## Supporting Information

# NHC-Catalyzed Oxindole Synthesis via Single Electron Transfer 

Chengming Wang*, Lixia Liu

Department of Chemistry, College of Chemistry and Materials Science Jinan University
Guangzhou, 511486, China
Email: cmwang2019@inu.edu.cn

Table of Contents:
General Methods and Materials ..... 1
Conditions Screening ..... 2-4
General Procedure for NHC-Catalyzed Radical Cyclization ..... 5
Characterization of Oxindole Products ..... 6-15
Diversity of the Products ..... 16-24
Mechanism Study ..... 25-31
References ..... 32
NMR Spectra Images of Products ..... 33-91

## General Methods and Materials:

Unless specified, all reactions were carried out under a nitrogen atmosphere (balloon) with dry solvents under anhydrous conditions. $\alpha$-bromoamide starting materials were synthesized according to a previous literature. ${ }^{1} \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (purity: 98\%) was purchased from Alfa Aesar; 1, 4-dioxane (super dry, 99.8\%) was purchased from J\&K; all other reagents were purchased and used without further purification unless specified otherwise. Solvents for chromatography were technical grade and distilled prior to use. Flash chromatography was performed using 200-300 mesh silica gel with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 $\mathrm{nm}) .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were recorded on Bruker 300 M nuclear resonance spectrometers unless otherwise specified, respectively. Chemical shifts ( $\delta$ ) in ppm are reported as quoted relative to the residual signals of chloroform ( ${ }^{1} \mathrm{H} 7.26 \mathrm{ppm}$ or ${ }^{13} \mathrm{C}$ 77.16 ppm ). Multiplicities are described as: $s$ (singlet), bs (broad singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants ( $J$ ) are reported in Hertz $(\mathrm{Hz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded with total proton decoupling. HRMS (ESI) analysis was performed by The Analytical Instrumentation Center at College of Chemistry and Materials Science, Jinan University, and (HRMS) datas were reported with ion mass/charge ( $\mathrm{m} / \mathrm{z}$ ) ratios as values in atomic mass units.

## Conditions screening ${ }^{\text {a }}$



| Entry | Solvent | Catalysis | Base | Isolated yield |
| :---: | :---: | :---: | :---: | :---: |
| 1 | THF | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 28\% |
| 2 | 1, 4-dioxane | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 33\% |
| 3 | MeCN | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 13\% |
| 4 | Toluene | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 21\% |
| 5 | DCE | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 11\% |
| 6 | DMF | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | <5\% |
| 7 | MTBE | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 12\% |
| $8{ }^{\text {b }}$ | 1, 4-dioxane | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 37\% |
| 9 c | 1, 4-dioxane | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 33\% |
| 10 | 1, 4-dioxane ( 0.15 M ) | NHC A | ${\mathrm{Cs} 2 \mathrm{CO}_{3}}$ | 33\% |
| 11 | 1, 4-dioxane (0.2 M) | NHCA | ${\mathrm{Cs} 2 \mathrm{CO}_{3}}$ | 32\% |
| 12 | 1, 4-dioxane (0.3 M) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 39\% |
| 13 | 1, 4-dioxane ( 0.3 M ) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.1 equiv) | 9\% |
| 14 | 1, 4-dioxane (0.3 M) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.2 equiv) | 39\% |
| 15 | 1, 4-dioxane ( 0.3 M ) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.3 equiv) | 44\% |
| 16 | 1, 4-dioxane (0.3 M) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.5 equiv) | 77\% |
| 17 | 1, 4-dioxane (0.3 M) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 88\% |
| 18 | 1, 4-dioxane (0.3 M) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.0 equiv) | 71\% |
| 19 | 1, 4-dioxane ( 0.3 M ) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.2 equiv) | 53\% |
| 20 | 1, 4-dioxane (0.3 M) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.5 equiv) | 50\% |
| 21 | 1, 4-dioxane (0.3 M) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2.0 equiv) | 45\% |
| $22^{\text {d }}$ | 1, 4-dioxane ( 0.3 M ) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 77\% |
| $23^{\text {d }}$ | 1, 4-dioxane (0.3 M) | NHC A (5 mol\%) | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 43\% |
| $24^{\text {c }}$ | 1, 4-dioxane (0.3 M) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 83\% |
| $25^{\text {e }}$ | 1, 4-dioxane (0.3 M) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 35\% |
| $26^{\text {f }}$ | 1, 4-dioxane (0.3 M) | NHCA | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 16\% |
| 27 | 1, 4-dioxane (0.3 M) | - | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 0\% |
| 28 | 1, 4-dioxane (0.3 M) | - | $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 0\% |
| 29 | 1, 4-dioxane (0.3 M) | - | $\mathrm{NaHCO}_{3}$ (0.8 equiv) | 0\% |
| 30 | 1, 4-dioxane (0.3 M) | - | $t-\mathrm{BuONa}$ (0.8 equiv) | 0\% |
| 31 | 1, 4-dioxane ( 0.3 M ) | - | KOAc (0.8 equiv) | 0\% |
| 32 | 1, 4-dioxane (0.3 M) | - | NaOH (0.8 equiv) | trace |
| 33 | 1, 4-dioxane (0.3 M) | - | $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 0\% |
| 34 | 1, 4-dioxane (0.3 M) | - | DBU (0.8 equiv) | 0\% |
| 35 | 1, 4-dioxane (0.3 M) | - | $\mathrm{Et}_{3} \mathrm{~N}$ (0.8 equiv) | 0\% |


| 36 | 1, 4-dioxane (0.3 M) | - | DIPEA (0.8 equiv) | trace |
| :---: | :---: | :---: | :---: | :---: |
| 37 | 1, 4-dioxane (0.3 M) | - | TMP (0.8 equiv) | 0\% |
| 38 | 1, 4-dioxane (0.3 M) | - | $\mathrm{K}_{3} \mathrm{PO}_{4}$ (0.8 equiv) | 0\% |
| 39 | 1, 4-dioxane (0.3 M) | - | - | 0\% |
| 40 | 1, 4-dioxane (0.3 M) | NHC A | - | 0\% |
| 41 | 1, 4-dioxane (0.3 M) | NHC A | $t$-BuONa (0.8 equiv) | 14\% |
| 42 | 1, 4-dioxane (0.3 M) | NHC A | DIPEA (0.8 equiv) | 10\% |
| 43 | 1, 4-dioxane (0.3 M) | NHC A | DBU (0.8 equiv) | 6\% |
| 44 | 1, 4-dioxane (0.3 M) | NHC A | NaOH (0.8 equiv) | 33\% |
| 45 | 1, 4-dioxane (0.3 M) | NHC A | $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 51\% |
| 46 | 1, 4-dioxane (0.3 M) | NHC B | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | <5\% |
| 47 | 1, 4-dioxane (0.3 M) | MHC C | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | <5\% |
| 48 | 1, 4-dioxane (0.3 M) | NHC D | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 0\% |
| 49 | 1, 4-dioxane (0.3 M) | NHC E | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 22\% |
| 50 | 1, 4-dioxane (0.3 M) | NHC F | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 10\% |
| 51 | 1, 4-dioxane (0.3 M) | NHC G | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | trace |
| 52 | 1, 4-dioxane (0.3 M) | NHC H | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 30\% |
| 53 | 1, 4-dioxane (0.3 M) | NHC I | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 45\% |
| 54 | 1, 4-dioxane (0.3 M) | NHC J | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 79\% |
| 55 | 1, 4-dioxane (0.3 M) | NHC K | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 13\% |
| 56 | 1, 4-dioxane (0.3 M) | NHC L | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 0\% |
| 57 | 1, 4-dioxane (0.3 M) | NHC M | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 41\% |
| 58 | 1, 4-dioxane (0.3 M) | NHC N | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 63\% |
| 59 | 1, 4-dioxane (0.3 M) | NHC O | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 10\% |
| 609 | 1, 4-dioxane (0.3 M) | NHC A | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.8 equiv) | 0\% |

a. Reaction on a 0.3 mmol scale, under $\mathrm{N}_{2}$, isolated yield; ${ }^{b}$. react at $120^{\circ} \mathrm{C}$; c. react at $80^{\circ} \mathrm{C}$;
${ }^{\text {d. }}$ react for 22 h ; e. react at $60^{\circ} \mathrm{C}$; ${ }^{f .}$ react at $40^{\circ} \mathrm{C}$; ${ }^{\text {g. react at } \mathrm{rt} \text {. }}$

## Note:

DCE = 1, 2-dichloroethane; MTBE = tert-Butyl methyl ether; DIPEA = N, N-diisopropylethylamine; DBU = 1, 8-Diazabicyclo[5, 4, 0]undec-7-ene; TMP = 2, 2, 6, 6-tetramethylpiperidine.

The structure of NHC catalysts:



NHC B




NHC E



3

By

## General Procedure for NHC-Catalyzed Oxindole Synthesis


$\alpha$-bromoamide 1 ( $0.3 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{NHC} \mathrm{A} \mathrm{( } 10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4-dioxane ( 1.0 mL ) was added through the side-arm by syringe (if $\alpha$-bromoamide 1 is a liquid, it was first dissolved in 1, 4-dioxane, then added to the reaction tube). The reaction was stirred under nitrogen at $100^{\circ} \mathrm{C}$ for 30 h . Upon complete consumption of $\alpha$-bromoamide 1 compound, the reaction was cooled to room temperature. Volatile solvent and reagents were removed by rotary evaporation and the residue was purified by silica gel flash chromatography using petroleum ether/EtOAc (50:1 to $30: 1$ ) to afford the desired product 2.

## General Procedure for Scalable Reaction ( 5.0 mmol scale)


$\alpha$-bromoamide 1a ( $5 \mathrm{mmol}, 1.28 \mathrm{~g}$ ), NHC A $(0.5 \mathrm{~mol}, 207 \mathrm{mg})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(4 \mathrm{mmol}$, 1.30 g ) were weighed into a 100 mL Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1,4 -dioxane ( 20 mL ) was added through the side-arm by syringe. The reaction was stirred under nitrogen at $100{ }^{\circ} \mathrm{C}$ for 34 h . Upon complete consumption of $\alpha$-bromoamide 1 a compound, the reaction was cooled to room temperature. Volatile solvent and reagents were removed by rotary evaporation and the residue was purified by silica gel flash chromatography using petroleum ether/EtOAc (50:1 to $30: 1$ ) to afford the desired product 2a as a yellow oil, got: 767 mg , yield: $88 \%$.

## Characterization of Oxindole Products



1, 3, 3-trimethylindolin-2-one (2a). ${ }^{\mathbf{2}}$ yield: $88 \%$, yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta$ $7.25(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.3,142.6,135.8,127.7,122.5,122.2$, 108.0, 44.1, 26.2, 24.4.


1-ethyl-3, 3-dimethylindolin-2-one (2b). ${ }^{2}$ yield: 61\%, yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{( } \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta 7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.37$ (s, 6H), 1.26 (t, J = 7.1 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.1,141.8,136.2,127.7,122.5$, 122.3, 108.3, 44.2, 34.6, 24.5, 12.8.


1-isopropyl-3, 3-dimethylindolin-2-one (2c). ${ }^{\mathbf{2}}$ yield: 75\%, yellow oil. ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}, 300\right.$ MHz ): $\delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 4.65($ hept, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 6 H ), 1.35 (s, 6 H ); ${ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}$ ): $\delta 181.1,141.8,136.2,127.7,122.5,122.3,108.3$, 44.2, 34.6, 24.5, 12.8.


1-cyclopropyl-3, 3-dimethylindolin-2-one (2d). yield: 74\%, yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 7.26(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 2 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, 75 MHz ): $\delta 182.2,143.1,135.6,127.7,122.5,122.2,109.5,44.2,24.6,22.2,6.1$ IR (ATR): 2967, 1716, 1611, 1488, 1385, 1126, 821, 743, 754, 694. HRMS (ESI): found: 202.1234, calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 202.1226$.


1-cyclohexyl-3, 3-dimethylindolin-2-one (2e). yield: $80 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz ): $\delta 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.08(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.19(\mathrm{~m}, 4 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 181.3, 141.7, 136.4, 127.3, 122.6, 121.9, 110.2, 51.9, 43.8, 29.3, 26.1, 25.5, 24.6. IR (ATR): 2930, 2858, 1705, 1610, 1457, 1360, 1183, 755, 741. HRMS (ESI): found: 244.1700, calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 244.1696$.


1-butyl-3, 3-dimethylindolin-2-one (2f). ${ }^{\mathbf{2}}$ yield: $72 \%$, yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ : $\delta 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-$ $1.61(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ : $\delta 181.4,142.1,136.1,127.6,122.5,122.3,108.4,44.2,39.6,29.6,24.5,20.2,13.9$.


3, 3-dimethyl-1-phenylindolin-2-one (2g). ${ }^{\mathbf{2}}$ yield: $84 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J=7.7,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ $180.8,142.6,135.8,134.8,129.7,128.0,127.7,126.7,123.1,122.7,109.5,44.4,24.9$.


1-benzyl-3, 3-dimethylindolin-2-one (2h). ${ }^{\mathbf{2}}$ yield: $61 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 7.33-7.22(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.91(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.6,141.8,136.2,135.9,128.9$, $127.7,127.6,127.3,122.6,122.4,109.2,44.3,43.6,24.6$.


3-ethyl-1, 3-dimethylindolin-2-one (2i). ${ }^{\mathbf{2}}$ yield: 85\%, yellow oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$ ): $\delta 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 180.8,143.6,134.0,127.7,122.6,122.5,107.9,49.0,31.5,26.1,23.4,8.9$.


1'-methylspiro[cyclobutane-1, 3'-indolin]-2'-one (2j). ${ }^{\mathbf{3}}$ yield: $63 \%$, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl, 75 $\mathrm{MHz}): \delta 180.3,143.0,134.5,127.9,122.6,122.3,107.7,48.2,31.4,26.2,16.9$.


1'-methylspiro[cyclopentane-1, 3'-indolin]-2'-one (2k). ${ }^{3}$ yield: $83 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.26-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}$, $3 \mathrm{H}), 2.17-1.81(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 182.0,143.0,137.0,127.4,122.6,122.3$, 107.8, 54.0, 38.4, 26.7, 26.3


1, 3, 3, 7-tetramethylindolin-2-one (2I). ${ }^{\mathbf{2}}$ yield: 77\%, white solid. ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{( } \mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): ס 7.05-6.91 (m, 3H), $3.50(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 182.2$, $140.5,136.6,131.5,122.5,120.3,119.8,43.6,29.6,24.8,19.2$


7-chloro-1, 3, 3-trimethylindolin-2-one (2m). ${ }^{1}$ yield: 82\%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, $1.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.6,138.7,138.6,130.1,123.4,120.9,115.6,44.1$, 29.7, 24.8.


1, 3, 3-trimethyl-7-phenylindolin-2-one (2n). ${ }^{\mathbf{2}}$ yield: $63 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz ): $\delta 7.40-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 182.5,139.6,139.2,136.9,130.8,130.0,127.9,127.7,125.5,121.9$, 121.4, 43.6, 30.2, 24.9.


1, 3, 3, 4-tetramethylindolin-2-one (20) and 1, 3, 3, 6-tetramethylindolin-2-one ( $\mathbf{2 o} \mathbf{o}^{\prime}$ ). ${ }^{4} \mathbf{2 o}$ : 2o' = $1.8: 1$, total yield: $84 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.16(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-$ $6.68(\mathrm{~m}, 1.5 \mathrm{H}), 3.20(\mathrm{~s}, 4.7 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 1.6 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~s}, 3.3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.8,181.4,143.0,142.8,137.8,134.1,133.0,132.6,127.5,125.1,123.0$, 122.0, 109.1, 105.8, 45.0, 44.0, 26.4, 26.2, 24.5, 22.4, 21.8, 18.2.


4-bromo-1, 3, 3-trimethylindolin-2-one (2p). yield: 58\%, colorless oil. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{dd}, \mathrm{J}=7.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 180.9,144.8,133.4,129.2,126.9,118.9,107.2,46.6,26.5,21.5$.


1, 3, 3, 5-tetramethylindolin-2-one (2q). ${ }^{\mathbf{2}}$ yield: 81\%, yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.4,140.3,136.0,132.1,127.9,123.2,107.8,44.3,26.3,24.5,21.2$.


5-methoxy-1, 3, 3-trimethylindolin-2-one (2r). ${ }^{\mathbf{2}}$ yield: $75 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz ): $\delta 6.82(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.2,156.2,137.4,136.3,111.7,110.2,108.3,56.0,44.8,26.4$, 24.5.


1, 3, 3-trimethyl-5-(methylthio)indolin-2-one (2s). yield: 73\%, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 1.37$ ( $\mathrm{s}, 6 \mathrm{H}$ ); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{( } \mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.1,141.1,136.8,131.4,128.0,123.2,108.6,44.4,26.4$, 24.4, 18.1. IR (ATR): 2967, 1705, 1608, 1489, 1344, 1243, 1128, 806, 544. HRMS (ESI): found: 222.0952, calcd. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 222.0947$.


5-isopropyl-1, 3, 3-trimethylindolin-2-one (2t). ${ }^{2}$ yield: 58\%, white solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, 300 MHz ): $\delta 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.91$ (hept, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.6,143.5$,,$~(1)$ 140.7, 136.0, 125.3, 120.6, 107.8, 44.4, 34.1, 26.3, 24.5, 24.4.


5-(tert-butyl)-1, 3, 3-trimethylindolin-2-one (2u). ${ }^{2}$ yield: 63\%, white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz ): $\delta 7.29$ (dd, J = 8.1, $1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.24 (d, J = $1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.78 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.20 (s, 3H), $1.38(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.7,145.9,140.4,135.7,124.3$, 119.5, 107.5, 44.5, 34.7, 31.8, 26.3, 24.6.


5-(dimethylamino)-1, 3, 3-trimethylindolin-2-one (2v). ${ }^{4}$ yield: $88 \%$, yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta 6.75-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H})$, 1.37 (s, 6H); ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,75 \mathrm{MHz}\right): \delta 181.0,147.8,137.0,133.8,111.9,109.2,108.4,44.7$, 41.8, 26.3, 24.6.


1, 3, 3-trimethyl-5-phenylindolin-2-one (2w). ${ }^{\mathbf{2}}$ yield: $91 \%$, yellow oil. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 7.56(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1 H ), 3.23 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.42 ( $\mathrm{s}, 6 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.4,142.1,141.1,136.5,136.1$, 128.9, 127.0, 126.9, 126.6, 121.3, 108.3, 44.4, 26.4, 24.5.


5-cyclohexyl-1, 3, 3-trimethylindolin-2-one (2x). yield: 74\%, white solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, 300 MHz ): $\delta 7.10(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.52-2.45$ $\left.(\mathrm{m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 6 \mathrm{H}), 1.48-1.15(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.6$, 142.8, 140.7, 135.9, 125.7, 121.0, 107.8, 44.5, 44.4, 35.0, 27.0, 26.3, 26.2, 24.6. IR (ATR): 2923, 2850, 1709, 1620, 1494, 1350, 1247, 1064, 810, 731. HRMS (ESI): found: 258.1862, calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 258.1852$.


5-fluoro-1, 3, 3-trimethylindolin-2-one (2y). ${ }^{\mathbf{2}}$ yield: 62\%, yellow solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$
$\mathrm{MHz}): ~ \delta ~ 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ( $\mathrm{CDCl}_{3}, 282$
 $\left(d, J_{3 F}=7.8\right), 113.8\left(d, J_{2 F}=23.3\right), 110.7\left(d, J_{2 F}=24.4\right), 108.6\left(d, J_{3 F}=8.1\right), 44.8,26.5,24.4$.


5-chloro-1, 3, 3-trimethylindolin-2-one (2z). ${ }^{\mathbf{3}}$ yield: 87\%, yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ MHz ): $\delta 7.23$ (dd, $J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.18(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}$, 3 H ), 1.37 (s, 6 H ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 180.9,141.3,137.5,127.9,127.6,123.0,109.0$, 44.5, 26.4, 24.3.


5-bromo-1, 3, 3-trimethylindolin-2-one (2ab). ${ }^{\mathbf{3}}$ yield: $52 \%$, white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 7.38(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (s, 3H), $1.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}$ ): $\delta 180.8,141.8,138.0,130.6,125.8,115.3,109.6$, 44.6, 26.4, 24.4.

methyl 1, 3, 3-trimethyl-2-oxoindoline-5-carboxylate (2ac). ${ }^{3}$ yield: $73 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR (CDCl $3,300 \mathrm{MHz}$ ): $\delta 8.02$ (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
 130.6, 124.5, 123.7, 107.6, 52.1, 44.1, 26.5, 24.3.


1, 3, 3-trimethyl-2-oxoindoline-5-carbonitrile (2ad). ${ }^{3}$ yield: $84 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.61(\mathrm{dd}, \mathrm{J}=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}$, $\left.3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right): \delta 181.0,146.6,136.8,133.2,125.8,119.3,108.6$, 105.6, 44.1, 26.5, 24.2.


1, 3, 3-trimethyl-5-nitroindolin-2-one (2ae). ${ }^{4}$ yield: $68 \%$, yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 8.26$ (dd, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.11(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.3,148.5,143.6,136.6,125.3,118.4,107.7$, 44.3, 26.7, 24.2.


1, 3, 3-trimethyl-5-(trifluoromethyl)indolin-2-one (2af). ${ }^{3}$ yield: $68 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta 7.56(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 282 \mathrm{MHz}\right): \delta-61.4(\mathrm{~m}, 1 \mathrm{~F}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.3$, $145.8,136.4,125.7$ ( $q, J_{3 F}=4.0$ ), 124.9 ( $q, J_{2 F}=32.3$ ), 124.6 ( $q, J_{3 F}=269.8$ ), 119.5 ( $q, J_{3 F}=3.6$ ), 107.9, 44.3, 26.5, 24.3.


1, 3, 3, 7-tetramethyl-5-nitroindolin-2-one (2ag). yield: 49\%, yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz ): $\delta 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}$, $75 \mathrm{MHz}): \delta 182.2,146.5,143.0,137.3,127.9,120.2,116.2,43.6,29.7,24.6,19.3$.


7-bromo-1, 3, 3, 5-tetramethylindolin-2-one (2ah). yield: 84\%, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.17(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.7,138.9,137.6,133.7,133.3,122.5,102.0,44.1,29.8,24.8,20.6$. IR (ATR): 2969, 1717, 1570, 1468, 1336, 1252, 1066, 853, 789, 743. HRMS (ESI): found: 268.0334, calcd. for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{BrNO}\left(\mathrm{M}^{+}\right)$: 268.0332 .


1, 3, 3-trimethyl-1,3-dihydro-2H-pyrrolo[3, 2-c]pyridin-2-one (2ai). ${ }^{5}$ yield: 51\%, colorless oil. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta 8.47(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, \mathrm{~J}=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.2,150.1,149.7,142.8,131.3$, 103.9, 43.1, 26.4, 24.3.


1, 1-dimethyl-5, 6-dihydro-4H-pyrrolo[3, 2, 1-ij]quinolin-2(1H)-one (2aj). ${ }^{\mathbf{2}}$ yield: 81\%, yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.05-6.92(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, \mathrm{J}=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.01 (quint, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $\left.1.38(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right): \delta 180.4,138.5$, 134.5, 126.5, 122.0, 120.2, 120.1, 45.6, 38.9, 24.7, 24.3, 21.3.


3-ethyl-1-methyl-2-oxoindoline-3-carbonitrile (2ak). ${ }^{6}$ yield: $58 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.43-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 2.31-2.07(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 170.7,143.3,130.4$, 125.4, 124.3, 123.8, 117.2, 109.1, 47.2, 31.0, 27.0, 8.5.

ethyl 1-methyl-2-oxo-3-phenylindoline-3-carboxylate (2al). ${ }^{7}$ yield: 40\%, yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.46(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 5 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 172.9,169.3,144.5,136.1,129.7,128.6,128.3,128.0,127.2,126.1$, 123.0, 108.8, 64.2, 62.4, 26.9, 14.1.

ethyl 3-butyl-1-methyl-2-oxoindoline-3-carboxylate (2am). yield: 34\%, colorless oil. ${ }^{1} \mathrm{H}$ NMR ( $\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.32(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.22(\mathrm{~m}, 4 \mathrm{H}), 1.16(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.32(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 174.5,169.7,144.3,129.0$, $128.5,123.5,122.9,108.3,61.9,59.7,34.1,26.6,25.8,22.8,14.1,13.9$. IR (ATR): 2926, 1717, 1611, 1493, 1348, 1226, 1080, 964, 749. HRMS (ESI): found: 276.1600, calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}$ [M+H] ${ }^{+}$: 276.1594.

## Diversity of the products

## (a) Demethylation ${ }^{8}$




A solution of oxindole $\mathbf{2 a}$ ( $1 \mathrm{mmol}, 175 \mathrm{mg}$ ) and benzoyl peroxide ( 2.0 equiv.) in dry DCM ( 2 mL ) in a sealed tube was heated slowly to $80^{\circ} \mathrm{C}$. After stirring for 18 h , the reaction mixture was cooled to rt and the solvent was evaporated. The residue was dissolved in $\mathrm{MeOH}(4 \mathrm{~mL}), \mathrm{NaOH}(3.65 \mathrm{mmol}, 146 \mathrm{mg})$ was added and the reaction mixture was stirred at rt for 18 h . Then the slurry was poured into saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted with DCM ( $3 * 6 \mathrm{~mL}$ ). The combined organic layers were dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was dissolved in a methanolic $\mathrm{NH}_{3}$ solution ( $5 \mathrm{~mL}, 7 \mathrm{M}$ ) and stirred for 19 h at rt. After reaction, the mixture was extracted by $\operatorname{EtOAc}(3 * 10 \mathrm{~mL})$ and dried by anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated, purified by silica gel flash chromatography using Petroleum ether/EtOAc (30:1 to 2:1) to afford the desired product 3a as a white solid.


3, 3-dimethylindolin-2-one (3a). ${ }^{\mathbf{8}}$ yield: $70 \%$, white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 9.71$ $(\mathrm{s}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 184.9$, $140.2,136.4,127.7,122.6,122.5,110.2,44.9,24.4$.

## (b) Synthesis of the indoline-2-thione ${ }^{9}$



Oxindoles ( $\mathbf{2 a}$ or $\mathbf{2 g}, 1 \mathbf{m m o l}$ ) and Lawesson's reagent ( 0.51 equiv.) were added into a test tube under $N_{2}$. Then dry toluene ( 2 mL ) was added by syringe. It was sealed and refluxed for 1.5-2 h. After cooling down, the mixture was poured into water. The organic layer was separated and the aqueous layer was extracted with ether. The organic layers were combined, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and finally purified by silica gel chromatography eluting with EtOAc/PE (1:40) to afford the product 3b-c.


3, 3-dimethyl-1-phenylindoline-2-thione (3b). ${ }^{9}$ yield: $96 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}$, 300 MHz ): $\delta$ 7.61-7.48 (m, 3H), 7.40-7.36 (m, 3H), 7.21-7.19 (m, 2H), 6.71-6.68 (m, 1H), 1.57 ( $\mathrm{s}, 6 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 213.8,145.1,140.3,137.1,130.0,129.2,127.8,127.7$, 124.4, 123.0, 110.7, 55.4, 28.7.


1, 3, 3-trimethylindoline-2-thione (3c). ${ }^{10}$ yield: $50 \%$, colorless oil. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}$, $6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 211.9,143.9,140.3,127.8,124.2,122.7,109.6,54.9,31.5$, 28.0.

## (c) Reduction of amide ${ }^{11}$



In a flame-dried Schlenktube, oxindole 2a was dissolved in anhydrous THF ( 5 mL ), $\mathrm{LiAlH}_{4}(1 \mathrm{mmol}, 175 \mathrm{mg})$ was then added slowly at $0{ }^{\circ} \mathrm{C}$ under $\mathrm{N}_{2}$. The reaction was then heated to reflux overnight. After cooling to room temperature, the reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction was then extracted with ether three times. The combined organic extracts were washed with brine, dried with $\mathrm{MgSO}_{4}$, filtrated and concentrated in vacuo. The product was purified by flash column chromatography (20:1, $\mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}$ ) to yield $3 \mathbf{d}$ as a colorless oil.


1, 3, 3-trimethylindoline (3d). ${ }^{11}$ yield: $98 \%$, volatile colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ : $\delta 7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.06(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 151.9,139.0,127.4,121.4$, 117.9. 107.2, 70.2, 40.1, 35.8, 27.3.
(d) C-H alkenylation ${ }^{12}$


Oxindole $\mathbf{2 g}$ ( $0.3 \mathrm{mmol}, 71.2 \mathrm{mg}$ ), methyl acrylate ( $81.6 \mu \mathrm{~L}$, 2.5 equiv.), $\left[\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{MeCN})_{3}\right]\left[\mathrm{SbF}_{6}\right]_{2}(12.6 \mathrm{mg}, 5 \mathrm{~mol} \%$ ), $\mathrm{AgOAc}(50.4 \mathrm{mg}, 1$ equiv.) were stirred in DCE ( 2.0 mL ) at $130^{\circ} \mathrm{C}$ for 12 h . After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:40 to $1: 10$ ) to give the product 3 e as a white solid.

methyl (E)-3-(2-(3, 3-dimethyl-2-oxoindolin-1-yl)phenyl)acrylate (3e). ${ }^{12}$ yield: 86\%, yellow solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta 7.80(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.29$ (m, 2H), 7.18-7.07 (m, 2H), $6.50(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 1.57$ (s,3H), 1.52 (s, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}$ ): $\delta 181.0,166.8,142.8,139.3,135.6,134.1,133.0$, 131.4, 129.3, 128.9, 127.8, 127.8, 123.3, 122.8, 120.3, 109.4, 51.7, 44.6, 25.5, 24.1.
(e) C-H arylation ${ }^{13}$

$+$

$\overrightarrow{\text { AgNTf }_{2}, \text { AgOAc, }} \mathbf{~ D C E}$ $\mathrm{N}_{2}, 110{ }^{\circ} \mathrm{C}, 40 \mathrm{~h}$


Under $\mathrm{N}_{2}$ atmosphere, to a 15 mL oven-dried screw-top pressure reaction tube equipped with a magnetic stirring bar were added oxindole $\mathbf{2 g}$ ( 1.2 equiv, 57.0 mg ), 1, 4-dihydro-1, 4-epoxynaphthalene ( $0.2 \mathrm{mmol}, 28.8 \mathrm{mg}$ ), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%, 6.2$ mg ), $\mathrm{AgNTf}_{2}(40 \mathrm{~mol} \%, 31.0 \mathrm{mg}$ ), AgOAc ( 0.9 equiv, 30.0 mg ) and anhydrous DCE $(2.0 \mathrm{~mL})$. The reaction tube was sealed with a screw teflon cap. After stirring at $110^{\circ}$ C for 40 h , the reaction mixture was diluted with EtOAc , dried with $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc = 40:1 to 20:1 as eluent) to afford the desired product $\mathbf{3 f}$ as a colorless oil.


3, 3-dimethyl-1-(2-(naphthalen-2-yl)phenyl)indolin-2-one (3f). ${ }^{13}$ yield: 46\%, colorless oil. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): 7.74-7.53 (m, 7H), 7.41-7.38 (m, 4H), 7.09-7.03 (m, 2H), 6.94 (t, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right): \delta$ 181.1, 143.2, 141.7, 136.3, 135.5, 133.2, 132.6, 132.5, 131.7, 129.4, 129.3, 129.1, 128.2, 127.9, 127.7, 127.6, 127.4, 126.7, 126.2, 126.1, 122.7, 122.4, 109.4, 44.3, 24.7, 24.1.
(f) $\mathrm{C}-\mathrm{H}$ activation and cascade cyclization ${ }^{9}$


Under $\mathrm{N}_{2}$ atmosphere, to a 15 mL tube were added oxindole $\mathbf{2 g}(0.2 \mathrm{mmol}, 47.5 \mathrm{mg})$, diphenylacetylene ( 2.2 equiv, 78.4 mg ), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}$ ( $5 \mathrm{~mol} \%, 6.2 \mathrm{mg}$ ), $\mathrm{AgNTf}_{2}$ ( 40 $\mathrm{mol} \%, 31.0 \mathrm{mg}$ ), $\mathrm{Ag}_{2} \mathrm{O}$ ( 1.1 equiv, 51.0 mg ) and DCE (anhydrous, 1.5 mL ). Then $i-\operatorname{PrCOOH}$ ( 2.2 equiv, $41.0 \mu \mathrm{~L}$ ) was added at room temperature. After stirring at 100 ${ }^{\circ} \mathrm{C}$ for 40 h , the reaction mixture was diluted with EtOAc, dried with $\mathrm{MgSO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=40: 1$ to 20:1 as the eluent) to afford the desired product $\mathbf{3 g}$ as a white solid.


3, 3-dimethyl-1-(5, 6, 7, 8-tetraphenylnaphthalen-1-yl)indolin-2-one (3g). ${ }^{9}$ yield: 59\%, white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): 7.79(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-$ $7.20(\mathrm{~m}, 6 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.59(\mathrm{~m}, 15 \mathrm{H}), 6.49(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, 1H), $1.26(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.0,144.3,142.2,140.5,140.3$, $140.0,139.8,139.3,135.9,135.7,134.5,133.1,131.5,131.3,131.1,130.4,130.2,129.3,129.0$, 127.8, 127.7, 126.9, 126.7, 126.6, 126.4, 126.2, 126.1, 125.9, 125.5, 125.1, 122.4, 121.7, 110.7, 44.0, 27.4, 23.2 .

## (g) Bromination ${ }^{9}$



To a Schlenktube were added 3,3-dimethyl-1-phenylindolin-2-one ( 1 mmol , 237.3 mg ), N -Bromosuccinimide (NBS) ( 1.1 equiv, 195.8 mg ) and $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 3 h . Concentration of the reaction mixture in vacuo followed by silica gel chromatography eluting with EtOAc/PE (1:20) afforded the $N$-phenyl oxindole $\mathbf{3 h}$ as a white solid.


5-bromo-3, 3-dimethyl-1-phenylindolin-2-one (3h). ${ }^{9}$ yield: $99 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR (CDCl $3,300 \mathrm{MHz}$ ): $\delta 7.52(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.48 ( $\mathrm{s}, 6 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 180.1,141.7,137.8,134.4$, $130.6,129.8,128.3,126.5,126.1,115.7,111.0,44.6,24.8$.

## (h) Dichlorination ${ }^{14}$



Oxindole 2a ( $1.0 \mathrm{mmol}, 175 \mathrm{mg}$ ) was dissolved in $80 \% \mathrm{t}$-BuOH ( 2.0 mL ), and NCS (1.6 equiv., 214 mg ) was added to this solution. The mixture was stirred for 38 h at $50^{\circ} \mathrm{C}$. Then allowed to cool to room temperature, diluted with water and extracted with ether, dried with $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=40: 1$ to 20:1 as the eluent) to afford the desired product $\mathbf{3 i}$ as a white solid.


5, 7-dichloro-1, 3, 3-trimethylindolin-2-one (3i). ${ }^{14}$ yield: $59 \%$, white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 7.20(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}$ ): $\delta 181.1,139.9,137.5,129.5,128.1,121.7,115.9,44.4,29.6,24.6$.
(i) Nitration ${ }^{15}$


Nitric acid ( $65 \% ; 329 \mu \mathrm{~L}$, 1.1 equiv) was added dropwise to oxindole 2a ( $526 \mathrm{mg}, 3.0$ mmol ) in acetic acid ( 5.1 mL ) at room temperature. After 44 h , diluted with water and extracted with EtOAc , dried with $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20: 1$ to 4:1 as the eluent) to afford the desired product $\mathbf{3} \mathbf{j}$ as a yellow solid.


1, 3, 3-trimethyl-5-nitroindolin-2-one (3j). ${ }^{\mathbf{1 5}}$ yield: $80 \%$, yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz ): $\delta 8.26$ (dd, J = $8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.10(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}$, 3 H ), $1.44(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 181.4,148.5,143.6,136.6,125.3,118.4,107.7$, 44.3, 26.7, 24.2.
(j) Synthesis of analogue of anti-anxiety treatment drug Ziprasidone ${ }^{16}$



## Step I

To a 50 mL round bottom flask was added anhydrous $\mathrm{AlCl}_{3}$ ( 6.2 equiv., 4.13 g ), $\mathrm{CS}_{2}$ $(20 \mathrm{~mL})$ and chloroacetyl chloride ( 1.3 equiv., $517 \mu \mathrm{~L}$ ). To the stirring mixture was added oxindole 2a ( $5 \mathrm{mmol}, 1.0$ equiv., 876 mg ) portionwise over 15 min . The reaction mixture was stirred further 10 min , then refluxed for 5.5 h . The reaction mixture was allowed to cool, added to ice, stirred thoroughly, the beige precipitate was filtered, washed with water and dried to afford the product 4 a as a beige solid.


5-(2-chloroacetyl)-1, 3, 3-trimethylindolin-2-one (4a). ${ }^{16}$ yield: 91\%, beige solid. ${ }^{1} \mathrm{H}$ NMR (CDCl $3,300 \mathrm{MHz}$ ): $\delta 7.94(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}$, 2 H ), 3.27 (s, 3H), 1.41 ( $\mathrm{s}, 6 \mathrm{H}$ ); ${ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 190.1,181.6,148.0,136.5,130.2$, 129.0, 122.7, 107.8, 45.6, 44.1, 26.6, 24.3.

## Step II

Oxindole 4a ( 1.0 equiv., $3 \mathrm{mmol}, 755 \mathrm{mg}$ ) was added to a Schlenktube followed by addition of TFA ( 2.5 mL ) under $\mathrm{N}_{2}$. To this solution was added $\mathrm{Et}_{3} \mathrm{SiH}$ ( 2.3 equiv., 1.1 mL ) while cooling to prevent exotherm. The reaction was stirred for 19 h at rt . After reaction, it was diluted with water and extracted with EtOAc , dried with $\mathrm{MgSO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=20: 1$ to 3:1 as the eluent) to afford the desired product 4b as a white solid.


5-(2-chloroethyl)-1, 3, 3-trimethylindolin-2-one (4b). ${ }^{16}$ yield: 88\%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.12(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 75 \mathrm{MHz}\right): \delta 181.5$, 141.7, 136.3, 132.5, 128.1, 123.0, 108.1, 45.4, 44.4, 39.0, 26.4, 24.5.

## Step III

To a 100 ml round-bottom flask equipped with nitrogen inlet and condenser were added oxindole $\mathbf{4 b}$ ( 1.0 equiv., $2.57 \mathrm{mmol}, 610 \mathrm{mg}$ ), N -(3-benzisothiazolyl)-piperazine ( 1.5 equiv., 845 mg ), sodium carbonate ( 2.0 equiv., 544 mg ), sodium iodide ( 6 mg ), and methylisobutyl ketone ( 30 mL ). The reaction was refluxed 47 hours, cooled, filtered, and evaporated. The residue was chromatographed on silica gel (petroleum ether/EtOAc $=3: 1$ to $1: 1$ as the eluent) to afford the desired product $\mathbf{4 c}$ as a beige solid.


5-(2-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)ethyl)-1, 3, 3-trimethylindolin-2-one (4c). ${ }^{16}$ yield: $65 \%$, beige solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$ ): $\delta 7.89(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77$ ( $\mathrm{d}, \mathrm{J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{t}, \mathrm{J}=4.5$ $\mathrm{Hz}, 4 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 181.3,163.9,152.7,140.9$, $136.0,134.5,128.0,127.7,127.5,123.9,122.8,120.6,107.9,60.8,53.0,50.1,44.2,33.3,26.2$,

## (k) Synthesis of potent oral inotropes ${ }^{17}$



## Step I

Dimethylformamide ( $1.1 \mathrm{~mL}, 2.8$ equiv.) was added in a dropwise fashion to anhydrous $\mathrm{AlCl}_{3}(6.67 \mathrm{~g}, 10.0$ equiv.), and the exothermic reaction mixture was then allowed to cool to room temperature. An intimate mixture of succinic anhydride ( $500 \mathrm{mg}, 5 \mathrm{mmol}, 1.0$ equiv.) and oxindole 3 a ( $806 \mathrm{mg}, 1.0$ equiv.) was slowly added to the $\mathrm{AlCl}_{3} / \mathrm{DMF}$ melt. The reaction mixture was then stirred 5 h at $80^{\circ} \mathrm{C}$. The reaction mixture was slowly poured onto ice, and the product 5a was isolated by filtration as a beige solid.


4-(3, 3-dimethyl-2-oxoindolin-5-yl)-4-oxobutanoic acid (5a). ${ }^{17}$ yield: $77 \%$, beige solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{d}_{6}$-DMSO, 300 MHz ): $\delta 12.14(\mathrm{~s}, 1 \mathrm{H}), 10.76(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 197.9,183.5,174.9,146.6,137.2,131.5,130.0,123.4,110.0,44.6,33.7,28.9$, 24.8.

## Step II

A mixture of 5 a ( $784 \mathrm{mg}, 3.0 \mathrm{mmol}$ ) and $50 \%$ hydrazine hydrate ( $661 \mathrm{mg}, 2.2$ equiv.) in 10 mL of absolute ethanol was refluxed for 4.5 h and then cooled slowly to room temperature. The precipitate was filtered and dried to afford 630 mg of product $\mathbf{5 b}$ as a light-tan solid.


3, 3-dimethyl-5-(4-oxo-1, 4, 5, 6-tetrahydropyridazin-3-yl)indolin-2-one (5b). ${ }^{17}$ yield: $87 \%$, light-tan solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{d}_{6}$-DMSO, 300 MHz ): $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 10.53(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $1.30(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 183.2,168.0,150.6,143.1,137.3,130.6,126.7,121.0$,
110.1, 44.7, 27.0, 24.9, 22.9. IR (ATR): 3198, 1709, 1652, 1617, 1499, 1355, 1209, 970, 808, 698. HRMS (ESI): found: 258.1238, calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 258.1237$.

## Mechanism study

## Scheme 1 Control experiment



## Procedures:

$\alpha$-bromoamide 1a ( $0.3 \mathrm{mmol}, 76.8 \mathrm{mg}, 1.0$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.24 \mathrm{mmol}, 78.2 \mathrm{mg}$, 0.8 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4-dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred under argon at $100^{\circ} \mathrm{C}$ for 30 h . After reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc =50:1 to $15: 1$ as the eluent) to afford 1a' as a white solid.


N-methyl-N-phenylmethacrylamide (1a'). ${ }^{18}$ yield: $23 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ $\mathrm{MHz}): \delta 7.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H})$, $4.97(\mathrm{~s}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 171.7,144.4,140.5,129.1$, 126.7, 126.3, 119.1, 37.4, 20.1.

## Scheme 2 Heck-type cyclization reaction



## Procedures:

$\alpha$-bromoamide 1a' ( $0.30 \mathrm{mmol}, 1.0$ equiv.), NHC A ( $12.4 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred under $\mathrm{N}_{2}$ at $100^{\circ} \mathrm{C}$ for 30 h . After reaction, the mixture was detected by GC-MS and showed no desired product produced.

## Scheme 3 Radical trapping experiments



## Procedures:

(a) TEMPO
$\alpha$-bromoamide 1a ( $0.3 \mathrm{mmol}, 76.8 \mathrm{mg}$, 1.0 equiv.), NHC A ( $12.4 \mathrm{mg}, 10 \mathrm{~mol} \%$ ), TEMPO ( $66.1 \mathrm{mg}, 1.0$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}$, 0.8 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4-dioxane ( 1.0 mL ) was added through the sidearm by syringe. The reaction was stirred under argon at $100{ }^{\circ} \mathrm{C}$ for 30 h . Only little product $\mathbf{2 a}(<5 \%)$ was detected by GC-MS.
(b) Under $\mathrm{O}_{2}$
$\alpha$-bromoamide 1a ( $0.3 \mathrm{mmol}, 76.8 \mathrm{mg}, 1.0$ equiv.), NHC A ( $12.4 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to $\mathrm{O}_{2}$ (via $\mathrm{O}_{2}$ balloon). Then 1, 4-dioxane $(1.0 \mathrm{~mL})$ was added through the side-arm by syringe. The reaction was stirred under argon at $100^{\circ} \mathrm{C}$ for 30 h . Only trace product 2a was detected by GC-MS.
(c) N -allyl substrate for radical cyclization


## Procedures:

$\alpha$-bromoamide 1an ( $0.30 \mathrm{mmol}, 1.0$ equiv.), NHC A ( $12.4 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred
under $\mathrm{N}_{2}$ at $100^{\circ} \mathrm{C}$ for 30 h . After reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to $30: 1$ as the eluent) to afford the products $\mathbf{2 a n}$ and 2ao.


N-methyl-N-phenylmethacrylamide (2an). ${ }^{19}$ yield: 32\%, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta 7.65(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, \mathrm{J}=9.4$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{t}, \mathrm{J}=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.03$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (CDCl $3,75 \mathrm{MHz}$ ): $\delta 179.4,139.9,128.9,124.3,119.7,52.4,44.8,37.8,23.8$, 18.5, 12.5 .


N-methyl-N-phenylmethacrylamide (2ao). yield: 33\%, white solid. ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 300$ MHz ): $\delta 7.65$ ( $\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=9.9$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}$, $\left.3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,75 \mathrm{MHz}\right): ~ \delta 177.8,139.4,129.0,124.8,119.9,50.7,45.6,45.4,31.3,24.5$, 18.7. IR (ATR): 2967, 1691, 1595, 1499, 1394, 1298, 1101, 896, 798, 757. HRMS (ESI): found: 282.0489, calcd. for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{\dagger}$ : 282.0488.

## Scheme 4 Radical rearrangement experiments



## Procedures:

$\alpha$-bromoamide 1ao ( $0.30 \mathrm{mmol}, 1.0$ equiv.), NHC A ( $12.4 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred under $\mathrm{N}_{2}$ at $100{ }^{\circ} \mathrm{C}$ for 30 h . After reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=40: 1$ to 10:1 as the eluent) to afford the products 2ap and 2aq.

## Proposed mechanism:




2-methyl-N-phenyl-2-(p-tolyl)propanamide (2ap). ${ }^{20}$ yield: $15 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.37-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}$, $\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right): ~ \delta ~ 176.0,141.7$, 138.2, 137.2, 129.8, 129.0, 126.6, 124.2, 119.7, 47.9, 27.2, 21.1.


4-methyl-N-phenylbenzenesulfonamide (2aq). ${ }^{\mathbf{2 1}}$ yield: $69 \%$, white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz ): $\delta 7.69$ (d, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.37 (s, 1H), 7.25-7.19 (m, 4H), 7.10-7.05 (m, 3H), 2.35 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$ ): $\delta 144.0,136.7,136.1,129.7,129.4,127.4,125.3,121.5,21.6$.

## Scheme 5 Influences of the amount of base




Procedure: Following the General Procedure for NHC-Catalyzed Oxindole Synthesis.

Scheme 6 Competitive experiments


## Procedures:

(a) $\alpha$-bromoamides 1a/1q ( $0.15 \mathrm{mmol}, 1.0$ equiv.), NHC A (12.4 mg, $10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4-dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred under $\mathrm{N}_{2}$ at $100{ }^{\circ} \mathrm{C}$ for 18 h . After reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc $=50: 1$ to 30:1 as the eluent) to afford the products mixture as an oil, then $\mathrm{CH}_{2} \mathrm{Br}_{2}(0.15 \mathrm{mmol})$ was added and the mixture was subjected to ${ }^{1} \mathrm{H}$ NMR, the ratios of the products were determined by ${ }^{1} \mathrm{H}$ NMR.

CMW-II-30-1

## 

$$
\stackrel{\bar{z}}{\stackrel{1}{i}}
$$


(b) $\alpha$-bromoamides 1a/1ad ( $0.15 \mathrm{mmol}, 1.0$ equiv.), NHC A ( $12.4 \mathrm{mg}, 10 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $0.24 \mathrm{mmol}, 78.2 \mathrm{mg}$, 0.8 equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4-dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred under $\mathrm{N}_{2}$ at $100{ }^{\circ} \mathrm{C}$ for 18 h . After reaction, the residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc =50:1 to 30:1 as the eluent) to afford the product 3a ( $15.9 \mathrm{mg}, 60 \%$ yield), $\mathbf{3 q}$ ( $28.0 \mathrm{mg}, 99 \%$ yield).

## Scheme 7 Reaction under light or in the dark



## Procedures:

(a) $\alpha$-bromoamides 1a ( $0.3 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1, 4-dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred under UV or visible light at rt for 30 h . After reaction, only starting material 1a was detected.
(b) $\alpha$-bromoamides 1a ( $0.3 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.24 \mathrm{mmol}, 78.2 \mathrm{mg}, 0.8$ equiv.) were weighed into a Schlenk tube. The reaction vessel was capped and subjected to three vacuum-purge/nitrogen-flush cycles. Then 1,4 -dioxane ( 1.0 mL ) was added through the side-arm by syringe. The reaction was stirred in the dark at rt for 30 h . After reaction, only starting material 1a was detected.

## References

(1) C.-P. Chuang, Y.-Y. Chen, T.-H. Chuang, C.-H. Yang, Synthesis, 2017, 49, 1273.
(2) K. Lu, X.-W. Han, W.-W. Yao, Y.-X. Luan, Y.-X. Wang, H. Chen, X.-T. Xu, K. Zhang, M. Ye, ACS Catal., 2018, 8, 3913.
(3) J.-Q. Chen, Y.-L. Wei, G.-Q. Xu, Y.-M. Liang, P.-F. Xu, Chem. Commun., 2016, 52, 6455.
(4) C. Liu, D. Liu, W. Zhang, L. Zhou, A. Lei, Org. Lett., 2013, 15, 6166.
(5) J. M. D. Storey, M. M. Ladwa, Tetrahedron Lett., 2006, 47, 381.
(6) B. Mondala, B. Roy, RSC Adv., 2015, 5, 69119.
(7) X. Jiang, J. Yang, F. Zhang, P. Yu, P. Yi, Y. Sun, Y. Wang, Org. Lett., 2016, 18, 3154.
(8) W. G. Beyersbergen van Henegouwen, R. M. Fieseler, F. P. J. T. Rutjes, H. Hiemstra, J. Org. Chem., 2000, 65, 8317.
(9) H. Li, X. Yan, J. Zhang, W. Guo, J. Jiang, J. Wang, Angew. Chem. Int. Ed., 2019, 58 , 6732.
(10) T. Nishio, N. Okuda, Y. Omote, J. Chem. Soc. Perkin Trans. 1, 1988, 7, 1663.
(11) W.-L. Jia, N. Westerveld, K. M. Wong, T. Morsch, M. Hakkennes, K. Naksomboon, M. Á. Fernández-lbáñez, Org. Lett., 2019, 21, 9339.
(12) W.-H. Li, C. Li, L. Dong, Asian J. Org. Chem., 2018, 7, 2448.
(13) H. Li, W. Guo, J. Jiang, J. Wang, Asian J. Org. Chem., 2020, 9, 233.
(14) M. Fukui, Y. Endo, T. Oishi, Chem. Pharm. Bull., 1980, 28, 3639.
(15) W. von der Saal, J.-P. Hoick, W. Kampe, A. Mertens, B. Müller-Beckmann, J. Med. Chem., 1989, 32, 1481.
(16) S. J. Romano, PCT Int. Appl., $2004100955,2004$.
(17) D. W. Robertson, J. H. Krushinski, E. E. Beedle, V. Wyss, G. D. Pollock, H. Wilson, R. F. Kauffman, J. S. Hayes, J. Med. Chem. 1986, 29, 1832.
(18) P.Kilaru, S. P. Acharya, P. Zhao, Chem. Commun., 2018, 54, 924.
(19) J.-Q. Chen, R. Chang, J.-B. Lin, Y.-C. Luo, P.-F. Xu, Org. Lett., 2018, 20, 2395.
(20) Y. Li, B. Hu, W. Dong, X. Xie, J. Wan, Z. Zhang, J. Org. Chem., 2016, 81, 7036.
(21) I. A. MacKenzie, L. Wang, N. P. R. Onuska, O. F. Williams, K. Begam, A. M. Moran, B. D. Dunietz, D. A. Nicewicz, Nature 2020, 580, 76.

NMR Spectra Images of Products
CMW-I-41

## 



2a

CMW-I-41 13C



2a


CMW-I-119-10

气incinijiju



คัก ํㅜํ



CMW-F-119-10 13 C
13C
2b










[^0]CMW-I-190

##  <br> iñ injiji






200
$\begin{array}{lll}190 & 180 & 170\end{array}$
$160 \quad 150$
140
120 $110 \begin{gathered}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{gathered}$
$\qquad$
70
50
40
30 10


|  |  |  |  |  |  | - |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { Th } \\ & \text { gig } \\ & \text { d } \end{aligned}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | $\begin{gathered} 5.0 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 |  | 1.5 | 1.0 | 0.5 | 0.0 |








hun
10 ald 1




[^1]







$2 i$


$\stackrel{\text { ® }}{\square}$




${ }^{2 k}$



2k





2m
$\begin{array}{llll}200 & 190 & 180 & 170\end{array}$
$160 \quad 150$
$\begin{array}{lllll}130 & 120 & 110 & \begin{array}{c}100 \\ \mathrm{f}(\mathrm{ppm})\end{array} & 90\end{array}$
$80 \quad 70$
60
40
(ppm)

$2 n$

## .





2n

[^2]80
50

CMW-F-119-4 13C




## $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ f 1(\mathrm{ppm})\end{array}\end{array}$

CMW-I-119-7 Again

CMW-I-119-7 Again 13C

2p

CMW-I-119-1



$2 q$


CMW-I-119-1 13 C




$2 q$




CMW-I-189
若

MeS
2 s


CMW-I-189 13 C

|l|


MeS
2 s


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |






[^3]
CMW-I-174-2 13 C





 ?




[^4]





[^5]
1 龍

$2 x$

CMW-I-188 13 C




$\begin{array}{lllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80\end{array}$

CMW-I-119-3




## CMW-I-119-3 19F


CMW-I-119-3 13C





CMW-I-148 13C





## 新娟

$\frac{1}{i}$
1







## 

CMW-I-131-2

## 

呂
筑
$\stackrel{\text { \% }}{\stackrel{\circ}{4}}$
(as)




## 

CMW-I-131-1A


䧺
$\stackrel{\text { 学 }}{\substack{\text { i }}}$



発



## 龍

$1 \quad \frac{1}{i}$


CMW-I-119-8 19F


CMW-I-119-8 13 C

CMW-I-183-3A










[^6]

CMW-I-145-2 13 C n
n
$\frac{3}{ \pm}$
1

$\stackrel{\text { 畨 }}{\text { i }}$



[^7]80
60
0


2aj



CMW-II-65-A 13C








CMW－II－67－B 13C





| T | 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | $T$ |  | 1 | $T$ | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

CMW-II-55






| 1 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f 1(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |





CMW-I-122-6B 13C





2ao


120141

## 風



药




MW-II-3n




卷



[^8]


3b




CMW－甚32A 13







LLX-I-84-C


喜
it
$i$



3d


```
CMWW－I－2I
```











1 i


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |












[^9]CMW-II-7
$\stackrel{2}{3}$
$\stackrel{3}{n}$

CMW-II-7 13C
育





CMW-II-6

管
$\stackrel{\text { 畣 }}{1}$



CMW-II-6 13C
$\overrightarrow{\stackrel{\rightharpoonup}{0}}$
$\stackrel{m}{m}$
$\stackrel{\rightharpoonup}{\omega}$
$\overrightarrow{1}$







| CMW-II-11 13太 |
| :---: |





|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$ | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

膏
1
1



CMW-II-12 13C






chine
















[^0]:    

[^1]:    

[^2]:    $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}$

[^3]:    

[^4]:    $\begin{array}{llllllllllll}100 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 1 \\ & & & & & & 100\end{array}$

[^5]:    

[^6]:    

[^7]:    $\begin{array}{lllllll}200 & 190 & 180 & 170 & 160 & 150 & 140\end{array}$
    $130 \quad 120$
    $\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{c}100 \\ f 1 \\ (p p m)\end{array}\end{array}$

[^8]:    $\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \left.\begin{array}{l}100 \\ f 1\end{array}\right)\end{array}$

[^9]:    

