Electronic Supplementary Information

3,6-Diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives: unexpectedly facile synthesis, full-color-tunable solid-state emissions and mechanofluorochromic activities

Xinyu Zhang,^a Dan Wang,^a Hao Shen,^b Shuxian Wang,^a Yunbing Zhou,^a Yunxiang Lei,^{*a} Wenxia Gao,^a Miaochang Liu,^a Xiaobo Huang,^{*a} and Huayue Wu

^a College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China

^b Bureau Veritas Consummer Products Services Shenou (Wenzhou) Co. Itd., Wenzhou, 325035, P. R. China

E-mail: yunxianglei@wzu.edu.cn (Y. Lei), xiaobhuang@wzu.edu.cn (X. Huang)

Contents:

Scheme S1 Chemical structures of symmetrical DCMP derivatives and synthetic routes of 1b, 1e, 1l, 1n, and 4.

Scheme S2 Chemical structures non-asymmetric DCMP derivatives and synthetic routes of 8a and 8c.

1. Experimental

1.1 Measurements and materials

¹H and ¹³C NMR spectra were performed with a Bruker DRX 500 NMR spectrometer or a Bruker DRX 400 NMR spectrometer. High-resolution electrospray ionization (HRMS-ESI) mass spectra were conducted on a Hitachi Nano Frontier LD spectrometer. The mass spectra were conducted on a Finnigan DCMDX-30000 LCQ DCMD mass spectrometer. Melting points were conducted on a WRS-1B digital melting point meter (uncorrected). Absorption spectra were performed with a UV-3600 Shimadzu spectrophotometer. Fluorescence spectra were conducted on a HITACHI F-

7000 fluorometer. Absolute fluorescence quantum yields ($\Phi_{\rm F}$) in solid state and time-resolved emission decay parameters were conducted on a FluoroMax-4 (Horiba Jobin Yvon) fluorometer. Single-crystal X-ray diffraction measurements were obtained on a Bruker-Nonius Smart Apex CCD diffractometer with graphite monochromated Mo K α radiation. The symmetrical DCMP derivatives 2-(2,6-di((E)-styryl)-4H-pyran-4-ylidene)malononitrile (1a)¹, 2-(2,6-bis((E)-4methoxystyryl)-4*H*-pyran-4-ylidene)malononitrile $(1c)^2$, 2-(2,6-bis)((E)-4-fluorostyryl)-4H-pyran-4-ylidene) malononitrile (1d)³, 2-(2,6-bis((E)-4-bromostyryl)-4H-pyran-4-ylidene)malononitrile $(1f)^4$, 2-(2,6-bis((*E*)-4-(dimethylamino)styryl)-4*H*-pyran-4-ylidene)malononitrile $(1g)^5$, 2-(2,6bis((E)-4-(diphenylamino)styryl)-4H-pyran-4-ylidene)malononitrile (1h) [6], 2-(2,6-bis((E)-2-(naphthalen-1-yl)vinyl)-4H-pyran-4-ylidene) malononitrile (1i) 7, 2-(2,6-bis((E)-2-(naphthalen-2yl)vinyl)-4*H*-pyran-4-ylidene)malononitrile (1) 7 , 2-(2,6-bis((*E*)-2-(anthracen-9-yl)vinyl)-4*H*pyran-4-ylidene)malononitrile $(1k)^2$, 2-(2,6-bis((E)-2-(thiophen-2-yl)vinyl)-4H-pyran-4-ylidene)malononitrile $(1m)^8$ were synthesized according to the previous literatures. 2-(2,6-Bis((E)-4methylstyryl)-4*H*-pyran-4-ylidene)malononitrile (1b), 2-(2,6-bis((*E*)-4-chlorostyryl)-4*H*-pyran-4vlidene)malononitrile (1e), 2-(2,6-bis((E)-2-(pyridin-4-yl)vinyl)-4H-pyran-4-ylidene)malononitrile (11), 2-(2,6-bis((E)-2-(1H-indol-2-yl)vinyl)-4H-pyran-4-ylidene)malononitrile (1n), and 2-(2,6-bis((E)-2-cyclohexylvinyl)-4H-pyran-4-ylidene)malononitrile (4) were synthesized by amethod similar to that in the literature, using 2-(2,6-dimethyl-4H-pyran-4-ylidene)malononitrile $(\mathbf{R3})$ and the corresponding aldehydes as the starting materials (Scheme S1).⁷ The non-DCMP (E)-2-(2-(4-(dimethylamino)styryl)-6-phenyl-4H-pyran-4symmetrical derivative ylidene)malononitrile (8b) was synthesized according to the previous literature.⁹ (E)-2-(2-(4-Methylstyryl)-6-phenyl-4*H*-pyran-4-ylidene)malononitrile (8a) and (E)-2-(2-(4-(di-ptolylamino)styryl)-6-phenyl-4H-pyran-4-ylidene)malononitrile (8c) were synthesized by a method similar to that in the literature, using 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)malononitrile (R4) and the corresponding aromatic aldehydes as the starting materials (Scheme S2).¹⁰ Ethyl 2-cyano-2-(2,6-di((E)-styryl)-4H-pyran-4-ylidene) acetate (6) was synthesized using ethyl 2,6-dimethyl-4pyrone, 2-cyanoacetate, and benzaldehyde as the raw materials according to the previous literature.11

1.2 General procedure for the symmetrical DCMP derivatives 1b, 1e, 1l, 1n, and 4.

A mixture of compound **R3** (1.0 mmol), various aldehydes (6.0 mmol), piperidine (1.0 mL), and acetonitrile (10 mL) was refluxed under N_2 atmosphere for 24 h. The reaction mixture was poured into in methanol (50 mL) to precipitate out the crude product after being cooled to the room temperature. The crude product was washed with acetone and methanol three times, respectively, and then dried to afford the corresponding pure product. Characterization data of the DCMP derivatives are listed as follows.

2-(2,6-Bis((*E***)-4-methylstyryl)-4***H***-pyran-4-ylidene)malononitrile (1b).** Yellowish-brown solid (252 mg, 67% yield). ¹H NMR (CDCl₃, 400 MHz): δ 7.54-7.49 (m, 6H), 7.28-7.26 (m, 4H),

6.73 (d, J = 16.0 Hz, 2H), 6.67 (s, 2H), 2.43 (s, 6H) ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₆H₂₁N₂O, 377.1654; found, 377.1652.

2-(2,6-Bis((*E***)-4-chlorostyryl)-4***H***-pyran-4-ylidene)malononitrile (1e). Yellow-green solid (312 mg, 75% yield). ¹H NMR (CDCl₃, 500 MHz): \delta 7.53 (d,** *J* **= 8.5 Hz, 4H), 7.47 (d,** *J* **= 16.0 Hz, 4H), 7.43 (d,** *J* **= 8.5 Hz, 4H), 6.75 (d,** *J* **= 16.0 Hz, 2H), 6.72 (s, 2H) ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₄H₁₅Cl₂N₂O, 417.0561; found, 417.0550.**

2-(2,6-Bis((*E***)-2-(pyridin-4-yl)vinyl)-4***H***-pyran-4-ylidene)malononitrile (11). Deep yellow solid (196 mg, 56% yield). NMR spectra of compound 11 cannot be obtained because of very poor solubility in common organic solvents. HRMS (ESI) m/z: [M+H]^+ calculated for C₂₂H₁₅N₄O, 351.1246; found, 351.1242.**

2-(2,6-Bis((*E***)-2-(1***H***-indol-2-yl)vinyl)-4***H***-pyran-4-ylidene)malononitrile (1n). Red solid (349 mg, 82% yield). ¹H NMR (DMSO-d_6, 500 MHz): \delta 11.87 (s, 2H), 8.25 (d, J = 8.0 Hz, 2H), 8.00 (d, J = 16.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.28-7.19 (m, 6H), 6.92 (s, 2H) ppm. ¹³C NMR (DMSO-d_6, 125 MHz): \delta 160.4, 156.3, 137.6, 132.6, 132.5, 124.6, 122.7, 120.9, 120.8, 116.7, 113.3, 112.8, 112.4, 104.4, 52.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₈H₁₉N₄O, 427.1559; found, 427.1553.**

2-(2,6-Bis((*E***)-2-cyclohexylvinyl)-4***H***-pyran-4-ylidene)malononitrile (4). Greyish-green solid (202 mg, 56% yield). NMR spectra of compound 4 cannot be obtained because of very poor solubility in common organic solvents. HRMS (ESI) m/z: [M+H]^+ calculated for C₂₄H₂₉N₂O, 361.2280; found, 361.2270.**

1.3 General procedure for the non-symmetric DCMP derivatives 8a and 8c.

A mixture of compound **R4** (1.0 mmol), various aldehydes (1.5 mmol), piperidine (0.4 mL), and acetonitrile (10 mL) was refluxed under N_2 atmosphere for 10 h. The reaction mixture was poured into in methanol (50 mL) to precipitate out the crude product after being cooled to the room temperature. The crude product was washed with methanol three times and then dried to afford the corresponding pure product. Characterization data of the DCMP derivatives are listed as follows.

(*E*)-2-(2-(4-Methylstyryl)-6-phenyl-4*H*-pyran-4-ylidene)malononitrile (8a). Yellow solid (248 mg, 74% yield). ¹H NMR (DMSO- d_6 , 400 MHz): δ 8.13-8.12 (m, 1H), 7.70-7.59 (m, 6H), 7.39 (d, *J* = 16.0 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 2.0 Hz, 1H), 6.98 (d, *J* = 1.6 Hz, 1H), 2.35 (s, 3H) ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₃H₁₇N₂O, 337.1341; found, 337.1344.

(*E*)-2-(2-(4-(Di-*p*-tolylamino)styryl)-6-phenyl-4*H*-pyran-4-ylidene)malononitrile (8c). Dark red solid (357 mg, 69% yield). ¹H NMR (CDCl₃, 400 MHz): δ 7.88-7.86 (m, 2H), 7.61-7.53 (m, 3H), 7.47 (d, *J* = 15.6 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 1H), 7.09-7.05 (m, 5H), 6.97 (d, *J* = 8.4 Hz, 1H), 6.71 (d, *J* = 2.0 Hz, 1H), 6.60 (d, *J* = 16.0 Hz, 1H), 2.35 (s, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 159.6, 159.5, 156.1, 150.6, 144.1, 138.2, 134.3, 132.2, 130.6,

130.2, 129.4, 129.1, 126.4, 126.2, 125.8, 120.2, 115.48, 115.45, 114.7, 106.5, 104.2, 59.1, 20.9 ppm. HRMS (ESI) m/z: $[M+H]^+$ calculated for $C_{36}H_{28}N_3O$, 518.2232; found, 518.2219.

1.4 General procedure for the DDIC derivatives

A mixture of compound **1a-n/8a-c** (0.3 mmol), various secondary amines (1.2 mmol), KH₂PO₄ (0.9 mmol), and DMSO (2.5 mL) was stirred at 120 °C for 14 h under N₂ atmosphere. After being cooled to the room temperature, the reaction mixture was poured into CH_2Cl_2 (20 mL), and the organic layer was washed with water (10 mL) for three times, and then dried over Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel to afford the corresponding product. Characterization data of the DDIC derivatives are listed as follows.

(*E*)-8-Phenyl-3,6-di(piperidin-1-yl)-1-styryl-7,8-dihydroisoquinoline-4-carbonitrile (3aa). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (135.1 mg, 90% yield). M. p. 171.8-172.3°C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.65 (d, J = 15.0 Hz, 1H), 7.54 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.30-7.21 (m, 4H), 7.16-7.11 (m, 3H), 5.61 (s, 1H), 4.77-4.75 (m, 1H), 3.47-3.46 (m, 4H), 3.32-3.27 (m, 2H), 3.26-3.21 (m, 2H), 2.88-2.87 (m, 2H), 1.66-1.65 (m, 4H), 1.63-1.61(m, 2H), 1.56-1.51 (m, 2H), 1.45-1.39 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 153.1, 151.8, 150.5, 143.2, 137.0, 135.2, 128.53, 128.50, 128.2, 127.3, 127.2, 126.6, 123.8, 119.0, 116.3, 93.8, 87.5, 50.2, 47.7, 37.8, 33.4, 26.0, 25.2, 24.8, 24.4 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₇N₄, 501.3013; found, 501.2997.

(E)-3,6-Bis(4-methylpiperidin-1-yl)-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4-

carbonitrile (3ab). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (130.0 mg, 82% yield). M. p. 193.0-193.4°C. ¹H NMR (DMSO- d_6 , 400 MHz): δ 7.65 (d, J = 15.2 Hz, 1H), 7.53 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.30-7.20 (m, 4H), 7.17-7.11 (m, 3H) , 5.63 (s, 1H) , 4.77-4.74 (m, 1H), 4.08 (d, J = 12.0 Hz, 2H), 3.79-3.70 (m, 2H), 2.95-2.85 (m, 4H) , 2.82-2.74 (m, 2H), 1.73 (d, J = 12.8 Hz, 2H), 1.62-1.53 (m, 4H), 1.35-1.23 (m, 3H), 0.96 (d, J = 6.4 Hz, 3H), 0.90 (d, J = 11.2 Hz, 1H), 0.82 (d, J = 5.6 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.5, 153.1, 151.8, 150.5, 143.2, 137.0, 135.2, 128.54, 128.52, 128.2, 127.30, 127.25, 126.6, 123.8, 119.0, 116.3, 93.9, 87.5, 49.6, 49.4, 47.2, 47.0, 37.9, 34.31, 34.29, 33.7, 33.4, 33.2, 31.2, 30.9, 22.0, 21.6 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₁N₄, 529.3326; found, 529.3330.

(*E*)-3,6-Bis(3-methylpiperidin-1-yl)-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4carbonitrile (3ac). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (107.8 mg, 68% yield). M. p. 181.2-183.6 °C. ¹H NMR (DMSO- d_6 , 400 MHz): δ 7.64 (d, J = 15.2 Hz, 1H), 7.52 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.2 Hz, 2H), 7.30-7.20 (m, 4H), 7.16-7.10 (m, 3H) , 5.61 (s, 1H) , 4.75-4.74 (m, 1H), 4.05-3.97 (m, 2H), 3.71-3.59 (m, 2H), 2.94-2.73 (m, 4H), 2.67-2.53 (m, 2H), 1.82-1.53 (m, 6H), 1.47-1.39 (m, 1H), 1.34-1.28 (m, 1H), 1.17-1.04 (m, 2H), 0.93 (d, J = 6.4 Hz, 3H), 0.81 (t, J = 5.6 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.3, 153.0, 151.9, 150.5, 143.2, 137.0, 135.2, 128.54, 128.50, 128.2, 127.27, 127.25, 126.6, 123.8, 119.1, 116.1, 93.7, 87.3, 56.9, 54.2, 49.7, 47.3, 33.4, 32.9, 31.1, 30.2, 25.5, 24.8, 24.4, 19.3, 19.1, 19.0 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₁N₄, 529.3326; found, 529.3328.

(*E*)-3,6-Bis(3,5-dimethylpiperidin-1-yl)-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4carbonitrile (3ae). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (83.5 mg, 50% yield). M. p. 213.2-215.0°C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 7.63 (d, *J* = 15.2 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.29-7.20 (m, 4H), 7.16-7.10 (m, 3H), 5.61 (s, 1H), 4.73-4.72 (m, 1H), 4.13 (d, *J* = 13.2 Hz, 2H), 3.68 (t, *J* = 13.2 Hz, 2H), 2.92-2.83 (m, 2H), 2.47-2.40 (m, 2H), 2.37-2.25 (m, 2H), 1.82-1.66 (m, 4H), 1.45-1.38 (m, 2H), 0.90 (d, *J* = 6.4 Hz, 6H), 0.82 (t, *J* = 6.8 Hz, 6H), 0.76-0.68 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 160.9, 152.8, 151.9, 150.5, 143.2, 137.0, 135.2, 128.6, 128.5, 128.2, 127.27, 127.26, 126.6, 123.8, 119.1, 116.0, 93.8, 87.1, 56.4, 56.3, 54.00, 53.95, 42.7, 42.2, 37.8, 33.5, 31.20, 31.15, 31.1, 30.2, 19.3, 19.2, 19.0 ppm. HRMS (ESI) m/z: [M+H]⁺calculated for C₃₈H₄₅N₄, 557.3639; found, 557.3653.

(*E*)-3,6-Bis(4-hydroxypiperidin-1-yl)-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4carbonitrile (3af). Following the general procedure, using petroleum ether/ethyl acetate (1:10, v/v) as the eluent to afford a yellow-green solid (146.9 mg, 92% yield). M. p. 172.7-173.6°C. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.65 (d, *J* = 15.5 Hz, 1H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.30-7.21 (m, 4H), 7.16-7.11 (m, 3H), 5.64 (s, 1H), 4.78-4.72 (m, 3H), 3.90-3.88 (m, 2H), 3.70-3.64 (m, 2H), 3.61-3.53 (m, 2H), 3.17-3.11 (m, 2H), 3.06-2.96 (m, 2H), 2.89-2.88 (m, 2H), 1.89-1.87 (m, 2H), 1.72-1.66 (m, 2H), 1.57-1.50 (m, 2H), 1.32-1.25 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.1, 152.9, 151.7, 150.7, 142.9, 136.8, 135.6, 128.60, 128.58, 128.4, 127.3, 127.2, 126.8, 123.5, 118.8, 116.7, 94.3, 87.7, 68.3, 67.0, 46.7, 44.1, 44.0, 37.8, 34.47, 34.45, 33.5, 33.4, 33.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₇N₄O₂, 533.2911; found, 533.2923.

(*E*)-1,1'-(4-Cyano-8-phenyl-1-styryl-7,8-dihydroisoquinoline-3,6-diyl)bis(piperidine-4carboxamide) (3ah). Following the general procedure, using ethyl acetate/methyl alcohol (10:1, v/v) as the eluent to afford a yellow-green solid (140.7 mg, 80% yield). M. p. 156.7-157.3 °C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 7.66 (d, *J* = 14.8 Hz, 1H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.37-7.28 (m, 6H), 7.22 (t, *J* = 7.6 Hz, 3H), 7.17-7.13 (m, 2H) , 6.79 (s, 2H) , 5.64 (s, 1H), 4.78-4.76 (m, 1H), 4.11 (d, *J* = 14.0 Hz, 2H), 3.78 (t, *J* = 15.2 Hz, 2H) , 2.99-2.80 (m, 6H), 2.37-2.30 (m, 2H), 1.84-1.67 (m, 6H), 1.53-1.36 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 177.4, 176.5, 161.2, 153.0, 151.5, 150.9, 142.8, 136.8, 135.7, 128.7, 128.6, 128.4, 127.3, 127.2, 126.8, 123.4, 118.7, 116.9, 94.6, 88.1, 48.9, 48.8, 46.3, 46.0, 43.7, 42.2, 37.8, 33.4, 28.9, 28.8, 28.1, 27.7 ppm. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₆H₃₈N₆NaO₂, 609.2954; found, 609.2945.

(E)-Dimethyl 1,1'-(4-cyano-8-phenyl-1-styryl-7,8-dihydroisoquinoline-3,6-diyl)bis(piperi-

dine-4-carboxylate) (3ai). Following the general procedure, using petroleum ether/ethyl acetate (4:1, v/v) as the eluent to afford a yellow-green solid (147.9 mg, 80% yield). M. p. 189.0-189.6°C. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.66 (d, *J* = 15.5 Hz, 1H), 7.55 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.5 Hz, 2H), 7.30-7.20 (m, 4H), 7.16-7.11 (m, 3H), 5.63 (s, 1H), 4.79-4.77 (m, 1H), 4.02 (d, *J* = 13.0 Hz, 2H), 3.76-3.68 (m, 2H), 3.63 (s, 3H), 3.59 (s, 3H), 3.09-3.01 (m, 2H), 2.98-2.87 (m, 4H), 2.66-2.58 (m, 2H), 1.98-1.95 (m, 2H), 1.85-1.68 (m, 4H), 1.47-1.38 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 175.3, 174.5, 161.2, 152.9, 151.5, 150.8, 142.8, 136.9, 135.6, 128.61, 128.57, 128.4, 127.3, 127.2, 126.8, 123.5, 118.6, 116.9, 94.6, 88.2, 51.8, 51.7, 48.7, 48.6, 46.1, 45.9, 41.3, 40.6, 37.8, 33.4, 28.2, 28.1, 27.4, 27.2 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₈H₄₁N₄O₄, 617.3123; found, 617.3119.

(E)-8-Phenyl-3,6-bis(4-phenylpiperidin-1-yl)-1-styryl-7,8-dihydroisoquinoline-4-

carbonitrile (3aj). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford an orange-yellow solid (184.0 mg, 94% yield). M. p. 202.4-202.9 °C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 7.70 (d, *J* = 15.2 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.37-7.24 (m, 13H), 7.21-7.17 (m, 4H), 7.12 (d, *J* = 7.6 Hz, 2H), 5.72 (s, 1H), 4.83-4.81 (m, 1H), 4.26 (d, *J* = 10.4 Hz, 2H), 3.97-3.85 (m, 2H), 3.07-2.92 (m, 2H), 2.96-2.88 (m, 4H), 2.81-2.72 (m, 2H), 1.94-1.91 (m, 2H), 1.86-1.70 (m, 4H), 1.48-1.32 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.4, 153.0, 151.8, 150.7, 146.2, 145.1, 143.0, 136.9, 135.4, 128.62, 128.57, 128.5, 128.4, 128.3, 127.4, 127.3, 126.9, 126.74, 126.71, 126.4, 126.2, 123.6, 118.9, 116.6, 94.3, 87.9, 50.1, 49.9, 47.6, 47.4, 43.1, 42.6, 37.9, 33.48, 33.47, 33.43, 32.9, 32.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₆H₄₅N₄, 653.3639; found, 653.3645.

(*E*)-8-Phenyl-3,6-di(pyrrolidin-1-yl)-1-styryl-7,8-dihydroisoquinoline-4-carbonitrile (3ak). Following the general procedure, using petroleum ether/ethyl acetate (2:1, v/v) as the eluent to afford a yellow-green solid (137.4 mg, 97% yield). M. p. 186.1-187.5 °C. ¹H NMR (DMSO- d_6 , 400 MHz): δ 7.62 (d, J = 15.2 Hz, 1H), 7.52 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.28-7.19 (m, 4H), 7.17-7.09 (m, 3H) , 5.32 (s, 1H) , 4.73 (d, J = 7.2 Hz, 1H) , 3.72 (d, J = 5.6 Hz, 4H), 3.24 (br, 4H), 3.07-2.89 (m, 2H), 1.92-1.79 (m, 8H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 156.8, 152.6, 151.1, 150.7, 143.8, 137.2, 134.7, 128.50, 128.46, 128.0, 127.4, 127.2, 126.4, 124.1, 120.6, 113.3, 90.8, 81.7, 48.9, 47.7, 37.4, 34.6, 25.7, 25.0 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₃N₄, 473.2700; found, 473.2707.

(*E*)-3,6-Di(azepan-1-yl)-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4-carbonitrile (3al). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (112.5 mg, 71% yield). M. p. 170.7-171.2 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.60 (d, J = 15.5 Hz, 1H), 7.50 (d, J = 7.5 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.27 (t, J = 7.5 Hz, 1H), 7.23-7.16 (m, 5H) , 7.12 (t, J = 7.0 Hz, 1H) , 5.53 (s,1H) , 4.71 (t, J = 4.0 Hz, 1H), 3.85-3.77 (m, 4H), 3.47-3.37 (m, 4H), 2.92 (d, J = 4.0 Hz, 2H) , 1.84 (br, 4H), 1.60-1.54 (m, 6H), 1.37-1.32 (m, 3H) 1.23-1.19 (m, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 158.4, 153.1, 152.0, 150.2, 143.2, 137.2, 134.7, 128.5, 128.4, 128.0, 127.4, 127.2, 126.5, 124.1, 120.4, 113.6, 90.9, 81.7, 50.11, 50.06, 37.8, 33.2, 29.0, 27.4, 26.2 ppm. HRMS (ESI) m/z: $[M+Na]^+$ calculated for $C_{36}H_{40}N_4Na$, 551.3145; found, 551.3135.

(*E*)-3,6-Dimorpholino-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4-carbonitrile (3am). Following the general procedure, using petroleum ether/ethyl acetate (2:1, v/v) as the eluent to afford a yellow-green solid (93.8 mg, 62% yield). M. p. 213.2-213.5°C. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.69 (d, *J* = 15.0 Hz, 1H), 7.56 (d, *J* = 7.0 Hz, 2H), 7.35 (t, *J* = 7.0 Hz, 2H), 7.31-7.22 (m, 4H), 7.17-7.12 (m, 3H) , 5.65 (s,1H) , 4.83-4.82 (m, 1H), 3.76 (t, *J* = 4.0 Hz, 4H), 3.61-3.54 (m, 4H), 3.50 (t, *J* = 5.0 Hz, 4H) , 3.32-3.27 (m, 2H), 3.17-3.13 (m, 2H), 2.97-2.87 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 160.8, 153.4, 151.2, 151.1, 142.8, 136.7, 136.0, 128.7, 128.6, 128.5, 127.3, 127.2, 126.9, 123.2, 118.4, 117.4, 95.0, 88.5, 66.9, 66.1, 49.3, 46.6, 37.7, 33.1 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₂H₃₃N₄O₂, 505.2598; found, 505.2602.

(*E*)-3,6-Bis(benzyl(methyl)amino)-8-phenyl-1-styryl-7,8-dihydroisoquinoline-4carbonitrile (3an). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (103.0 mg, 60% yield). M. p. 159.6-160.3 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7 .55 (d, J = 15.5 Hz, 1H), 7.48 (d, J = 7.5 Hz, 2H), 7.36-7.31 (m, 6H), 7.28-7.20 (m, 5H), 7.19-7.15 (m, 6H) , 6.83 (d, J = 7.0 Hz, 2H), 5.54 (s, 1H), 4.92 (d, J = 15.5 Hz, 1H), 4.81-4.76 (m, 2H), 4.63 (d, J = 16.5 Hz, 1H), 4.44 (d, J = 16.5 Hz, 1H), 3.16 (s, 3H), 3.00 (d, J = 4.5 Hz, 2H), 2.89 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 159.7, 152.8, 152.7, 150.6, 142.7, 139.0, 137.0, 136.9, 135.4, 128.7, 128.6, 128.5, 128.4, 128.2, 127.8, 127.5, 127.22, 127.19, 126.9, 126.7, 126.2, 123.6, 119.6, 115.0, 92.0, 84.2, 55.5, 54.5, 38.8, 38.2, 37.9, 33.5 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₀H₃₇N₄, 573.3013; found, 573.3002.

(*E*)-1-(4-Methylstyryl)-3,6-di(piperidin-1-yl)-8-(*p*-tolyl)-7,8-dihydroisoquinoline-4carbonitrile (3ba). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (118.9 mg, 75% yield). M. p. 156.8-157.8°C. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.61 (d, *J* = 15.5 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.18-7.15 (m, 3H), 7.04-7.00 (m, 4H), 5.60 (s, 1H), 4.70-4.68 (m, 1H) , 3.46 (br, 4H), 3.31-3.27 (m, 2H), 3.25-3.20 (m, 2H), 2.84 (d, *J* = 4.0 Hz, 2H), 2.29 (s, 3H) , 2.18 (s, 3H), 1.66-1.61 (m, 6H), 1.56-1.52 (m, 2H), 1.45-1.41 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 153.3, 151.7, 150.7, 140.3, 138.2, 136.0, 135.1, 134.3, 129.3, 129.2, 127.3, 127.1, 122.9, 119.1, 116.4, 93.8, 87.5, 50.3, 47.7, 37.4, 33.3, 26.0, 25.2, 24.8, 24.4, 21.3, 21.0 ppm. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₆H₄₀N₄, 551.3145; found, 551.3163.

(E)-8-(4-Methoxyphenyl)-1-(4-methoxystyryl)-3,6-di(piperidin-1-yl)-7,8-

dihydroisoquinoline-4-carbonitrile (3ca). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (110.9 mg, 66% yield). M. p. 174.9-176.2 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.61 (d, J = 15.0 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 7.10-7.05 (m, 3H), 6.92 (d, J = 8.5 Hz, 2H), 6.77 (d, J = 8.5 Hz, 2H) , 5.60 (s, 1H) , 4.67 (br,1H) , 3.76 (s, 3H), 3.65 (s, 3H), 3.45 (br, 4H), 3.29-3.27 (m, 2H) , 3.24-3.22 (m, 2H), 2.83-2.82 (m, 2H), 1.66-1.61 (m, 6H), 1.56-1.54 (m, 2H), 1.45-1.43 (m, 4H) ppm. ¹³C NMR (CDCl₃,

125 MHz): δ 161.7, 160.0, 158.2, 153.2, 151.6, 150.9, 135.4, 134.8, 129.9, 128.7, 128.4, 121.7, 119.2, 116.3, 114.1, 113.9, 93.8, 87.4, 55.3, 55.2, 50.3, 47.7, 37.1, 33.6, 26.1, 25.3, 24.9, 24.4 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₆H₄₁N₄O₂, 561.3224; found, 561.3205.

(*E*)-8-(4-Fluorophenyl)-1-(4-fluorostyryl)-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4carbonitrile (3da). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (57.9 mg, 36% yield). M. p. 134.8-135.6 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.66-7.61 (m, 3H), 7.22-7.16 (m, 4H), 7.04 (t, J = 8.5 Hz, 2H), 5.61 (s, 1H), 4.81-4.80 (m, 1H), 3.47-3.46 (m, 4H), 3.30-3.19 (m, 4H), 2.90-2.82 (m, 2H), 1.66-1.61 (m, 6H), 1.56-1.53 (m, 2H), 1.48-1.39 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 162.7 (d, J = 246.3 Hz), 161.6, 161.59 (d, J = 242.5 Hz), 152.9, 151.8, 150.3, 138.8, 134.1, 133.2, 128.81 (d, J = 7.5 Hz), 128.79 (d, J = 7.5 Hz), 123.2, 118.9, 115.9, 115.6 (d, J = 21.3 Hz), 115.3 (d, J = 21.3 Hz), 93.7, 87.5, 50.2, 47.7, 37.1, 33.5, 26.0, 25.3, 24.8, 24.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₅F₂N₄, 537.2824; found, 537.2810.

(*E*)-8-(4-Chlorophenyl)-1-(4-chlorostyryl)-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4-carbonitrile (3ea). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (76.7 mg, 45% yield). M. p. 187.2-188.5°C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.65-7.60 (m, 3H), 7.41 (d, J = 8.5 Hz, 2H), 7.29-7.25 (m, 3H), 7.16 (d, J = 8.5 Hz, 2H), 5.60 (s, 1H), 4.82-4.81 (m, 1H), 3.48-3.47 (m, 4H), 3.30-3.22 (m, 4H), 2.91-2.83 (m, 2H), 1.66-1.61 (m, 6H), 1.56-1.53 (m, 2H), 1.44-1.41 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 152.9, 151.8, 150.2, 141.6, 135.4, 134.1, 134.0, 132.5, 128.8, 128.72, 128.69, 128.4, 123.9, 118.8, 115.7, 93.7, 87.6, 50.2, 47.7, 37.3, 33.3, 26.0, 25.3, 24.8, 24.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₅Cl₂N₄, 569.2233; found, 569.2244.

(*E*)-8-(4-Bromophenyl)-1-(4-bromostyryl)-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4-carbonitrile (3fa). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (90.5 mg, 46% yield). M. p. 189.6-190.9 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.62 (d, J = 15.5 Hz, 1H), 7.54 (s, 4H), 7.41 (d, J = 8.0 Hz, 2H), 7.28 (d, J = 15.0 Hz, 1H), 7.10 (d, J = 8.5 Hz, 2H), 5.60 (s, 1H), 4.80-4.79(m, 1H), 3.47-3.46 (m, 4H), 3.30-3.22 (m, 4H), 2.91-2.82 (m, 2H), 1.66-1.62 (m, 6H), 1.56-1.53 (m, 2H), 1.45-1.40 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 152.9, 151.8, 150.1, 142.1, 135.9, 134.2, 131.8, 131.7, 129.1, 128.7, 124.0, 122.2, 120.6, 118.8, 115.7, 93.7, 87.6, 50.2, 47.7, 37.3, 33.2, 26.0, 25.3, 24.8, 24.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₃₅Br₂N₄, 657.1223; found, 657.1226.

(*E*)-8-(4-(Dimethylamino)phenyl)-1-(4-(dimethylamino)styryl)-3,6-di(piperidin-1-yl)-7,8dihydroisoquinoline-4-carbonitrile (3ga). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford an orange-yellow solid (100.3 mg, 57% yield). M. p. 156.3-157.6°C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.57 (d, J = 15.5 Hz, 1H), 7.36 (d, J = 8.5 Hz, 2H), 6.97-6.94 (m, 3H), 6.68 (d, J = 8.5 Hz, 2H), 6.56 (d, J = 9.0 Hz, 2H), 5.59 (s, 1H), 4.54-4.52 (m, 1H), 3.44-3.43 (m, 4H), 3.30-3.26 (m, 2H), 3.23-3.19 (m, 2H), 2.93 (s, 6H), 2.78 (s, 6H), 1.66-1.60 (m, 7H), 1.56-1.41 (m, 7H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 153.4, 151.4, 151.2, 150.4, 149.2, 135.3, 131.5, 128.6, 127.9, 125.5, 119.6, 119.3, 116.4, 112.7, 112.1, 94.0, 87.0, 50.3, 47.6, 40.6, 40.3, 36.8, 33.5, 26.0, 25.2, 24.8, 24.4 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₈H₄₇N₆, 587.3857; found, 587.3850.

(*E*)-8-(4-(Diphenylamino)phenyl)-1-(4-(diphenylamino)styryl)-3,6-di(piperidin-1-yl)-7,8dihydroisoquinoline-4-carbonitrile (3ha). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford an orange-red solid (167.2 mg, 67% yield). M. p. 156.3-157.6 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.60 (d, J = 15.0 Hz, 1H), 7.42 (d, J = 8.5Hz, 2H), 7.31 (t, J = 7.5 Hz, 4H), 7.19 (t, J = 8.0 Hz, 4H), 7.13-7.02 (m, 9H), 6.96 (t, J = 7.5 Hz, 2H), 6.88-6.86 (m, 6H), 6.83 (d, J = 8.5 Hz, 2H), 5.58 (s, 1H), 4.62 (d, J = 7.0 Hz, 1H), 3.44 (br, 4H), 3.31-3.23 (m, 4H), 2.89-2.78 (m, 2H), 1.64-1.63 (m, 4H), 1.60-1.55 (m, 4H), 1.42-1.41 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 153.1, 151.6, 150.8, 148.0, 147.8, 147.3, 146.2, 137.6, 134.6, 131.0, 129.3, 129.1, 128.2, 128.1, 124.8, 124.1, 123.9, 123.3, 122.8, 122.6, 122.2, 119.1, 116.3, 93.8, 87.2, 50.2, 47.8, 37.4, 33.3, 26.0, 25.4, 24.8, 24.5 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₅₈H₅₅N₆, 835.4483; found, 835.4479.

(E)-8-(Naphthalen-1-yl)-1-(2-(naphthalen-1-yl)vinyl)-3,6-di(piperidin-1-yl)-7,8-

dihydroisoquinoline-4-carbonitrile (3ia). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a yellow-green solid (140.5 mg, 78% yield). M. p. 212.3-213.4 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.46 (d, J = 15.0 Hz, 1H), 8.29 (d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 7.0 Hz, 1H), 7.75 (d, J = 7.5 Hz, 1H), 7.33-7.28 (m, 2H), 7.18 (t, J = 7.5 Hz, 1H), 7.10 (d, J = 7.0 Hz, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.90 (d, J = 15.0 Hz, 1H), 5.85 (s, 1H), 5.37 (d, J = 8.0 Hz, 1H), 1.86-1.77 (m, 4H), 1.73-1.69 (m, 2H), 1.59 (br, 3H), 1.52-1.49 (m, 2H), 1.43-1.37 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.8, 153.4, 152.6, 150.9, 138.0, 134.4, 134.3, 133.6, 132.3, 131.3, 130.2, 129.5, 128.39, 128.38, 127.4, 126.5, 126.4, 126.0, 125.8, 125.7, 125.4, 125.3, 124.1, 123.7, 122.2, 119.1, 116.8, 93.4, 87.5, 50.3, 47.7, 33.1, 32.4, 26.1, 25.1, 24.9, 24.3 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₂H₄₁N₄, 601.3326; found, 601.3313.

(E)-8-(Naphthalen-2-yl)-1-(2-(naphthalen-2-yl)vinyl)-3,6-di(piperidin-1-yl)-7,8-

dihydroisoquinoline-4-carbonitrile (3ja). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford an orange solid (158.5 mg, 88% yield). M. p. 155.2-155.4 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 7.98 (s, 1H), 7.89-7.85 (m, 3H), 7.82-7.77 (m, 5H), 7.62 (s, 1H), 7.50-7.47 (m, 2H), 7.46-7.44 (m, 2H), 7.42-7.38 (m, 2H), 5.68 (s, 1H), 5.00 (d, J = 6.5 Hz, 1H), 3.53 (br, 4H), 3.30-3.28 (m, 2H), 3.26-3.22 (m, 2H), 3.01-2.94 (m, 2H), 1.70-1.69 (m, 4H), 1.65-1.64 (m, 2H), 1.52-1.49 (m, 2H), 1.45-1.39 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.7, 153.2, 152.0, 150.7, 140.7, 135.4, 134.5, 133.51, 133.47, 133.3, 132.4, 128.4, 128.2, 128.1, 128.0, 127.9, 127.6, 127.5, 126.3, 126.0, 125.92, 125.90, 125.5, 124.1, 123.7, 119.1,

116.2, 93.9, 87.6, 50.3, 47.6, 38.1, 33.4, 26.1, 25.2, 24.8, 24.3 ppm. HRMS (ESI) m/z: $[M+H]^+$ calculated for C₄₂H₄₁N₄, 601.3326; found, 601.3327.

(E)-8-(Anthracen-9-yl)-1-(2-(anthracen-9-yl)vinyl)-3,6-di(piperidin-1-yl)-7,8-

dihydroisoquinoline-4-carbonitrile (3ka). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford an orange-red solid (105.1 mg, 50% yield). M. p. 244.0-245.1 °C. ¹H NMR (DMSO-*d*₆, 500 MHz): δ 8.51 (t, *J* = 3.5 Hz, 1H), 8.32 (s, 1H), 8.25 (d, *J* = 15.5 Hz, 1H), 8.14 (d, *J* = 8.5 Hz, 1H), 8.06 (d, *J* = 9.5 Hz, 1H), 7.90-7.86 (m, 3H), 7.45 (t, *J* = 7.0 Hz, 1H), 7.40-7.36 (m, 3H), 7.27 (t, *J* = 7.0 Hz, 1H), 7.21 (t, *J* = 8.0 Hz, 1H), 7.19-7.14 (m, 4H), 6.26 (d, *J* = 15.5 Hz, 1H), 6.07 (t, *J* = 10.0 Hz, 1H), 5.91 (s, 1H), 3.57-3.55 (m, 4H), 3.27-3.19 (m, 5H), 2.81 (q, *J* = 9.0 Hz, 1H), 1.74-1.66 (m, 4H), 1.63-1.60 (m, 2H), 1.53-1.41 (m, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.0, 153.5, 151.8, 150.4, 137.8, 132.7, 132.4, 131.9, 131.6, 131.2, 130.9, 129.7, 129.6, 129.0, 128.9, 128.7, 128.1, 127.7, 126.9, 126.3, 126.2, 125.5, 125.3, 125.2, 124.72, 124.67, 124.5, 122.1, 119.3, 118.2, 93.3, 87.7, 50.2, 47.4, 34.7, 33.9, 26.0, 25.3, 24.9, 24.2 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₅₀H₄₅N₄, 701.3639; found, 701.3631.

(E)-3,6-Di(piperidin-1-yl)-8-(thiophen-2-yl)-1-(2-(thiophen-2-yl)vinyl)-7,8-

dihydroisoquinoline-4-carbonitrile (3la). Following the general procedure, using petroleum ether/ethyl acetate (3:1, v/v) as the eluent to afford a yellow-green solid (86.1 mg, 56% yield).M. p. 174.8-175.6 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, J = 15.0 Hz, 1H), 7.23 (d, J = 5.0 Hz, 1H), 7.15 (d, J = 3.5 Hz, 1H), 7.09 (d, J = 15.0 Hz, 1H), 7.04 (dd, ${}^{3}J = 5.0$ Hz, ${}^{4}J = 1.0$ Hz, 1H), 7.00 (dd, J = 5.0 Hz, J = 3.5 Hz, 1H), 6.82 (dd, ${}^{3}J = 5.0$ Hz, ${}^{4}J = 3.5$ Hz, 1H), 6.75 (d, J = 3.5 Hz, 1H), 5.76 (s, 1H), 4.71 (d, J = 6.0 Hz, 1H), 3.56 (t, J = 5.0 Hz, 4H), 3.37-3.32 (m, 2H), 3.28-3.24 (m, 2H), 2.94 (d, J = 15.5 Hz, 1H), 2.82-2.77 (m, 1H), 1.76-1.72 (m, 4H), 1.67-1.63 (m, 6H), 1.59-1.56 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.6, 153.3, 150.8, 149.7, 146.6, 142.7, 128.2, 127.9, 127.8, 126.4, 125.6, 124.2, 123.5, 123.0, 118.9, 116.5, 93.4, 87.7, 77.3, 77.0, 76.8, 50.2, 47.7, 33.8, 33.1, 26.0, 25.4, 24.8, 24.4 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₀H₃₃N₄S₂, 513.2141; found, 513.2139.

(E)-3,6-Di(piperidin-1-yl)-8-(pyridin-4-yl)-1-(2-(pyridin-4-yl)vinyl)-7,8-

dihydroisoquinoline-4-carbonitrile (3ma). Following the general procedure, using petroleum ether/ethyl acetate (1:1, v/v) as the eluent to afford a yellow-green solid (63.3 mg, 42% yield). M. p. 245.6-245.9 °C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 8.58 (d, J = 6.0 Hz, 2H), 8.24 (d, J = 6.0 Hz, 2H), 7.62-7.57 (m, 3H), 7.47 (d, J = 15.5 Hz, 1H), 6.77 (d, J = 6.0 Hz, 2H), 5.25 (s, 1H) , 4.64 (t, J = 5.0Hz, 1H), 3.43 (br, 8H), 3.31-3.27 (m, 1H), 2.95-2.91 (m, 1H), 1.67-1.63 (m, 8H), 1.593 (br, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 165.8, 162.7, 160.7, 150.2, 149.1, 144.7, 144.5, 144.0, 131.6, 128.0, 124.7, 123.9, 121.4, 118.4, 98.3, 83.2, 50.0, 49.8, 45.3, 37.4, 25.9, 25.5, 24.7, 24.0 ppm. HRMS (ESI) m/z: [M+Na]⁺ calculated for C₃₂H₃₄N₆Na, 525.2737; found, 525.2757.

(E)-1-(2-(1H-Indol-2-yl)vinyl)-8-(1H-indol-2-yl)-3,6-di(piperidin-1-yl)-7,8-

dihydroisoquinoline-4-carbonitrile (3na). Following the general procedure, using petroleum ether/ethyl acetate (2:1, v/v) as the eluent to afford a yellow-green solid (116.2 mg, 67% yield).M.

p.253.5-254.4°C. ¹H NMR (DMSO- d_6 , 500 MHz): δ 11.39 (d, J = 2.0 Hz, 1H), 10.72 (d, J = 2.0 Hz, 1H), 7.91-7.89 (m, 1H), 7.84 (d, J = 15.0 Hz, 1H), 7.62 (d, J = 3.0 Hz, 1H), 7.34-7.31 (m, 2H), 7.22 (d, J = 8.0 Hz, 1H), 7.14-7.11 (m, 2H), 7.05 (t, J = 7.5 Hz, 1H), 7.00 (d, J = 15.0 Hz, 1H), 6.71 (t, J = 7.5 Hz, 1H), 6.62 (d, J = 2.0 Hz, 1H), 5.66 (s, 1H), 4.93 (d, J = 6.0 Hz, 1H), 3.51-3.43 (m, 4H), 3.25-3.21 (m, 2H), 3.18-3.13 (m, 2H), 2.92-2.84 (m, 2H), 1.73-1.61 (m, 6H), 1.52-1.39 (m, 6H) ppm. ¹³C NMR (DMSO- d_6 , 125 MHz): δ 161.1, 154.4, 151.1, 150.3, 137.2, 136.1, 129.0, 125.7, 124.6, 123.0, 121.8, 121.0, 119.9, 118.8, 118.61, 118.57, 118.1, 116.7, 116.4, 113.6, 111.9, 111.7, 91.8, 85.6, 50.0, 47.1, 32.4, 29.1, 25.6, 24.7, 24.3, 23.8 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₈H₃₉N₆, 579.3231; found, 579.3217.

1-Phenyl-3,6-di(piperidin-1-yl)-8-(*p*-tolyl)-7,8-dihydroisoquinoline-4-carbonitrile (9aa). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a white solid (105.5 mg, 72% yield). ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.33-7.28 (m, 3H), 7.22-7.20 (m, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 5.62 (s, 1H) , 4.16 (d, J = 5.0 Hz, 1H) , 3.45-3.43 (m, 4H) , 3.28-3.23 (m, 2H), 3.22-3.17 (m, 2H), 2.85-2.75 (m, 2H), 2.21 (s, 3H), 1.64-1.60 (m, 6H), 1.55-1.51 (m, 2H), 1.44-1.35 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.8, 156.2, 153.7, 152.1, 140.7, 140.3, 135.7, 129.0, 128.7, 127.9, 127.7, 127.4, 118.9, 115.6, 93.9, 87.8, 50.2, 47.6, 38.3, 33.7, 26.0, 25.2, 24.8, 24.4, 21.0 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₃H₃₇N₄, 489.3018; found, 489.3004.

8-(4-(Dimethylamino)phenyl)-1-phenyl-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4carbonitrile (9ba). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a white solid (57.4 mg, 37% yield). ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.35-7.29 (m, 3H), 7.26-7.25 (m, 2H), 6.74 (d, J = 8.5 Hz, 2H), 6.55 (d, J = 9.0 Hz, 2H), 5.61 (s, 1H) , 4.11 (d, J = 5.0 Hz, 1H) , 3.43-3.42 (m, 4H) , 3.29-3.24 (m, 2H), 3.22-3.18 (m, 2H), 2.81 (s, 6H), 2.79 (br, 1H), 2.75-2.71 (m, 1H), 1.64-1.59 (m, 6H), 1.55-1.52 (m, 2H), 1.47-1.37 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.8, 156.1, 153.9, 152.0, 149.0, 140.4, 131.8, 128.8, 128.1, 127.8, 127.6, 118.9, 116.1, 112.5, 93.9, 87.8, 50.2, 47.6, 40.6, 37.8, 33.8, 26.0, 25.2, 24.8, 24.4 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₃₄H₄₀N₅, 518.3284; found, 518.3286.

8-(4-(Di-*p*-tolylamino)phenyl)-1-phenyl-3,6-di(piperidin-1-yl)-7,8-dihydroisoquinoline-4carbonitrile (9ca). Following the general procedure, using petroleum ether/ethyl acetate (5:1, v/v) as the eluent to afford a white solid (132.5 mg, 66% yield). ¹H NMR (DMSO-*d*₆, 500 MHz): δ 7.34-7.31 (m, 3H), 7.26-7.25 (m, 2H), 7.04 (d, J = 8.0 Hz, 4H), 6.81-6.78 (m, 6H), 6.73 (d, J = 8.5 Hz, 2H) , 5.61 (s, 1H) , 4.14 (d, J = 5.0 Hz, 1H), 3.42 (br, 4H), 3.30-3.23 (m, 4H), 2.85-2.73 (m, 2H), 2.22 (s, 6H), 1.58 (br, 8H), 1.38 (br, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 161.8, 156.2, 153.6, 152.0, 146.4, 145.4, 140.4, 137.1, 132.1, 129.7, 128.8, 128.1, 127.9, 127.7, 124.2, 122.7, 118.9, 115.8, 93.8, 87.7, 50.2, 47.8, 38.1, 33.5, 26.0, 25.4, 24.8, 24.5, 20.7 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₄₆H₄₈N₅, 670.3910; found, 670.3907.

1.5 Synthesis of (*E*)-3-oxo-8-phenyl-6-(piperidin-1-yl)-1-styryl-7,8-dihydro-3*H*-isochromene-4-carbonitrile (7).

A mixture of compound **6** (0.3 mmol), piperidine (1.2 mmol), and DMSO (3 mL) was stirred at 120 °C for 14 h under N₂ atmosphere. After being cooled to the room temperature, the reaction mixture was poured into CH₂Cl₂ (20 mL), and the organic layer was washed with water (10 mL) for three times, and then dried over Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel to afford the orange solid 7 (45.7 mg, 35% yield). ¹H NMR (CDCl₃, 500 MHz): δ 7.48-7.44 (m, 1H), 7.35-7.33 (m, 2H), 7.30-7.27 (m, 5H), 7.23-7.21 (m, 1H), 7.18-7.16 (m, 2H), 6.69 (d, *J* = 15.5 Hz, 1H), 5.80 (s, 1H), 4.45 (d, *J* = 6 Hz, 1H), 3.47 (br, 4H), 3.05-2.93 (m, 2H), 1.66-1.63 (m, 4H), 1.53 (br, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 160.9, 159.5, 156.6, 153.7, 142.4, 137.2, 135.3, 129.4, 128.9, 128.7, 127.5, 127.3, 126.6, 117.4, 115.2, 110.4, 93.2, 78.6, 48.8, 36.7, 33.5, 23.9 ppm. HRMS (ESI) m/z: [M+H]⁺ calculated for C₂₉H₂₇N₂O₂, 435.2073; found, 435.2071.

1.6 Synthesis of 2-((*E*)-2-((*E*)-1-hydroxy-3-phenylallylidene)-5-(piperidin-1-yl)-1,6- dihydro-[1,1'-biphenyl]-3(2*H*)-ylidene)malononitrile (11A).

The mixture of compound **1a** (0.3 mmol), **2a** (1.2 mmol), KH₂PO₄ (0.6 mmol), and DMSO (3 mL) was stirred at 120 °C for 2 h under N₂ atmosphere. After being cooled to the room temperature, the reaction mixture was poured into CH₂Cl₂ (20 mL), and the organic layer was washed with water (10 mL) for three times, and then dried over Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel using ethyl acetate/methanol (1:1, v/v) as the eluent to afford the red solid **11A** (41.1 mg, 31% yield). ¹H NMR (CDCl₃, 400 MHz): δ 7.46 (d, *J* = 15.2 Hz, 1H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.33-7.28 (m, 5H), 7.22 (d, *J* = 6.4 Hz, 1H), 7.17 (d, *J* = 7.6 Hz, 2H), 6.68 (d, *J* = 15.6 Hz, 1H), 5.72 (s, 1H), 4.39 (t, *J* = 4.0 Hz, 1H), 3.72 (br, 1H), 3.39 (br, 4H), 2.88 (d, *J* = 4.0 Hz, 2H), 1.64-1.60 (m, 2H), 1.52-1.49 (m, 4H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 160.8, 157.2, 152.1, 151.9, 147.0, 142.8, 136.4, 135.7, 129.3, 128.9, 128.8, 127.4, 127.2, 126.8, 115.4, 109.4, 93.2, 48.5, 37.2, 33.5, 25.8, 24.1 ppm. MS (ESI, m/z): 434.15 [M+H]⁺.

The mixture of **11A** (86.7 mg, 0.2 mmol), **2a** (0.8 mmol), KH_2PO_4 (0.4 mmol), and DMSO (3 mL) was stirred at 120 °C for 14 h under N₂ atmosphere. After being cooled to the room temperature, the reaction mixture was poured into CH_2Cl_2 (20 mL), and the organic layer was washed with water (10 mL) for three times, and then dried over Na₂SO₄. After removal of solvent under reduced pressure, the residue was purified by flash chromatography on silica gel using ethyl acetate/methanol (5:1, v/v) as the eluent to afford **3aa** in 92% yield.

References:

 H. Tong, M. Häußler, Y. Q. Dong, Z. Li, B. X. Mi, H. S. Kwok and B. Z. Tang, J. Chin. Chem. Soc., 2006, 53, 243–246.

- 2. R. Boonsin, G. Chadeyron, J. P. Roblin, D. Boyer and R. Mahiou, *J. Mater. Chem. C*, 2015, **3**, 9580–9587.
- 3. R. Teimuri-Mofrad, N. Boromand, K. Rahimpour and R. Hadi, *Lett. Org. Chem.*, 2018, 15, 118–123.
- 4. R. Teimuri-Mofrad, K. Rahimpour and R. Ghadari, J. Organomet. Chem., 2017, 846, 397-406.
- 5. S. S. Park, Y. S. Won, W. Lee and J. H. Kim, J. Phys. Chem. A, 2011, 115, 2830-2836.
- W. Qin, D. Ding, J. Liu, W. Z. Yuan, Y. Hu, B. Liu and B. Z. Tang, *Adv. Funct. Mater.*, 2012, 22, 771–779.
- Y. Zhou, Y. Liu, Y. Guo, M. Liu, J. Chen, X. Huang, W. Gao, J. Ding, Y. Cheng and H. Wu, Dyes Pigm., 2017, 141, 428–440.
- 8. Q. Li, Z. Y. Liu, L. J. Liu, Z. F. Li, W. D. Cheng, H. Li, P. F. Li, Z. J. Li, C. J. Guan, Y. L. Jia and W. J. Tian, *Chem. J. Chin. Univ.*, 2012, **33**, 182–187.
- O. V. Ponomareva, A. P. Lugovskii, A. A. Lugovskii, M. P. Males and E. E. Nifant'ev, *Russ. J. Gen. Chem.*, 2011, **81**, 2310–2315.
- Z. Wang, M. Wang, J. Peng, Y. Xie, M. Liu, W. Gao, Y. Zhou, X. Huang and H. Wu, J. Phys. Chem. C, 2019, 123, 27742–27751.
- 11. Y. Chen, Y. Zhou, Z. Wang, M. Wang, W. Gao, Y. Zhou, M. Liu, X. Huang and H. Wu, *CrystEngComm*, 2019, **21**, 4258–4266.

2. Schemes, figures, and tables

Scheme S3 Possible reaction mechanism of compound 9aa prepared from compound 8a and piperidine.

Scheme S4 Possible reaction mechanism of compound 7 prepared from compound 6 and piperidine.

Fig. S1 Normalized absorption (a) and fluorescence (b) spectra of **3aa-an** (except **3ad** and **3ag**) in THF solvent. Concentration: 1×10^{-5} mol/L.

Fig. S2 Normalized absorption (a) and fluorescence (b) spectra of **3ba-na** in THF solvent. Concentration: 1×10^{-5} mol/L.

Fig. S3 Normalized absorption (a) and fluorescence (b) spectra of 9aa-ca in THF solvent. Concentration: 1×10^{-5} mol/L.

Fig. S4 Absorption and fluorescence spectra of **9aa** (a,b), **3aa** (c,d), and **3ia** (e,f) in different solvents (1×10^{-5} mol/L). Inset: Fluorescence photos in different solvents at a concentration of 1×10^{-5} mol/L under UV irradiation (365 nm).

Fig. S5 Linear fitting of Stokes shifts (Δv) of **9aa** (a), **3aa** (b), and **3ia** (c) with orientation polarizability (Δf) in various solvents.

Table S1 UV-vis absorption maxima and fluorescence emission maxima of **9aa** and solvent polarity parameter in different solvents.

	Сус	Toluene	EA	DMF	DMSO
λ_{abs}^{max}/nm	379	387	388	393	398
v_{abs}^{max}/cm^{-1}	2639	2584	2577	2545	2513
$\lambda_{\rm em}^{\rm max}/{\rm nm}$	429	448	465	484	494
$\lambda_{\rm em}^{\rm max}/{\rm cm}^{-1}$	2331	2232	2151	2066	2024
$\Delta v/cm^{-1}$	3075	3518	4268	4784	4883
Δf	-0.151	0.0135	0.2	0.263	0.276

Table S2 UV-vis absorption maxima and fluorescence emission maxima of **3aa** and solvent polarity parameter in different solvents.

	Сус	Toluene	EA	DMF	DMSO
λ_{abs}^{max}/nm	387	394	394	400	405
v_{abs}^{max}/cm^{-1}	2584	2538	2538	2500	2469
$\lambda_{\rm em}^{\rm max}/{\rm nm}$	463	488	515	539	547
$\lambda_{em}^{max}/cm^{-1}$	2160	2049	1942	1855	1828

$\Delta v/cm^{-1}$	4242	4889	5963	6447	6410
Δf	-0.151	0.0135	0.2	0.263	0.276

Table S3 UV-vis absorption maxima and fluorescence emission maxima of **3ia** and solvent polarity parameter in different solvents.

	Сус	Toluene	EA	DMF	DMSO
λ_{abs}^{max}/nm	408	413	415	419	415
v_{abs}^{max}/cm^{-1}	2451	2421	2410	2387	2410
$\lambda_{\rm em}^{\rm max}/{\rm nm}$	477	505	536	563	574
$\lambda_{em}^{max}/cm^{-1}$	2096	1980	1866	1776	1742
$\Delta v/cm^{-1}$	3545	4411	5440	6104	6674
Δf	-0.151	0.0135	0.2	0.263	0.276

Fig. S6 Normalized absorption spectra of the DDIC derivatives in solid state: (a) **3aa-an** (except **3ad** and **3ag**); (b) **3ba-na**; (c) **9aa-ca**.

Fig. S8 Full-color fluorescence images of the DDIC derivatives in solid state under the irradiation of 365 nm light.

Table S4 Photophysical properties of some DDIC derivatives (3aa, 3aj, 3am, 3ca, 3ia, 3ka, and 9aa) in THF solvent and solid state.

Compound	$\lambda_{ m abs}$	$\lambda_{ m em}$	$\lambda_{ m abs}$	$\lambda_{ m em}$	$arPsi_{ m F}$
	(THF, nm)	(THF, nm)	(Solid, nm)	(Solid, nm)	(Solid, %)
3 aa	297, 394	509	420	541	36
3aj	296, 393	507	333, 491	555	7
3am	307, 389	504	333, 446	542	17
3ca	297, 335, 390	496	328, 448	510	28
3ia	294, 340, 410	530	333, 454	534	18
3ka	354, 374, 395, 435	403, 570	330, 455	583	7
9aa	307, 387	459	388	438	18

3. Culture methods, crystal data, intermolecular interactions, and stacking arrangements of single crystals of some target compounds

CCDC 2045529-2045536 contains supplementary crystallographic data for this article. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Single crystals of **3aa**, **3ca**, and **3ia** were all obtained from a slow diffusion of a petroleum ether/CHCl₃ mixture (1:1, v:v). Single crystals of **3ka** and **3am** were both cultured from a slow diffusion of a CHCl₃/CH₃OH mixture (1:1, v:v). Single crystals of **3aj**, **9aa**, and **7** were all obtained from a slow evaporation of ethyl acetate/petroleum ether (2:1 = v:v) mixture.

	3aa	3aj	3am	3ca
CCDC (no.)	2045529	2045530	2045531	2045532
Empirical formula	$C_{34}H_{36}N_4$	$C_{46}H_{44}N_4$	$C_{32}H_{32}N_4O_2$	$C_{36}H_{40}N_4O_2\\$
Formula weight	500.67	652.85	504.61	560.72
Temperature (K)	293(2)	293(2)	294(2)	293(2)
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2(1)/c	<i>P</i> 2(1)/c	<i>P</i> 2(1)/c	<i>P</i> 2(1)/c
Ζ	4	4	8	4
D _{calcd} [Mg/m ³]	1.160	1.180	1.235	1.196
F (000)	1072	1392	2144	1200

 Table S5 Crystal data and details of collection and refinement for 3aa, 3aj, 3am, and 3ca.

θ range [°]	2.537-24.999	2.435-24.999	1.876-24.999	2.371-25.498
$R_1[I \ge 2\sigma(I)]$	0.0745	0.0882	0.0943	0.0597
$wR_2 [I \ge 2\sigma(I)]$	0.1736	0.1929	0.1996	0.1447
<i>a</i> [Å]	10.9183(18)	10.5749(6)	22.889(3)	12.1453(5)
<i>b</i> [Å]	10.4266(16)	10.5365(5)	14.6221(14)	10.1503(5)
<i>c</i> [Å]	25.338(6)	33.2701(17)	17.1874(17)	25.2750(13)
α [deg]	90	90	90	90
β [deg]	96.505(7)	97.521(2)	109.396(3)	92.166(2)
γ [deg]	90	90	90	90
V[Å ³]	2865.9(9)	3675.1(3)	5426.0(10)	3113.6(3)
GOF	1.096	1.068	1.037	1.040
<i>R</i> (int)	0.0886	0.0778	0.2247	0.0486
No. of reflcns collected	12517	9178	49754	29737
No. of unique reflens	5007	5228	9544	5790
R_1 (all data)	0.1734	0.1679	0.2194	0.0877
wR_2 (all data)	0.2398	0.2258	0.2849	0.1671

Table S6 Crystal data and details of collection and refinement for 3ia, 3ka, 9aa, and 7.

	3ia	3ka	9aa	7
CCDC (no.)	2045533	2045534	2045536	2045535
Empirical formula	$C_{42}H_{40}N_4$	$C_{50}H_{44}N_4$	$C_{33}H_{36}N_4$	$C_{29}H_{26}N_2O_2$
Formula weight	600.78	700.89	488.66	434.52
Temperature (K)	293(2)	293(2)	293(2)	293(2)
Crystal system	Monoclinic	Triclinic	Monoclinic	Triclinic
Space group	<i>P</i> 2(1)/c	$P\overline{1}$	<i>P</i> 2(1)/c	<i>P</i> -1
Ζ	4	2	4	2
D _{calcd} [Mg/m ³]	1.208	1.218	1.179	1.258
F (000)	1280	744	1048	460
θ range [°]	1.707-25.000	2.486-24.999	2.364-25.495	2.473-25.999
$R_1[I \ge 2\sigma(I)]$	0.0582	0.0886	0.0484	0.0496
$wR_2 [I \ge 2\sigma(I)]$	0.1260	0.1697	0.1152	0.1160
<i>a</i> [Å]	12.499(2)	10.1185(11)	12.2487(8)	9.3166(3)
<i>b</i> [Å]	13.196(2)	13.2506(15)	22.7619(12)	9.3518(3)
<i>c</i> [Å]	20.980(4)	16.4503(18)	10.5788(7)	13.4041(4)
α [deg]	90	109.397(3)	90	99.6900(10)
β [deg]	107.331(3)	94.543(3)	111.074(2)	92.9490(10)
γ [deg]	90	109.846(3)	90	93.0970(10)
V[Å ³]	3303.2(10)	1910.5(4)	2752.1(3)	1147.34(6)
GOF	0.991	1.049	1.040	1.046

<i>R</i> (int)	0.0641	0.1032	0.0414	0.0470
No. of reflens collected	17960	32049	13132	20872
No. of unique reflens	5825	6708	5086	4502
R_1 (all data)	0.1151	0.1969	0.0800	0.0728
wR_2 (all data)	0.1504	0.2223	0.1378	0.1329
wR_2 (all data)	0.1504	0.2223	0.1378	0.1329

Fig. S9 Stacking arrangements in the crystals of some DDIC derivatives: **3aj** in a lattice cell (a) and viewed along the *b*-axis (b); **3am** in a lattice cell (c) and viewed along the *b*-axis (d); **3ca** in a lattice cell (e) and viewed along the *b*-axis (f).

Fig. S10 The intramolecular interactions of single crystal **3aa** containing C–H[…]N bonds and C–H[…]H interactions.

Fig. S11 The intramolecular interactions of single crystal **3aj** containing C–H···N bonds, and C–H··· π and C–H···H interactions.

Fig. S12 The intramolecular interactions of single crystal 3am containing C–H…N bonds and C–H… π interactions.

Fig. S13 The intramolecular interactions of single crystal 3ca containing C–H···O bond and C–H··· π interactions.

Fig. S14 The intramolecular interactions of single crystal 3ia containing C–H···N bonds and C–H··· π interactions.

Fig. S15 The intramolecular interactions of single crystal **3ka** containing C–H···N bonds, and C–H···N bonds, and C–H···H interactions.

Fig. S16 The intramolecular interactions of single crystal 9aa containing C–H^{\dots} π and C–H^{\dots}H interactions.

Table S7	The fluore	scence pro	operties and	d lifetime	decays	parameters	of 9aa ,	3aj , and	d 3ka	under
different o	conditions.									

Compound	Туре	λ_{em}	$arPsi_{ m F}$	$ au_1{}^a$	$A_1{}^b$	$ au_2{}^a$	$A_2{}^b$	$<\tau>^c$	$k_{\rm f}^d$	k _{nr} ^e
		(nm)	(%)	(ns)	(%)	(ns)	(%)	(ns)	(s ⁻¹)	(s ⁻¹)
9aa	Original	441	18	0.35	91	1.93	9	0.49	3.7 ×10 ⁸	1.7 ×10 ⁹
	Ground	471	8	0.36	84	3.89	16	0.92	8.7 ×10 ⁷	9.9×10 ⁸
	Fumed	441	14	0.28	93	3.00	7	0.47	3.0 ×10 ⁸	1.8 ×10 ⁹
3aj	Original	555	7	0.42	59	8.80	41	3.86	1.8×10 ⁷	2.4 ×10 ⁸
	Ground	538	23	0.55	82	10.2	48	5.35	4.3×10 ⁷	1.4×10 ⁸
	Fumed	555	8	0.41	56	8.00	44	3.75	2.1×10 ⁷	2.5 ×10 ⁸
3ka	Original	583	7	0.23	55	7.74	45	3.58	2.0×10^7	2.6 ×10 ⁸
	Ground	568	13	0.41	56	7.06	44	3.32	3.9 ×10 ⁷	2.6 ×10 ⁸
	Recrystallized	583	9	0.35	51	6.80	49	3.49	2.6 ×10 ⁷	2.6 ×10 ⁸

 ${}^{a}\tau_{1}$ and τ_{2} are the lifetimes of the shorter-lived and longer-lived species, respectively. ${}^{b}A_{1}$ and A_{2} are the amplitudes of the shorter-lived and longer-lived species, respectively. c Weighted mean lifetime $\langle \tau \rangle$ obtained from the equation: $\langle \tau \rangle = (A_{1}\tau_{1}+A_{2}\tau_{2})/(A_{1}+A_{2})$. d Radiative rate constant k_{f} obtained from the equation: $k_{f} = \Phi_{F}/\langle \tau \rangle$. e Nonradiative rate constant k_{nr} obtained from the equation: $k_{nr} = (1-\Phi_{F})/\langle \tau \rangle$.

Fig. S17 Comparison of experimental XRD curves of the original samples of **9aa** (a), **3aj** (b), and **3ka** (c) and the simulated XRD curves obtained from the corresponding single crystals.

Fig. S18 Normalized absorption spectra of 9aa (a), 3aj (b), and 3ka (a) under different conditions.

Fig. S21 ¹H NMR of **1n** (DMSO-*d*₆, 500 MHz).

Fig. S23 ¹H NMR of 8c (CDCl₃, 400 MHz).

Fig. S25 ¹³C NMR of 3aa (CDCl₃, 125 MHz).

Fig. S27 ¹³C NMR of 3ab (CDCl₃, 125 MHz).

Fig. S31 ¹³C NMR of 3ae (CDCl₃, 125 MHz).

Fig. S33 ¹³C NMR of 3af (CDCl₃, 125 MHz).

Fig. S35 ¹³C NMR of 3ah (CDCl₃, 125 MHz).

Fig. S37 ¹³C NMR of 3ai (CDCl₃, 125 MHz).

Fig. S39 ¹³C NMR of 3aj (CDCl₃, 125 MHz).

Fig. S42 ¹H NMR of 3al (DMSO-*d*₆, 500 MHz).

Fig. S47 ¹³C NMR of 3an (CDCl₃, 125 MHz).

Fig. S51 ¹³C NMR of 3ca (CDCl₃, 125 MHz).

Fig. S53 ¹³C NMR of 3da (CDCl₃, 125 MHz).

Fig. S57 ¹³C NMR of **3fa** (CDCl₃, 125 MHz).

Fig. S59 ¹³C NMR of **3ga** (CDCl₃, 125 MHz).

Fig. S61 ¹³C NMR of **3ha** (CDCl₃, 125 MHz).

Fig. S63 ¹³C NMR of 3ia (CDCl₃, 125 MHz).

Fig. S65 ¹³C NMR of 3ja (CDCl₃, 125 MHz).

Fig. S67 ¹³C NMR of 3ka (CDCl₃, 125 MHz).

Fig. S69 ¹³C NMR of 3la (CDCl₃, 125 MHz).

Fig. S75 ¹³C NMR of 7 (CDCl₃, 125 MHz).

Fig. S77 ¹³C NMR of 9aa (CDCl₃, 125 MHz).

Fig. S79 ¹³C NMR of 9ba (CDCl₃, 125 MHz).

Fig. S81 ¹³C NMR of 9ca (CDCl₃, 125 MHz).

Fig. S83 ¹³C NMR of 11A (CDCl₃, 125 MHz).

