Electronic Supplementary Information (ESI)

Lithium-bromine exchange reaction on C₆₀: First theoretical proposal of

stable singlet fullerene carbene without heteroatom $^{\rm t}$

Mengyang Li,^{a,#} Yaoxiao Zhao,^{a,#} Kun Yuan,^b Yanbo Han,^a Jie Zhang,^a Yong Wu,^a Masahiro Ehara,^c Shigeru Nagase,^d Xiang Zhao^{*a}

^aInstitute of Molecular Science & Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, China ^bCollege of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741001, China ^cInstitute for Molecular Science, Okazaki, 444-8585, Japan ^dFukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan

* E-mail: xzhao@mail.xjtu.edu.cn# These authors equally contribute to this work.

⁺ Dedicated to Professor Eiji Osawa on the occasion of his 85th birthday.

Table of Contents

1.	Calculation details on the nucleophilicity index (N) and global electrophilicity (ω)			
2.	Five pathways proposed to generate the stable singlet fullerene carbene Scheme S1			
3.	Kinetic study on the lithium-halogen exchange reactions on 1,1-dibromo-2-			
	methylpropene (DM) Figure S1S5			
4.	Relative potential energies and geometrical parameters (Table S1) for cis- and			
	<i>trans</i> -configurations of 4 based on the Figure S2S6			
5.	Configurations of ${f 6}$ based on the reaction sites and the orientation of TDD, and			
	their relative energy Figure S3S7			
6.	Configurations of 7 based on the reaction sites and the orientation of TDD, and			
	their relative energy Figure S4S7			
7.	. Geometries of INT1, TS1, INT3, and TS2 Figure S5S8			
8.	Natural bond orbital charge for the atoms labelled in Figure S5 of INT1, TS1, INT3,			
	and TS2 Table			
	S2S8			
9.	Parameters of bond critical points (BCPs) and Mayer bond orders (MBO)			
	between specific atoms in 2 , 4 , LiBr, and n-BuLi Table			
	S3			
10.	Kinetic study of Path2, geometries of reactants and products in Path2 with			
	several important bond parameters, and the change in the Gibbs free energy ΔG			
	(kcal/mol) Figure S6S9			
11.	Kinetic study of Path3, geometries of reactants and products in Path3 with			
	several important bond parameters, and the change in the Gibbs free energy ΔG			
	(kcal/mol) Figure S7S10			
12.	Geometries of 3 and 5 including some angles in them Figure S8S10			
13.	Kinetic study of Path4, geometries of reactants and products in Path4 with			
	several important bond parameters, and the change in the Gibbs free energy ΔG			
	(kcal/mol) Figure S9S11			
14.	Kinetic study of Path5, geometries of reactants and products in Path5 with			
	several important bond parameters, and the change in the Gibbs free energy ΔG			
	(kcal/mol) Figure S10S11			
15.	Interaction between carbene C atom and LiBr in 7 and 5, Figure			

S11.....S12

16.	Geometry of by-product 10 generated from dicarbene 8 Figure S12S12					
17.	Reaction process to generate by-product 10 from 9 Figure S13S13					
18.	Geometries of carbenes Ref1, Ref2, and Ref3 acknowledged in experiment					
	Figure					
	\$14					

1. Calculation details on the nucleophilicity index (N) and global electrophilicity (ω).

Calculation details

The nucleophilicity index (N), which was defined by Domingo et al,^[1] was calculated following N = $\Delta E_{\text{HOMO(Nu)}} - \Delta E_{\text{HOMO(TCNE)}}$, in which tetracyanoethylene (TCNE) is chosen as the reference. The global electrophilicity ω ,^[2] was calculated as $\omega = \mu^2/(2\eta)$, where μ represents the chemical potential $\mu = (E_{\text{HOMO}} + E_{\text{LUMO}})/2$, and η is the chemical hardness $\eta = E_{\text{HOMO}} - E_{\text{LUMO}}$.^[3] The energies of HOMO and LUMO were calculated on the B3LYP/6-311G(2df,2p).

[1] L. R. Domingo, E. Chamorro, P. Pérez, J. Org. Chem., 2008, 73, 4615-4624.

[2] R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc., 1999, **121**, 1922-1924.

[3] R. G. Parr, R. G. Pearson, J. Am. Chem. Soc., 1983, 105, 7512-7516.

2. Five pathways proposed to generate the stable singlet fullerene carbene.

Scheme S1 Five pathways proposed on the basis of lithium-bromine exchange reactions and qusi carbene insertions to generated the stable singlet fullerene carbene.

3. Kinetic study on the lithium-halogen exchange reactions on 1,1-dibromo-2-

methylpropene (DM).

Figure S1 Kinetic study on the lithium-halogen exchange reactions on **1,1-dibromo-2-methylpropene** (**DM**). The results based on the B3LYP-PCM(THF)/6-31G(d) and B3LYP-PCM(THF)/6-311+G(2df,2p)// B3LYP-PCM(THF)/6-31G(d) were marked in black and pink, respectively.

4. Relative potential energies and geometrical parameters (Table S1) for cis- and

trans-configurations of **4** based on the Figure S2.

Figure S2 Geometries of *cis*- and *trans*-configurations of **4**.

Table S1 Relative potential energies including zero-point energy correction on the B3LYP-PCM(THF)/6-311G(2df,2p)//B3LYP/6-31G(d) level and geometrical parameters for cis- and trans-configurations of **4** based on the Figure S2.

		cis-4	trans-4
Relative Energy	Relative Energy/kcal ⁻¹		
bond	1-2	2.32	2.32
	1-3	1.94	1.94
	2-3	2.25	2.26
	3-4	1.34	1.34
	5-6	1.34	1.34
	6-7	1.94	1.94
	6-8	2.25	2.26
	7-8	2.32	2.32
angle	1-2-3	50.2	50.1
	1-3-2	66.7	66.6
	2-1-3	63.0	63.3
	1-3-4	172.4	172.0
	5-6-7	172.4	172.0
	6-7-8	63.1	63.3
	6-8-7	50.2	50.1
	7-6-8	66.7	66.6
dihedral angle	1-2-3-4	-172.0	-171.5
	7-8-6-5	172.0	-171.5

 Configurations of 6 based on the reaction sites and the orientation of TDD, and their relative energy Figure S3.

Figure S3 Configurations of **6** based on the reaction sites and the orientation of TDD, and their relative energy (in purple) on the B3LYP-PCM(THF)/6-311G(2df,2p)//B3LYP/6-31G(d).

6. Configurations of 7 based on the reaction sites and the orientation of TDD, and

their relative energy Figure S4.

Figure S4 Configurations of 7 based on the reaction sites and the orientation of TDD, and their relative energy (in purple) on the B3LYP-PCM(THF)/6-311G(2df,2p)//B3LYP/6-31G(d).

7. Geometries of INT1, TS1, INT3, and TS2 Figure S5.

8. Natural bond orbital charge for the atoms labelled in Figure S5 of INT1, TS1, INT3,

and TS2 Table S2.

Table S2 Natural bond orbital charge for the atoms labelled in Figure S5 of INT1, TS1, INT3, and TS2.

atoms	NBO Charge				
	INT1	TS1	INT3	TS2	
1	-1.048	-0.791	-1.048	-0.787	
2	0.762	0.890	0.761	0.884	
3	0.117	-0.035	0.117	-0.036	
4	0.124	0.005	0.108	-0.006	
5	-0.203	-0.205	-0.209	-0.200	

9. Parameters of bond critical points (BCPs) and Mayer bond orders (MBO) between

specific atoms in 2, 4, LiBr, and n-BuLi Table S3.

Table S3 Parameters of bond critical points (BCPs) and Mayer bond orders (MBO) between specific atoms in **2**, **4**, LiBr, and n-BuLi, including density of all electrons (ρ_{BCP}), Potential energy density (V_{BCP}), Laplacian of electron density ($\nabla_{\rho_{BCP}}^{2}$), Energy density (H_{BCP}), and the ratio between $|V_{BCP}|$ and Lagrangian kinetic energy (G_{BCP}).

Molecules	Bonds	ρ_{BCP}	V _{BCP}	$\nabla^{\ 2}_{ ho_{BCP}}$	H _{BCP}	$ V_{BCP} /G_{BCP}$	MBO
				PBCP			
4	C3-C4	0.347	-0.523	-1.017	-0.389	3.887	1.888
	C3-Li1	0.039	-0.046	0.240	0.007	0.871	0.610
	C3-Br2	0.078	-0.057	0.054	-0.022	1.617	0.596
	Li1-Br2	0.025	-0.026	0.149	0.006	0.818	0.584
	C6-C5	0.347	-0.523	-1.016	-0.389	3.887	1.888
	C6-Li7	0.039	-0.046	0.240	0.007	0.871	0.610
	C6-Br8	0.078	-0.057	0.054	-0.022	1.618	0.597
	Li7-Br8	0.025	-0.026	0.149	0.006	0.818	0.584
2	C3-C4	0.346	-0.522	-1.013	-0.388	3.885	1.891
	C3-Li1	0.039	-0.046	0.238	0.007	0.870	0.605
	C3-Br2	0.083	-0.062	0.045	-0.025	1.689	0.622
	Br2-Li1	-	-	-	-	-	0.562
LiBr	Li-Br	0.037	-0.043	0.218	0.006	0.878	1.134
n-BuLi	C-Li	0.041	-0.045	0.202	0.003	0.936	0.897

10. Kinetic study of Path2, geometries of reactants and products in Path2 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol) Figure S6.

Figure S6 Kinetic study of Path2, geometries of reactants and products in Path2 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol).

11. Kinetic study of Path3, geometries of reactants and products in Path3 with several important bond parameters, and the change in the Gibbs free energy ΔG

(kcal/mol) Figure S7

Figure S7 Kinetic study of Path3, geometries of reactants and products in Path3 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol).

12. Geometries of 3 and 5 including some angles in them Figure S8.

Figure S8 Geometries of 3 and 5 including some angles in them.

13. Kinetic study of Path4, geometries of reactants and products in Path4 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol) Figure S9.

Figure S9 Kinetic study of Path4, geometries of reactants and products in Path4 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol).

14. Kinetic study of Path5, geometries of reactants and products in Path5 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol) Figure S10.

Figure S10 Kinetic study of Path5, geometries of reactants and products in Path5 with several important bond parameters, and the change in the Gibbs free energy ΔG (kcal/mol).

15. Interaction between carbene C atom and LiBr in 7 and 5, Figure S11.

Figure S11 Geometries of 7 (a) and 5 (d), Laplacian of electron density contour line map of 7 (b) and 5 (e), and electron localization function (ELF) color-filled map for of 7 (c) and 5 (f). The bromine and lithium atoms are marked in yellow and pink, respectively.

16. Geometry of by-product **10** generated from dicarbene **8** Figure S12.

Figure S12 Geometry of by-product 10 generated from dicarbene 8.

17. Reaction process to generate by-product **10** from **9** Figure S13.

Figure S13 Reaction process to generate by-product 10 from 9.

18. Geometries of carbenes Ref1, Ref2, and Ref3 acknowledged in experiment Figure

Figure S14 Geometries of carbenes Ref1, Ref2, and Ref3 acknowledged in experiment.