.12 (m, 1H),

7.08-7.01 (m, 3H), 6.97-6.95 (m, 2H), 6.88-6.84 (m, 1H), 6.46-6.44 (m, 2H), 6.35-6.31 (m, 1H), 5.71-5.66 (m, 1H), 3.58-3.57 (m, 1H), 3.50-3.35 (m, 3H), 3.31-3.22 (m, 2H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.3, 176.8, 165.1, 164.3, 162.3 (d, *J* = 245.0 Hz), 151.6, 140.3, 140.1, 135.7 (d, *J* = 7.0 Hz), 133.4, 132.0, 129.9 (d, *J* = 9.0 Hz), 129.2, 128.6, 128.5, 128.0, 127.8, 127.0, 126.9 (d, *J* = 9.0 Hz), 125.5, 125.0, 124.8, 124.7, 116.7 (d, *J* = 21.0 Hz), 114.7 (d, *J* = 21.0 Hz), 114.0, 105.7, 81.4, 78.9, 60.5, 40.8, 39.6, 39.2, 28.3. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₅N₂O₆FNa) requires m/z 681.2371, found m/z 681.2371. The enantiomeric excess was determined to be 91% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 95:5, 1.0 mL/min]: 6.9 min (major) , 7.7 min (minor). [α]²²_D = +57.37 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(3-chloro benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f g)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White

solid, 30.7 mg, 91% yield. mp 151.4-152.7 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.22-8.20 (m, 2H), 7.55-7.47 (m, 3H), 7.37-7.35 (m, 1H), 7.29-7.26 (m, 1H), 7.25-7.23 (m, 2H), 7.16-7.12 (m, 2H), 7.05-7.01 (m, 3H), 6.97-6.95 (m, 2H), 6.57-6.56 (m, 2H), 6.46 (s, 1H), 5.71-5.66 (m, 1H),

3.58-3.53 (m, 1H), 3.46-3.35 (m, 3H), 3.28-3.22 (m, 2H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.3, 176.8, 165.1, 164.2, 151.6, 140.3, 140.1, 135.4, 134.0, 133.4, 132.0, 129.9, 129.6, 129.2, 128.7, 128.6, 128.0, 127.9, 127.8, 127.0, 126.9, 126.8, 125.0, 124.8, 124.7, 114.0, 105.7, 81.4, 78.9, 60.5, 40.7, 39.6, 39.2, 28.3. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₅N₂O₆ClNa) requires m/z 697.2076 and 699.2054(³⁷Cl), found m/z 697.2075 and 699.2054(³⁷Cl). The enantiomeric excess was determined to be 85% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 95:5, 1.0 mL/min]: 6.9 min (major) , 7.7 min (minor). [α]²²_D = +110.91 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(2-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f h)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 28.3 mg, 87% yield. mp 155.8-157.1 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.26-8.24 (m, 2H), 7.53-7.44 (m, 3H), 7.36-7.34 (m, 1H), 7.26-7.22 (m, 3H), 7.16-7.11 (m, 1H), 7.05-7.03 (m, 2H), 7.01-6.93 (m, 5H),

6.77-6.75 (m, 1H), 6.48 (s, 1H), 5.70-5.66 (m, 1H), 3.58-3.53 (m, 3H), 3.47-3.36 (m, 2H), 3.27-3.22 (m, 1H), 1.90 (s, 3H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.6, 177.4, 165.5, 164.4, 151.6, 140.3, 139.9, 137.2, 133.5, 131.9, 131.8, 130.8, 129.7, 129.0, 128.6, 128.5, 128.2, 128.1, 128.0, 127.6, 126.9, 126.8, 125.8, 125.0, 124.7, 114.7, 105.8, 81.3, 78.8, 60.2, 39.6, 39.1, 36.9, 28.3, 19.2. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₄₁H₃₈N₂O₆Na) requires m/z 677.2622, found m/z 677.2622. The enantiomeric excess was determined to be 92% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 95:5, 1.0 mL/min]: 6.6 min (major), 7.5 min (minor). [α]²²_D = +124.02 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-5-oxo-3-phenyl-4,5-dihydroisoxaz ol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fi)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 28.9 mg, 90% yield. mp 180.8-181.4 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.25-8.23 (m, 2H), 7.54-7.46 (m, 3H), 7.38-7.36 (m, 1H), 7.30-7.27 (m, 1H), 7.25-7.24 (m, 2H), 7.17-7.08 (m, 4H), 7.05-6.97 (m, 4H),

6.68-6.66 (m, 2H), 6.48 (s, 1H), 5.72-5.67 (m, 1H), 3.61-3.56 (m, 1H), 3.53-3.49 (m, 1H), 3.48-3.37 (m, 2H), 3.36-3.33 (m, 1H), 3.28-3.23 (m, 1H), 1.58 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.5, 177.0, 165.2, 164.4, 151.6, 140.4, 140.1, 133.6, 133.3, 131.8, 129.8, 129.1, 128.6, 128.5, 128.4, 128.2, 128.0, 127.8, 127.7, 126.9, 126.8, 125.0, 124.8, 114.2, 105.7, 81.3, 78.8, 60.7, 41.3, 39.6, 39.2, 28.4. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₆N₂O₆Na) requires m/z 663.2466, found m/z 663.2462. The enantiomeric excess was determined to be 94% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 10.3 min (minor), 11.6 min (major). [α]²²_D = +133.08 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(naphtha len-2-ylmethyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dieno ate (3fj)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 30.1 mg, 87% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.23-8.21 (m, 2H), 7.74-7.72 (m, 1H), 7.59-7.55 (m, 3H), 7.53-7.49 (m, 2H), 7.42-7.38 (m, 3H), 7.32-7.27 (m, 3H), 7.16-7.10 (m, 2H), 7.05-7.03 (m, 1H), 7.01-6.98 (m, 3H), 6.79-6.76 (m,

1H), 6.49 (s, 1H), 5.74-5.69 (m, 1H), 3.67-3.60 (m, 2H), 3.51-3.44 (m, 2H), 3.42-3.38 (m, 1H), 3.30-3.22 (m, 1H), 1.59 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.5, 177.1, 165.3, 164.4, 151.6, 140.4, 140.1, 133.9, 133.5, 133.1, 132.7, 131.8, 130.9, 129.1, 129.0, 128.8, 128.6, 128.5, 128.3, 128.0, 127.9, 127.8, 127.6, 126.9, 126.8, 126.0, 125.9, 125.0, 124.8, 114.2, 105.7, 81.3, 78.9, 60.8, 41.4, 39.6, 39.2, 28.4. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₄H₃₈N₂O₆Na) requires m/z 713.2622, found m/z 713.2619. The enantiomeric excess was determined to be 88% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 85:15, 1.0 mL/min]: 6.0 min (minor), 7.6 min (major). [α]²²_D = +190.08 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-methyl-5oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fk)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow solid, 25.0 mg, 89% yield. mp 108.8-109.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.25-8.23 (m, 2H), 7.49-7.42 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.23-7.21 (m, 3H), 7.15-7.11 (m, 1H), 7.03-6.99 (m, 2H), 6.93-6.91 (m, 2H), 6.43 (s, 1H),

5.67-5.62 (m, 1H), 3.52-3.47 (m, 1H), 3.41-3.38 (m, 1H), 3.37-3.32 (m, 1H), 3.17-3.12 (m, 1H), 1.71 (s, 3H), 1.55 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.7, 178.1, 167.4, 164.3, 151.5, 140.4, 139.9, 133.6, 131.9, 129.0, 128.6, 128.5, 127.9, 127.7, 127.2, 126.9, 126.7, 125.0, 124.6, 114.5, 105.6, 81.2, 78.6, 53.7, 39.6, 38.8, 28.3, 22.4. HRMS (ESI): exact mass calculated for $[M+Na]^+$ (C₃₄H₃₂N₂O₆Na) requires m/z 587.2153, found m/z 587.2153. The enantiomeric excess was determined to be 94% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 8.5 min (major), 9.6 min (minor). [α]²²_D = +182.62 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-5-oxo-3-ph enyl-4-propyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fl)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White oil, 25.3 mg, 86% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.24 (d, J = 8.0 Hz, 2H), 7.50-7.48 (m, 1H), 7.47-7.43 (m, 2H), 7.36 (d, J = 8.0 Hz, 1H), 7.25-7.21 (m, 3H), 7.14-7.10 (m, 1H), 7.01-6.97 (m, 2H), 6.91-6.89 (m, 2H), 6.42 (s, 1H),

5.67-5.63 (m, 1H), 3.53-3.48 (m, 1H), 3.42-3.40 (m, 1H), 3.38-3.32 (m, 1H), 3.17-3.12 (m, 1H), 2.21-2.13 (m, 1H), 2.05-1.98 (m, 1H), 1.56 (s, 9H), 1.15-1.04 (m, 2H), 0.80 (t, J = 8.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 177.8, 166.0, 164.4, 151.5, 140.4, 139.9, 133.7, 131.9, 129.0, 128.5, 128.4, 127.9, 127.6, 127.6, 126.9, 126.7, 125.0, 124.6, 114.3, 105.3, 81.1, 78.6, 59.2, 39.6, 38.9, 37.2, 28.3, 17.7, 13.9. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₆H₃₆N₂O₆Na) requires m/z 615.2466, found m/z 615.2462. The enantiomeric excess was determined to be 92% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 6.1 min (major), 6.9 min (minor). [α]²²_D = +62.32 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(4-methoxyphenyl)-5-oxo-4,5-di hydroisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3 fm)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 20:1. White

solid, 24.8 mg, 74% yield. mp 165.6-167.3 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.20-8.17 (m, 2H), 7.37-7.35 (m, 1H), (m, 1H), 7.29-7.27 7.25-7.23 (m, 2H). (m, 1H), 3H), 7.17-7.15 7.13-7.08 (m, 7.04-7.01 (m, 2H), 7.00-6.95 (m, 4H), 6.68 (d,

J = 8.0 Hz, 2H), 6.46 (s, 1H), 5.71-5.66 (m, 1H), 3.88 (s, 3H), 3.60-3.55 (m, 1H), 3.48-3.35 (m, 3H), 3.33-3.29 (m, 1H), 3.28-3.23 (m, 1H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 177.1, 164.7, 164.4, 162.2, 151.6, 140.4, 140.1, 133.6, 133.4, 129.8, 129.6, 128.6, 128.5, 128.3, 128.0, 127.7, 126.9, 126.8, 125.0, 124.8, 120.6, 114.4, 105.6, 81.2, 78.8, 60.8, 55.3, 41.5, 39.6, 39.2, 28.3. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₄₁H₃₉N₂O₇) requires m/z 671.2745, found m/z 671.2743. The enantiomeric excess was determined to be 86% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 98:2, 1.0 mL/min]: 9.4 min (minor), 13.7 min (major). $[\alpha]^{22}_{D}$ = +184.4 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(4-fluorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f n)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow oil, 23.8 mg, 72% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.28-8.24 (m, 2H), 7.55-7.36 (m, 2H), 7.29-7.27 (m, 1H), 7.25-7.23 (m, 2H), 7.18-7.14 (m, 3H), 7.13-7.09 (m, 2H), 7.06-7.03 (m, 2H),

6.97-6.95 (m, 2H), 6.68-6.66 (m, 2H), 6.50 (s, 1H), 5.71-5.67 (m, 1H), 3.59-3.54 (m, 1H), 3.48-3.44 (m, 2H), 3.42-3.33 (m, 2H), 3.28-3.23 (m, 1H), 1.59 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.5, 176.9, 164.8 (d, *J* = 252.0 Hz), 164.2, 151.7, 140.3, 140.0, 133.9, 133.4, 133.2, 131.9, 130.2 (d, *J* = 9.0 Hz), 129.7, 128.8, 128.7, 128.6, 128.4, 127.9, 127.8, 127.1, 126.8 (d, *J* = 11.0 Hz), 124.9 (d, *J* = 18.0 Hz), 124.8, 124.4 (d, *J* = 4.0 Hz), 116.3 (d, *J* = 21.0 Hz), 114.1, 105.8, 81.4, 78.9, 60.6, 41.4, 39.6, 39.2, 28.4. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₅N₂O₆FNa) requires m/z 681.2371, found m/z 681.2371. The enantiomeric excess was determined to be 88% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 98:2, 1.2 mL/min]: 6.0 min (minor), 7.2 min (major). [α]²²_D = +109.51 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(2-fluorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f

Eluent for flash column chromatography: petroleumether/ethyl acetate = 20:1. White solid, 29.6 mg, 90% yield. mp 182.8-184.2 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.74-8.70 (m, 1H), 7.54-7.49 (m, 1H), 7.40-7.35 (m, 2H), 7.29-7.27 (m, 1H), 7.25-7.22 (m, 2H), 7.18-7.10 (m, 5H), 7.07-7.03 (m, 2H),

7.00-6.98 (m, 2H), 6.67-6.65 (m, 2H), 6.47 (s, 1H), 5.71-5.66 (m, 1H), 3.59-3.54 (m, 1H), 3.47-3.43 (m, 1H), 3.43-3.40 (m, 1H), 3.38-3.32 (m, 2H), 3.27-3.22 (m, 1H), 1.57 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.5, 176.3, 164.2, 162.4, 160.1 (d, *J* = 261.0 Hz), 151.6, 140.3, 140.0, 133.3, 133.2, 133.1, 131.4, 129.5, 128.7, 128.6, 128.5, 127.9, 127.8, 127.0, 126.8 (d, *J* = 13.0 Hz), 124.9 (d, *J* = 21.0 Hz), 124.8 (d, *J* = 4.0 Hz), 124.7, 117.0 (d, *J* = 21.0 Hz), 116.3 (d, *J* = 10.0 Hz), 114.2, 105.8, 81.3, 78.9, 61.0, 41.2, 39.6, 39.1, 28.4. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₅N₂O₆FNa) requires m/z 681.2363, found m/z 681.2363. The enantiomeric excess was determined to be 94% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 0.8 mL/min]: 12.0 min (minor), 13.2 min (major). [α]²²_D = +54.13 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(2-chlorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f p)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 20:1. Yellow oil, 27.2 mg, 81% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.79-8.77 (m, 1H), 7.55-7.49 (m, 2H), 7.46-7.42 (m, 1H), 7.38-7.36 (m, 1H), 7.30-7.27 (m, 2H), 7.25-7.24 (m, 1H), 7.21-7.16 (m, 2H), 7.15-7.11 (m, 2H),

7.07-7.05 (m, 1H), 7.04-7.00 (m, 3H), 6.63-6.61 (m, 2H), 6.47 (s, 1H), 5.71-5.67 (m, 1H), 3.60-3.56(m, 1H), 3.47-3.42 (m, 1H), 3.41-3.34 (m, 1H), 3.31-3.23 (m, 3H), 1.56 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.4, 176.2, 164.3, 163.2, 151.5, 140.4, 140.0, 133.7, 133.1, 132.3, 132.0, 131.8, 129.5, 128.8, 128.7, 128.6, 128.0, 127.7, 127.5, 127.0, 126.8, 126.3, 125.1, 124.8, 114.5, 105.7, 81.3, 79.0, 61.5, 40.5, 39.6, 39.1, 28.4. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₄₀H₃₅N₂O₆ClNa) requires m/z 697.2069 and 699.2048(³⁷Cl), found m/z 697.2069 and 699.2048(³⁷Cl). The enantiomeric excess was determined to be 87% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 90:10, 1.0 mL/min]: 5.7 min (minor), 9.2 min (major). [α]²²_D = -84.10 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-5-oxo-3-(thiophen-2-yl)-4,5-dihyd roisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fq)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. White solid, 22.4 mg, 69% yield. mp 176.1-178.5 °C. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 8.57-8.56 (m, 1H), 7.50 (d, *J* = 4.0 Hz, 1H), 7.37-7.35 (m, 1H), 7.27-7.23 (m, 3H), 7.19-7.16 (m, 2H), 7.15-7.13 (m, 2H), 7.07-7.03 (m,

2H), 6.98-6.96 (m, 2H), 6.73 (d, J = 4.0 Hz, 2H), 6.45 (s, 1H), 5.70-5.66 (m, 1H), 3.56-3.49 (m, 2H), 3.47-3.43 (m, 1H), 3.41-3.36 (m, 1H), 3.35-3.30 (m, 1H), 3.27-3.22 (m, 1H), 1.56 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 202.8, 176.5, 164.2, 161.6, 151.6, 140.3, 140.1, 133.4, 133.1, 133.0, 130.3, 130.0, 129.7, 128.7, 128.5, 128.4, 128.2, 127.9, 127.8, 126.9, 126.8, 125.0, 124.8, 113.9, 105.7, 81.4, 78.8, 61.2, 41.9, 39.6, 39.2, 28.3. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₈H₃₄N₂O₆SNa) requires m/z 669.2030, found m/z 669.2021. The enantiomeric excess was determined to be 76% by HPLC. [IA column, 254 nm, *n*-hexane:IPA = 95:5, 1.0 mL/min]: 6.9 min (minor), 8.2 min (major). [α]²²_D = +68.7 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-ethyl-5-oxo-4,5-dihydroisoxazol -4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fr)

Eluent for flash column chromatography: petroleumether/ethyl acetate = 24:1. Yellow oil, 23.6 mg, 80% yield. ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.29-7.27 (m, 2H), 7.25-7.23 (m, 4H), 7.22-7.21 (m, 2H), 7.19-7.17 (m, 2H), 7.07-7.05 (m, 2H), 6.97-6.95 (m, 2H), 6.31 (s, 1H), 5.65-5.61 (m, 1H), 3.43-3.36 (m,

2H), 3.34-3.33 (m, 1H), 3.28-3.22 (m, 1H), 3.19-3.10 (m, 2H), 2.70-2.61 (m, 1H), 2.57-2.51 (m, 1H), 1.50 (s, 9H), 1.10 (t, J = 8.0 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): δ (ppm) 203.8, 177.5, 171.2, 164.0, 151.4, 140.0, 139.9, 133.6, 133.4, 129.5, 128.8, 128.7, 128.6, 127.9, 127.5, 127.0, 126.9, 124.9, 124.7, 113.0, 105.8, 81.1, 78.5, 61.1, 40.4, 39.4, 39.3, 28.2, 21.4, 8.5. HRMS (ESI): exact mass calculated for [M+Na]⁺ (C₃₆H₃₆N₂O₆Na) requires m/z 615.2466, found m/z 615.2465. The enantiomeric excess was determined to be 58% by HPLC. [OD-H column, 254 nm, *n*-hexane:EtOH = 98:2, 1.0 mL/min]: 8.9 min (minor), 11.5 min (major). [α]²²_D = -2.13 (c = 1.00, CH₂Cl₂).

E: Large Scale Reaction

To a solution of CHCl₃ (7.5 mL) were added β , γ -alkynyl- α -imino ester **1f** (486.3 mg, 1.25 mmol), isoxazolinone **2a** (397.5 mg, 1.50 mmol) and catalyst **CPA-5** (9.4 mg, 0.0125 mmol). The reaction mixture was stirred at -20 °C for 1 h and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to yield the desired product **3fa** as a yellow oil (668.9 mg, 82% yield, 88% ee, >20:1 dr).

F: Limitation of the Reaction

To a solution of CHCl₃ (0.3 mL) were added β , γ -alkynyl- α -imino ester **1f** (0.05 mmol), pyrazolone **6** (0.06 mmol) and catalyst **CPA-5** (0.005 mmol). The reaction mixture was stirred at room temperature for 24 h. However, no desired product was obtained.

G: Synthetic Transformations

To a solution of compound **3fa** (32.7mg, 0.05 mmol) in CH_2Cl_2 (1.5 mL) was added 4N HCl (2.1 mL, 8.3 mmol). The reaction mixture was stirred at 25 °C for 48 h. Then the solvent was evaporated to give the crude product, which was directly purified by silica gel chromatography using petroleum ether/ethyl acetate mixtures to afford **4fa** as a yellow oil in 82% yield with 87% ee, >20:1 dr.

(*R*)-2,3-dihydro-1*H*-inden-2-yl-2-amino-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl -4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (4fa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 12:1. Yellow oil, 22.7 mg, 82% yield. ¹H NMR ((CD₃)₂SO, 400 MHz): δ (ppm) 7.85-7.83 (m, 2H), 7.69-7.65 (m, 1H), 7.59-7.55 (m, 2H), 7.37-7.33 (m, 1H), 7.28-7.20 (m, 6H), 7.17-7.15 (m, 2H), 6.97 (d, *J* =

8.0 Hz, 2H), 6.84 (d, J = 8.0 Hz, 2H), 6.65 (d, J = 8.0 Hz, 2H), 5.11-5.07 (m, 1H), 3.82 (d, J = 12.0 Hz, 1H), 3.58 (d, J = 12.0 Hz, 1H), 3.22-3.19 (m, 1H), 3.18-3.15 (m, 1H), 2.76-2.75 (m, 1H), 2.72-2.71 (m, 1H), 2.19 (s, 3H). ¹³C NMR ((CD₃)₂SO, 100 MHz): δ (ppm) 184.8, 177.3, 164.9, 161.5, 150.8, 140.4, 137.6, 134.8, 133.1, 130.1, 130.0, 130.0, 129.8, 129.5, 128.9, 128.8, 128.5, 127.7, 127.2, 127.1, 125.0, 78.0, 64.0, 39.1, 38.8, 21.0. HRMS (ESI): exact mass calculated for [M+H]⁺ (C₃₆H₃₁N₂O₄) requires m/z 555.2278, found m/z 555.2275. The enantiomeric excess was determined to be 87% by HPLC. [IC column, 254 nm, *n*-hexane:EtOH = 90:10, 1.0 mL/min]: 10.8 min (minor), 11.5 min (major). [α]²²_D = +262.0 (c = 1.00, CH₂Cl₂).

(*R*)-2,3-dihydro-1*H*-inden-2-yl-2-amino-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl -4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (4fa)

(*R*)-2,3-dihydro-1*H*-inden-2-yl-2-amino-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl -4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (4fa)

To a solution of **4fa** (22.3 mg, 0.04 mmol) in anhydrous THF (1.0 mL) was added LiAlH₄ (9.12 mg, 0.24 mmol) under argon atomsphere. Then the mixture was stirred for 25 min at -10 °C. The reaction mixture was quenched with water, extracted with EtOAc. The combined organic layers were washed with brine, dried (Na₂SO₄) and concentrated in vacuo and the residue was purified by silica gel chromatography to afford **5fa** as a white oil in 87% yield with 86% ee, >20:1 dr.

(4*S*,5*R*)-4-((*R*)-3-amino-4-hydroxy-1-phenylbuta-1,2-dien-1-yl)-4-(4-methylbenzyl)-3-phenyl-4,5-dihydroisoxazol-5-ol (5fa)

Eluent for flash column chromatography: petroleum ether/ethyl acetate = 3:1. White oil,14.9 mg, 87% yield. ¹H NMR ((CD₃)₂SO, 400 MHz): δ (ppm) 7.97 (s, 1H), 7.56-7.37 (m, 7H), 7.33-7.29 (m, 2H), 7.27-7.25 (m, 2H),

6.74 (d, J = 8.0 Hz, 2H), 6.55 (d, J = 8.0 Hz, 2H), 5.15-5.12 (m, 1H), 4.88 (s, 1H), 3.85-3.81 (m, 2H), 3.22 (d, J = 12.0 Hz, 1H), 2.76 (d, J = 12.0 Hz, 1H), 2.12 (s, 3H). ¹³C NMR ((CD₃)₂SO, 100 MHz): δ (ppm) 169.0, 159.1, 138.9, 137.8, 135.7, 133.0, 131.1, 130.5, 129.6, 129.1, 128.8, 128.7, 128.2, 127.4, 126.2, 104.6, 95.0, 65.1, 59.4, 35.5, 21.0. HRMS (ESI): exact mass calculated for M (C₂₇H₂₅O₃N₂) requires m/z 425.1860, found m/z 425.1858. The enantiomeric excess was determined to be 86% by HPLC. [IA column, 254 nm, *n*-hexane:EtOH = 80:20, 1.0 mL/min]: 15.0 min (minor), 17.7 min (major). [α]²²_D = +181.7 (c = 1.00, CH₂Cl₂).

(4*S*,5*R*)-4-((*R*)-3-amino-4-hydroxy-1-phenylbuta-1,2-dien-1-yl)-4-(4-methylbenzyl)-3-phenyl-4,5-dihydroisoxazol-5-ol (5fa)

(4*S*,5*R*)-4-((*R*)-3-amino-4-hydroxy-1-phenylbuta-1,2-dien-1-yl)-4-(4-methylbenzyl)-3-phenyl-4,5-dihydroisoxazol-5-ol (5fa)

S30

H: HPLC Analysis

(*R*)-*tert*-butyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ca)

(*R*)-benzyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-ph enyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3da)

26018.4

1544.5

0.2808

7.894

2

90.503

0.543

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - (4 - methyl benzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3fa)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-fluorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3ga)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-chlorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3ha)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-(4-bromophenyl)-2-((*tert*-butoxycarbonyl)amin o)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-di enoate (3ia)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(*p*-tolyl)buta-2,3-dienoate (3j a)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-methoxyphe nyl)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoate (3ka)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(3-fluorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3la)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-(3-bromophenyl)-2-((*tert*-butoxycarbonyl)amin o)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-di enoate (3ma)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(*m*-tolyl)buta-2,3-dienoate (3 na)

(S)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(2-chlorophenyl) -4-((S)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3oa)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(2-methoxyphe nyl)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoate (3pa)

(S)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((S)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(thiophen-3-yl)buta-2,3-dieno ate (3qa)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-cyclopropyl-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoa te (3ra)

Ŧ	Time	Area	Height	Width	Symmetry	Area %
1	7.077	12632.5	280.9	0.7495	0.796	50.014
2	10.28	12625.4	198.1	1.062	0.659	49.986

#	Time	Area	Height	Width	Symmetry	Area %
1	6.934	6222.7	104.5	0.9923	0.738	15.001
2	9.832	35259.8	477	1.2319	0.805	84.999

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-(((benzyloxy)carbonyl)amino)-4-((*S*)-4-(4-methy lbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3s a)

(*R*)-2,3-dihydro-1*H*-inden-2-yl-2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-metho xybenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fb)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 4 - ((S) - 4 - (4 - bromobenzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydro isoxazol - 4 - yl) - 2 - ((tert - butoxycarbonyl) amino) - 4 - phenyl buta - 2, 3 - dienoate (3fc) - 4 - yl) - 2 - ((tert - butoxycarbonyl) - 4 - phenyl buta - 2, 3 - dienoate (3fc) - 4 - yl) - 2 - ((tert - butoxycarbonyl) - 4 - phenyl buta - 2, 3 - dienoate (3fc) - 4 - yl) - 2 - ((tert - butoxycarbonyl) - 4 - phenyl - 4 - yl) - 2 - ((tert - butoxycarbonyl) - 4 - phenyl - 4 - yl) - 2 - ((tert - butoxycarbonyl) - 4 - phenyl - 4

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - (4 - nitrob enzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3fd)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - (3 - methyl benzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3fe)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - (3 - fluorobenzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3ff)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - (3 - chlorobenzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3fg)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - (2 - methyl benzyl) - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3fh)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 4 - ((S) - 4 - benzyl - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxaz ol - 4 - yl) - 2 - ((tert - butoxycarbonyl)amino) - 4 - phenyl buta - 2, 3 - dienoate (3fi)

(*R*)-2,3-dihydro-1*H*-inden-2-yl-2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(naphthal en-2-ylmethyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dieno ate (3fj)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 4 - methyl - 5 - oxo - 3 - phenyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phenyl buta - 2, 3 - dienoate (3fk)

(R) - 2, 3 - dihydro - 1 H - inden - 2 - yl - 2 - ((tert - butoxycarbonyl)amino) - 4 - ((S) - 5 - 0xo - 3 - phone here) - 4 - propyl - 4, 5 - dihydroisoxazol - 4 - yl) - 4 - phonyl buta - 2, 3 - dienoate (3fl)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(4-methoxyphenyl)-5-oxo-4,5-di hydroisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3 fm)

(R)-2,3-dihydro-1H-inden-2-yl-4-((S)-4-benzyl-3-(4-fluorophenyl)-5-oxo-4,5-dihydroisoxazol-4-yl)-2-((tert-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fn)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(2-fluorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fo)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(2-chlorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f p)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-5-oxo-3-(thiophen-2-yl)-4,5-dihyd roisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fq)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-ethyl-5-oxo-4,5-dihydroisoxazol -4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fr)

I: NMR Analysis

(*R*)-ethyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phen yl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3aa)

(*R*)-isopropyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ba)

(*R*)-*tert*-butyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ca)

(*R*)-benzyl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-ph enyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3da)

S70

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f a)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-fluorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3ga)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-chlorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3ha)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-(4-bromophenyl)-2-((*tert*-butoxycarbonyl)amin o)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-di enoate (3ia)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(*p*-tolyl)buta-2,3-dienoate (3j a)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(4-methoxyphe nyl)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoate (3ka)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(3-fluorophenyl) -4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3la)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-(3-bromophenyl)-2-((*tert*-butoxycarbonyl)amin o)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-di enoate (3ma)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(*m*-tolyl)buta-2,3-dienoate (3 na)

(S)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(2-chlorophenyl) -4-((S)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dien oate (3oa)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-(2-methoxyphe nyl)-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoate (3pa)

(S)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((S)-4-(4-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-(thiophen-3-yl)buta-2,3-dieno ate (3qa)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-cyclopropyl-4-((*S*)-4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)buta-2,3-dienoa te (3ra)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-(((benzyloxy)carbonyl)amino)-4-((*S*)-4-(4-methy lbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3s a)

tert-butyl (1,1,1-trifluoro-2-(4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxa zol-4-yl)-4-phenylbut-3-yn-2-yl)carbamate (3ta)

tert-butyl (1,1,1-trifluoro-2-(4-(4-methylbenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxa zol-4-yl)-4-phenylbut-3-yn-2-yl)carbamate (3ta)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-metho xybenzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3 fb)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-(4-bromobenzyl)-5-oxo-3-phenyl-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fc)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(4-nitrob enzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fd)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(3-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f e)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(3-fluoro benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3ff)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(3-chloro benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3f g)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(2-methyl benzyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fh)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-5-oxo-3-phenyl-4,5-dihydroisoxaz ol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fi)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-(naphtha len-2-ylmethyl)-5-oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dieno ate (3fj)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-4-methyl-5oxo-3-phenyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fk)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 2-((*tert*-butoxycarbonyl)amino)-4-((*S*)-5-oxo-3-ph enyl-4-propyl-4,5-dihydroisoxazol-4-yl)-4-phenylbuta-2,3-dienoate (3fl)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(4-methoxyphenyl)-5-oxo-4,5-di hydroisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3 fm)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(4-fluorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fn)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(2-fluorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f o)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-(2-chlorophenyl)-5-oxo-4,5-dihy droisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3f p)

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-5-oxo-3-(thiophen-2-yl)-4,5-dihyd roisoxazol-4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fq)

110 100 f1 (ppm)

90 80 70 60 50 40 30 20 10

210

200 190 180 170 160 150 140 130 120

(*R*)-2,3-dihydro-1*H*-inden-2-yl 4-((*S*)-4-benzyl-3-ethyl-5-oxo-4,5-dihydroisoxazol -4-yl)-2-((*tert*-butoxycarbonyl)amino)-4-phenylbuta-2,3-dienoate (3fr)

0

J: X-Ray Analysis Data

Table Crystal data and structure refinement for 3ha.

Identification code	3ha
Empirical formula	$C_{41}H_{37}ClN_2O_6$
Formula weight	688.23
Temperature/K	100.0
Crystal system	hexagonal
Space group	P6522
a/Å	10.7982(4)
b/Å	10.7982(4)
c/Å	113.259(7)
$\alpha^{\prime \circ}$	90
β/°	90
$\gamma/^{\circ}$	120
Volume/Å3	11436.8(11)
Z	12
pcalcg/cm ³	1.305
µ/mm-1	2.259
F(000)	4692.0
Crystal size/mm ³	$0.26 \times 0.24 \times 0.24$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
2Θ range for data collection/°	4.682 to 144.442
Index ranges	$-13 \le h \le 13, -13 \le k \le 12, -139 \le l \le 139$
Reflections collected	164008
Independent reflections	7538 [Rint = 0.0795, Rsigma = 0.0274]
Data/restraints/parameters	7538/6/491
Goodness-of-fit on F2	1.135
Final R indexes [I>= 2σ (I)]	$R1 = 0.0382, wR_2 = 0.0932$
Final R indexes [all data]	$R1 = 0.0382, wR_2 = 0.0933$
Largest diff. peak/hole / e Å-3	0.28/-0.25
Flack parameter	0.080(4)

K: Reference

1. T. Hellmuth, W. Frey, R. Peters, Angew. Chem. Int. Ed. 2015, 54, 2788.

2. J. Yang, Z. Wang, Z. He, G. Li, L. Hong, W. Sun and R. Wang, *Angew. Chem., Int. Ed.* **2020**, *59*, 642.