Gelserancines A-E, Monoterpenoid Indole Alkaloids with Unusual Skeletons from *Gelsemium elegans*

Ji-Hong Gu,^{‡a} Wei Zhang,^{‡a,c} Wen-Ying Cai,^a Xiao-Xue Fu,^a Hong-Ling Zhou,^b Ni-Ping Li,^a Hai-Yan Tian,^a Jun-Shan Liu,^{*b} Wen-Cai Ye,^{*a} and Lei Wang^{*a}

^a Center for Natural Bioactive Molecules and Innovative Drugs, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China

^b Third Level Research Laboratory of State Administration of Traditional Chinese Medicine,

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, P. R.

China

^c School of Chinese Materia Medica, Beijing Univesity of Chinese Medicine, Beijing 102488, P. R. China

Contents

1. Figure S1. Anti-inflammatory effects of compounds 1-5
2. Structural elucidation of 6-10
3. Dynamic HPLC analysis of 4 and 5 with different temperatures and irradiations8
Figure S3. UV spectrum of 1 in MeOH
Figure S4. IR (KBr disc) spectrum of 19
Figure S5. HR-ESI-MS spectrum of 1 10
Figure S6. ¹ H NMR spectrum (400 MHz) of 1 in CDCl ₃ 10
Figure S7. ¹ H NMR spectrum (500 MHz) of 1 in CDCl ₃
Figure S8. ¹³ C NMR spectrum of 1 in CDCl ₃
Figure S9. DEPT-135 spectrum of 1 in CDCl ₃ 12
Figure S10. 1 H- 1 H COSY spectrum of 1 in CDCl ₃
Figure S11. HSQC NMR spectrum of 1 in CDCl ₃ 13
Figure S12. HMBC spectrum of 1 in CDCl ₃ 13
Figure S13. NOESY spectrum of 1 in CDCl ₃ 14
Figure S14. UV spectrum of 2 in MeOH14
Figure S15. IR (KBr disc) spectrum of 215
Figure S16. HR-ESI-MS spectrum of 215
Figure S17. ¹ H NMR spectrum of 2 in CDCl ₃ 16
Figure S18. ¹³ C NMR spectrum of 2 in CDCl ₃ 16
Figure S19. DEPT-135 spectrum of 2 in CDCl ₃ 17
Figure S20. 1 H- 1 H COSY spectrum of 2 in CDCl ₃ 17
Figure S21. HSQC spectrum of 2 in CDCl ₃
Figure S22. HMBC spectrum of 2 in CDCl ₃
Figure S23. NOESY spectrum of 2 in CDCl ₃ 19
Figure S24. UV spectrum of 3 in MeOH19
Figure S25. IR (KBr disc) spectrum of 3 20
Figure S26. HR-ESI-MS spectrum of 3 20

Figure S27. ¹ H NMR spectrum of 3 in CD	Cl ₃ 21
Figure S28. ¹³ C NMR spectrum of 3 in CI	DCl ₃ 21
Figure S29. DEPT-135 spectrum of 3 in C	DCl ₃ 22
Figure S30. ¹ H- ¹ H COSY spectrum of 3 ir	CDCl ₃ 22
Figure S31. HSQC spectrum of 3 in CDC	
Figure S32. HMBC spectrum of 3 in CDC	l ₃ 23
Figure S33. NOESY spectrum of 3 in CDO	Cl ₃ 24
Figure S34. UV spectrum of 4 in MeOH	
Figure S35. IR (KBr disc) spectrum of 4	
Figure S36. HR-ESI-MS spectrum of 4	
Figure S37. ¹ H NMR spectrum of 4 in CD	₃ OD26
Figure S38. ¹³ C NMR spectrum of 4 in CI	D ₃ OD26
Figure S39. DEPT-135 spectrum of 4 in C	D ₃ OD27
Figure S40. ¹ H- ¹ H COSY spectrum of 4 ir	1 CD ₃ OD27
Figure S41. HSQC spectrum of 4 in CD ₃ C	DD28
Figure S42. HMBC spectrum of 4 in CD ₃	DD28
Figure S43. NOESY spectrum of 4 in CD3	OD29
Figure S44. UV spectrum of 5 in MeOH	
Figure S45. IR (KBr disc) spectrum of 5	
Figure S46. HR-ESI-MS spectrum of 5	
Figure S47. ¹ H NMR spectrum of 5 in CD	₃ OD31
Figure S48. ¹³ C NMR spectrum of 5 in CI	O ₃ OD31
Figure S49. DEPT-135 spectrum of 5 in C	D ₃ OD
Figure S50. ¹ H- ¹ H COSY spectrum of 5 ir	1 CD ₃ OD32
Figure S51. HSQC spectrum of 5 in CD ₃ C	DD
Figure S52. HMBC spectrum of 5 in CD ₃ 0	DD33
Figure S53. NOESY spectrum of 5 in CD3	OD34
Figure S54. UV spectrum of 6 in MeOH	
Figure S55. IR (KBr disc) spectrum of 6	
Figure S56. HR-ESI-MS spectrum of 6	

Figure S57. ¹ H NMR spectrum of 6 in CDCl ₃	36
Figure S58. ¹³ C NMR spectrum of 6 in CDCl ₃	36
Figure S59. DEPT-135 spectrum of 6 in CDCl ₃	37
Figure S60. UV spectrum of 7 in MeOH	37
Figure S61. IR (KBr disc) spectrum of 7	
Figure S62. HR-ESI-MS spectrum of 7	
Figure S63. ¹ H NMR spectrum of 7 in CDCl ₃	
Figure S64. ¹³ C NMR spectrum of 7 in CDCl ₃	
Figure S65. DEPT-135 spectrum of 7 in CDCl ₃	40
Figure S66. UV spectrum of 8 in MeOH	40
Figure S67. IR (KBr disc) spectrum of 8	41
Figure S68. HR-ESI-MS spectrum of 8	41
Figure S69. ¹ H NMR spectrum of 8 in CDCl ₃	42
Figure S70. ¹³ C NMR spectrum of 8 in CDCl ₃	42
Figure S71. DEPT-135 spectrum of 8 in CDCl ₃	43
Figure S72. UV spectrum of 9 in MeOH	43
Figure S73. IR (KBr disc) spectrum of 9	44
Figure S74. HR-ESI-MS spectrum of 9	44
Figure S75. ¹ H NMR spectrum of 9 in $CDCl_3$ (80%) + CD_3OD (20%)	45
Figure S76. ¹³ C NMR spectrum of 9 in CDCl ₃ (80%) + CD ₃ OD (20%)	45
Figure S77. DEPT-135 spectrum of 9 in CDCl ₃ (80%) + CD ₃ OD (20%)	46
Figure S78. UV spectrum of 10 in MeOH	46
Figure S79. IR (KBr disc) spectrum of compound 10	47
Figure S80. HR-ESI-MS spectrum of 10	47
Figure S81. ¹ H NMR spectrum of 10 in CDCl ₃	48
Figure S82. ¹³ C NMR spectrum of 10 in CDCl ₃	48
Figure S83. DEPT-135 spectrum of 10 in CDCl ₃	49
Figure S84. Dynamic HPLC spectra of 4 with temperature increase	49
Figure S85. Dynamic HPLC spectra of 5 with temperature increase	50
Figure S86. Dynamic HPLC spectra of 4 with visible light irradiation	50
4	

Figure S87. Dynamic HPLC spectra of 5 with visible light irradiation	51
Figure S88. Dynamic HPLC spectra of 4 with UV irradiation in 254 nm	51
Figure S89. Dynamic HPLC spectra of 5 with UV irradiation in 254 nm	52
Figure S90. Dynamic HPLC spectra of 4 with UV irradiation in 365 nm	52
Figure S91. Dynamic HPLC spectra of 5 with UV irradiation in 365 nm	53
Notes and references	54

1. The anti-inflammatory effects of compounds 1-5.

Figure S1. Anti-inflammatory effects of compounds 1-5. The neutrophil number (green fluorescence) in inflammatory sites (red rectangle or ellipse marked) in wound (left panel) and $CuSO_4$ (right panel) models was observed by fluorescence microscopy (MVX10, Olympus, Japan).

2. Structural elucidation of 6-10.

Figure S2. Chemical structures of 6-10.

Compounds **6-10** were identified as 14-hydroxygelsenicine¹, gelsenicine², 14β -hydroxygelsedethenine³, 14α -hydroxygelsamydine⁴, and gelsamydine² by comparison their spectroscopic data with those of literatures, respectively.

Table S1	¹ H and	^{13}C NMR	data o	f com	pounds	6_10	(δin)	nnm <i>l</i>	in l	(H7)
Lanc DI.	11 anu		uata 0	r com	Jounus	0-10	(0 m)	ppm, J	111 1	112)

NO	6 ^a		6 ^a 7 ^a		8 ^a		9 ^b		10 ^a	
NO.	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	$\delta_{\rm C}$	$\delta_{\rm H}$	δ_{C}	$\delta_{\rm H}$	δ_{C}
2		171.1		171.4		171.5		171.3		171.5
3	3.67 br s	79.5	3.69 dd (4.5, 1.9)	75.1	3.55 s	80.3	3.61 s	79.4	3.64 ^c	72.1
5	4.40 m	72.2	4.37 m	72.6	4.46 m	73.1	4.37 m	71.1	4.37 m	74.9
6	2.41 dd (15.6, 4.7)	37.8	2.36°	37.8	2.38 dd (15.5, 4.7)	38.2	2.50 dd (16.0, 4.9)	36.7	2.38 ^c	37.2
	2.30 dd (15.6, 2.0)		2.25 dd (15.4, 2.2)		2.27 dd (15.5, 1.9)		2.27 ^c		2.38 ^c	
7		53.9		56.0		54.5		53.7		56.2
8		131.8		132.4		132.5		131.2		131.9
9	7.50 d (7.6)	124.8	7.50 d (7.6)	124.8	7.43 d (7.6)	125.5	7.53 d (7.6)	124.9	7.47 d (7.6)	125.2
10	7.07 dd (7.6, 7.6)	123.8	7.03 ddd (7.6, 7.6, 1.0)	123.5	7.00 dd (7.6, 7.6)	124.4	7.12 dd (7.6, 7.6)	123.7	7.07 dd (7.6, 7.6)	123.6
11	7.26 dd (7.6, 7.6)	128.6	7.22 ddd (7.6, 7.6, 1.0)	128.2	7.19 dd (7.6, 7.6)	129.1	7.30 dd (7.6, 7.6)	128.3	7.25 dd (7.6, 7.6)	128.4
12	6.87 d (7.6)	107.1	6.84 d (7.6)	106.7	6.79 d (7.6)	107.6	6.92 d (7.6)	106.8	6.87 d (7.6)	107.0
13		138.2		138.2		138.9		137.8	-	138.5
14	4.45 br s	66.8	2.35 ^c	25.8	4.35 d (2.0)	68.4	4.41 s	64.9	2.48 m	26.7
			2.10 m						2.12 ^c	
15	2.88 d (8.5)	52.5	2.83 t (9.3)	39.9	3.24 d (8.4)	54.5	3.10 d (8.1)	50.3	3.11 t (9.1)	39.5
16	2.59 td (8.2, 3.3)	38.5	2.53 br t (8.2)	42.6	2.55 td (8.1, 3.3)	38.9	2.57 m	37.8	2.50 m	40.3
17	4.43 dd (11.1, 3.7)	62.1	4.26 dd (11.0, 2.8)	62.3	4.40 dd (11.0, 3.6)	62.7	4.46 dd (11.0, 3.8)	61.0	4.27 ^c	62.0
	4.32 d (11.1)		4.23 dd (11.0, 1.7)		4.27 d (11.0)		4.33 d (11.0)		4.27 ^c	
18	1.29 t (7.3)	10.2	1.25 t (7.4)	10.2	2.00 s	13.7	1.29 d (7.3)	19.2	1.18 d (7.4)	20.4
19	2.76 dq (17.3, 7.3)	26.3	2.68 dq (17.0, 7.4)	27.2		133.9		33.0	3.53°	35.9
	2.48 dq (17.3, 7.3)		2.37 ^c							
20		181.3		184.6		177.8		185.3		188.2
N-OMe	3.93 s	63.7	3.91 s	63.5	3.84 s	64.1	3.91 s	63.0	3.87 s	63.4
1'					6.27 q (6.8)	133.2	3.70 m	61.0	3.63 ^c	60.4
							3.54 d (11.1)		3.48 ^c	
2'					1.82 d (6.8)	15.5	. ,			
3'								182.0		182.2
4'							3.48 m	36.6	1.86 m	33.3
5'							2.91 m	47.9	2.83 m	48.8
6'							5.01 br t (6.0)	82.9	4.90 t (7.1)	82.1
7'							2.16 dd (13.5, 5.6)	41.9	2.10 ^c	42.6
							1.47 m		1.40 m	
8'							1.78 ^c	29.5	1.68 ^c	33.2
9'							1.88 m	51.7	1.72 ^c	52.7
10'							0.95 d (6.4)	17.0	0.87 d (6.3)	17.4
11'							2.27 ^c	36.8	2.29 ^c	37.7
							1.78 ^c		2.29 ^c	
a Measure	d in CDCla ^b Measur	ed in CDCl	م (80%) + CD_OD (20%) °O	verlanned	ionals					
measure	a in oborg. Inteasu	ca in eDel	3 (00/0) + CD30D (20/0) 0	· • · mppeu a						

3. Dynamic HPLC analysis of 4 and 5 with different temperatures and irradiations.

Compounds **4** and **5** were solved in MeOH, then the HPLC spectra were recorded on an Agilent 1260 instrument equipped with DAD detector and a Waters XbridgeTM C_{18} OBD reversed-phase column (4.6×250 mm, 5 µm, USA). The column temperature was controlled at 298 K by an Agilent 1260 TCCVL (USA). The mobile phase was MeCN-H₂O-Et₂NH (22:78:0.01 v/v/v), and the flow rate was 1 mL/min.

Elevated-temperature experiment: Compounds **4** and **5** was protected from light at different temperatures (298, 318, 338, 358 K) and analyzed by HPLC, respectively. Each temperature gradient was holding for 2 hours. (figure S84-85)

Visible/UV light irradiation experiment: Compounds **4** and **5** was exposed under an incandescent lamp (as a source of visible light) or UV light (254 or 365 nm) and analyzed by HPLC at different times (0, 1, 4, 24 h, at room temperature). (figure S86-91)

Figure S3. The UV of compound 1 in MeOH

Figure S4. The IR (KBr disc) of compound 1

Figure S6. The ¹H NMR spectrum (400 MHz) of compound 1 in $CDCl_3$

Figure S9. The DEPT-135 spectrum of compound 1 in CDCl₃

Figure S12. The HMBC spectrum of compound 1 in CDCl₃

Figure S14. The UV of compound 2 in MeOH

Figure S15. The IR (KBr disc) of compound 2

Figure S16. The HR-ESI-MS of compound 2

Figure S19. The DEPT-135 spectrum of compound 2 in CDCl₃

Figure S20. The ¹H-¹H COSY spectrum of compound 2 in CDCl₃

Figure S21. The HSQC spectrum of compound 2 in CDCl₃

Figure S22. The HMBC spectrum of compound 2 in CDCl₃

Figure S23. The NOESY spectrum of compound 2 in CDCl₃

Figure S24. The UV of compound 3 in MeOH

Figure S25. The IR (KBr disc) of compound 3

Figure S26. The HR-ESI-MS of compound 3

Figure S30. The ¹H-¹H COSY spectrum of compound 3 in CDCl₃

Figure S31. The HSQC spectrum of compound 3 in CDCl₃

Figure S32. The HMBC spectrum of compound 3 in CDCl₃

Figure S34. The UV of compound 4 in MeOH

Figure S36. The HR-ESI-MS of compound 4

Figure S40. The ¹H-¹H COSY spectrum of compound 4 in CD₃OD

Figure S42. The HMBC spectrum of compound 4 in CD₃OD

Figure S43. The NOESY spectrum of compound 4 in CD₃OD

Figure S44. The UV of compound 5 in MeOH

	m/z	1	lon	Formula	Abundance							
	45	1.186	(M+H)+	C25 H27 N2 O6	165005.3							
	Best	∇	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass	Calc Mass	Diff (ppm)	Mass Match	Abund Match
÷			C25 H26 N2 O6	C25 H27 N2 O6	451.1864	97.61		450.1787	450.1791	0.82	99.34	95.28
	Isotop	e	Abund%	Calc Abund%	Calc Abund Sum%	m/z	Calc m/z 🧹	Diff (ppm)	Abund Sum%			
		1	100	100	74.96	451.186	451.1864	0.85	76.9			
		2	25.44	28.31	21.22	452.1901	452.1896	-1.12	19.57			
		3	4.59	5.09	3.82	453.1916	453.1923	1.5	3.53			
<u> </u> <												>
A Chrom	atogram F	lesults	s 🚰 MS Formula	Results: + Scan	(1.308 min)							
<u>III</u> ∎s s _P	ectrum R	esult	z									
₽ ₽ ↔	‡ Q	1	۱ ۲ <u>۸</u> ۲	୦ ୯ 1 💌	11 🔭 % 🍡 🕅	14						
x10 ²	+ESI Scar	1 (1.30	8 min) Frag-175.()V GE-6-CD. d								
1.1-					4	51.1860			́Н			
1-						(M+H) +		HN	он∧_н			
0.9-						The second secon		、''ブ		\neg		
0.8							[$\prec \rightarrow \checkmark$	0	CH₂OH	
0.0-									1 N	\	-	
0.7-								Ň	,			
0.6-								ÓМе				
0.5-												
0.4-						452.190	1					
0.3-						(M+H) +						
0.2-						h l						
0.1-						- N N.	N					
0 -	443	444	445 446	447 448	449 450	451 452	453 454	455 45	6 457 4	58 459	460 461	462 463
	245	111	110 110	11. 110	400 400 (Counts (%) vs.	Mass-to-Charge	(m/z)	· · · · ·		100 401	102 403

Figure S46. The HR-ESI-MS of compound 5

8 2.5 000 -3.0 -3.5 CH2OH 4.0 ÓMe 4.5 6 î a 5.0 -5.5 6.0 -6.5 -7.0 0 -7.5 -8.0 7.0 6.5 5.5 8.0 7.5 6.0 5.0 4.5 4.0 2.5 3.5 3.0 2.0

Figure S52. The HMBC spectrum of compound 5 in CD₃OD

Figure S53. The NOESY spectrum of compound 5 in CD₃OD

Figure S54. The UV of compound 6 in MeOH

Figure S55. The IR (KBr disc) of compound 6

Figure S56. The HR-ESI-MS of compound 6

7.51 7.50 7.50 7.03 7.07 7.07 6.88 6.87

Figure S58. The ¹³C NMR spectrum of compound 6 in CDCl₃

Figure S59. The DEPT-135 spectrum of compound 6 in CDCl₃

Figure S60. The UV of compound 7 in MeOH

Figure S62. The ESI-MS of compound 7

140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5

Figure S65. The DEPT-135 spectrum of compound 7 in CDCl₃

Figure S66. The UV of compound 8 in MeOH

Figure S68. The HR-ESI-MS of compound 8

Figure S71. The DEPT-135 spectrum of compound 8 in CDCl₃

Figure S72. The UV of compound 9 in MeOH

Figure S73. The IR (KBr disc) of compound 9

Figure S74. The HR-ESI-MS of compound 9

Figure S77. The DEPT-135 spectrum of **9** in CDCl₃ (80%) + CD₃OD (20%)

Figure S78. The UV of compound 10 in MeOH

Figure S79. The IR (KBr disc) of compound 10

Figure S80. The HR-ESI-MS of compound 10

Figure S82. The ¹³C NMR spectrum of 10 in CDCl₃

Figure S83. The DEPT-135 spectrum of 10 in CDCl₃

Figure S84. Dynamic HPLC spectra of 4 with temperature increase

Figure S85. Dynamic HPLC spectra of 5 with temperature increase

Figure S86. Dynamic HPLC spectra of 4 with visible light irradiation

Figure S87. Dynamic HPLC spectra of 5 with visible light irradiation

Figure S88. Dynamic HPLC spectra of 4 with UV irradiation in 254 nm

Figure S89. Dynamic HPLC spectra of 5 with UV irradiation in 254 nm

Figure S90. Dynamic HPLC spectra of 4 with UV irradiation in 365 nm

Figure S91. Dynamic HPLC spectra of 5 with UV irradiation in 365 nm

Reference

- D. Ponglux, S. Wongseripipatana, S. Subhadhirasakul, H. Takayama, M. Yokota, K. Okata, C. Phisalaphong, N. Aimi and S. Sakai, Studies on the indole alkaloids of *Gelsemium elegans* (Thailand). Structure elucidation and proposal of a biogenetic route, *Tetrahedron*, 1988, 44, 5075-5094.
- 2 L. Z. Lin, G. A. Cordel, Gelsamydine, an indole alkaloid from *Gelsemium elegans* with two monoterpene units, *J. Org. Chem.* 1989, **54**, 3199-3202.
- 3 Q. Xue, J. Hu, X. C. Liu, J. Gu, Cytotoxic gelsedine-type indole alkaloids from *Gelsemium elegans*, J. Asian. Nat. Prod. Res., 2020, **22**, 1138-1144.
- 4 Y. K. Xu, S. P. Yang, S. G. Liao, H. Zhang, L. P. Lin, J. Ding, J. M. Yue, Alkaloids from *Gelsemium elegans*, J. Nat. Prod., 2006, **69**, 1347-1350.