Supplementary Information

Metal-free visible-light-induced aerobic oxidation of α-diazoesters leading to α-ketoesters in air

 Ji, ${ }^{a}$ Huilan Yue, ${ }^{* b}$ and Wei Wei*a

a. School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
b. Qinghai Provincial Key Laboratory of Tibetan Medicine Research and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
*E-mail: weiweiqfnu@163.com; hlyue@nwipb.cas.cn

Contents

\qquad

1. General information .S2
2. The general procedure for visible-light-induced aerobic oxidation of α-diazoesters leading to α-ketoesters in air. .S3
\qquad3. Preliminary mechanistic studiesS4-6
3. Characterization data of products $\mathbf{2 a - 2 x}$, oxazole $\mathbf{3 a}$, and endoperoxide product S7-13
4. References S13
5. Copies of NMR spectra for $\mathbf{2 a - 2 x}$, oxazole 3a, and endoperoxide product. S14-39

1. General information

All commercially available reagent grade chemicals were purchased from Aldrich, Acros, Alfa Aesar and Energy Chemical Company and used as received without further purification unless otherwise stated. All solvents were dried according to standard procedures. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded in CDCl_{3} on a Bruker Avance III 400 spectrometer with TMS as internal standard $\left(500 \mathrm{MHz}{ }^{1} \mathrm{H}, 125 \mathrm{MHz}\right.$ ${ }^{13} \mathrm{C} / 400 \mathrm{MHz}{ }^{1} \mathrm{H}, 100 \mathrm{MHz}{ }^{13} \mathrm{C}$) at room temperature, the chemical shifts (δ) were expressed in ppm and J values were given in Hz . The following abbreviations are used to indicate the multiplicity: singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of triplets (dt), and multiplet (m). All first order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted were designated as multiplet (m). Mass analyses and HRMS were obtained on a Finnigan-LCQDECA mass spectrometer and a Bruker Daltonics Bio-TOF-Q mass spectrometer by the ESI method, respectively. Column chromatography was performed on silica gel (200-300 mesh). We use RLH18 8-position Photo Reaction System, which manufactured by Beijing Rogertech Co.ltd base in Beijing PRC. This Photo reactor has equipped 8 blue light 3W LED,
other LEDs could be selected and replaced each position．This blue light 3W LED＇s energy peak wavelength is 452.6 nm ，peak width at half－height is 19.8 nm ．Irradiation vessel is borosilicate glass test tube，LED irradiate through a high－reflection channel to the test tube，path length is 2 cm ．No filter between LED and test tube．α－ Diazoesters were prepared according to the literature．${ }^{1}$

产品标识

产品型号：蓝光＠3W	制造厂商：诺植科技
环境温度： $23^{\circ} \mathrm{C}$	环境湿度： 20%
测试员：WU	测试日期：2021－01－25，09：59：25

参数列表					
参数名称	参数值	参數名称	参数值	参数名称	参数值
紫外危害辎照mW／cm	0.0000	坐标u，v	0．1952，0．0567	CIE1931 Y	39285.883
UVC䍃照度mW／cm ${ }^{\text {a }}$	0.0000	坐标u＇， v^{\prime}	0．1952，0．0850	CIE1931 Z	1122548.375
UVB絽照度mW／cm ${ }^{\text {a }}$	0.0000	色容差	100.00	TLCI－2012	0
UVA鎘照度mW／cm ${ }^{\text {a }}$	0.0000	显色指数Ra	－70．0	积分时间（ms）	0.2
Euv辑照度mW／$/ \mathrm{mm}^{3}$	0.00	辐照度Ee（mW／cm²）	69.70213	峰值信号	50817
Eb 蓝光辒照度m $\mathrm{m} / \mathrm{cm}^{\text {a }}$	69.49	明暗视觉比S／P	22.771	暗信号	2354
Eg 缘光鎘照度mW／cmm	0.21	主波长（ nm ）	457.80	补陰电平	2892
Er 红光辑照度mW／cm ${ }^{\text {a }}$	0.00	色纯度（\％）	99.2		
Eir 红外辐照度 $\mathrm{mW} / \mathrm{cm}^{\prime}$	0.00	半蒬度（ nm ）	19.8		
照度E（Ix）	26832.26	峰值波长（ nm ）	452.6		
烛光E（fc）	2492.78	中心波长（ nm ）	453.8		
相关色温（K）	100000	质心波长（ nm ）	455.6		
黑体偏离Duv	－0．06598	光通量色比（RGB）	0．0，5．6，94．4		
坐标x， y	0．1487，0．0288	CIE1931 X	203008.422		

Picture of reaction setup
2. The general procedure for visible-light-induced aerobic oxidation of α diazoesters leading to α-ketoesters in air

To a mixture of α-diazoesters $1(0.2 \mathrm{mmol})$ and Eosin Y ($2 \mathrm{~mol} \%$) was added $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The reaction mixture was open to air and stirred under the irradiation of 3 W blue LEDs at room temperature for 2-12 h. After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired product 2.

3. Preliminary mechanistic studies

3.1 The model reaction was conducted under nitrogen

To a mixture of α-diazoester 1a ($0.2 \mathrm{mmol}, 35.2 \mathrm{mg}$), Eosin Y ($2 \mathrm{~mol} \%$) and DABCO ($0.4 \mathrm{mmol}, 44.8 \mathrm{mg}$) was added $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ under N_{2}. The reaction was stirred under the irradiation of 3 W blue LEDs at room temperature. When the reaction was conducted for 4 h , the reaction was stopped, oxazole 3a was isolated in 64% yield and none of the desired product $\mathbf{2 a}$ was detected.

3.2 The addition of DABCO in the model reaction system.

To a mixture of α-diazoester 1a ($0.2 \mathrm{mmol}, 35.2 \mathrm{mg}$), Eosin Y ($2 \mathrm{~mol} \%$) and DABCO ($0.4 \mathrm{mmol}, 44.8 \mathrm{mg}$) was added $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The reaction mixture was open to the air and stirred under the irradiation of 3 W blue LEDs at room temperature. After completion of the reaction, the organic solution was concentrated in vacuum. None of the desired product 2a was detected, which indicated that this transformation should involve ${ }^{1} \mathrm{O}_{2}$-mediated process.

3.3The trapping experiments of ${ }^{\mathbf{1}} \mathrm{O}_{\mathbf{2}}$

To a mixture of 9,10-dimethylanthracene ($0.2 \mathrm{mmol}, 41.2 \mathrm{mg}$) and Eosin Y
($2 \mathrm{~mol} \%, 2.6 \mathrm{mg}$) was added $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The reaction mixture was open to the air and stirred under the irradiation of 3 W blue LEDs at room temperature. After completion of the reaction, the reaction mixture was concentrated in vacuum. The residue was purified by flash column chromatography using a mixture of petroleum ether and ethyl acetate as eluent to give the desired endoperoxide product in 82% yield.

3.3The LC-MS analysis

To a mixture of α-diazoester 1a ($0.2 \mathrm{mmol}, 35.2 \mathrm{mg}$) and Eosin Y ($2 \mathrm{~mol} \%$) was added $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. The reaction mixture was open to the air and stirred under the irradiation of 3 W blue LEDs at room temperature. When the reaction was conducted at 1 h , the reaction mixture was detected by LC-MS analysis. As shown in Figure S1, in addition to the desired product 2a, the key intermediate \mathbf{A} was also detected.

Figure S1.
4. Characterization data of products $2 a-2 x$, oxazole $3 a$, endoperoxide product,

Methyl 2-oxo-2-phenylacetate ${ }^{[1]}$, Compound 2a was obtained in 82% yield (26.9 mg) according to the general procedure (4h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 8.03-8.01 (m, 2H), 7.68-7.64 (m, 1H), 7.53-7.50(m, 2H), 3.98 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.1,164.1,135.0,132.4,130.1,128.9,52.8$. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 165.0552 ; found 165.0526.

Methyl 2-oxo-2-(p-tolyl)acetate ${ }^{[3]}$, Compound 2b was obtained in 74% yield $(26.4 \mathrm{mg})$ according to the general procedure $(7 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.91$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.31 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.97(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.7,164.3,146.4,130.2,130.0,129.7,52.7,21.9$. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 179.0708; found 179.0700.

Methyl 2-oxo-2-(m-tolyl)acetate ${ }^{[3]}$, Compound 2c was obtained in 71\% yield (25.2 mg) according to the general procedure (10 h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, CDCl_{3}): $\delta 7.81(\mathrm{~s}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, 2.42 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.3,164.2,138.9,135.9,132.4,130.4$, 128.8, 127.4, 52.7, 21.3. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 179.0708; found 179.0701.

Methyl 2-(4-(tert-butyl)phenyl)-2-oxoacetate ${ }^{[1]}$, Compound 2d was obtained in 67% yield (29.3 mg) according to the general procedure (11h). Brown oil. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.52 \mathrm{~Hz}, 2 \mathrm{H}), 3.97 \quad(\mathrm{~s}, 3 \mathrm{H})$, $1.35(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.7,164.3,159.2,130.1,129.9,126.0$, 52.7, 35.4, 31.0. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 221.1178$; found 221.1175 .

Methyl 2-(3-methoxyphenyl)-2-oxoacetate ${ }^{[4]}$, Compound 2e was obtained in 67% yield $(28.2 \mathrm{mg})$ according to the general procedure $(2 \mathrm{~h})$. Brown oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.20(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.0,164.1$, 160.0, 133.6, 129.9, 123.2, 121.9, 113.3, 55.5, 52.8. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 195.0657$; found 195.0650.

Methyl 2-(4-methoxyphenyl)-2-oxoacetate ${ }^{[1]}$, Compound 2f was obtained in 55\% yield (21.3 mg) according to the general procedure(4h). White solid. $47-48^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.01$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.98 (d, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.96 (s, $3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.5,165.1,164.4,132.7,125.5$, 114.3, 55.7,52.7. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 195.0657; found 195.0645.

Methyl 2-(4-fluorophenyl)-2-oxoacetate ${ }^{[1]}$, Compound 2g was obtained in 60% yield (21.6 mg) according to the general procedure $(4 \mathrm{~h})$. White solid. $54-55^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 8.11-8.08(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.1,166.9(\mathrm{~d}, J=256.9 \mathrm{~Hz}), 163.6,133.1(\mathrm{~d}, J=9.8$ $\mathrm{Hz}), 129.0(\mathrm{~d}, J=2.9 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 52.9$. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 183.0457$, found 183.0443 .

Methyl 2-(3-fluorophenyl)-2-oxoacetate ${ }^{[2]}$, Compound 2h was obtained in 66\% yield $(24.5 \mathrm{mg})$ according to the general procedure $(4 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.77(\mathrm{~d}, J=7.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 1 \mathrm{H})$, $7.33-7.28(\mathrm{~m}, 1 \mathrm{H}) 3.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.5,163.3,162.7$ (d, $J=247.65 \mathrm{~Hz}), 134.4(\mathrm{~d}, J=6.66 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=7.59 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=3.11$ $\mathrm{Hz}), 122.2(\mathrm{~d}, J=21.36 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=22.86 \mathrm{~Hz}), 53.0$. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 183.0457$, found 183.0435 .

Methyl 2-(2-fluorophenyl)-2-oxoacetate ${ }^{[2]}$, Compound 2i was obtained in 83% yield (30.3 mg) according to the general procedure (4h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.94-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 183.8,164.4,162.7(\mathrm{~d}, J=$ $256.4 \mathrm{~Hz}), 136.8(\mathrm{~d}, J=9.22 \mathrm{~Hz}), 130.9(\mathrm{~d}, ~ J=1.22 \mathrm{~Hz}), 124.9(\mathrm{~d}, \mathrm{~J}=3.46 \mathrm{~Hz})$, $121.7(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 116.6(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 53.0$. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 183.0457$, found 183.04385 .

Methyl 2-(3-chlorophenyl)-2-oxoacetate ${ }^{[3]}$, Compound 2j was obtained in 77\% yield (30.5mg) according to the general procedure(4h). White solid. $44-45^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 8.01(\mathrm{t}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.61$ $(\mathrm{m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.92 \mathrm{~Hz}, 1 \mathrm{H}), \quad 3.98(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $184.5,163.2,135.3,134.9,134.0,130.3,129.9,128.3,53.1$. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 199.0162 ; found 199.0148 .

Methyl 2-(2-chlorophenyl)-2-oxoacetate ${ }^{[5]}$, Compound $\mathbf{2 k}$ was obtained in 77\% yield $(30.5 \mathrm{mg})$ according to the general procedure $(4 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 186.3,163.5,134.4,134.0,133.3,131.6$, 130.6, 127.3, 53.3. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 199.0162; found 199.0148.

Methyl 2-(4-bromophenyl)-2-oxoacetate ${ }^{[1]}$, Compound 21 was obtained in 72% yield $(33.0 \mathrm{mg})$ according to the general procedure $(4 \mathrm{~h})$. White solid. $55-56{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 7.91(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 184.7, 163.4, 132.3, 131.5, 131.3, 130.7, 53.0. ESI HRMS: calculated for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 242.9657$, found 242.9648 .

Ethyl 2-oxo-2-(4-(trifluoromethyl)phenyl)acetate ${ }^{[4]}$, Compound $\mathbf{2 m}$ was obtained in 76% yield (35.1 mg) according to the general procedure $(6 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $J=8.00 \mathrm{~Hz}, 2 \mathrm{H}$), 7.8 (d, $J=8.25 \mathrm{~Hz}, 2 \mathrm{H}$), $4.50-4.46$ $(\mathrm{m}, 2 \mathrm{H}), 1.44(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.0,162.8,135.9$ ($\mathrm{q}, J=26.18 \mathrm{~Hz}$), $135.28,130.4,125.9(\mathrm{q}, J=2.93 \mathrm{~Hz}), 123.3(\mathrm{~d}, J=271.26 \mathrm{~Hz}), 62.8$, 14.1. ESI HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 247.0582$, found 247.0579 .

Methyl 4-(2-methoxy-2-oxoacetyl)benzoate ${ }^{[5]}$, Compound 2n was obtained in 61% yield (26.9 mg) according to the general procedure (6h). White solid. $99-100^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.16$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 8.1 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.00 (s, 3 H), 3.97 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.2,165.9,163.3,135.6,135.4$, 130.0, 129.9, 53.0, 52.6. ESI HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 223.0606$; found 223.0594 .

Methyl 2-(4-cyanophenyl)-2-oxoacetate ${ }^{[7]}$, Compound 20 was obtained in 54% yield (20.7 mg) according to the general procedure $(4 \mathrm{~h})$. White solid. $42-43^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.17$ (d, $J=8.52 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 (d, $J=8.52 \mathrm{~Hz}, 2 \mathrm{H}$), 4.00 (s, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 184.0,162.6,135.5,132.6,130.5,118.0,117.6$, 53.3. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 190.0504$, found 190.0512 .

Methyl 2-(naphthalen-1-yl)-2-oxoacetate ${ }^{[1]}$, Compound 2qp was obtained in 70% yield (29.8mg) according to the general procedure (4h). Yellow solid. $73-74^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$

NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.02(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1,1 \mathrm{H}), 7.70-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.5,164.9,135.9,134.1,133.9,131.0$, 129.3, 128.8, 128.2, 127.1, 125.6, 124.3, 52.9. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 215.0708$; found 215.0721 .

Ethyl 2-(benzo[c][1,2,5]thiadiazol-5-yl)-2-oxoacetate, Compound $\mathbf{2 q}$ was obtained in 42% yield (21.2 mg) according to the general procedure (2 h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.77$ (d, $J=0.65 \mathrm{~Hz}, 1 \mathrm{H}$), $8.23-8.21(\mathrm{~m}, 1 \mathrm{H}), 8.12$ (d, $J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{t}, J=7.15 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 185.5,162.9,157.0,154.1,133.0,127.4,126.8,122.5,62.9,14.1$. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 237.0334$; found 237.0321.

Ethyl 2-oxo-2-phenylacetate ${ }^{[1]}$, Compound $\mathbf{2 r}$ was obtained in 63% yield (22.4 mg) according to the general procedure(4h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.44(\mathrm{~m}$, 2 H), 1.43 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.4,163.9,134.9$, 132.5, 130.0, 128.9, 62.4, 14.1. ESI HRMS: calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 179.0708; found 179.0686.

Allyl 2-oxo-2-phenylacetate ${ }^{[1]}$, Compound 2s was obtained in 63% yield (24.0 mg) according to the general procedure(6 h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $8.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.06-$ $5.99(\mathrm{~m}, 1 \mathrm{H}), 5.47-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.34(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.1,163.5,135.0,132.4,130.8,130.1,128.9,120.1$, 66.6. ESI HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 191.0708; found 191.0702.

Benzyl 2-oxo-2-phenylacetate ${ }^{[1]}$, Compound $2 t$ was obtained in 56% yield (26.9 mg) according to the general procedure(4 h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.97 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.36$ (m, 3H), $5.42(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.1,163.7,135.0,134.6$, $132.4,130.1,128.9,128.9,128.8,128.6,67.8$. ESI HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 241.0865$, found 241.0867 .

Phenethyl 2-oxo-2-phenylacetate ${ }^{[3]}$, Compound $\mathbf{2 u}$ was obtained in 80% yield (40.8 mg) according to the general procedure $(8 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.86-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.90 \mathrm{~Hz} 2 \mathrm{H})$, $7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 4.62(\mathrm{t}, J=7.00 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{t}, J=7.00$ $\mathrm{Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.3,163.7,137.0,134.9,132.4,130.1$, 129.0, 128.9, 128.7, 126.9, 66.4, 35.0. ESI HRMS: calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 255.1021; found 255.0998.

Isopropyl 2-oxo-2-phenylacetate ${ }^{[6]}$, Compound 2v was obtained in 63% yield (22.4 mg) according to the general procedure(4h). Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.37-5.29(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 186.7$, 163.6, 134.8, 132.6, 130.0, 128.9, 70.7, 21.7. ESI HRMS: calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 193.0865$; found 193.0858 .

Methyl 2-(4-fluorophenyl)-2-oxoacetate ${ }^{[3]}$, Compound 2w was obtained in 75% yield $(28.8 \mathrm{mg})$ according to the general procedure $(4 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.18(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.6,164.1,134.9,132.5,130.0,128.9,72.1$, 27.8,19.0. ESI HRMS: calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 229.0841$; found 229.0830.

Isopentyl 2-oxo-2-phenylacetate ${ }^{[6]}$, Compound 2x was obtained in 71% yield (31.3 mg) according to the general procedure $(7 \mathrm{~h})$. Yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 8.00(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.42(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.485$ $\mathrm{Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.5,164.0,134.9,132.5,130.0,128.9$, 65.0, 37.1, 25.0, 22.4. ESI HRMS: calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 221.1178$; found 221.1174.

5-methoxy-2-methyl-4-phenyloxazole ${ }^{[8]}$
Yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.20(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}) 2.1341(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 154.3,151.9,131.4,128.5,126.3,124.8,114.5,60.1,14.3 . \mathrm{Ms}[\mathrm{M}+\mathrm{H}]$ 190.1.

(9s,10s)-9,10-dimethyl-9,10-dihydro-9,10-epidioxyanthracene, ${ }^{[9]}$ White solid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.39-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 6 \mathrm{H})$, ${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 186.3,163.7,137.0,134.9,132.4,130.1,129.0,128.9$, 128.7, 126.9, 66.4, 35.0. Ms [M+H] 239.1.

5. References

[1] C. Xu, Y. Wang and L. Bai, J. Org. Chem. 2020, 85, 12579-12584.
[2] N. R. O'Connor, P. Bolgar and B. M. Stoltz, Tetrahedron Lett. 2016, 57, 849-851.
[3] C. Xu, N. Zhang, X. Li, Y. Ge, P. Diao and C. Guo, Synlett. 2018, 29, 1065-1070.
[4] T. Karasawa, R.Oriez, N. Kumagai and M. Shibasaki, J. Am. Chem. Soc. 2018, 140, 12290-12295.
[5] J. Jiang, Journal of Chemical Research, 2019, 43, 219-229.
[6] K. Ni, L.- G. Meng, H. Ruana and L.Wang, Chem. Commun., 2019, 55, 84388441.
[7] D. K. Das, V. K. K. Pampana and K. C. Hwang, Chem. Sci., 2018, 9, 7318-7326.
[8] P-S. Lai, M. S. Taylor, Synthesis 2010, 9,1449-1452.
[9] Z. Gan, G. Li, Q. Yan, W. Deng, Y-Y. Jiang and D. Yang, Green Chem., 2020, 22, 2956-2962.
6. Copies of NMR spectra for $2 \mathrm{a}-2 \mathrm{x}, 3 \mathrm{a}$, endoperoxide product

$\begin{aligned} & \ddot{8} \\ & \stackrel{0}{\circ} \\ & \stackrel{\otimes}{\circ} \\ & \stackrel{1}{2} \end{aligned}$		

				$\begin{aligned} & \text { T } \\ & \hline \text { ' } \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$							$\frac{1}{\circ}$									
. 0	9.5	9.0	8. 5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	${ }_{\mathrm{ppm}}^{4.5}$	4.0	3.5	3. 0	2.5	2.0	1.5	1.0	0.5	0.0	-0. \%

NO
No
No
in
i

.0
$\stackrel{0}{0}$
$巾$

諒	¢¢\％	\％ererereied
T	「T\％	近

$\stackrel{\circ}{\bar{W}}$
$\stackrel{\circ}{\circ}$

20	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										f 1 (ppm)									

											$\begin{aligned} & 1 \\ & \stackrel{1}{\mathrm{e}} \end{aligned}$								
9.5	9.0	8.5	8.0	7.5	7.0	6. 5	6.0	5.5	${ }_{\text {f } 1}$		4.0	3. 5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

-186.2666
-163.4711

$\left[\begin{array}{l}134.4154 \\ -133.9519 \\ -133.2728 \\ -131.6380 \\ -130.5995 \\ 127.3090\end{array}\right.$

1	1	1	1		1	1	1	1	,	- 1	1	1	1	,	,	1	1	1	1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & 0 \\ & \stackrel{0}{1} \end{aligned}$

00	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1} \stackrel{(\mathrm{ppm})}{ }$	90	80	70	60	50	40	30	20	10

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40

(

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

NinNNiNNMNNNN
NinNNiNNMNNNN

(

O	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	1	10	
		180					130	120	110	f 1 (ppm)	90	80	70	60	50	40	30	20	10	0

かNong innNonNon

