SUPPORTING INFORMATION FILE

HOLE-MEDIATED PHOTOREDOX CATALYSIS: TRIS(*p*-SUBSTITUTED)BIARYLAMINIUM RADICAL CATIONS AS TUNABLE, PRECOMPLEXING AND POTENT PHOTOOXIDANTS

Shangze Wu,[†] Jonas Žurauskas,^{†‡} Michał Domański,^{†‡} Patrick S. Hitzfeld,^{†‡} Valeria Butera,[⊥] Daniel J. Scott,[†] Julia Rehbein,[†] Ajeet Kumar,[§] Erling Thyrhaug,[§] Jürgen Hauer,[§] and Joshua P. Barham^{*†}

[†] Universität Regensburg, Fakültat für Chemie und Pharmazie, 93040 Regensburg, Germany
[‡] Central European Institute of Technology, CEITEC, Brno, 612 00 Czech Republic
§ Technische Universität München, Fakültat für Chemie, 85748 Garching b. München, Germany

*Corresponding Author. E-mail: <u>Joshua-Philip.Barham@chemie.uni-regensburg.de</u>

TABLE OF CONTENTS

1. General Experimental Information	2
2. Material and Electrodes Preparation	3
3. Synthesis of Triarylamine Catalysts and Triarylaminium Radical Cation Salts	5
4. Optimization of Reaction Conditions	10
5. e-PRC C-H Heteroamination Reactions	15
6. UV-vis Spectra	32
6.1. UV-vis Spectra of neutral TPAs	32
6.2. UV-vis Spectra of TPA ^{.+} s (PF ₆ salts)	33
6.3. UV-vis Spectra of TPA ^{,+} precomplexes (PF ₆ salts)	34
6.4. UV-vis Spectra of TPA ^{.+} s in the presence of reaction components and during irradiation	35
7.Cyclic Voltammetry	37
7.1. Cyclic Voltammetry of TPAs	38
7.2. Applied Constant Potential Dependence on Reaction Yield	39
8. Spectroelectrochemistry	40
8.1. Spectroelectrochemistry of TPAs	41
8.2. Spectroelectrochemistry of TPAs in presence of substrates.	42
9. Luminescence Spectroscopy of TPA ⁺ s	43
9.1. Luminescence Excitation Emission Matrices	44
9.2. Time-correlated Single Photon Counting Luminescence Measurements	44
10. Transient Absorption Spectroscopy of TPA ⁺ s	46
11. Emission spectra of LEDs	50
12. Electron Paramagnetic Spectroscopy Investigations	53
12.1. EPR spectra of TPA ⁺ s	54
12.2. EPR spectra of TPA [.] ⁺s in the presence of substrates	54
12.3. Simulation of EPR spectra measured	57
12.4. Interpretation of EPR spectra of TPA $+$ s in the presence of substrates	65
12.5. Comparison of DFT calculated and measured EPR spectra of TPA ⁺ s	71

13. Computational Investigations of TPAs, TPA ⁺ s and TPA ⁺ Precomplexes	72
13.1. Computation of Neutral TPAs, XYZ Co-ordinates	72
13.2. Computation of TPA ^{.+} s	75
13.3. Computation of TPA ^{.+} precomplexes, XYZ Co-ordinates	83
14. Computational Investigation of TPA ⁺ Excited States	132
14.1. XYZ Co-ordinates and Computed UV-Visible Spectra	133
14.2 Molecular orbitals and natural transition orbitals for TPA ^{.+} photoexcitations	169
15. X-ray Crystallography	187
16. Current vs. Time Profile for Representative Reactions	199
17. ¹ H NMR, ¹³ C NMR and ¹⁹ F NMR Spectra of The Compounds Prepared	200
17. References	251

1. GENERAL EXPERIMENTAL INFORMATION

Unless stated otherwise, reactions were carried out under an inert (N_2) atmosphere. Cryogenic conditions (-78 °C) were achieved using dry ice/acetone baths. Temperatures of 0 °C were obtained by means of an ice bath or ice/salt bath. 'Room temperature' (rt) indicates temperatures in the range of 20-25 °C. For purposes of thin layer chromatography (TLC), ALUGRAM® Xtra SIL G/UV254 silica plates were used, with UV light ($\lambda = 254$ nm) and potassium permanganate used for visualisation. Purification was achieved by column chromatography using Macherey-Nagel silica gel 60 (0.063-0.2 mm). Removal of solvents (in vacuo) was achieved using Heidolph rotary evaporators or Vacuubrand high vacuum pumps. All NMR data were collected using a Bruker Avance 400 Ultrashield instrument using 400 MHz, 376.5 MHz and 101 MHz for 1H, 19F and 13C NMR, respectively, except for ¹H NMR of **TpTA**, ¹H and ¹³C NMR of **TpAA**, and ¹H and ¹³C NMR of **3ab**, which a Bruker Avance 300 Ultrashield instrument was used. ¹³C NMR was run in ¹H-decoupled mode. Data were manipulated using MestReNova version 12.0.0. All ¹H NMR experiments were measured with tetramethylsilane (0 ppm), the signal of residual CHCl₃ (7.26 ppm) in CDCl₃ or the signal of residual Acetone (2.09 ppm) in Acetone-d₆ as the internal reference, ¹³C NMR experiments were measured in relative to the signal of $CDCl_3$ (77.0 ppm) or Acetone-d₆ (30.6 ppm). Multiplicities for coupled signals were denoted as: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad, apt. = apparent and dd = double doublet etc. Coupling constants (J) are given in Hz and are uncorrected. Where appropriate, COSY, DEPT, HSQC and HMBC experiments were carried out to aid assignment. Infra-red spectra were recorded on an Agilent Cary 630 FT-IR Spectrophotometer fitted with a Universal ATR accessory as a thin film unless otherwise stated. UV-visible absorption measurements were performed within an Ottle Cell (Section S8 for details) using an Agilent 8453 spectrometer unless otherwise stated. All samples were prepared at 2.0 x 10⁻³ M in either DCM or MeCN containing 0.1 M n-tetrabutylammonium hexafluorophosphate ("Bu4N·PF6 or 'TBAP', 98%+, TCI Chemicals) in order to replicate the reaction conditions. High Resolution Mass spectral analyses were carried out in EI or ESI mode on a Finnigan MAT 95, Thermo Quest Finnigan TSQ 7000, Finnigan MATSSQ 710 A or an Agilent Q - TOF 6540 UHD instrument, masses observed are accurate to within ±5 ppm. Melting points are uncorrected and were recorded using a Stuart melting point device up to 300 °C. All solvents and reagents were purchased from Sigma-Aldrich and used as supplied. All solvents and reagents were used as supplied or purified using standard techniques.^[1]

2. MATERIAL AND ELECTRODES PREPARATION

Materials: Platinum wire (P/3640/88 from Alfa Aesar, 10 cm). LED details: 365 nm: CCS (Creating Customer Satisfaction) Inc. (LDL-71X12UV12-365-N); 400 nm: LED Engin (LZ440UB00-00U4); 740 nm: LED Engin (LZ4-00R308); 850 nm: LED Engin (LZ4-00R608). Eluteng (12 V, 1 A) USB cooling fan (from Amazon). Faber-Castell 2.0 mm 2B pencil lead (from Amazon). PeakTech® 6080A digital DC power supply. Glassy carbon foam, thickness: 6.35mm, porosity: 96.5% (Goodfellow, Product Code: 613-422-20).

Anode set-up: A 2B pencil lead was inserted through a septum with the help of a needle. A small square (around 7 mm x 7 mm) of carbon foam was cut from the carbon foam plate, and the pencil lead was pierced through this foam cube.

Figure S1. Anode set-up.

Cathode (Pt) set-up: A 2B pencil lead was inserted through a septum with the help of a needle. A 10 cm platinum wire was made into a spiral cathode. The spiral platinum cathode was wrapped tightly around the pencil lead.

Figure S2. Cathode (Pt) set-up.

Cathode (other metal) set-up: A rectangular metal cathode (*ca.* 20 mm x 4 mm) was inserted into a conductive steel holder. With the help of a needle, the holder was inserted through a septum.

Divided H-cell: The H-type divided cell with an Ace Glass Sintered Glass Filter Disc (8 mm diameter, porosity 'P4') was handmade by a glassblower at the Universität Regensburg.

Figure S4. Divided H-cell.

3. SYNTHESIS OF TRIARYLAMINE CATALYSTS AND TRIARYLAMINIUM RADICAL CATION SALTS

1). Preparation of tri([1,1'-biphenyl]-4-yl)amine (**TpBPA**).

General Procedure I: To a dry 250 ml Schlenk flask equipped with a Teflon-coated magnetic stirring bar was added tris(*p*-bromophenyl)amine (4.0 g, 8.3 mmol), phenylboronic acid (3.3 g, 27.4 mmol), aqueous Na₂CO₃ (2.0 M, 57 mL), toluene (115 mL) and absolute EtOH (57 mL). The resulting mixture was degassed by bubbling nitrogen for 15 minutes via canula. Before completely sealing, Pd(PPh₃)₄ (1.0 g, 0.83 mmol) was added and the resulting mixture was stirred at 85 °C in complete exclusion of light. After completion as determined by TLC (20 h), the mixture was cooled to room temperature and directly extracted with CHCl₃ (100 mL × 3). The combined organic phase was washed with brine (50 mL × 3) and dried over anhydrous Na₂SO₄. Filtration, evaporation of the solvent and chromatography on silica gel (eluent: petroleum ether/CHCl₃ = 3/1) afforded **TpBPA** (3.7 g, 81%) as a white microcrystalline solid; m.p. 254-256 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 4.0 Hz, 6 H, Ar-H), 7.25 (d, *J* = 4.0 Hz, 6 H, Ar-H), 7.44 (t, *J* = 8.0 Hz, 6 H, Ar-H), 7.33 (t, *J* = 8.0 Hz, 3 H, Ar-H), 7.25 (d, *J* = 4.0 Hz, 6 H, Ar-H); ¹³C NMR (101 MHz, CDCl₃) δ 146.8, 140.6, 135.6, 128.8, 127.9, 126.9, 126.7, 124.4; IR (neat, cm⁻¹) 3056, 3034, 1599, 1517, 1484, 1323, 1293, 1193, 1115; HRMS Calcd. for C₃₆H₂₇N (M⁺): 473.2143; Found: 473.2137. Data are consistent with the literature.^[2]

The following catalysts were prepared according to the General Procedure I.

2). Preparation of tris(4'-(*tert*-butyl)-[1,1'-biphenyl]-4-yl)amine (TtBBPA).

The reaction of tris(*p*-bromophenyl)amine (0.550 g, 1.15 mmol), (*p*-(*tert*-butyl)phenyl)boronic acid (0.675 g, 3.80 mmol), and Pd(PPh₃)₄ (0.132 g, 0.115 mmol) in aqueous Na₂CO₃ (2.0 M, 6 mL), toluene (13 mL) and absolute EtOH (6 mL) for 18 h afforded after chromatography (eluent: petroleum ether/CHCl₃ = 9/1) **TtBBPA** (0.400 g, 54%) as a white microcrystalline solid; m.p. 215-217 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (t, *J* = 10.0 Hz, 12 H, Ar-H), 7.49 (d, *J* = 8.0 Hz, 6 H, Ar-H), 7.25 (d, *J* = 8.0 Hz, 6 H, Ar-H), 1.41 (s, 27 H, 9 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 149.8, 146.6, 137.7, 135.4, 127.7, 126.3, 125.7, 124.4, 34.5, 31.4; IR (neat, cm⁻¹) 3034, 2963, 2904, 2870, 1603, 1498, 1394, 1327, 1293, 1185, 1115; HRMS Calcd for C₄₈H₅₁N (M⁺): 641.4021; Found: 641.4017. Data are consistent with the literature.^[3]

3). Preparation of tris(2',4'-difluoro-[1,1'-biphenyl]-4-yl)amine (TdFBPA).

The reaction of tris(*p*-bromophenyl)amine (1.270 g, 2.63 mmol), 2,4-difluorophenylboronic acid (1.500 g, 8.7 mmol), and Pd(PPh₃)₄ (0.303 g, 0.263 mmol) in aqueous Na₂CO₃ (2.0 M, 19 mL), toluene (38 mL) and absolute EtOH (19 mL) after 18 h afforded after chromatography (eluent: petroleum ether/CHCl₃ = 9/1 to 8/2 to 7/3) **TdFBPA** (1.300 g, 85%) as a white microcrystalline solid; m.p. 177-179 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.37 (m, 9 H, Ar-H), 7.26-7.21 (m, 6 H, Ar-H), 6.99-6.85 (m, 6 H, Ar-H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1 (dd, *J*₁ = 233.3 Hz, *J*₂ = 12.1 Hz), 159.7 (dd, *J*₁ = 234.8 Hz, *J*₂ = 11.6 Hz), 146.9, 131.1 (q, *J* = 4.7 Hz), 129.8 (d, *J* = 3.0 Hz), 129.6 (d, *J* = 1.0 Hz), 124.8 (dd, *J*₁ = 13.1 Hz, *J*₂ = 4.0 Hz), 124.2, 111.6 (dd, *J*₁ = 20.7 Hz, *J*₂ = 3.5 Hz), 104.4 (dd, *J*₁ = 27.3 Hz, *J*₂ = 25.3 Hz); ¹⁹F NMR (376.5 MHz, CDCl₃) δ -112.4 (d, *J* = 7.5 Hz), -114.0 (d, *J* = 7.5 Hz); IR (neat, cm⁻¹) 3079, 3038, 1599, 1491, 1402, 1327, 1267, 1185, 1141, 1100; HRMS Calcd for C₃₆H₂₁F₆N (M⁺): 581.1578; Found: 581.1571. Data are consistent with the literature.^[4]

The reaction of tris(*p*-bromophenyl)amine (1.660 g, 3.4 mmol), 4-cyanophenylboronic acid pinacol ester (2.610 g, 11.4 mmol), and Pd(PPh₃)₄ (0.396 g, 0.34 mmol) in aqueous Na₂CO₃ (2.0 M, 24 mL), toluene (48 mL) and absolute EtOH (24 mL) after 24 h afforded after chromatography (eluent: DCM) **TCBPA** (1.660 g, 88%) as a pale yellow powder; m.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.65 (m, 12 H, Ar-H), 7.59-7.52 (m, 6 H, Ar-H), 7.31-7.23 (m, 6 H, Ar-H); ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 144.7, 133.9, 132.6, 128.2, 127.1, 124.7, 118.9, 110.5; IR (neat, cm⁻¹) 3038, 2225, 1595, 1521, 1491, 1327, 1282, 1185, 1115, 1006; HRMS Calcd for C₃₉H₂₄N₄ (M⁺): 548.2001; Found: 548.1990. Data are consistent with the literature.^[3]

5). Preparation of 4',4"',4""-nitrilotris(([1,1'-biphenyl]-2,4-dicarbonitrile)) (TdCBPA).

The reaction of tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)amine (0.611 g, 0.98 mmol), 4-bromoisophthalonitrile (0.670 g, 3.24 mmol), and Pd(PPh₃)₄ (0.120 g, 0.098 mmol) in aqueous Na₂CO₃ (2.0 M, 5 mL), toluene (11 mL) and absolute EtOH (5 mL) after 48 h afforded after chromatography (eluent: DCM) **TdCBPA** (0.590 g, 98%) as a yellow powder; m.p. > 300 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 1.6 Hz, 3 H, Ar-H), 7.92 (dd, *J*₁ = 8.2 Hz, *J*₂ = 1.7 Hz, 3 H, Ar-H), 7.69 (d, *J* = 8.0 Hz, 3 H, Ar-H), 7.60-7.53 (m, 6 H, Ar-H), 7.37-7.31 (m, 6 H, Ar-H); ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 148.1, 137.3, 135.8, 131.5, 130.8, 130.1, 124.7, 116.8, 116.7, 112.3, 111.9; IR (neat, cm⁻¹) 3064, 2982, 2926, 2855, 2233, 1592, 1513, 1480, 1327, 1282, 1189; HRMS Calcd for C₄₂H₂₁N₇ (M⁺): 623.1853; Found: 623.1834.

4). Preparation of 4',4"',4""-nitrilotris(([1,1'-biphenyl]-4-carbonitrile)) (TCBPA).

6). Preparation of tri-*p*-tolylamine (**T***p***TA**).

To a dry 250 ml Schlenk flask equipped with a Teflon-coated magnetic stirring bar was added *p*-toluidine (0.43 g, 4 mmol), *p*-bromotoluene (1.71 g, 10 mmol), *t*-BuONa (1.14 g, 11.8 mmol), and anhydrous *o*-xylene (25 mL). The resulting mixture was degassed by bubbling nitrogen for 15 minutes via canula. Before completely sealing, Pd(PPh₃)₂Cl₂ (0.03 g, 0.04 mmol) and PPh₃ (0.02 g, 0.08 mmol) was added and the resulting mixture was stirred at 125 °C in complete exclusion of light. After completion as determined by TLC (48 h), the mixture was cooled to room temperature and quenched by H₂O (100 mL) and then extracted with CHCl₃ (125 mL × 3). The combined organic phase was washed sequentially with H₂O (100 mL × 3), brine (50 mL × 3) and then dried over anhydrous Na₂SO₄. Filtration, evaporation of the solvent and chromatography on silica gel (eluent: petroleum ether) afforded **T***p***TA** (0.84 g, 88%) as a white microcrystalline solid; m.p. 113-115 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.07-6.99 (m, 6 H, Ar-H), 6.98-6.91 (m, 6 H, Ar-H), 2.29 (s, 9 H, 3 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.7, 131.7, 129.7, 123.8, 20.7; IR (neat, cm⁻¹) 3027, 2922, 2863, 1607, 1506, 1320, 1275, 1111; HRMS Calcd for C₂₁H₂₁N (M⁺): 287.1669; Found: 287.1664. Data are consistent with the literature.^[2]

7). Preparation of tris(4-methoxyphenyl)amine (**TpAA**).

To a dried three-necked flask equipped with a Teflon-coated magnetic stirring bar were added was added 1-iodo-4-methoxybenzene (7.0205 g, 30 mmol), 4-methoxyaniline (1.2324 g, 10 mmol), Cul (0.0958 g, 0.5 mmol), *t*-BuOK (3.3665 g, 30 mmol), and anhydrous toluene (40 mL) under a nitrogen atmosphere. The resulting mixture was stirred at 135 °C. The mixture was cooled to room temperature after 36 h as monitored by TLC and quenched by H₂O (100 mL) and then extracted with ethyl acetate (50 mL × 3). The combined organic phase was washed with brine (30 mL) and dried over anhydrous Na₂SO₄. Filtration, evaporation of the solvent and chromatography on silica gel (eluent: pentane/ethyl acetate = 40/1 to 20/1) afforded **TpAA** (2.3412 g, 70%) as a pale orange microcrystalline solid; m.p. 94-96 °C (pentane/ethyl acetate); ¹H NMR (300 MHz, C₆D₆) δ 7.12-7.04 (m, 6 H, Ar-H), 6.77-6.69 (m, 6 H, Ar-H), 3.30 (s, 9 H, 3 × OCH₃); ¹³C NMR (75 MHz, C₆D₆) δ 156.2, 143.2, 125.9, 115.6, 55.6; IR (neat, cm⁻¹) 3042, 2997, 2952, 2833, 1502, 1465, 1238, 1178, 1036; HRMS Calcd for C₂₁H₂₁NO₃ (M⁺): 335.1516; Found: 335.1507. Data are consistent with the literature.^[5]

8). Preparation of TpBPA^{.+}·PF₆.

To a dry 100 ml Schlenk flask equipped with a Teflon-coated magnetic stirring bar was added **T***p***BPA** (80.2 mg, 0.17 mmol) and anhydrous DCM (10 mL) (Flask A). To another dry 100 ml Schlenk flask was added hexafluorophosphate (29.9 mg, 0.17 mmol) and anhydrous DCM (20 mL) (Flask B). Flask A and B were connected by a canula. The resulting mixture of Flask B was slowly pushed into Flask A by N₂ at 0 °C in 10 min. Then the resulting mixture of Flask A was stirred at 0 °C for 30 min, before evaporation of most DCM by vacuum. Then ice cold Et₂O (30 mL) was added to afford a precipitate. After filtration, the precipitate was washed with ice cold Et₂O (10 mL × 2) and evaporation of the solvent afforded **T***p***BPA**^{••}·PF₆ (83.0 mg, 79%) as a dark green microcrystalline solid.

9). Preparation of TCBPA⁺·PF₆.

To a dry 100 ml Schlenk flask equipped with a Teflon-coated magnetic stirring bar was added **TCBPA** (131.8 mg, 0.24 mmol) and anhydrous DCM (10 mL) (Flask A). To another dry 100 ml Schlenk flask was added hexafluorophosphate (42.3 mg, 0.24 mmol) and anhydrous DCM (20 mL) (Flask B). Flask A and B were connected by a canula. The resulting mixture of Flask B was slowly pushed into Flask A by N₂ at 0 °C in 10 min. Then the resulting mixture of Flask A was stirred at 0 °C for 30 min, before evaporation of most DCM by vacuum. Then ice cold Et₂O (30 mL) was added to afford a precipitate. After filtration, the precipitate was washed with ice cold Et₂O (10 mL × 2) and evaporation of the solvent afforded **TCBPA**.⁺·PF₆ (116.3 mg, 70%) as a dark green microcrystalline solid.

4. OPTIMIZATION OF REACTION CONDITIONS

Table S1. Trial of different TPAs^a

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), catalyst (0.02 mmol), AcOH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard.

Table S2. Optimization of light intensity: a

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), AcOH (2 mmol), $^{n}Bu_{4}N$ ·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard.

Table S3. Optimization of proton source: a

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), ROH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard.

Table S4. Optimization of cathodic material: a

Entry	Cathode	NMR yield ^b /%	
		3aa	SM
1°	Pt	69	15
2	Pt	72	-
3°	С	31	16
4	Zn	42	-
5	Fe	70	-
6	AIMg ₃	21	-
7	Cu	88 ^d	-
8	Ni	33	-

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), MeOH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard. ^c AcOH (2 mmol) was used instead of MeOH. ^d Average of two replicates.

Table S5. Optimization of anodic material: ^a

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), MeOH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard. ^c Average of two replicates.

Table S6. Optimization of electrolyte: a

+ 1a 3.5 equiv.	10 mol% TpBPA 10 equiv. MeOH (6+6) equiv. electroly 2a C(+)/Cu(-), MeCN, rt, +1 Purple LED (400 nm, 3.8	te .4 V W), 60 h 3aa Ph	Ph N N TpBPA
Entry	Electrolyte	NMR yield ^b /%	
, ,		3aa	SM
1	ⁿ Bu₄N·PF ₆	88°	-
2	LiClO ₄	60	-

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), MeOH (2 mmol), electrolyte ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard. ^c Average of two replicates.

Table S7. Optimization of solvent: a

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), MeOH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), solvent (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard. ^c Average of two replicates.

Table S8. Optimization of reaction time: ^a

1a 3.5 equiv.	10 mol% TpBPA 10 equiv. MeOH N N (6+6) equiv. ⁿ Bu ₄ N·PF ₆ C(+)/Cu(-), MeCN, rt, +1.4 V Purple LED (400 nm, 3.8 W), time	\rightarrow \sim	Ph Ph N Ph Ph Ph Ph T <i>p</i> BPA
Entry	Time/h	NMF Time/h	
,		3aa	SM
1	60	88°	-
2	24	53	-

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), MeOH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard. ^c Average of two replicates.

Table S9. Control experiments with TpBPA: a

		3aa	SM ^e
1	-	88°	-
2	No electricity	4	-
3	No light	-	-
4	No catalyst	2	-
5	[70mW/cm ²] ^d 365 nm LED	11	-
6	2.1 W ^d 740 nm LED	1	-
7	3.8 W ^d 850 nm LED	-	-

^a The reaction was conducted with **1a** (0.1 mL), **2a** (0.2 mmol), **TpBPA** (0.02 mmol), MeOH (2 mmol), ⁿBu₄N·PF₆ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH₂Br₂ as internal standard. ^c Average of two replicates. ^dRadiant power of LED specified by manufacturer, see **Section S11** for details. ^eThe sublimation of pyrazole during concentration *in vacuo* meant that starting material could not be detected after reaction work up.

Table S10. Control experiments with TCBPA: a

Entry	Change of Conditions	NMR yield ^b /% (3gb 1 + 3gb 2)	
		3aa	SM
1	-	69 ^c	-
2	No electricity	9	42
3	[70mW/cm ²] ^d 365 nm LED	8	30
4	2.1 W ^d 740 nm LED	0	100
5	3.8 W ^d 850 nm LED	< 5	69

^a The reaction was conducted with **1g** (1.0 mL), **2b** (0.2 mmol), **TCBPA** (0.01 mmol), AcOH (2 mmol), $^{n}Bu_4NPF_6$ ((1.2+1.2) mmol), MeCN (2+2 mL) and monitored by TLC. ^b Determined by ¹H NMR of the crude product using CH_2Br_2 as internal standard. ^c Average of two replicates. ^dRadiant power of LED specified by manufacturer, see **Section S11** for details.

5. e-PRC C-H HETEROAMINATION REACTIONS

1). Preparation of 3aa.

General Procedure II: To a dried H-cell equipped with Teflon-coated magnetic stirring bars in each compartment were added (to the anodic chamber:) catalyst TpBPA (9.4 mg, 0.02 mmol), pyrazole 2a (13.9 mg, 0.2 mmol), ⁿBu₄N·PF₆ (464.8 mg, 1.2 mmol), and (to the cathodic chamber:) ⁿBu₄N·PF₆ (464.2 mg, 1.2 mmol). Then, to the anodic chamber, MeCN (2 mL) and mesitylene 1a (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol) were added. To cathodic chamber, MeCN (2 mL) and MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) were added. Both compartments were sealed using rubber septums and parafilm then flushed with N₂ for 5 min. The resulting mixture was stirred at room temperature above a water-cooled cooling block under irradiation of 400 nm LED from beneath the anodic chamber. A constant potential of +1.4 V was applied across the cell. After being stirred for 60 h at rt, the reaction was complete as determined by TLC. The resulting mixture was poured into a flask and each compartment was washed with ethyl acetate (3 mL × 3). The carbon foam was sonicated with ethyl acetate for 5 min. After combining these organics, they were diluted with pentane to pentane/ethyl acetate = 2/1. Filtration through a short column of silica gel (eluent: pentane/ethyl acetate = 2/1, 15 mL × 3) and evaporation afforded the crude product, which was purified by flash column chromatography on silica gel (eluent: pentane/ethyl acetate = 100/1 to 50/1) to afford 3aa (32.3 mg, 85%) as a pale yellow solid; m.p. 55-57 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.68 (m, 1 H, Ar-H), 7.43-7.38 (m, 1 H, Ar-H), 6.93 (s, 2 H, Ar-H), 6.41 (t, J = 4.0 Hz, 1 H, Ar-H), 2.31 (s, 3 H, CH₃), 1.95 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 139.8, 138.6, 136.8, 135.7, 130.7, 128.6, 105.6, 20.9, 17.0; IR v (neat, cm⁻¹) 3105, 2956, 2922, 2859, 1737, 1595, 1513, 1487, 1394, 1193, 1103, 1044; HRMS Calcd for $C_{12}H_{14}N_2$ (M⁺): 186.1152. Found: 186.1152. Data are consistent with the literature.^[6]

Before light

With light

Figure S5. Reaction set-up.

The following compounds were prepared according to the General Procedure II.

2). Preparation of 3ab.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2b** (28.2 mg, 0.2 mmol), **TpBPA** (9.6 mg, 0.02 mmol), ⁿBu₄N·PF₆ (465.4 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N.PF₆ (464.8 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ab** (41.7 mg, 80%) (eluent: pentane/ethyl acetate = 50/1 to 20/1) as a colourless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.14-8.10 (m, 1 H, Ar-H), 7.95-7.91 (m, 1 H, Ar-H), 6.95 (s, 2 H, Ar-H), 4.34 (q, *J* = 7.0 Hz, 2 H, CH₂), 2.34 (s, 3 H, CH₃), 1.99 (s, 6 H, 2 × CH₃), 1.38 (t, *J* = 7.5 Hz, 3 H, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 141.6, 139.4, 136.1, 135.4, 134.5, 128.9, 115.5, 60.3, 21.1, 17.2, 14.4; IR ν (neat, cm⁻¹) 3124, 2982, 2926, 1715, 1554, 1498, 1446, 1402, 1230, 1167, 1129; HRMS Calcd for C₁₅H₁₈N₂O₂ (M⁺): 258.1363. Found: 258.1370. Data are consistent with the literature.^[6]

3). Preparation of 3ac.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2c** (38.5 mg, 0.2 mmol), **T***p***BPA** (9.6 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.5 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.0 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ac** (43.8 mg, 71%) (eluent: pentane/ethyl acetate = 100/1 to 50/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1 H, Ar-H), 7.47 (s, 1 H, Ar-H), 6.94 (s, 2 H, Ar-H), 2.33 (s, 3 H, CH₃), 1.97 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 139.2, 136.3, 135.6, 135.2, 128.9, 56.5, 21.1, 17.2; IR ν (neat, cm⁻¹) 3124, 2956, 2922, 2859, 1692, 1607, 1510, 1398, 1316, 1252, 1033; HRMS Calcd for C₁₂H₁₃IN₂ (M⁺): 312.0118. Found: 312.0110. Data are consistent with the literature.^[6]

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2d** (29.1 mg, 0.2 mmol), **TpBPA** (9.5 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.0 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ad** (34.5 mg, 66%) (eluent: pentane/ethyl acetate = 100/1 to 50/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1 H, Ar-H), 7.45 (s, 1 H, Ar-H), 6.94 (s, 2 H, Ar-H), 2.33 (s, 3 H, CH₃), 1.98 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 140.6, 139.3, 136.4, 135.7, 130.9, 128.9, 93.5, 21.1, 17.2; IR ν (neat, cm⁻¹) 3127, 3027, 2956, 2922, 2859, 1610, 1491, 1402, 1323, 1256, 1167, 1033; HRMS Calcd for C₁₂H₁₃⁷⁹BrN₂ (M⁺): 264.0257. Found: 264.0260. Data are consistent with the literature.^[6]

5). Preparation of 3ae.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2e** (20.8 mg, 0.2 mmol), **TpBPA** (9.7 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.4 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ae** (34.8 mg, 78%) (eluent: pentane/ethyl acetate = 100/1 to 50/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (s, 1 H, Ar-H), 7.43 (s, 1 H, Ar-H), 6.94 (s, 2 H, Ar-H), 2.33 (s, 3 H, CH₃), 1.98 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 139.3, 138.5, 136.5, 135.7, 128.9, 128.8, 110.4, 21.1, 17.2; IR ν (neat, cm⁻¹) 3131, 3027, 2956, 2922, 2863, 1737, 1607, 1491, 1402, 1331, 1260; HRMS Calcd for C₁₂H₁₃³⁵ClN₂ (M⁺): 220.0762. Found: 220.0758. Data are consistent with the literature.^[6]

6). Preparation of 3af.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2f** (19.5 mg, 0.2 mmol), **T***p***BPA** (9.5 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.1 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.7 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3af** (21.8 mg, 50%) (eluent: pentane/ethyl acetate = 40/1 to 10/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 9.97 (s, 1 H, COH), 8.19 (s, 1 H, Ar-H), 7.97 (s, 1 H, Ar-H), 6.97 (s, 2 H, Ar-H), 2.35 (s, 3 H, CH₃), 1.99 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 141.2, 139.7, 135.8, 135.2, 134.6, 129.0, 124.6, 21.1, 17.2; IR ν (neat, cm⁻¹) 3116, 2922, 2855, 1681, 1543, 1495, 1361, 1200, 1156; HRMS Calcd for C₁₃H₁₄N₂O (M⁺): 214.1101. Found: 214.1103. Data are consistent with the literature.^[6]

7). Preparation of 3ag.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2g** (22.4 mg, 0.2 mmol), **T***p***BPA** (9.2 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.3 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.7 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ag** (41.3 mg, 89%) (eluent: pentane/ethyl acetate = 25/1 to 10/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1 H, Ar-H), 7.93 (s, 1 H, Ar-H), 6.96 (s, 2 H, Ar-H), 2.49 (s, 3 H, CH₃), 2.34 (s, 3 H, CH₃), 1.98 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 192.2, 140.9, 139.5, 135.9, 135.2, 133.6, 128.9, 124.5, 27.9, 21.0, 17.1; IR ν (neat, cm⁻¹) 3120, 2926, 2855, 1670, 1543, 1402, 1241; HRMS Calcd for C₁₄H₁₆N₂O (M⁺): 228.1257. Found: 228.1253. Data are consistent with the literature.^[6]

8). Preparation of 3ah

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2h** (13.5 mg, 0.2 mmol), **TpBPA** (9.3 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.8 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.4 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ah** (31.8 mg, 87%) (eluent: pentane/ethyl acetate = 15/1 to 6/1) as a white solid; m.p. 188-189 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (s, 1 H, Ar-H), 7.63 (s, 1 H, Ar-H), 7.00 (s, 2 H, Ar-H), 2.36 (s, 3 H, CH₃), 1.94 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 135.0, 133.5, 133.4, 129.0, 125.4, 21.0, 17.1; IR ν (neat, cm⁻¹) 3101, 2952, 2922, 2855, 1595, 1502, 1454, 1320, 1230, 1208, 1122, 1096, 1044; HRMS Calcd for C₁₁H₁₃N₃ (M⁺): 187.1104. Found: 187.1105. Data are consistent with the literature.^[6]

9). Preparation of 3ai.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2i** (23.6 mg, 0.2 mmol), **TpBPA** (9.7 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.4 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.5 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ai** (33.0 mg, 70%) (eluent: pentane/ethyl acetate = 80/1 to 20/1) as a white solid; m.p. 121-122 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.0 Hz, 1 H, Ar-H), 7.52-7.37 (m, 2 H, Ar-H), 7.21 (d, *J* = 8.0 Hz, 1 H, Ar-H), 7.07 (s, 2 H, Ar-H), 2.40 (s, 3 H, CH₃), 1.87 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 140.2, 136.1, 133.8, 131.6, 129.3, 127.9, 123.9, 120.0, 109.7, 21.2, 17.3; IR *v* (neat, cm⁻¹) 3027, 2952, 2922, 2863, 1610, 1498, 1454, 1379, 1275, 1193, 1070; HRMS Calcd for C₁₅H₁₅N₃ (M⁺): 237.1261. Found: 237.1268. Data are consistent with the literature.^[7]

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2j** (30.7 mg, 0.2 mmol), **TpBPA** (9.6 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.3 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.2 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3aj** (28.8 mg, 53%) (eluent: pentane/ethyl acetate = 80/1 to 40/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.0 Hz, 1 H, Ar-H), 7.31 (t, *J* = 6.0 Hz, 1 H, Ar-H), 7.23 (t, *J* = 8.0 Hz, 1 H, Ar-H), 7.06 (s, 2 H, Ar-H), 6.90 (d, *J* = 8.0 Hz, 1 H, Ar-H), 2.40 (s, 3 H, CH₃), 1.91 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 140.8, 139.9, 136.7, 135.5, 129.7, 129.4, 123.6, 122.9, 119.4, 109.9, 21.2, 17.4; IR ν (neat, cm⁻¹) 3056, 2952, 2922, 2863, 1614, 1469, 1372, 1305, 1267; HRMS Calcd for C₁₆H₁₅³⁵ClN₂ (M⁺): 270.0918. Found: 270.0923.

11). Preparation of 3ak.

The reaction of **1a** (0.1 mL, d = 0.86 g/mL, 84.1 mg, 0.7 mmol), **2k** (34.3 mg, 0.2 mmol), **TpBPA** (9.4 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.7 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.4 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3ak** (18.6 mg, 32%) (eluent: pentane/ethyl acetate = 20/1 to 10/1 to 6/1) as a pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1 H, Ar-H), 7.06 (s, 2 H, Ar-H), 2.38 (s, 3 H, CH₃), 1.96 (s, 6 H, 2 × CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 157.8 (d, *J* = 221.1 Hz), 153.8 (d, *J* = 16.9 Hz), 153.3 (d, *J* = 17.5 Hz), 146.4 (d, *J* = 3.2 Hz), 140.7, 135.5, 130.0 (d, *J* = 4.8 Hz), 129.7, 128.4, 21.1, 17.7; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -49.0; IR ν (neat, cm⁻¹) 3101, 2960, 2926, 2859, 1573, 1506, 1424, 1394, 1338, 1297, 1260, 1238, 1200, 1044; HRMS Calcd for C₁₄H₁₂³⁵CIFN₄ (M⁺): 290.0729. Found: 290.0730. Data are consistent with the literature.^[6]

12). Preparation of 3bb.

The reaction of **1b** (1 mL), **2b** (28.2 mg, 0.2 mmol), **TpBPA** (9.4 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.3 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.2 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3bb** (30.4 mg, 62%) (eluent: pentane/ethyl acetate = 50/1 to 20/1) as a white solid; m.p. 93-94 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.50 (d, *J* = 4.0 Hz, 1 H, Ar-H), 7.39 (dd, *J*₁ = 8.0 Hz, *J*₂ = 4.0 Hz, 1 H, Ar-H), 7.21 (d, *J* = 8.0 Hz, 1 H, Ar-H), 4.34 (q, *J* = 6.7 Hz, 2 H, CH₂), 2.33 (s, 3 H, CH₃), 2.29 (s, 3 H, CH₃), 1.38 (t, *J* = 6.0 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 141.9, 138.1, 137.3, 130.5, 129.9, 120.8, 116.8, 116.5, 60.3, 19.9, 19.3, 14.4; IR ν (neat, cm⁻¹) 3120, 2989, 2922, 2855, 1711, 1554, 1506, 1409, 1293, 1238, 1141, 1025; HRMS Calcd for C₁₄H₁₆N₂O₂ (M⁺): 244.1206. Found: 244.1201. Data are consistent with the literature.^[8]

13). Preparation of **3cb**₁ and **3cb**₂.

The reaction of **1c** (1 mL), **2b** (27.8 mg, 0.2 mmol), **T** ρ **BPA** (9.5 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.3 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.0 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded a mixture of **3cb₁ and 3cb₂** (42.8 mg, 88%, **3cb₁/3cb₂** = 10/1) (eluent: pentane/ethyl acetate = 40/1 to 20/1) as a pale yellow oil.

3cb₁: ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1 H, Ar-H), 8.05 (s, 1 H, Ar-H), 7.19 (d, *J* = 7.9 Hz, 1 H, Ar-H), 7.13 (s, 1 H, Ar-H), 7.08 (d, *J* = 8.0 Hz, 1 H, Ar-H), 4.33 (q, *J* = 7.1 Hz, 2 H, CH₂), 2.37 (s, 3 H, CH₃), 2.19 (s, 3 H, CH₃), 1.37 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 141.4, 139.1, 136.7, 133.9, 133.3, 131.9, 127.2, 125.8, 115.7, 60.2, 21.0, 17.7, 14.3.

3cb₂: ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1 H, Ar-H), 7.96 (s, 1 H, Ar-H), 7.27 (t, *J* = 8.0 Hz, 1 H, Ar-H), 7.14 (d, *J* = 8.0 Hz, 2 H, Ar-H), 4.34 (q, *J* = 8.0 Hz, 2 H, CH₂), 2.03 (s, 6 H, 2 × CH₃), 1.38 (t, *J* = 6.0 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 141.6, 138.4, 135.4, 134.3, 129.5, 128.2, 115.6, 60.3, 17.2, 14.3.

3cb₁ and **3cb**₂: IR *v* (neat, cm⁻¹) 3124, 2982, 2930, 1715, 1554, 1510, 1446, 1405, 1226, 1141, 1029; HRMS Calcd for C₁₄H₁₆N₂O₂ (M⁺): 244.1206. Found: 244.1206. Data of **3cb**₁ are consistent with the literature.^[8]

14). Preparation of 3db.

The reaction of **1d** (1 mL), **2b** (28.3 mg, 0.2 mmol), **TpBPA** (9.5 mg, 0.02 mmol), ⁿBu₄N·PF₆ (464.3 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.9 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3db** (14.7 mg, 30%) (eluent: pentane/ethyl acetate = 50/1 to 10/1 to 6/1) as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1 H, Ar-H), 8.07 (s, 1 H, Ar-H), 7.21 (d, *J* = 8.0 Hz, 1 H, Ar-H), 7.16 (d, *J* = 8.0 Hz, 2 H, Ar-H), 4.34 (q, *J* = 6.7 Hz, 2 H, CH₂), 2.36 (s, 3 H, CH₃), 2.20 (s, 3 H, CH₃), 1.37 (t, *J* = 8.0 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 141.5, 138.9, 136.7, 133.8, 131.2, 130.2, 129.8, 126.5, 115.8, 60.3, 20.7, 17.5, 14.4; IR ν (neat, cm⁻¹) 3124, 2982, 2930, 1715, 1554, 1513, 1461, 1405, 1241, 1193, 1148, 1025; HRMS Calcd for C₁₄H₁₆N₂O₂ (M⁺): 244.1206. Found: 244.1203.

15). Preparation of **3eb**₁ and **3eb**₂.

The reaction of **1e** (1 mL), **2b** (28.2 mg, 0.2 mmol), **TpBPA** (9.3 mg, 0.02 mmol), $^{n}Bu_4N\cdot PF_6$ (464.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and $^{n}Bu_4N\cdot PF_6$ (464.9 mg, 1.2 mmol), MeCN (2 mL), MeOH (0.08 mL, d = 0.79 g/mL, 64.0 mg, 2 mmol) (cathodic chamber) afforded **3eb**₁ (23.7 mg, 51%) and **3eb**₂ (13.9 mg, 30%) (eluent: pentane/ethyl acetate = 40/1 to 25/1 to 10/1).

3eb₁ as a white solid; m.p. 102-103 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.58 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.27 (d, *J* = 8.8 Hz, 2 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 2.40 (s, 3 H, CH₃), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.9, 142.0, 137.5, 137.2, 130.1, 129.9, 119.5, 116.7, 60.4, 21.0, 14.4; IR ν (neat, cm⁻¹) 3112, 3049, 2989, 2870, 1707, 1558, 1413, 1264, 1156, 1025; HRMS Calcd for C₁₃H₁₄N₂O₂ (M⁺): 230.1050. Found: 230.1051. Data are consistent with the literature.^[8]

3eb₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.40-7.27 (m, 4 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 2.25 (s, 3 H, CH₃), 1.37 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 163.0, 141.6, 139.1, 133.9, 133.7, 131.4, 129.1, 126.7, 126.0, 115.9, 60.3, 17.9, 14.4; IR ν (neat, cm⁻¹) 3124, 2982, 2930, 1715, 1554, 1506, 1461, 1405, 1234, 1137, 1029; HRMS Calcd for C₁₃H₁₄N₂O₂ (M⁺): 230.1050. Found: 230.1050. Data are consistent with the literature.^[8]

16). Preparation of **3fb**₁ and **3fb**₂.

The reaction of **1f** (1 mL), **2b** (27.8 mg, 0.2 mmol), **TpBPA** (9.5 mg, 0.02 mmol), ${}^{n}Bu_{4}N \cdot PF_{6}$ (465.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ${}^{n}Bu_{4}N \cdot PF_{6}$ (465.3 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3fb**₁ (13.4 mg, 23%) and **3fb**₂ (4.2 mg, 7%) (eluent: pentane/ethyl acetate = 30/1 to 15/1 to 5/1):

3fb₁ as a white solid; m.p. 134-135 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.60 (s, 4 H, Ar-H), 4.35 (q, *J* = 6.7 Hz, 2 H, CH₂), 1.38 (t, *J* = 8.0 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 142.4, 138.4, 132.7, 129.9, 121.0, 120.9, 117.3, 60.5, 14.4; IR ν (neat, cm⁻¹) 3124, 2978, 1707, 1558, 1498, 1416, 1260, 1141, 1025; HRMS Calcd for C₁₂H₁₁⁷⁹BrN₂O₂ (M⁺): 293.9998. Found: 293.9993. Data are consistent with the literature.^[8]

3fb₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1 H, Ar-H), 8.13 (s, 1 H, Ar-H), 7.73 (dd, $J_1 = 8.1$ Hz, $J_2 = 1.4$ Hz, 1 H, Ar-H), 7.52 (dd, $J_1 = 7.9$ Hz, $J_2 = 1.7$ Hz, 1 H, Ar-H), 7.45 (td, $J_1 = 7.7$ Hz, $J_2 = 1.4$ Hz, 1 H, Ar-H), 7.33 (td, $J_1 = 7.9$ Hz, $J_2 = 1.7$ Hz, 1 H, Ar-H), 4.34 (q, J = 7.1 Hz, 2 H, CH₂), 1.38 (t, J = 6.0 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 142.0, 139.0, 134.7, 133.9, 130.4, 128.4, 128.2, 118.6, 116.2, 60.4, 14.4; IR ν (neat, cm⁻¹) 3124, 2982, 2930, 1718, 1558, 1491, 1409, 1241, 1141, 1029; HRMS Calcd for C₁₂H₁₁⁷⁹BrN₂O₂ (M⁺): 293.9998. Found: 293.9990. Data are consistent with the literature.^[9]

17). Preparation of 3gb1 and 3gb2.

The reaction of **1g** (1 mL), **2b** (28.1 mg, 0.2 mmol), **TCBPA** (5.6 mg, 0.01 mmol), $^{n}Bu_4N\cdot PF_6$ (465.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and $^{n}Bu_4N\cdot PF_6$ (465.7 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3gb**₁ (24.5 mg, 49%) and **3gb**₂ (8.2 mg, 16%) (eluent: pentane/ethyl acetate = 30/1 to pentane/ethyl acetate/DCM = 100/10/1):

3gb₁ as a white solid; m.p. 127-129 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.69-7.63 (m, 2 H, Ar-H), 7.48-7.40 (m, 2 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 142.3, 137.9, 133.1, 129.9, 129.6, 120.6, 117.2, 60.5, 14.3; IR ν (neat, cm⁻¹) 3116, 2982, 2930, 1707, 1562, 1502, 1413, 1264, 1156, 1092, 1025; HRMS Calcd for C₁₂H₁₁³⁵ClN₂O₂ (M⁺): 250.0504. Found: 250.0501. Data are consistent with the literature.^[8]

3gb₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1 H, Ar-H), 8.13 (s, 1 H, Ar-H), 7.63-7.49 (m, 2 H, Ar-H), 7.44-7.34 (m, 2 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.37 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 142.0, 137.3, 134.6, 130.7, 129.8, 128.4, 127.74, 127.66, 116.3, 60.4, 14.3; IR ν (neat, cm⁻¹) 3124, 2982, 1715, 1558, 1495, 1409, 1230, 1137, 1029; HRMS Calcd for C₁₂H₁₁³⁵ClN₂O₂ (M⁺): 250.0504. Found: 250.0510. Data are consistent with the literature.^[6]

18). Preparation of **3gg**₁ and **3gg**₂.

The reaction of **1g** (1 mL), **2g** (22.2 mg, 0.2 mmol), **TCBPA** (5.3 mg, 0.01 mmol), ${}^{n}Bu_4N \cdot PF_6$ (464.6 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ${}^{n}Bu_4N \cdot PF_6$ (465.2 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3gg**₁ (10.7 mg, 24%) and **3gg**₂ (3.0 mg, 7%) (eluent: pentane/ethyl acetate = 30/1 to 10/1 to 6/1):

3gg₁ as white solid; m.p. 144-146 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.69-7.64 (m, 2 H, Ar-H), 7.49-7.44 (m, 2 H, Ar-H), 2.51 (s, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 141.7, 137.8, 133.4, 129.8, 128.9, 125.9, 120.8, 28.1; IR ν (neat, cm⁻¹) 3135, 3105, 1666, 1554, 1510, 1413, 1357, 1264, 1100, 1025; HRMS Calcd for C₁₉H₉³⁵CIN₂O (M⁺): 220.0398. Found: 220.0393. Data are consistent with the literature.^[10]

3gg₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1 H, Ar-H), 8.13 (s, 1 H, Ar-H), 7.63-7.53 (m, 2 H, Ar-H), 7.46-7.37 (m, 2 H, Ar-H), 2.51 (s, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 141.3, 137.3, 133.8, 130.8, 130.0, 128.4, 127.9, 127.7, 125.1, 28.1; IR ν (neat, cm⁻¹) 3116, 3071, 2926, 2855, 1677, 1547, 1495, 1405, 1238, 1074; HRMS Calcd for C₁₉H₉³⁵ClN₂O (M⁺): 220.0398. Found: 220.0393.

19). Preparation of 3hb.

The reaction of **1h** (1 mL), **2b** (27.8 mg, 0.2 mmol), **TCBPA** (5.7 mg, 0.01 mmol), ⁿBu₄N·PF₆ (465.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.4 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3hb** (28.1 mg, 65%) (eluent: pentane/ethyl acetate = 40/1 to 20/1) as a white solid; m.p. 96-98 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 7.74-7.67 (m, 2 H, Ar-H), 7.51-7.43 (m, 2 H, Ar-H), 7.38-7.31 (m, 1 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.8, 142.1, 139.3, 129.9, 129.5, 127.5, 119.5, 116.9, 60.4, 14.3; IR ν (neat, cm⁻¹) 3127, 2986, 2904, 1711, 1599, 1562, 1506, 1416, 1256, 1152, 1029; HRMS Calcd for C₁₂H₁₂N₂O₂ (M⁺): 216.0893. Found: 216.0896. Data are consistent with the literature.^[6]

20). Preparation of 3hg.

The reaction of **1h** (1 mL), **2g** (22.3 mg, 0.2 mmol), **TCBPA** (5.4 mg, 0.01 mmol), ⁿBu₄N·PF₆ (464.8 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.3 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3hg** (21.9 mg, 58%) (eluent: pentane/ethyl acetate = 15/1 to 5/1) as a white solid; m.p. 126-127 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 7.71 (d, *J* = 7.9 Hz, 2 H, Ar-H), 7.49 (t, *J* = 7.9 Hz, 2 H, Ar-H), 7.37 (t, *J* = 7.4 Hz, 1 H, Ar-H), 2.51 (s, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 192.0, 141.5, 139.3, 129.6, 129.0, 127.7, 125.6, 119.7, 28.0; IR ν (neat, cm⁻¹) 3105, 2922, 1659, 1599, 1551, 1502, 1413, 1353, 1260, 1219, 1122, 1033; HRMS Calcd for C₁₁H₁₀N₂O (M⁺): 186.0788. Found: 186.0789. Data are consistent with the literature.^[6]

21). Preparation of 3hi.

The reaction of **1h** (1 mL), **2i** (23.5 mg, 0.2 mmol), **TCBPA** (5.6 mg, 0.01 mmol), ⁿBu₄N·PF₆ (464.7 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.9 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3hi** (11.5 mg, 30%) (eluent: pentane/ethyl acetate = 25/1 to 20/1) as a white solid; m.p. 87-89 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1 H, Ar-H), 7.80 (d, *J* = 7.5 Hz, 2 H, Ar-H), 7.76 (d, *J* = 8.4 Hz, 1 H, Ar-H), 7.63 (t, *J* = 7.9 Hz, 1 H, Ar-H), 7.59-7.48 (m, 2 H, Ar-H), 7.45 (t, *J* = 7.7 Hz, 2 H, Ar-H); ¹³C NMR (101 MHz, CDCl₃) δ 146.5, 137.0, 132.3, 129.9, 128.7, 128.2, 124.4, 122.9, 120.3, 110.3; IR ν (neat, cm⁻¹) 3064, 2926, 2855, 1595, 1498, 1457, 1390, 1279, 1245, 1189, 1085, 1055, 1010; HRMS Calcd for C₁₂H₉N₃ (M⁺): 195.0791. Found: 195.0789. Data are consistent with the literature.^[11]

22). Preparation of **3hl**₁, **3hl**₂ and **3hl**₃.

The reaction of **1h** (1 mL), **2l** (25.6 mg, 0.2 mmol), **TCBPA** (5.4 mg, 0.01 mmol), ${}^{n}Bu_{4}N \cdot PF_{6}$ (465.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ${}^{n}Bu_{4}N \cdot PF_{6}$ (464.8 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3hl**₁ (5.0 mg, 12%), **3hl**₂ (5.7 mg, 14%) and **3hl**₃ (7.7 mg, 19%) (eluent: pentane/ethyl acetate = 30/1 to 15/1 to pentane/ethyl acetate/DCM = 50/10/1):

3hl₁ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1 H, Ar-H), 8.15 (d, *J* = 8.2 Hz, 2 H, Ar-H), 7.51 (t, *J* = 7.6 Hz, 2 H, Ar-H), 7.42 (t, *J* = 7.3 Hz, 1 H, Ar-H), 4.01 (s, 3 H, OCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 161.0, 140.8, 139.3, 137.9, 129.4, 128.7, 119.6, 52.5; IR ν (neat, cm⁻¹) 3138, 2956, 2855, 1730, 1599, 1495, 1334, 1238, 1137, 1029; HRMS Calcd for C₁₀H₉N₃O₂ (M⁺): 203.0689. Found: 203.0690. Data are consistent with the literature.^[12]

3hl₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1 H, Ar-H), 7.59-7.52 (m, 3 H, Ar-H), 7.51-7.45 (m, 2 H, Ar-H), 3.85 (s, 3 H, OCH₃); ¹³C NMR (101 MHz, CDCl₃) δ 158.2, 138.2, 136.4, 130.1, 128.9, 128.8, 125.8, 52.5; IR ν (neat, cm⁻¹) 3138, 2926, 2855, 1741, 1525, 1439, 1312, 1204, 1170, 1126, 1088, 1018; HRMS Calcd for C₁₀H₉N₃O₂ (M⁺): 203.0689. Found: 203.0692. Data are consistent with the literature.^[13]

3hI₃ as a colourless oil; ¹H NMR (400 MHz, CDCI₃) δ 8.52 (s, 1 H, Ar-H), 7.77 (d, *J* = 7.9 Hz, 2 H, Ar-H), 7.57 (t, *J* = 7.6 Hz, 2 H, Ar-H), 7.51 (t, *J* = 6.9 Hz, 1 H, Ar-H), 4.01 (s, 3 H, OCH₃); ¹³C NMR (101 MHz, CDCI₃) δ 161.1, 140.6, 136.4, 130.0, 129.6, 125.6, 120.8, 52.4; IR ν (neat, cm⁻¹) 3138, 2952, 2926, 2855, 1718, 1599, 1543, 1506, 1439, 1372, 1260, 1148, 1036; HRMS Calcd for C₁₀H₉N₃O₂ (M⁺): 203.0689. Found: 203.0692. Data are consistent with the literature.^[14]

23). Preparation of 3hm.

The reaction of **1h** (1 mL), **2m** (22.3 mg, 0.2 mmol), **TCBPA** (5.5 mg, 0.01 mmol), ⁿBu₄N·PF₆ (465.1 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.6 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3hm** (13.9 mg, 37%) (eluent: DCM/ethyl acetate = 40/1 to DCM/ethyl acetate/MeOH = 5/5/1) as a white solid; m.p. 207-209 °C; ¹H NMR (400 MHz, Acetone-d₆) δ 8.83 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 7.98 (d, *J* = 8.3 Hz, 2 H, Ar-H), 7.59 (t, *J* = 8.0 Hz, 2 H, Ar-H), 7.44 (t, *J* = 7.4 Hz, 1 H, Ar-H); ¹³C NMR (101 MHz, Acetone-d₆) δ 164.5, 143.6, 132.2, 131.2, 130.4, 128.9, 120.9, 118.6; IR *v* (neat, cm⁻¹) 3116, 2922, 2855, 1662, 1569, 1510, 1450, 1275, 1170; HRMS Calcd for C₁₀H₉N₂O₂ (ESI, M+H⁺): 189.0664. Found: 189.0659.

24). Preparation of 3jb1 and 3jb2.

The reaction of **1j** (1 mL), **2b** (28.2 mg, 0.2 mmol), **TdCBPA** (6.4 mg, 0.01 mmol), ${}^{n}Bu_{4}N \cdot PF_{6}$ (464.7 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ${}^{n}Bu_{4}N \cdot PF_{6}$ (464.5 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3jb**₁ (16.7 mg, 49%) and **3jb**₂ (1.2 mg, 2%) (eluent: pentane/ethyl acetate = 50/1 to 20/1 to 10/1):

3jb₁ as a white solid; m.p. 143-144 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 7.88 (d, *J* = 2.1 Hz, 1 H, Ar-H), 7.60-7.52 (m, 2 H, Ar-H), 4.35 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 142.6, 138.5, 133.8, 131.4, 131.2, 129.9, 121.4, 118.3, 117.7, 60.6, 14.3; IR ν (neat, cm⁻¹) 3120, 2982, 1700, 1584, 1491, 1416, 1282, 1148, 1025; HRMS Calcd for C₁₂H₁₀³⁵Cl₂N₂O₂ (M⁺): 284.0114. Found: 284.0113.

3jb₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1 H, Ar-H), 8.13 (s, 1 H, Ar-H), 7.58 (dd, $J_1 = 8.1 \text{ Hz}, J_2 = 1.5 \text{ Hz}, 1 \text{ H}, \text{ Ar-H}$), 7.50 (dd, $J_1 = 8.1 \text{ Hz}, J_2 = 1.6 \text{ Hz}, 1 \text{ H}, \text{ Ar-H}$), 7.35 (t, J = 8.1 Hz, 1 H, Ar-H), 4.35 (q, $J = 7.1 \text{ Hz}, 2 \text{ H}, \text{ CH}_2$), 1.38 (t, $J = 7.1 \text{ Hz}, 3 \text{ H}, \text{ CH}_3$); ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 142.2, 139.0, 134.7, 134.5, 130.8, 128.1, 127.7, 126.1, 116.6, 60.5, 14.4; IR v (neat, cm⁻¹) 3124, 3086, 2982, 2930, 2855, 1715, 1558, 1476, 1431, 1245, 1141, 1025; HRMS Calcd for C₁₂H₁₀³⁵Cl₂N₂O₂ (M⁺): 284.0114. Found: 284.0114. Data are consistent with the literature.^[15]

25). Preparation of 3kb.

The reaction of **1k** (1 mL), **2b** (28.2 mg, 0.2 mmol), **TdCBPA** (6.3 mg, 0.01 mmol), ⁿBu₄N·PF₆ (464.5 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.8 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3kb** (15..4 mg, 27%) (eluent: pentane/ethyl acetate = 50/1 to 20/1) as a pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1 H, Ar-H), 8.12 (s, 1 H, Ar-H), 7.57 (d, *J* = 1.9 Hz, 1 H, Ar-H), 7.55 (d, *J* = 8.7 Hz, 1 H, Ar-H), 7.39 (dd, *J*₁ = 8.6 Hz, *J*₂ = 1.9 Hz, 1 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.37 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 142.3, 136.1, 135.1, 134.6, 130.5, 129.1, 128.5, 128.2, 116.7, 60.5, 14.4; IR ν (neat, cm⁻¹) 3090, 2982, 1715, 1558, 1495, 1409, 1260, 1234, 1137, 1103, 1029; HRMS Calcd for C₁₂H₁₀³⁵Cl₂N₂O₂ (M⁺): 284.0114. Found: 284.0107.

26). Preparation of 3mb.

The reaction of **1m** (1 mL), **2b** (27.9 mg, 0.2 mmol), **TdCBPA** (6.1 mg, 0.01 mmol), ⁿBu₄N·PF₆ (464.8 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (465.3 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3mb** (14.8 mg, 20%) (eluent: pentane/ethyl acetate = 50/1 to 25/1) as a white solid; m.p. 150-151 °C (pentane/ethyl acetate); ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 8.05 (d, *J* = 2.6 Hz, 1 H, Ar-H), 7.72 (d, *J* = 8.7 Hz, 1 H, Ar-H), 7.53 (dd, *J*₁ = 8.7 Hz, *J*₂ = 2.6 Hz, 1 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 142.7, 139.0, 134.4, 129.9, 125.9, 124.4, 123.4, 119.2, 117.7, 60.6, 14.4; IR ν (neat, cm⁻¹) 3124, 2978, 1703, 1588, 1484, 1416, 1282, 1144, 1029; HRMS Calcd for C₁₂H₁₀⁷⁹Br₂N₂O₂ (M⁺): 371.9104. Found: 371.9096.

27). Preparation of 3ib₁, 3ib₂, 3ib₃, and 3hb.

The reaction of **1i** (1 mL), **2b** (28.1 mg, 0.2 mmol), **TdCBPA** (6.1 mg, 0.01 mmol), $^{n}Bu_4N\cdot PF_6$ (464.6 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and $^{n}Bu_4N\cdot PF_6$ (465.1 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded a mixture of **3ib**₁, **3ib**₂, **3ib**₃ and **3hb** (20.5 mg, 45%) (eluent: pentane/ethyl acetate = 30/1 to 10/1):

3ib₁: ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.69-7.63 (m, 2 H, Ar-H), 7.17 (t, *J* = 8.4 Hz, 2 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹⁹F NMR (376.5 MHz, CDCl₃) δ -114.7 (d, *J* = 7.0 Hz).

3ib₂: ¹⁹F NMR (376.5 MHz, CDCl₃) δ -110.7.

3ib₃: ¹⁹F NMR (376.5 MHz, CDCl₃) δ -125.3.

3hb: ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 7.71 (d, *J* = 8.2 Hz, 2 H, Ar-H), 7.48 (t, *J* = 7.6 Hz, 2 H, Ar-H), 7.36 (t, *J* = 7.4 Hz, 1 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃).

¹H NMR (400 MHz, CDCl₃) of **3ib**₂ and **3ib**₃, and ¹³C NMR (101 MHz, CDCl₃) of the mixture of **3ib**₁, **3ib**₂, **3ib**₃ and **3hb** are shown as they are.

3ib₁, **3ib**₂, **3ib**₃ and **3hb** as a white solid; IR ν (neat, cm⁻¹) 3124, 3101, 3068, 2989, 2904, 1707, 1558, 1517, 1413, 1256, 1148, 1025; HRMS Calcd for C₁₂H₁₁FN₂O₂ (M⁺): 234.0799. Found: 234.0797. Data of **3ib**₁^[8] and **3hb**^[6] are consistent with the literature.

28). Preparation of **3nb**₁, **3nb**₂ and **3nb**₃.

The reaction of **1n** (1 mL), **2b** (28.1 mg, 0.2 mmol), **TdCBPA** (6.2 mg, 0.01 mmol), ${}^{n}Bu_4N \cdot PF_6$ (464.7 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ${}^{n}Bu_4N \cdot PF_6$ (465.5 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3nb**₁ (8.4 mg, 16%) and a mixture of **3nb**₂ and **3nb**₃ (2.1 mg, 4%, **3nb**₂/**3nb**₃ = 2/1) (eluent: pentane/ethyl acetate = 15/1 to 8/1 to 4/1):

3nb₁ as an amorphous white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1 H, Ar-H), 8.28 (s, 1 H, Ar-H), 8.13 (s, 1 H, Ar-H), 8.00-7.90 (m, 2 H, Ar-H), 7.61 (t, *J* = 7.9 Hz, 1 H, Ar-H), 4.36 (q, *J* = 7.1 Hz, 2 H, CH₂), 2.68 (s, 3 H, CH₃), 1.39 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 196.9, 162.6, 142.5, 139.8, 138.4, 130.1, 130.0, 127.2, 123.8, 118.8, 117.4, 60.6, 26.8, 14.4; IR ν (neat, cm⁻¹) 3124, 2982, 2930, 1718, 1689, 1595, 1558, 1409, 1357, 1271, 1141, 1025; HRMS Calcd for C₁₄H₁₄N₂O₃ (M⁺): 258.0999. Found: 258.1004.

3nb₂: ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1 H, Ar-H), 8.14 (s, 1 H, Ar-H), 7.62 (dd, $J_1 = 7.7$ Hz, $J_2 = 1.6$ Hz, 1 H, Ar-H), 7.59 (td, $J_1 = 7.7$ Hz, $J_2 = 1.7$ Hz, 1 H, Ar-H), 7.51 (td, $J_1 = 7.6$ Hz, $J_2 = 1.3$ Hz, 1 H, Ar-H), 7.46 (dd, $J_1 = 7.8$ Hz, $J_2 = 1.3$ Hz, 1 H, Ar-H), 4.35 (q, J = 6.7 Hz, 2 H, CH₂), 2.14 (s, 3 H, CH₃), 1.38 (t, J = 6.0 Hz, 3 H, CH₃).

3nb₃: ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1 H, Ar-H), 8.14 (s, 1 H, Ar-H), 8.11-8.06 (m, 2 H, Ar-H), 7.86-7.81 (m, 2 H, Ar-H), 4.36 (q, *J* = 6.7 Hz, 2 H, CH₂), 2.64 (s, 3 H, CH₃), 1.39 (t, *J* = 8.0 Hz, 3 H, CH₃).

3nb₂ and **3nb**₃ as a colourless oil; ¹³C NMR (101 MHz, CDCl₃) δ 200.5, 196.6, 162.6, 162.5, 142.8, 142.5, 137.3, 136.4, 135.8, 133.0, 131.6, 130.1, 130.0, 128.9, 128.8, 124.4, 119.0, 117.8, 117.4, 60.64, 60.56, 29.4, 26.6, 14.4; IR ν (neat, cm⁻¹) 3131, 2982, 2930, 2855, 1718, 1603, 1558, 1502, 1409, 1357, 1252, 1141, 1021; HRMS Calcd for C₁₄H₁₄N₂O₃ (M⁺): 258.0999. Found: 258.0992.

29). Preparation of **3ob**₁ and **3ob**₂.

The reaction of **1o** (1 mL), **2b** (27.8 mg, 0.2 mmol), **TdCBPA** (6.2 mg, 0.01 mmol), $^{n}Bu_4N \cdot PF_6$ (464.4 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and $^{n}Bu_4N \cdot PF_6$ (465.0 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3ob**₁ (6.1 mg, 12%) and **3ob**₂ (2.5 mg, 5%) (eluent: pentane/ethyl acetate = 30/1 to 10/1):

30b₁ as an amorphous white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 2.6 Hz, 1 H, Ar-H), 8.11 (s, 1 H, Ar-H), 7.91-7.82 (m, 1 H, Ar-H), 7.07-6.99 (m, 1 H, Ar-H), 4.34 (q, J = 7.1 Hz, 2 H, CH₂), 1.38 (t, J = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.6, 142.1, 133.9 (d, J = 9.2 Hz), 125.9 (dd, J_1 = 9.6 Hz, J_2 = 1.2 Hz), 124.3 (d, J = 9.1 Hz), 117.8 (d, J = 1.0 Hz), 112.3 (dd, J_1 = 22.5 Hz, J_2 = 3.7 Hz), 105.4 (d, J = 24.2 Hz), 105.1 (d, J = 24.0 Hz), 60.5, 14.4; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -110.1 (d, J = 7.0 Hz), -120.7 (d, J = 6.8 Hz); IR ν (neat, cm⁻¹) 3165, 3124, 3075, 2986, 2930, 2855, 1711, 1610, 1566, 1521, 1416, 1260, 1234, 1148, 1107, 1033; HRMS Calcd for C₁₂H₁₀F₂N₂O₂ (M⁺): 252.0705. Found: 252.0698.

3ob₂ as a colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1 H, Ar-H), 8.09 (s, 1 H, Ar-H), 7.66-7.58 (m, 1 H, Ar-H), 7.46-7.39 (m, 1 H, Ar-H), 7.33-7.23 (m, 1 H, Ar-H), 4.34 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃); ¹³C NMR (101 MHz, CDCl₃) δ 162.5, 142.5, 130.0, 118.1 (d, *J* = 18.7 Hz), 117.6, 115.1 (dd, *J*₁ = 6.4 Hz, *J*₂ = 3.9 Hz), 109.7 (d, *J* = 21.9 Hz), 60.6, 14.4; ¹⁹F NMR (376.5 MHz, CDCl₃) δ -134.5 (d, *J* = 21.3 Hz), -138.9 (d, *J* = 21.1 Hz); IR ν (neat, cm⁻¹) 3116, 2922, 2855, 1700, 1618, 1562, 1525, 1446, 1416, 1249, 1189, 1148, 1025; HRMS Calcd for C₁₂H₁₀F₂N₂O₂ (M⁺): 252.0705. Found: 252.0698.

30). Preparation of **3hb** (using trifluorotoluene as strating material).

The reaction of trifluorotoluene (1 mL), **2b** (28.1 mg, 0.2 mmol), **TdCBPA** (6.3 mg, 0.01 mmol), ⁿBu₄N·PF₆ (464.2 mg, 1.2 mmol), MeCN (2 mL) (anodic chamber), and ⁿBu₄N·PF₆ (464.9 mg, 1.2 mmol), MeCN (2 mL), AcOH (0.11 mL, d = 1.05 g/mL, 120.2 mg, 2 mmol) (cathodic chamber) afforded **3hb** (8.7 mg, 20%) (eluent: pentane/ethyl acetate = 20/1 to 10/1) as a white solid; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1 H, Ar-H), 8.10 (s, 1 H, Ar-H), 7.71 (d, *J* = 8.4 Hz, 2 H, Ar-H), 7.49 (t, *J* = 7.7 Hz, 2 H, Ar-H), 7.36 (t, *J* = 7.7 Hz, 1 H, Ar-H), 4.35 (q, *J* = 7.1 Hz, 2 H, CH₂), 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃). Data are consistent with the literature.^[6]

6. UV-VIS SPECTRA

6.1. UV-vis Spectra of neutral TPAs

Figure S6. UV-vis spectra for neutral TPAs in DCM solvent.

6.2. UV-vis Spectra of TPA^{.+}s (PF₆ salts)

Figure S7. UV-vis spectra for isolated **T***p***BPA**^{·+} (left) and **TCBPA**^{·+} (right) in MeCN (top) and DCM (middle) containing 0.1 M ⁿBu₄N·PF₆. UV-vis spectra for spectroelectrochemically-generated **TdCBPA**^{·+} (bottom) in DCM containing 0.1 M ⁿBu₄N·PF₆ (see **Section S8** for details).

6.3. UV-vis Spectra of TPA^{.+} precomplexes (PF₆ salts)

Figure S8. UV-vis spectra for **T***p***BPA**^{•+} in the presence of 350 eq. mesitylene (left, 'precomplex' not observed) and **TCBPA**^{•+} in the presence of 350 eq. PhCI (right, 'precomplex' observed), recorded after aging the sample for 1 min in the dark. In DCM solvent containing 0.1 M $^{n}Bu_{4}N^{2}PF_{6}$.

It was observed that the 'precomplex' is destroyed by irradiation of the sample cell that occurs during the UV-vis measurement inside the spectrometer (**Figure S9**, red line vs. green line). This was confirmed when a 'fresh sample' from the bulk (aged for 15 min in the dark) was charged to the cell and gave an identical spectrum as the first measurement (**Figure S9**, red line vs. blue line).

6.4. UV-vis Spectra of TPA⁺s in the presence of reaction components and during irradiation

After filling an Ottle cell (Section S8) with a sample of TPA⁺ containing the reaction component, the thin film was irradiated using the 3.8 W 395 nm LED (Section 11) at a distance of *ca.* 3.0 cm for the time specified and the UV-vis spectrum immediately recorded.

Figure S9. UV-vis spectra for **T***p***BPA**⁺⁺ (left) and **TCBPA**⁺⁺ (right) in the presence of 350 eq. mesitylene or PhCI (respectively) over time and with light irradiation.

Figure S10. UV-vis spectra for **TCBPA**[•] in the presence of 350 eq. PhCl after repeat measurements of the UV-vis and after preparing a fresh sample.

Moreover, it was observed that pyrazole and ethyl 3-pyrazolecarboxylate ("esterpyrazole") reacted with **T***p***BPA**⁺⁺ and **TCBPA**⁺⁺ (respectively) *in the dark* to regenerate their corresponding TPAs (**Figure S10-S11**). While we cannot rule out the involvement of pyrazole in the reaction mechanism or in a precomplex with TPA⁺⁺s at this stage due to such reactivity, we note the following:

- Control reactions confirm both light and applied potential are necessary for successful reaction.
- The TPA⁺⁺ is continuously regenerated under the electrochemical reaction conditions even if it is guenched by pyrazole.
- Product yields show a strong dependence on the *electronics of the arene substrate* employed, suggesting against a mechanism involving SET oxidation of pyrazoles and S_NAr on the pyrazole radical cations by the arenes as nucleophiles.

Therefore, we conclude that although the *dark* reaction of pyrazole is a fast reaction, it is *not* the reactive pathway of the reaction, and merely serves to hinder the overall reaction rate. This may be one factor behind long required reaction times.

Figure S11. UV-vis spectra for **T***p***BPA**^{•+} (left) or **TCBPA**^{•+} (right) in the presence of 100 eq. pyrazole or 100 eq. ethyl 3-pyrazolecarboxylate ('esterpyrazole') over time and with light irradiation.
7.CYCLIC VOLTAMMETRY

Cyclic voltammetry was conducted using a three-electrode setup consisting of an IKA glassy carbon disc working electrode 'WE' (d = 3.0 mm), an IKA Ag/AgCl wire reference electrode 'RE' (containing sat. aq. KCl) and an IKA platinum sheet counter-electrode 'CE'. Electrochemical measurements were carried out under N₂ using an IKA ElectraSyn2.0 potentiostat at room temperature (298 K). According to its technical datasheet specification, the ElectraSyn2.0 has a current measuring accuracy of ±0.1 mA, a voltage measuring accuracy of ±0.01 mV, a current measuring resolution of 0.1 mA and a voltage measuring resolution of 0.01 V. For further details of the potentiostat and electrodes, see: https://www.ika.com/en/Products-Lab-Eq/Electrochemistry-Kit-csp-516/ElectraSyn-20-pro-Package-cpdt-40003261/

Before use and between measurements, the WE was mechanically cleaned with an alumina suspension (BASi) and rinsed with distilled water repeatedly until its surface was reflective by eye, then allowed to air dry. The RE was washed with electrolyte solution and distilled water and stored in 3.0 M aq. KCl when not in use/between measurements. The CE was cleaned by soaking in 2.0 M HCl for 1-2 h, then rinsed with distilled water and allowed to air dry.

Ferrocene was recrystallized twice from *n*-hexane prior to use. ⁿBu₄N·PF₆ ('TBAP') was used as supplied commercially from TCI (98%+). Unless otherwise stated, all solutions were prepared at 5.0 mM concentration (in 0.1 M TBAP/DCM) or at 10 mM (0.1 M TBAP/MeCN as solvent) using anhydrous DCM or MeCN (dried over 4 Å activated molecular sieves and filtered prior to use).

The anodic-cathodic peak separation for ferrocene at a concentration of 10 mM in MeCN (ΔE^{p} = 194 mV) was typical of that experimentally observed (compared to 59 mV/n for an 'ideal' one-electron transfer), indicating a reasonable degree of reversibility (and so rapid kinetics) for the electron transfer process. However, **TPAs** were generally insoluble in MeCN at 10 mM (or 5 mM) concentrations. For ferrocene at 5 mM in the less polar solvent DCM, the larger anodic-cathodic peak separation was observed ΔE^{p} = 237 mV, consistent with that observed in the literature (ΔE^{p} = 213 mV was reported for a 2.0 mM ferrocene in 0.1 M *n*-Bu₄NCI/DCM).^[16]

A scan rate of 200 mV s⁻¹ (**Figure S14**) was found to be optimal for measurements of **TPAs** ($\Delta E^{p} = 351 \text{ mV}$). The half potentials $E_{1/2}$ for ferrocene in 0.1 M TBAP/DCM vs. Ag/AgCl were +0.545 V (at 100 mV s⁻¹) and +0.582 V (at 200 mV s⁻¹). These $E_{1/2}$ corresponded very well to the previously reported $E_{1/2}$ for ferrocene (+0.56 V) measured under identical sample conditions (5 mM in 0.1 M TBAP/DCM, 200 mV s⁻¹ scan rate).^[17] Literature $E_{1/2}$ values for ferrocene in 0.1 M TBAP/DCM vs. SCE were +0.470 vs. SCE in DCM (at 250 mV s⁻¹) and +0.462 vs. SCE in DCM (at 50 mV s⁻¹). Therefore, all measured potentials were calibrated to their values vs. SCE in DCM (+0.470 V) by subtracting 0.075 V.

Ferrocene was used as an external standard, measured both before and after running any series of analytes, to ensure consistency and whose peak height (*ca.* 1.8×10^{-4} A at 200 mV s⁻¹) corresponds to a 1-electron oxidation.

Figure S12. Cyclic voltammetry of ferrocene in MeCN (left) and in DCM (right). Uncalibrated.

Figure S13. Cyclic voltammetry of ferrocene under the identified optimal conditions for triarylamines. Uncalibrated (left). Calibrated (right).

7.1. Cyclic Voltammetry of TPAs

Figure S14. Cyclic voltammetry of tri(p-substituted)arylamines (TPAs).

7.2. Applied Constant Potential Dependence on Reaction Yield

Figure S15. Yield of 3aa under conditions depicted in Table 2 of the main manuscript, as a function of increasing constant potential.

Figure S16. Intensification of colour in the anodic chamber as a function of increasing constant potential.

8. SPECTROELECTROCHEMISTRY

Measurements were performed in an Ottle Cell (Optically transparent thin-layer electro-chemical cell), pathlength = 0.02 cm, working electrode: Pt minigrid, counter electrode: Pt minigrid, pseudo reference electrode: Ag wire. A constant potential of 0 to +1.75 V was applied to the cell, and UV/Vis absorption spectra were recorded every 5 s (using an Agilent 8453 spectrometer).

For further details of Ottle Cell, see: <u>https://research.reading.ac.uk/spectroelectrochemistry/optically-</u> transparent-thin-layer-electrochemical-cells/room-temperature-ottle-cell/

8.1. Spectroelectrochemistry of TPAs

Figure S18. Spectroelectrochemistry of TCBPA from 0 to +1.5 V (left) and from +1.5 to 0 V (right).

Figure S19. Spectroelectrochemistry of **TdCBPA** in the presence of 350 eq. PhCl from 0 to +1.75 V (left) and from +1.75 to 0 V (right). Potentials vs. Ag/AgCl.

8.2. Spectroelectrochemistry of TPAs in presence of substrates.

Figure S20. Spectroelectrochemistry of **T***p***BPA** in the presence of 350 eq. mesitylene from 0 to +1.2 V (left) and from +1.2 to 0 V (right).

Figure S21. Spectroelectrochemistry of **TCBPA** in the presence of 350 eq. PhCl from 0 to +1.5 V (left) and from +1.5 to 0 V (right). Potentials vs. Ag/AgCl.

Figure S22. UV-Vis of **T***p***BPA** in the presence of 350 eq. Mesitylene at +1.2 V (left) and **TCPBA** in the presence of 350 eq. PhCl at +1.5 V. Potentials vs. Ag/AgCl.

A difference can be seen in the spectroelectrochemistry of **TCPBA** when in the presence of 350 eq. PhCI (**Figure S22**). This difference cannot be observed for **T***p***BPA**. The UV-vis spectra of electrogenerated **TCPBA**⁺⁺ in the presence of 350 eq. PhCI resembles the UV-vis spectra of isolated **TCPBA**⁺⁺ in the presence of 350 eq. PhCI (**Figure S8**).

9. LUMINESCENCE SPECTROSCOPY OF TPA^{.+}s

Luminescence (fluorescence) and Time-Correlated Single Photon Counting (TCSPC) measurements were acquired at Technische Universität München (TUM) using an Edinburgh Instruments Spectrofluorimeter FS5. For specifications, see: <u>https://www.edinst.com/products/fs5-spectrofluorometer/</u>

Fluorescence employed a 150 W CW Ozone-free xenon arc lamp, 230 - 1000 nm (dual grating) excitation source and a R928P photomultiplier tube. Depending on the species of interest, the excitation monochromator was set between 250-550 nm and emission set to measure 400 - 750 nm. The integration time was set at 0.1 s and the slit widths were 1 nm (**TCPBA**^{•+}) and 5 nm (**TpBPA**^{•+}) for both excitation and emission. For all fluorescence (excitation emission matrices or, 'EEM') and time-correlated single-photon counting measurements (TCSPC), **TpBPA**^{•+}·PF₆ and **TCPBA**^{•+}·PF₆ were prepared in anhydrous DCM at 1.7 x 10⁻⁵ M and 1.8 x 10⁻⁵ M, respectively.

Prior to measurements, stability of isolated TPA⁺s was checked by their UV-visible absorption spectra were obtained on a PerkinElmer UV/VIS Lambda 365 instrument to (**Figure S26**). For UV-vis absorption measurements, **T***p***BPA⁺**·PF₆ and **TCPBA⁺**·PF₆ were prepared in anhydrous DCM at 8.3 x 10⁻⁵ M and 8.9 x 10⁻⁵ M, respectively (in appropriate sized cuvettes). The UV-vis spectra perfectly matched those of previous isolated batches of TPA⁺s recorded on another spectrometer in DCM containing 0.1 M TBAP (**Figure S6**).

Figure S23. UV-vis spectra for isolated **T***p***BPA**^{.+} (left) and from **TCPBA**^{.+} (right) prior to EEM and TSCPC measurements.

9.1. Luminescence Excitation Emission Matrices

Figure S24. Excitation-Emission Matrix for TpBPA.+.

Figure S25. Excitation-Emission Matrix for TCPBA⁺⁺.

9.2. Time-correlated Single Photon Counting Luminescence Measurements

For TCSPC, the excitation source was an Edinburgh Instruments EPL-375 picosecond pulsed diode laser (TCSPC, pulsed excitation at 375 nm at a pulse period of 50 ns). For specifications, see: https://www.edinst.com/wp-content/uploads/2015/08/EPL-Series_Datasheet.pdf

Figure S26. TCSPC of the emitting species at 450 nm present in TpBPA^{.+}.

Figure S27. TCSPC of the emitting species at 475 nm present in TCPBA^{.+}.

Solvent	Emission detector λ (nm)	Lifetime τ (ns)	χ²	τ error
DCM	450	1.7	2.02	0.002682
DCM	475	2.2	1.47	0.003619
MeCN	430	1.8	-	-
	Solvent DCM DCM MeCN	SolventEmission detector λ (nm)DCM450DCM475MeCN430	SolventEmission detector λ (nm)Lifetime τ (ns)DCM4501.7DCM4752.2MeCN4301.8	Solvent Emission detector λ (nm) Lifetime τ (ns) χ² DCM 450 1.7 2.02 DCM 475 2.2 1.47 MeCN 430 1.8 -

The Excitation-Emission Matrices (EEMs) for **T***p***BPA**^{.+} and **TCPBA**^{.+} both reveal an emitting species below excitation of 395 nm (Section 9.1). The lifetime of the species emitting at 450 nm in **T***p***BPA**^{.+} was almost identical to the lifetime of **T***p***BPA** itself (measured in MeCN solvent), indicating that a trace amount of the neutral compound was present in the **T***p***BPA**^{.+} sample. The same is presumably true of the 475 nm emitting species in **TCPBA**^{.+}.

As per the control reactions with a 365 nm LED involving **TpBPA** and **TCBPA**, product yields were only 11% and 8%, respectively (see Section S4 and manuscript). This could arise from excitation of the tail-end of the TPAs⁺, or from excitation of the TPA followed by a conPET-type mechanism. The productive photochemistry of interest in this study occurs only upon excitation with 395 nm LEDs.

10. TRANSIENT ABSORPTION SPECTROSCOPY OF TPA'*s

Transient absorption spectroscopy was performed at the Fakültat für Chemie, Technische Universität München using a similar configuration as previously reported in Prof. Juergen Hauer's group.^[18] **TpBPA**^{·+}·PF₆ and **TCBPA**^{·+}·PF₆ were prepared in anhydrous DCM as solvent at a concentration providing an optical density (OD) of 0.2-0.3. The concentrations employed were 8.9 x 10⁻⁴ M (OD = 0.3) and 8.3 x 10⁻⁴ M (OD = 0.2), respectively.

The Pump-Probe setup in consists of a commercial titanium: sapphire laser amplifier (Coherent Legend Elite Duo), delivering 25 fs laser pulses at 800 nm central wavelength with 2.4 mJ per pulse at 5 kHz repetition rate. After the appropriate beam splitters, pointing deviations of pulses with around 1 mJ of energy are minimized in a beam stabilization unit to then pump a commercial 1 m Hollow-Core Fiber (HCF, Ultrafast Innovations) with a diameter of 250 μ M. This fiber was kept under static 1 atm pressure of Argon. The 800 nm pulses are focused into the fiber using a 1 m lens. Typical HCF output spectra are shown in **Figure S28**.

The HCF output beam is collimated using a spherical mirror with 1 m focal length. At the exit of the HCF, we obtain 130 µJ per pulse. The pulses are then compressed with a chirped mirror compressor which consists of two pairs of chirped mirrors (PC70 from Ultrafast Innovation) with 500-1050 nm of acceptance bandwidth. Using transient grating frequency resolved optical gating,^[19] we obtain 6 fs pulses after the HCF and 8 fs pulses at the sample position. For the current experiment, we chose longer probe pulses (60 fs pulse duration for both pump and probe) to minimize the coherent artefact around $\Delta t = 0$ fs. After compression, (see **Figure S29** for a sketch of the experiment) an uncoated fused silica wedge pair is used as a broadband beamsplitter. The reflection from the first surface of the wedge pair serves as the probe pulse. The beam transmitted through the wedge pair serves as the pump pulse. Using a broadband half-wave plate, the polarization of the pump pulse is kept at magic angle (54.7°) with respect to the probe pulse, polarized parallel to the laser table. A telescope consisting of two focusing mirrors with focal lengths of 100 and 200 mm was employed to increase

the probe beam's diameter, which in turn reduces its diameter at the sample position. A double chopping scheme is used instead of typical single chopping in order to record the probe-transmission with and without the pump pulse present (ΔOD).^[20] Double chopping suppresses scattering from the pump pulse, whose spectrum is identical to the probe's in our setup. Both pump and probe pulses pass by a folding mirror to then hit a spherical mirror under 0°. The folding mirror then reflects the two pulses back, to make them pass through a hole in the spherical mirror with 300 mm focal length. This optical setup minimizes image errors such as astigmatism at the sample positon.^[21] The diameter of the focused pump and probe beam at the sample position is 240 and 135 µm respectively, as determined by a beam profiler (Cinoqy CMOS-1201). To control the intensity of pump and probe pulses, two identical round continuously variable metallic neutral density filters were used. For the present experiment, we work with 800 nJ per pulse for the pump pulse and 45 nJ per pulse for the probe. A motorized linear stage (Newport, IMS300CCHA) with a minimum step size of 8 fs and a maximal delay of two nano seconds delays the pump beam before the focusing mirror. After the sample, the transmitted probe pulse is collimated using a 200 mm lens and then detected in spectral dispersion using a CMOS camera (ANDOR Kymera 328i). The spectrometer is equipped with two gratings blazed at 500 nm and 800 nm. In combination, the spectral range between 250-1050 nm is covered. The camera allows us to record the transmitted probe with in shot-to-shot detection mode at the laser's repetition rate of 5 kHz.

Figure S29. Sketch of the transient absorption experiment.

Measurements for the **T***p***BPA**^{.+} and **TCBPA**^{.+} were done in a 0.2 mm and 1 mm path-length cuvette, respectively. Both the samples are pumped throughout the measurements in a closed environment using a microgear pump (HNP mzr-S02). For Pump-Probe measurements, the maximal optical density for both samples in the spectral range of the excitation pulses was kept below 0.35 OD. For

T*p***BPA**^{•+}, after global fitting, three lifetimes are detected from pumping at 860 nm: 1.07 ps (red line), 4.60 ps (pink line), 32.00 ps (green line). The last number is not reliable due to the 50 ps range of acquisition time. The black line is attributed to Stokes-shift/vibrational cooling of the first excited state, while the red line is attributed to the relaxed excited state. The first excited state of **T***p***BPA**^{•+} (D₁) is therefore attributed a lifetime of **4.60 ps**.

Figure S30. Transient Absorption Spectroscopy of TpBPA⁺⁺ (untreated data).

Figure S31. Transient Absorption Spectroscopy of **T***p***BPA**⁺ (data fitted by a smoothing function for visualization).

Figure S32. Transient Absorption Map of TpBPA.+.

For **TCBPA**^{•+}, after global fitting, three lifetimes are detected from pumping at 860 nm: 1.29 ps (black line), 8.59 ps (red line), 22.47 (blue line). The last number is not reliable due to the 50 ps range of acquisition time. The black line is attributed to Stokes-shift/vibrational cooling of the first excited state, while the red line is attributed to the relaxed excited state. The first excited state of **TCBPA**^{•+} (D1) is attributed a lifetime of **8.59 ps**.

Figure S33. Transient Absorption Spectroscopy of TCBPA^{.+} (untreated data).

Figure S34. Transient Absorption Spectroscopy of **TCBPA**⁺⁺ (data fitted by a smoothing function for visualization).

Figure S35. Transient Absorption Map of TCBPA.*.

The lifetimes of 4.6 and 8.6 ps for **TpBPA**⁺ and **TCBPA**⁺ are consistent with those reported for similar triarylamine radical cations and phenothiazine radical cations reported in the literature of the order of picoseconds.^[22]

11. EMISSION SPECTRA OF LEDS

A BWTEK Inc. Examplar LS optical fiber spectrometer was clamped at a fixed 30 cm distance, positioning ~vertically above the measured LED. The LED was then switched on. The LED was shifted slightly until the maximum possible emitted intensity was detected (when the position was exactly vertical) and this was recorded. Although blue and green (440 nm, 519 nm) LEDs were not used in this study, measurements were repeated with different batches of OSRAM Oslon (SSL 80 LDCQ7P-2U3U LT1960) LEDs in order to demonstrate the reproducibility of the method. Considering the total peak area of their emission spectra, the emitted intensities of all LEDs used in the study at a

fixed distance are similar. Minor differences in LED radiant intensities at different wavelengths cannot rationalize the drastic differences in yields of the photoelectrochemical reactions. *This supports the conclusion of higher order photoexcited state participation to rationalize wavelength dependence on yield*.

Table S11. Characterization of LEDs used in this study and their measured wavelengths, optical powers and relative emitting intensities.

Manufacturer	Model/ Brand	LEDs per plate	Input Power (W)	Input Power per LED (W)	LED λ _{max} (nm)	Luminous Flux	Peak intensity, directly above LED ^a (a.u.) at λ _{max}	Peak area, directly above LED ^a (a.u.)
CCS (Creating Customer Satisfaction) Inc.	LDL-71X12UV12- 365-N	5	7.6	1.5	366	[70 mW / cm²] ^b	57834°	1657892°
LED Engin	LZ440UB00-00U4	4	62	10.4	394	3.8 W @ 700 mA	56960	1930122
OSRAM Oslon (batch 1)	Oslon SSL 80 LDCQ7P-2U3U LT1960	6	20	3.3	440	1.5 W @ 1000 mA	32040	1605358
OSRAM Oslon (batch 2)	Oslon SSL 80 LDCQ7P-2U3U LT1960	6	20	3.3	440	1.5 W @ 1000 mA	31542	1645527
OSRAM Oslon (batch 1)	Oslon SSL 80 LDCQ7P-2U3U LT1960	6	20	3.3	440	1.5 W @ 1000 mA	27445	1656573
OSRAM Oslon	Oslon SSL 80 LDCQ7P-2U3U LT1966	6	15	2.5	519	202 lm @ 1000 mA	13851	1404694
LED Engin	LZ4-00R308	4	25	6.3	729	2.1 W @ 700 mA	8920	1309336
LED Engin	LZ4-00R608	4	35	8.7	854	3.8 W @ 700 mA	2965	1065474

^aMeasured by a BWTEC optical fiber spectrometer at a distance of 30 cm directly above the LED. The maximum observed intensity was recorded. ^bMaximum intensity (mW / cm²) reported by supplier at a 3 cm distance from LED. ^cThe mean average value of BRT105 and BRT80 (BRT95) was taken to provide *ca*. the same radiant intensity as the 395 nm LED.

Figure S36. Emission spectra of LEDs used throughout the study at a fixed measurement distance.

12. ELECTRON PARAMAGNETIC SPECTROSCOPY INVESTIGATIONS

As close as possible, EPR samples were prepared to mimic the photoelectrochemical reaction conditions. DCM was chosen as the solvent for its excellent solubility of neutral TPAs and so that conditions were comparable to UV-vis spectroscopic measurements (the photoelectrochemical reaction was confirmed to proceed in DCM in excellent yield, see **Table S7**, entry 2). EPR spectra were measured with a Bruker EMX spectrometer which is a continuous-wave (CW) X-Band (9-10 GHz) spectrometer equipped with an ER 083 (200/60) power source electromagnet (0-600 mT). For the measurements, an ER 4104 OR/9009 resonant cavity with a resonance frequency of 9.66 GHz was used. If not stated otherwise, the spectra were measured with a modulation frequency of 100 kHz, a modulation amplitude of 8.0 G, a centre field of 3453 G, a sweep width of 120 G, a conversion time of 15.00 ms, a time constant of 163.84 ms, a receiver gain of 5.023773×10^2 , and an X-axis resolution of 1028. The microwave frequency and power are intrinsically different for every sample and are reported for each individual sample in **Table S12**. Samples in DCM as solvent were measured in Wilmad[®] quartz EPR tubes (O.D. = 1 mm, 1.D. = 0.8 mm), samples using acetonitrile as solvent and placed inside a regular EPR tube. Unless stated otherwise, all solutions were prepared under inert atmosphere (N₂) using anhydrous (MBraun MB SPS) and degassed (freeze-pump-thaw)

solvent at 25 °C. The solutions included 100 mM "Bu₄NPF₆, 5 mM TPA⁺⁺s (PF₆ salt) and 1750 mM

arene substrate (= 350 equiv.). Hyperfine couplings for N atoms were extracted from simulations done in WINSIM2002 (fitting correlation = >0.995 in each case) and plotted on spectra below.^[23] Simulations are shown in Section 12.1. As per **Figure S37**, the presence of electrolyte did not affect the EPR signal (shift in G), but merely changed the intensity presumably due to an effect on **T***p***BPA**⁻⁺ solubility.

Figure S37. Impact of the presence or absence of electrolyte on the EPR signal.

Sample	Deviation in Conditions	Microwave power / mW	Microwave frequency / GHz
TpBPA ^{.+} a	-	2.110 × 10 ¹	9.642351
TpBPA ^{·+ b}	MeCN solvent, no ⁿ Bu ₄ NPF ₆	2.120 × 10 ¹	9.648397
T <i>p</i> BPA ^{·+} °	MeCN solvent	2.132 × 10 ¹	9.648229
TpBPA ^{.+} a	with 1,3,5-TMB (350 eq.)	2.097 × 10 ¹	9.631667
T <i>p</i> BPA ^{.+} a	with PhI (350 eq.)	2.142 × 10 ¹	9.635545
TCBPA ^{.+} a	-	6.377 × 10 ¹	9.641069
TCBPA ^{.+} a	with PhCl (350 eq.)	2.110 × 10 ¹	9.628465
TCBPA ^{.+ d}	with PhBr (350 eq.)	2.112 × 10 ¹	9.631634
TCBPA ^{.+} ^e	with 1,2-PhCICI (350 eq.)	2.068 × 10 ¹	9.638088
TCBPA ^{.+} e	with 1,3-PhCICI (350 eq.)	2.066 × 10 ¹	9.630983
TCBPA ^{.+ d}	with 1,4-PhClCl (350 eq.)	2.078 × 10 ¹	9.634744

Table S12. Parameters used for EPR sample measurements.

^aMeasured with a time constant of 81.82 ms and a conversion time of 100.00 ms. ^bMeasured in acetonitrile without electrolyte. ^cMeasured in acetonitrile with electrolyte. ^dMeasured with a receiver gain of 1.415892 × 10². ^eMeasured with a receiver gain of 5.023773 × 10².

12.1. EPR spectra of TPA^{.+}s

Figure S38. EPR spectra of the isolated **TpBPA⁺⁺** (left) and **TCBPA⁺⁺** (right), as their PF₆ salts.

12.2. EPR spectra of TPA^{.+}s in the presence of substrates

Figure S39. EPR spectra of TpBPA⁺ (PF₆ salt) in the presence of mesitylene (left) and PhI (right).

Figure S40. Comparison of EPR spectra of TCBPA⁺⁺ (PF₆ salt) in the presence of arenes.

Figure S41. EPR spectra of TCBPA⁺ (PF₆ salt) in the presence of PhCI (left) and PhBr (right).

Figure S42. Comparison of EPR spectra of TCBPA⁺⁺ (PF₆ salt) in the presence of monohaloarenes.

Figure S43. EPR spectra of TCBPA⁺ (PF₆ salt) in the presence of dichloroarenes.

Figure S44. Comparison of EPR spectra of the TCBPA⁺⁺ (PF₆ salt) in the presence of dichloroarenes.

12.3. Simulation of EPR spectra measured

Table S13. Simulated fitting of various EPR spectra and extracted Nitrogen hyperfine couplings.

TPA'+	Substrate (350 eq.)	Triplet (%)	Singlet (%)	α(N) (Triplet)	Reaction Yield ^b	Reaction Yield ^c
TpBPA ^{.+}	-	100	N/A	8.47	-	-
TpBPA ^{.+}	1,3,5-TMB	100	N/A	8.57	80	-
T _p BPA ^{.+}	PhI	95	5	8.21	n.r.	-
TCBPA ^{.+}	-	67	33	8.67	-	-
TCBPA ^{.+}	PhCl	100	N/A	8.85	65	-
TCBPA ^{.+}	PhBr	33	67	8.79	22	-
TCBPA ^{.+}	1,2-PhCICI	94	4	8.83	17	31
TCBPA ^{.+}	1,3-PhCICI	31	69	8.62	20	27
TCBPA ^{.+}	1,4-PhCICI	45	54	8.27	6	11

n.r. = no reaction. ^aDetermined using WINSIM2002 by simulation of the spectrum (single or two species), fitting R > 0.995 in each case;^{[23] b}Using ethyl 3-pyrazolecarboxylate as a nucleophile, see main manuscript for exact conditions employed. ^cUsing **TdCBPA** as a catalyst.

Figure S45. Simulation of the EPR spectrum of TpBPA^{.+}.

Figure S46. Simulation of the EPR spectrum of TpBPA⁺⁺ + Mesitylene (350 eq.).

Figure S47. Simulation of the EPR spectrum of **T***p***BPA**⁺⁺ + lodobenzene (350 eq.); parameters of species 1.

Figure S48. Simulation of the EPR spectrum of **T***p***BPA**⁺⁺ + lodobenzene (350 eq.); parameters of species 2.

Figure S49. Simulation of the EPR spectrum of TCBPA^{.+} ; parameters of species 1.

Figure S50. Simulation of the EPR spectrum of TCBPA⁺⁺ ; parameters of species 2.

Figure S51. Simulation of the EPR spectrum of TCBPA⁺⁺ + chlorobenzene (350 eq.).

Figure S52. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + bromobenzene (350 eq.), parameters of species 1.

Figure S53. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + bromobenzene (350 eq.), parameters of species 2.

Figure S54. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + 1,2-dichlorobenzene (350 eq.), parameters of species 1.

Figure S55. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + 1,2-dichlorobenzene (350 eq.), parameters of species 2.

Figure S56. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + 1,3-dichlorobenzene (350 eq.), parameters of species 1.

Figure S57. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + 1,3-dichlorobenzene (350 eq.), parameters of species 2.

Figure S58. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + 1,4-dichlorobenzene (350 eq.), parameters of species 1.

Figure S59. Simulation of the EPR spectrum of **TCBPA**⁺⁺ + 1,4-dichlorobenzene (350 eq.), parameters of species 2.

12.4. Interpretation of EPR spectra of TPA^{.+}s in the presence of substrates

EPR spectroscopy of the isolated **TpBPA**⁺·PF₆ gave a triplet with $a^{N} = 8.47$ G (Figure S38, left), consistent with the previously-reported literature for this radical cation (SbCl₆ salt) in DCM^[24] Indications of hypercoupling were previously observed for TpBPA⁺PF₆ salt by us in MeCN^[2] The triplet is characteristic of a Nitrogen atom that is not in conjugation with the surrounding aromatic rings, which indicates a 'propellor'-type structure for the TPA'+ in solution, consistent with predictions from DFT calculations and from XRD of the solid-state TPA^{.+}·PF₆ salts (see Section S13.2 and Section **S15**). EPR spectroscopy of the isolated **TCBPA**⁺ (PF₆ salt) gave what appeared to be a superposition of two radical species (Figure S38, right); a 'masked' triplet and a large central singlet; making interpretations of a^{N} values and DFT simulation of the EPR signals difficult (a^{N} = 8.67 G). This could indicate two rotational conformers in solution (Figure S60), one 'propeller'-type form (a triplet) and one form in which the N radical cation falls into conjugation with one of the aromatic systems (a broad singlet). We note that the existence of two similar conformers (point groups C_3 and C_2 symmetry) have been proposed for the tri(p-chloro)phenylaminium radical cation.^[25] The hindered rotation of the biphenyl unit of the TPA⁺ is reported previously in the literature for a similar dimeric TPA⁺, with coplanarity of the biphenyl unit being responsible for driving changes in the EPR spectra.^[26] Consistent with this, DFT calculations (scanning the dihedral of the biphenyl unit bridge) predicted rotational barriers of 1.48 kcal mol⁻¹ and 1.29 kcal mol⁻¹ for rotations of the peripheral rings of TpBPA⁺⁺ and TCBPA⁺⁺ (Figure S61), confirming that the latter had a higher barrier. Although the difference is very small, and both barriers are thermally accessible at rt, the difference may be a sufficient enough influence on the position of equilibrium to results in different EPR signals. We

emphasize the importance the relative difference, since DFT modelled only the naked salts and without explicit solvation.

Figure S60. Proposed symmetry-broken rotamers of TCBPA.⁺ in solution (top).

Figure S61. Dihedral scan of the biphenyl units of **TCBPA**⁺⁺ (top) and **T***p***BPA**⁺⁺ (bottom) to estimate rotational barrier (bottom), at the uB3LYP/6-31+G(d,p) level, see **Section S13** for details.

In the presence of mesitylene, a large shift in the G values of the signal occurred (**Figures S39-40**), while the shape of the signal remained comparable ($a^{N} = 8.57$ G) to the uncomplexed **T***p***BPA**⁺⁺ (**Figure S38, left**). This indicates that the geometry and spin density of the mesitylene-complexed **T***p***BPA**⁺⁺ and uncomplexed **T***p***BPA**⁺⁺ are very similar, and is consistent with the lack of change in UV-vis spectroscopy (**Figures S7-8**) and findings from DFT calculations that a T- π complex *does not* alter the spin density with respect to the uncomplexed **T***p***BPA**⁺⁺ (**Figure S62**).

Figure S62. DFT-computed Spin Densities for uncomplexed **T***p***BPA**⁺ (left) and a T- π precomplex **T***p***BPA**⁺ + mesitylene (right). See **Section S13** for details.

In the presence of iodobenzene, a smaller shift in the G values of the signal occurred, and the shape of the signal changed with respect to the uncomplexed **T***p***BPA**⁺⁺ (Figure S38, left), as seen by a slight flattening of the triplet 'shoulders' ($a^{N} = ca$. 8.2 G). Since iodobenzene gave no reaction, this suggests a different geometry of precomplex that is 'unreactive' in the photoelectrochemical reaction. The minor change in EPR signal shape reflects a minor change in spin density consistent with DFT calculations which predict a π - π complex (see Section S13.3) that may be formed in small concentrations. Since the reaction of mesitylene proceeded successfully where iodobenzene did not, the 'reactive' precomplex must resemble the geometry of the uncomplexed **TpBPA'+**. This is consistent with the proposal for a T- π type geometry as found by DFT calculations (see Section **S13.3**). Changes in the EPR spectra were very pronounced in the case of **TCBPA**⁺ (PF₆ salt). In the presence of chlorobenzene (Figure S41, left), the G values of the signal were relatively unchanged but the signal shape completely changed to give a triplet (a^{N} = 8.85 G) resembling that observed for that of uncomplexed **TpBPA**⁺⁺ (Figure S38, left). This indicates that the geometry and spin density of the chlorobenzene-complexed TCBPA^{.+} and uncomplexed TCBPA^{.+} are different, or that complexation drives the solution equilibrium in favour of the 'propeller'-type conformer (Figure S63). The change in spin density would be expected to manifest in a change in the UV-vis spectra,

consistent with aforementioned results (**Figures S7-8**) and findings from DFT calculations that a T- π complex (in which the CI atom faces "in" to the N radical cation) *does* alter the spin density with respect to the uncomplexed **TCBPA**⁺ (Figure S64).

Figure S63. Precomplexation of **TCBPA**⁺ with chlorobenzene drives the solution equilibrium of rotamers **X** and **Y** formation of the T- π complex.

Figure S64. DFT-computed Spin Densities for uncomplexed **TCBPA**⁺⁺ (top) and T- π precomplexes **TCBPA**⁺⁺ + PhCI with the CI atom facing 'in' (bottom, left) or 'out' (bottom, right). See **Section S13** for details.

In order to confirm the presence of two EPR-active species in the spectrum of **TCBPA**^{.+} and to rule out a 'pure triplet signal in which the shoulder resonances are suppressed', we checked the EPR spectra i) with different microwave powers (Figure S65) and ii) at a lower (8x) modulation value (1.0 G) and at the second derivative (harmonic) (Figure S66). In the former case, the microwave power made no difference to the signal shape, all peak intensities increased by the same corresponding fraction. In the latter case, the lower modulation clearly confirmed two radical species, a triplet and overlapping broad singlet. The second derivative spectrum also clearly confirms two overlapping species. Regardless of these parameters, the spectra show the same trend; 1,2-dichlorobenzene favors the triplet representation, while 1,4-dichlorobenzene favors the singlet representation.

Figure S65. Examination of EPR samples displayed in Figure S44 at different powers.

Figure S66. Examination of EPR samples displayed in Figure S44 at a lower modulation amplitude and with the second harmonic.

In the presence of bromobenzene, a small shift in the G values of the signal occurred and the shape of the signal changed with respect to the uncomplexed **TCBPA**⁺, as seen by a pronounced flattening of the triplet 'shoulders' ($a^{N} = 8.79$ G). Together with the poor performance of bromobenzene as a substrate compared to chlorobenzene, this suggests a different geometry of precomplex that is *'unreactive'* to the photoelectrochemical reaction. In the presence of 1,2-dichlorobenzene, the signal shifted in the direction of the triplet observed for chlorobenzene ('propeller'-type complex, $a^{N} = 8.83$ G), but to a lesser extent. In the presence of 1,3- or 1,4-dichlorobenzene, the signal shifted in the directive' complex ($a^{N} = ca. 8.62$ G, ca. 8.27 G, respectively).

Overall, candidates for the unreactive complex (singlet EPR signal) could include i) formation of the proposed π - π stacked complex, which forces the N radical cation into conjugation with an aromatic system, likely to drastically decrease the oxidizing power of the radical cation in the excited state, ii) a halogen- π complex; since halogen- π interactions are a well-known dispersion interaction in the literature.^[27] The former candidate seems more likely, given the shift in the N radical cation's EPR signal shape away from a triplet and towards a singlet.

We note that changes in EPR spectra can arise from changes in temperature and a solvent effect (namely, viscosity) affecting the tumbling of radicals in solution. In this case, anisotropy could result – the separation of the high field line from the central component would differ from that of the low field line in the integrated spectra. Given that all samples were measured at 25 °C, we compared the viscosities of arene substrates (350 eq., ~1 : 4 arene : DCM by volume) to see if they could account for profound changes in EPR spectra (Table S14). Noticeable anisotropy was not present in any of the spectra, despite the different viscosities of arene substrates added. Moreover, viscosity values of these arenes do not correlate with the changes in signal shape towards singlet or triplet representations. Given that the arene is present in ~1 : 4 arene : DCM by volume in the EPR sample, clearly, the viscosity of all samples represents that of DCM and thus 'solvent effects' unrelated to precomplexation cannot account for the profound changes in EPR spectra demonstrated herein.

Table S14. Comparison of known viscosities and difference between low and high-field shoulders from central component to check for solvent-dependent anisotropy.

TPA ^{.+}	Arene	Viscosity	Signal shape	Δ low field	∆high field
		(mPa [.] s), 25 °C	change w.r.t.	shoulder	shoulder
			uncomplexed TPA .+		
- (DCM)	-	0.437ª	-	-	-
T <i>p</i> BPA ^{.+}	-	-	-	8.04	8.03
T <i>p</i> BPA ^{.+}	Mesitylene	0.661 ^b	Triplet (no change)	8.22	8.21
T <i>p</i> BPA ^{,+}	lodobenzene	1.504°	→Singlet (weak)	7.04	7.04
TCBPA.+	-	-	-	7.99	7.98
TCBPA ^{.+}	Chlorobenzene	0.806 ^b	→Triplet (strong)	8.28	8.38
TCBPA.+	1,2-dichlorobenzene	1.324 ^b	→Triplet (strong)	8.45	8.44
TCBPA.+	1,3-dichlorobenzene	1.044 ^b	→Singlet (strong)	N.D.	N.D.
TCBPA.+	1,4-dichlorobenzene	0.839 ^d	→Singlet (strong	N.D.	N.D.

Viscosities were obtained from the following references: ^aRossberg, M.; Lendle, W.; Pfleiderer, G.; Tögel, A.; Torkelson, T. R.; Beutel, K. K. *Chloromethanes* in *Ullmann's Encyclopedia of Industrial Chemistry* 7th *Edition*, **1999-2014**; ^bLide, D. R. *CRC Handbook of Chemistry and Physics* 89th *Edition*, CRC Press, **2009**; ^cViswanath, D.S.; Natarajan, G. *Data Book on the Viscosity of Liquids*, Hemisphere Publishing, **1989**; ^dDean, J. A. *Handbook of Organic Chemistry. McGraw-Hill Book Co.* **1987**. ^aMeasured at 20 °C; ^oMeasured at 32.65 °C. ^dMeasured at 55 °C. N.D. not determined, shoulders are too flat to measure a maximum height.

12.5. Comparison of DFT calculated and measured EPR spectra of TPA⁺s.

A reasonable agreement was found between EPR spectra simulated by DFT at two different theory levels for the case of **TpBPA**^{.+}·PF₆ (**Figure S67**). However, for **TCBPA**^{.+}·PF₆ the agreement was poor (**Figure S68**), since the calculation assumes only the propeller-type (symmetry C₃) rotamer. Attempts to optimize for the other symmetry C₂ rotamer all converged to give the symmetry C₃ rotamer. For details of the levels of theory and software employed for DFT calculations, see **Section S13**.

Figure S67. EPR spectra of the isolated **T***p***BPA**^{.+} (PF₆ salt). Calculated EPR spectra (without PF₆ salt) at the uB3LYP/6-31+G(d,p) theory level (left) and at the uB3LYP/EPR-III theory level (right). Solvation was modelled implicitly using a C-PCM solvent model for DCM.

Figure S68. EPR spectra of the isolated **TCBPA**⁺ (PF₆ salt). Calculated EPR spectra (without PF₆ salt) at the uB3LYP/6-31+G(d,p) theory level (left) and at the uB3LYP/EPR-III theory level (right). Solvation was modelled implicitly using a C-PCM solvent model for DCM.

13. COMPUTATIONAL INVESTIGATIONS OF TPAS, TPA^{.+}S AND TPA^{.+} PRECOMPLEXES

All calculations were performed using Density Functional Theory $(DFT)^{[28]}$ using the Gaussian16 software package.^[29] All minima (reactants, intermediates, products) and maxima (transition states) were optimized using the uB3LYP^[30] functional with a 6-31+G(d,p) basis set^[31] on all atoms. Solvation was modelled implicitly using the Conductor-like Polarisable Continuum Model (CPCM)^[32] for a solvent of acetonitrile, in which e-PRC reactions were performed. Frequency calculations were performed on all optimized structures in order to characterize minima (zero imaginary frequencies). GaussView 5.0.9 was used for the visualisation of structures. Spin densities and molecular orbitals were obtained from formcheck (.fchk) files from Gaussian calculations and visualized in Avogadro.^[33] Dihedral scans were performed using uB3LYP/6-31+G(d,p) with a step size of 5 degrees and terminated when barrier was detected. Calculation of EPR hyperfine couplings (isotropic fermi constants) was done using uB3LYP either with 6-31+G(d,p) or EPR-III^[34,35] as a basis set.

13.1. Computation of Neutral TPAs, XYZ Co-ordinates

Geometries of **T***p***BPA** and **TCBPA** were computed to compare conformations (dihedral angles) with XRD crystallographic data (Section S15).

64

-1442.515977 [uB3LYP/6-31G(d,p)]

Charge =	0;	Multi	plicity	/ = '	1
----------	----	-------	---------	-------	---

	•,	-	
С	-3.39200000	-2.58633800	-0.00054600
С	-3.35717400	-1.42344800	-0.79276800
С	-2.24837200	-0.58043300	-0.80120800
С	-1.12952800	-0.86253300	0.00062500
С	-1.15471600	-2.01672700	0.80158000
С	-2.26191500	-2.86189600	0.79201100
С	-4.57381200	-3.48637900	-0.00081800
С	-5.87922100	-2.96947100	-0.10957500
С	-6.99060200	-3.81539800	-0.11169800
С	-6.82415100	-5.19975900	-0.00105500
С	-5.53394300	-5.72853800	0.10947100
С	-4.42274200	-4.88233500	0.10747300
Н	-4.19503500	-1.18889700	-1.44256500
Н	-2.24445000	0.29645700	-1.44029000
--------	-------------	--------------------------	-------------
Н	-0.30859800	-2.24601300	1.44105400
Н	-2.25871800	-3.73221800	1.44142400
Н	-6.02820500	-1.89555100	-0.17106400
Н	-7.98755900	-3.39094800	-0.18986900
Н	-7.68820300	-5.85765400	-0.00115200
н	-5.39007500	-6.80248800	0.18748300
H	-3.42714700	-5.31168300	0.16889900
C	-0 18078300	1 40818200	0.00150500
Č	0 61879100	2 23604600	-0 80439800
C C	-1 16348300	2 00700800	0.80772600
C	0 44231500	3 61774500	-0 79580100
н	1 37312300	1 79412900	-1 44713500
C	-1 34260000	3 38835100	0 79856800
Ч	-1 78168500	1 38868200	1 45032400
C C	0.5/371000	1.30000200	0.00108400
	1 060/9500	4.22612200	1 44021000
	2.00501400	4.22012200	-1.44921900
	-2.09001400	5.02002200	0.00026900
	-0.73377300	5.70Z30400 6.57559100	0.00020000
	0.30302100	0.07000100	-0.11521500
	-2.01826900	6.26810200	0.11509400
	0.18634100	7.96080800	-0.11834100
H	1.36977900	6.16880500	-0.18140200
C	-2.19723900	7.65329400	0.11605000
H	-2.88676700	5.61961000	0.18233700
C	-1.09584600	8.50742300	-0.001/0500
Н	1.05115400	8.61293000	-0.20202300
Н	-3.19929900	8.06456500	0.19911800
Н	-1.23485400	9.58450200	-0.00246600
С	3.93648300	-1.64347800	0.00008600
С	3.60820800	-0.52931700	0.79516700
С	2.32209800	0.00563200	0.80458600
С	1.31144600	-0.54839900	0.00090700
С	1.62834300	-1.65611700	-0.80331400
С	2.91340800	-2.19352500	-0.79489300
С	5.30743700	-2.21554100	-0.00018800
С	6.43976100	-1.38573400	0.11144500
С	7.72889600	-1.92330500	0.11333300
С	7.91789500	-3.30453100	-0.00026700
С	6.80330100	-4.14194400	-0.11380800
С	5.51430300	-3.60407100	-0.11174600
Н	4.35914000	-0.09210600	1.44642900
Н	2.09594500	0.85133400	1.44574400
Н	0.86802900	-2.08997400	-1.44446600
н	3,13090100	-3.03420000	-1.44694300
н	6.31247500	-0.30917000	0.17532700
н	8,58608400	-1.26080900	0.19383500
н	8.92018400	-3.72267500	-0.00027400
Н	6.93556000	-5.21721200	-0.19424900
н	4.65974200	-4.27113500	-0.17537100
N	0.00028600	-0.00114500	0.00104200

TCBPA in MeCN (uB3LYP)

-1719.279809 [uB3LYP/6-31G(d,p)]

Charge = 0; Multiplicity = 1					
С	-2.29211100	3.58747900	0.00150200		
С	-2.66473400	2.48134900	0.78871800		
С	-1.91115900	1.31140500	0.79902100		
С	-0.75902200	1.19717700	0.00238700		
С	-0.38155900	2.29174500	-0.79417800		
С	-1.13078400	3.46458600	-0.78492300		
С	-3.09348800	4.83392400	0.00036900		
С	-4.49575200	4.79448100	0.13892700		
С	-5.25440100	5.95961300	0.14191900		
С	-4.62044500	7.20759200	-0.00014700		
С	-3.22189600	7.26700600	-0.14208600		
С	-2.47610100	6.09354200	-0.13871300		
Н	-3.53453300	2.54524900	1.43513800		
Н	-2.21005700	0.48531000	1.43544500		
Н	0.49383700	2.21830200	-1.43068100		
Н	-0.82643900	4.28094500	-1.43252500		
Н	-5.00347000	3.83952100	0.22275300		
Н	-6.33325000	5.90799400	0.24234100		
Н	-2.72758200	8.22732500	-0.24253800		
Н	-1.39657300	6.15948500	-0.22220500		
С	-0.64864000	-1.25933500	0.00009200		
С	-0.17838600	-2.31393900	0.80114800		
С	-1.78116400	-1.47827900	-0.80260200		
С	-0.81893300	-3.54951300	0.79091200		
Н	0.68355700	-2.16068800	1.44177600		
С	-2.42617500	-2.71147500	-0.79372300		
Н	-2.14931200	-0.68376800	-1.44296800		
С	-1.96006400	-3.77775600	-0.00139300		
Н	-0.44552800	-4.33432800	1.44143700		
Н	-3.28251800	-2.85530000	-1.44522300		
С	-2.64627700	-5.09109700	-0.00108200		
С	-1.91921800	-6.28996300	0.14396300		
С	-4.04579800	-5.17743500	-0.14591400		
С	-2.55701000	-7.52548200	0.14713700		
Н	-0.83849700	-6.25861600	0.23267100		
С	-4.69713600	-6.40581000	-0.14883800		

Н	-4.63633600	-4.27180900	-0.23473500
С	-3.95461000	-7.59172300	-0.00080300
Н	-1.97919600	-8.43746700	0.25236500
Н	-5.77581300	-6.45105100	-0.25407300
С	4.26139000	0.19039100	0.00106900
С	3.57222500	-0.75147300	-0.78636700
С	2.18178100	-0.81082900	-0.79562200
С	1.42450300	0.06415100	0.00187000
С	2.10156600	1.00311400	0.79884600
С	3.49178200	1.06752500	0.78873300
С	5.74168600	0.25671800	0.00020600
С	6.52001500	-0.91044100	-0.13809300
С	7.90931600	-0.85592300	-0.14231600
С	8.56121200	0.38292700	-0.00165000
С	7.80124600	1.55855100	0.13983000
С	6.41260400	1.48874700	0.13776800
Н	4.12563300	-1.42402900	-1.43440800
Н	1.67891300	-1.53067900	-1.43262700
Н	1.53703800	1.67578500	1.43575900
Н	3.98374400	1.78714900	1.43576100
Н	6.03412000	-1.87677000	-0.22068900
Н	8.49059800	-1.76625600	-0.24264200
Н	8.29916900	2.51710500	0.23924800
Н	5.84234100	2.40780500	0.22108300
Ν	0.00600900	0.00090900	0.00195200
С	-4.61875800	-8.86044700	-0.00079500
С	9.99181400	0.44711400	-0.00268900
С	-5.39533100	8.41186500	0.00007000
Ν	11.15605400	0.49984500	-0.00371400
Ν	-5.15934600	-9.89291700	-0.00077500
Ν	-6.02599900	9.39192000	0.00028300

13.2. Computation of TPA^{.+}s

TpBPA^{·+}·PF₆ (uB3LYP/6-31+G(d,p))

-2383.130662 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 2 C -1.24012800 -3.44190700 -1.09155900 C -0.23599500 -3.39299300 -0.09938000

С	0.56002700	-2.27099100	0.06925300
С	0.36861400	-1.14334700	-0.75491100
С	-0.63027500	-1.17172100	-1.74931200
С	-1.41250600	-2.30439800	-1.91091800
С	-2.08337100	-4.64492900	-1.26697800
С	-1.56611000	-5.93254700	-1.02079800
C	-2.36159800	-7.06614200	-1.18910200
Ċ	-3.69236600	-6.93815700	-1.60127300
Ĉ	-4 22045000	-5 66609600	-1 84646800
C	-3 42480700	-4 53181700	-1 68392700
H	-0 10345500	-4 23092900	0.57598900
н	1 29877700	-2 24331700	0.86217000
н	-0 75761700	-0 32425900	-2 41320700
н	-2 1//68000	-0.02420000	-2.41020700
н Н	0 52028600	6 05126700	0 72234700
	1 04006700	-0.03120700	1 00/00000
	-1.94000700	-0.04974500	-1.00490000
н	-4.31162600	-7.82075000	-1.72981200
н	-5.25496800	-5.55578300	-2.15/35/00
Н	-3.85/13600	-3.55120500	-1.85560200
C	2.54528400	-0.13094500	-0.29377500
C	3.16708500	0.74055200	0.62323900
С	3.30607400	-1.14088900	-0.91688900
С	4.51623300	0.59669500	0.90761600
Н	2.58067400	1.49402600	1.13661600
С	4.65589500	-1.26703100	-0.62754400
Н	2.84531200	-1.79060400	-1.65226700
С	5.29612000	-0.40641100	0.29115500
Н	4.96407000	1.24856600	1.64954100
Н	5.23206800	-2.02172700	-1.15136000
С	6.73649100	-0.55153000	0.59793400
С	7.52800800	0.57467800	0.89948800
С	7.35124300	-1.81957000	0.59598900
С	8.88650300	0.43717400	1.18566100
H	7.08627800	1.56602900	0.88405200
С	8,70866300	-1.95592700	0.88776500
Ĥ	6 76031500	-2 70690400	0 39202100
C	9 48263200	-0.82842900	1 18248500
н	9 48081600	1 31924400	1 40438300
н	9 16011300	-2 94347800	0.80180100
н	10 53053500	-2.040470000	1 /07//300
C C	0 55317400	3 85012000	0.04023300
C	0.33317400	2 50057400	1 42950200
C	1 21/20100	2 22/02/00	1 22205200
	0.50600500	2.33403400	-1.32303300
	0.59690500	1.2094//00	-0.70339000
	-0.69850800	1.53574600	-0.20316800
C	-1.25352000	2.80036400	-0.32072400
C	-1.15486100	5.20499200	-1.06313400
С	-0.35262200	6.36295600	-1.01765600
С	-0.92190700	7.63155000	-1.13013500
С	-2.30392500	7.77139500	-1.29664700
С	-3.11273200	6.63095700	-1.34649300
С	-2.54580000	5.36192100	-1.22794900
Н	1.29130200	4.36684400	-1.95922500
Н	2.29352900	2.14245000	-1.74662400
Н	-1.24438100	0.75413100	0.31308100
Н	-2.23231000	2.97357500	0.11209500
Н	0.71842200	6.27375000	-0.86591200
Н	-0.28700000	8.51105700	-1.08070500
Н	-2.74609900	8.75902900	-1.38636200
Н	-4.18536200	6.72870500	-1.48424100

Н	-3.18495800	4.48704700	-1.29071900
Ν	1.17041500	0.00594900	-0.58514400
Р	-4.22802600	-0.01207000	2.09633300
F	-3.98825700	1.39161700	1.26854000
F	-2.71210700	-0.51156900	1.68337900
F	-3.62482700	0.68895000	3.45742600
F	-4.46396300	-1.41499500	2.92291100
F	-5.74047800	0.48768800	2.50839600
F	-4.82880800	-0.71252100	0.73418500

TpBPA^{.+}.PF₆ (ωb97xd/6-31+G(d,p))

-2382.442852 [@b97xd/6-31+G(d,p)]

Charge = 1; Multiplicity = 2

С	-3.70542200	-1.16060400	-1.26592400
С	-2.83156100	-1.91484200	-0.46583000
С	-1.49842300	-1.57515500	-0.34668200
С	-1.00308800	-0.45528400	-1.03574300
С	-1.86116400	0.30617000	-1.84864700
С	-3.19178900	-0.05000600	-1.95769100
С	-5.13789400	-1.52299300	-1.37145100
С	-5.84022500	-1.98010300	-0.24765200
С	-7.18771900	-2.31578500	-0.34315900
С	-7.85297600	-2.20494700	-1.56359100
С	-7.16294100	-1.75325800	-2.68797900
С	-5.81677600	-1.41184100	-2.59271500
Н	-3.20300300	-2.77783200	0.07592300
Н	-0.84804200	-2.13786900	0.31145600
Н	-1.47511400	1.15403000	-2.40301800
Н	-3.84697100	0.54939800	-2.58048100
Н	-5.33811700	-2.05033000	0.71256200
Н	-7.71973900	-2.65816600	0.53862500
Н	-8.90309400	-2.46860200	-1.63790900
Н	-7.67152600	-1.67124300	-3.64319600
Н	-5.28519300	-1.07981700	-3.47941400
С	1.33057700	-1.08582600	-0.77451000
С	2.39183700	-0.89783900	0.12339300
С	1.25562700	-2.25669800	-1.54369100
С	3.35953200	-1.87810800	0.24965900
Н	2.42355800	-0.01011200	0.74451900
С	2.23623500	-3.22368600	-1.41070800

Н	0.45568900	-2.38284700	-2.26474000
С	3.30319400	-3.05651200	-0.51287000
Н	4.15314200	-1.74222600	0.97637100
Н	2.19114800	-4.10752500	-2.03775100
С	4.34646100	-4.10003900	-0.37388900
С	5.69095500	-3.74614000	-0.19678300
С	4.00646600	-5.45903900	-0.41733300
С	6.67069800	-4.72686900	-0.06900500
Н	5.97736100	-2.69882300	-0.18193000
С	4.98640000	-6.43894600	-0.28511900
Н	2.96756800	-5.75343100	-0.53200000
С	6.32154300	-6.07616400	-0.11154500
Н	7.70855000	-4.43604100	0.05797900
Н	4.70521500	-7.48685100	-0.31144400
Н	7.08536400	-6.84040200	-0.01003600
С	1.46722400	3.95854500	-0.84510400
С	2.24648000	3.00723100	-1.52432700
С	1.88453900	1.67234700	-1.54653400
С	0.71508100	1.26214700	-0.88730700
С	-0.07866000	2.19747700	-0.20671500
С	0.30337500	3.52692700	-0.18901600
С	1.86715500	5.38569900	-0.81819100
С	2.41104000	5.99667800	-1.95622500
С	2.78423400	7.33768100	-1.93032300
С	2.62434500	8.08740600	-0.76559200
С	2.08656800	7.48831200	0.37289700
С	1.70839200	6.14876800	0.34669900
Н	3.15443300	3.31439300	-2.03216300
Н	2.48780300	0.95038100	-2.08548300
Н	-0.95978000	1.86894900	0.33189400
Н	-0.31646900	4.24310400	0.33984500
Н	2.52176600	5.42839700	-2.87485900
Н	3.19476100	7.79831800	-2.82315500
Н	2.91722500	9.13221900	-0.74520600
Н	1.96617500	8.06251100	1.28594300
Н	1.30932500	5.68782800	1.24524600
N	0.34196500	-0.09379800	-0.90551900
Р	-1.29026700	0.29231500	3.12177600
F	-0.71948400	1.82323800	3.22126200
F	-2.22200300	0.72868000	1.84539700
F	-0.06887400	-0.09401400	2.10105900
F	-1.86067100	-1.23629200	3.01862700
F	-0.35993800	-0.13781900	4.39740200
F	-2.50988600	0.68023100	4.14177000

TCBPA^{.+}.PF₆ (uB3LYP/6-31+G(d,p))

Spin Density: iso = 0.0005

-2659.886522 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 2					
С	-1.30942700	-3.47577400	-0.81076400		
С	-0.22343100	-3.42474600	0.08942300		
С	0.56937900	-2.29320600	0.19683900		
С	0.29084000	-1.16384700	-0.60030500		
С	-0.78917300	-1.19817000	-1.50629300		
С	-1.57014800	-2.33856400	-1.60504400		
С	-2.15190200	-4.68758300	-0.91763200		
С	-1.59331100	-5.97024000	-0.75119800		
С	-2.37939000	-7.11241000	-0.85165000		
С	-3.75494100	-6.99082600	-1.11858400		
С	-4.32904900	-5.71774000	-1.28512500		
С	-3.53100900	-4.58365500	-1.18680000		
Н	-0.02239500	-4.26563300	0.74374500		
Н	1.37204000	-2.26034000	0.92439200		
Н	-0.98266900	-0.34982300	-2.15243500		
Н	-2.37037500	-2.35992900	-2.33640000		
Н	-0.53027400	-6.08036500	-0.56668400		
Н	-1.93398500	-8.09374800	-0.73147500		
Н	-5.39116500	-5.62226500	-1.48173000		
Н	-3.99176600	-3.60784100	-1.29476100		
С	2.48241200	-0.12060100	-0.30339900		
С	3.15314800	0.75203100	0.57684900		
С	3.20928700	-1.10892500	-0.99690800		
С	4.52246800	0.63105200	0.75618700		
Н	2.59278500	1.48689500	1.14328100		
С	4.57924500	-1.21334100	-0.81179000		
Н	2.70581300	-1.75663400	-1.70538800		
С	5.26732000	-0.34993100	0.06720400		
Н	5.01368800	1.28230600	1.47060700		
Н	5.12778500	-1.95033900	-1.38758700		
С	6.72998500	-0.46900400	0.26128600		
С	7.51890900	0.67336700	0.50089800		
С	7.36432500	-1.72604900	0.21132100		
С	8.89316800	0.57017200	0.68339600		
Н	7.06026500	1.65589100	0.51991300		

С	8.73716200	-1.84362700	0.39644400
Н	6.77878200	-2.62498000	0.05225200
С	9.51010300	-0.69273900	0.63330100
Н	9.48903300	1.45943500	0.85672600
Н	9.21022600	-2.81890600	0.36595600
С	-0.71168100	3.81745500	-0.71769300
С	0.54890000	3.57307000	-1.30561100
С	1.14706000	2.32538400	-1.23185800
С	0.48953200	1.27175100	-0.56296100
С	-0.76949100	1.49769700	0.03098300
С	-1.35237800	2.75257200	-0.04839100
С	-1.34448900	5.15222900	-0.80342800
С	-0.56140300	6.32367600	-0.80291200
С	-1.15103900	7.58002100	-0.88333400
С	-2.55051800	7.68901900	-0.97145000
С	-3.34711100	6.52989700	-0.97480700
С	-2.74520300	5.27979800	-0.88914700
Н	1.04803700	4.35719400	-1.86394100
Н	2.09558500	2.14808400	-1.72545900
Н	-1.26436900	0.70932900	0.58655000
Н	-2.30145500	2.91031300	0.45134900
Н	0.51731700	6.25676300	-0.71321900
Н	-0.53614400	8.47312500	-0.87136900
Н	-4.42568600	6.61233900	-1.05068200
Н	-3.37094700	4.39452100	-0.91525000
N	1.08688600	-0.00401900	-0.48980000
С	10.92629300	-0.80683500	0.82314100
С	-3.16496600	8.98109100	-1.05771300
С	-4.57125400	-8.16465100	-1.22025100
N	-3.66421200	10.03109600	-1.12782500
N	12.07703500	-0.89972000	0.97740200
N	-5.23426300	-9.11872600	-1.30269400
Р	-4.46521700	0.00385400	2.01777600
F	-4.13728200	1.57964200	1.66538900
F	-2.85132200	-0.33467100	1.99067800
F	-4.36554300	0.34339400	3.62422400
F	-4.78808200	-1.57072300	2.36898200
F	-6.07447400	0.34352200	2.04493100
F	-4.56099900	-0.33456000	0.41046800

TCBPA^{.+}·PF₆ (ωb97xd/6-31+G(d,p))

Solvent = MeCN (CPCM)

-2659.090856 [ωb97xd/6-31+G(d,p)]

C 1.91588300 2.98590900 -0.77627700 C 0.80563400 3.16619900 0.06391500 C -0.05419400 1.01508200 -0.58778100 C 1.03967600 0.83113300 -1.44974300 C 2.08231500 4.01055800 -0.84863400 C 2.08231500 4.01055800 -0.84863400 C 2.6637700 5.37488700 -0.85583600 C 3.66353700 6.33465500 -0.92441100 C 5.00293800 5.93111000 -0.98150400 C 4.32722900 3.62060800 -0.90431200 H -1.00153400 2.32285700 0.8520800 H 1.10581800 -0.6113400 -2.6164700 H 1.62630600 5.69144900 -2.21809100 H 1.62630600 5.69144900 -2.819600 H 3.41062200 7.38871500 -0.31045500 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100<	Charge = 0;	; Multiplicity = 2	2	
C 0.80563400 3.16619900 0.06391500 C -0.05419400 1.01508200 -0.58778100 C 2.00833300 1.81097400 -1.53734800 C 2.08231500 4.01055800 -0.88583600 C 2.98231500 4.01055800 -0.84863400 C 2.66372700 5.3748700 -0.85583600 C 3.6353700 6.33465500 -0.92441100 C 5.0293800 5.93111000 -0.98150400 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.0548100 0.68193700 H 1.10581800 -0.6113400 -2.21809100 H 1.62630600 5.69144900 -0.82966800 H 1.62630600 5.69144900 -0.82966800 H 3.41062200 7.38871500 -1.015900 H 4.58549700 2.56802300 0.86045300 C -2.37826600 0.34947100	С	1.91588300	2.98590900	-0.77627700
C -0.17436000 2.19713700 0.16283300 C -0.05419400 1.01508200 -0.58778100 C 1.03967600 0.83113300 -1.44974300 C 2.08233500 4.01055800 -0.84863400 C 2.66372700 5.3748700 -0.85583600 C 3.66353700 6.33465500 -0.9441100 C 5.0293800 5.93111000 -0.98150400 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.10581800 -0.66113400 -2.26164700 H 1.10584000 2.32285700 0.82260800 H 1.10584000 2.3286700 0.82960800 H 1.62630600 5.69144900 -0.82960800 H 1.62630600 5.69144900 -0.32966600 C -2.37826600 0.34947100 -0.31094500 C -2.318506900 -0.37658900 0.57781400 C -2.91575900 1.4157670	С	0.80563400	3.16619900	0.06391500
C -0.05419400 1.01508200 -0.58778100 C 1.03967600 0.83113300 -1.44974300 C 2.0833300 1.81097400 -1.53734800 C 2.98231500 4.01055800 -0.84863400 C 2.66372700 5.37488700 -0.85583600 C 3.66353700 6.33465500 -0.92441100 C 5.00293800 5.93111000 -0.98150400 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H -1.00153400 2.32285700 0.85208800 H 1.10581800 -0.66113400 -2.21809100 H 1.62630600 5.69144900 -0.319966600 H 3.41062200 7.38871500 0.39966600 H 4.56549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91755000 1.415	С	-0.17436000	2,19713700	0.16283300
C 1.03967600 0.83113300 -1.44974300 C 2.00833300 1.81097400 -1.53734800 C 2.08231500 4.01055800 -0.84863400 C 2.66372700 5.3748700 -0.85583600 C 3.66353700 6.33465500 -0.92441100 C 5.0293800 5.93111000 -0.98150400 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H -1.00153400 2.32285700 0.85208800 H 1.10581800 -0.06113400 -2.21809100 H 2.84022100 1.67104000 -2.21809100 H 2.8402200 7.3871500 -0.39966600 H 1.62630600 5.69144900 -0.82960800 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 1.17297800 C -2.91575900 1.415767	Ċ	-0 05419400	1 01508200	-0.58778100
C 1.033300 1.8109740 -1.53734800 C 2.0833300 1.8109740 -1.53734800 C 2.86372700 5.37488700 -0.85583600 C 3.66353700 6.33465500 -0.92441100 C 5.00293800 5.93111000 -0.98150400 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.00153400 2.32285700 0.85208800 H 1.10581800 -0.06113400 -2.01809100 H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.3966600 H 3.41062200 7.38871500 -0.3966600 H 3.41062200 7.38871500 -0.3966600 H 3.41062200 7.38871500 -0.3966600 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C 4.51690400 -0.03143800 0.72411400 H -2.29816800 1.95076000 -1.75973300 C -4.25062200 1.74520400 -0.89242600 H -5.12476200 -0.57265200 1.44090800 H -5.12476200 -0.57265200 1.44090800 H -5.12476200 0.57265200 1.44090800 H -5.12476200 0.57265200 1.44090800 H -5.12476200 0.57265200 1.44090800 H -5.12476200 0.57265200 1.44090800 H -5.12476200 0.524618200 -1.75973300 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65224100 0.52473200 H -6.15121200 3.52207200 0.9827500 C -0.63423500 -1.34167700 -0.48526800 C -0.63423500 -1.34167700 -0.48526800 C -0.63423500 -1.34167700 -0.48526800 C -0.63423500 -1.34167700 -0.48526800 C 0.056684800 -1.72897600 0.13150000 C 0.05468100 -5.44664200 -0.55463000 C 0.056684800 -1.72897600 0.13150000 C 0.05468100 -5.44664200 -0.55463000 C 0.056684800 -1.72897600 0.13150000 C 0.05468100 -5.4861700 -0.40393900 C 0.0150300 -7.80128500 -0.76356800 H -1.66086500 -4.34319400 -1.66949000 H -1.66086500 -4.34319400 -1.66949000 H -2.35315200 -1.98852300 -1.62959680	Ĉ	1 03067600	0.83113300	-1 //07/300
C 2.98231500 4.01055800 -1.33734800 C 2.98231500 4.01055800 -0.84863400 C 3.66353700 6.33465500 -0.92441100 C 5.00293800 5.93111000 -0.98150400 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.10581800 -0.06113400 -2.06164700 H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100 -0.31094500 C -2.91575900 1.41576700 1.17298600 C -2.91575900 1.41576700 1.75973300 C -5.07180100 1.037	C	2 00833300	1 91007400	1 5272/200
C 2.96231300 4.01033000 -0.84083400 C 2.66372700 5.37488700 -0.85583600 C 3.66353700 6.33465500 -0.92441100 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.10581800 -0.06113400 -2.06164700 H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -2.318506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 1.1728600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.7573300 C -5.07180100 1.03	C	2.00033300	1.01097400	-1.55754600
C 2.66372700 5.37488700 -0.8583600 C 3.66353700 6.33465500 -0.92441100 C 5.00293800 5.93111000 -0.98150400 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.10581800 -0.06113400 -2.06164700 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 3.41062200 7.38871500 -0.93966600 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.107781400 C -2.91575900 1.41576700 -1.04717700 C -2.91575900 1		2.98231500	4.01055800	-0.84803400
C 3.66353700 6.33465500 -0.92441100 C 5.00293800 5.93111000 -0.98150400 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H -1.00153400 2.32285700 0.85208800 H 1.10581800 -0.06113400 -2.06164700 H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00159900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.3194500 C -3.18506900 -0.78781400 0.7781400 C -2.91575900 1.41576700 1.0471700 C -4.5169400 -0.03143800 0.72411400 H -2.29816800 1.9576000 -1.7597300 C -5.07180100 1.030729	C	2.66372700	5.37488700	-0.85583600
C 5.00293800 5.93111000 -0.98150400 C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.10581800 -0.06113400 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00159900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.25062200 1.74520400 -0.89242600 C -4.25062200 1.74520400 -0.89242600 C -5.07180100 1	С	3.66353700	6.33465500	-0.92441100
C 5.33587800 4.57119900 -0.96885200 C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H -1.00153400 2.32285700 0.85208800 H 1.10581800 -0.06113400 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.10471700 C -2.91575900 1.41576700 -1.04717700 C -2.91575900 1.41576700 -1.0471700 C -2.91575900 1.41576700 -1.0471700 C -2.91575900 1.41576700 -1.0471700 C -2.92816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.06550300 H -2.29816800 2.7	С	5.00293800	5.93111000	-0.98150400
C 4.32722900 3.62060800 -0.90431200 H 0.73243500 4.05448100 0.68193700 H 1.100153400 2.32285700 0.85208800 H 1.10581800 -0.06113400 -2.21809100 H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -2.37856600 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -5.7265200 1.44090800 C -6.5057700 1.	С	5.33587800	4.57119900	-0.96885200
H0.732435004.054481000.68193700H-1.001534002.322857000.85208800H1.10581800-0.06113400-2.06164700H2.840221001.67104000-2.21809100H1.626306005.69144900-0.82960800H3.410622007.38871500-0.93966600H6.375177004.26432600-1.00150900H4.585497002.56802300-0.86045300C-2.378266000.34947100-0.31094500C-3.18506900-0.376589000.57781400C-2.915759001.41576700-1.04717700C-4.51690400-0.031438000.72411400H-2.757516001.17597001.17298600C-4.250622001.74520400-0.89242600H-2.298168001.95076000-1.75973300C-5.071801001.03072900-0.00650300H-5.12476200-0.572652001.44090800H-4.667585002.54618200-1.49312700C-6.500577001.391623000.15415400C-7.475515000.393728000.28551000C-8.814841000.725735000.43261700H-7.19146900-0.652703000.25017900C-8.81484100-0.52241000.52473200H-6.151212003.522072000.9827500C-9.193059002.073328000.45274900H-9.56414800-0.52241000.52473200H-9.564148	С	4.32722900	3.62060800	-0.90431200
H-1.001534002.322857000.85208800H1.10581800-0.06113400-2.06164700H2.840221001.67104000-2.21809100H1.626306005.69144900-0.82960800H3.410622007.3871500-0.93966600H6.375177004.26432600-1.00150900H4.585497002.56802300-0.86045300C-2.378266000.34947100-0.31094500C-3.18506900-0.376589000.57781400C-2.915759001.41576700-1.04717700C-4.51690400-0.031438000.72411400H-2.75751600-1.175517001.17298600C-4.250622001.74520400-0.89242600H-2.298168001.95076000-1.7597300C-5.071801001.03072900-0.0650300H-5.12476200-0.572652001.44090800H-4.667585002.54618200-1.49312700C-6.500577001.391623000.15415400C-7.475515000.393728000.28551000C-8.814841000.725735000.43261700H-8.230424003.081568000.32544900H-6.151212003.522072000.9827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-9.5648800-1.728976000.112176300C-0.63423500-1.34167700-0.4826800C0.56684	Н	0.73243500	4.05448100	0.68193700
H 1.10581800 -0.06113400 -2.06164700 H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100 -0.31094500 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.29816800 1.95076000 -1.75973300 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 H -5.12476200	Н	-1.00153400	2.32285700	0.85208800
H 2.84022100 1.67104000 -2.21809100 H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -2.37826600 0.34947100 -0.31094500 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.7597300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 H -4.66758500 2.54618200 -1.49312700 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.81484100 0.72573	н	1,10581800	-0.06113400	-2.06164700
H 1.62630600 5.69144900 -0.82960800 H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.0650300 H -5.12476200 -0.57265200 1.44090800 H -4.66758500 2.54618200 -1.49312700 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.23042400 <t< td=""><td>Н</td><td>2 84022100</td><td>1 67104000</td><td>-2 21809100</td></t<>	Н	2 84022100	1 67104000	-2 21809100
H 3.41062200 7.38871500 -0.93966600 H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 C -6.50057700 1.39162300 0.15415400 C -6.50057700 1.39162300 0.28551000 C -6.60057700 1.39162300 0.25017900 C -6.60057700 1.39162300 0.25017900 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.6527	н	1 62630600	5 69144900	-0.82960800
H 6.37517700 4.26432600 -1.00150900 H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 H -4.66758500 2.54618200 -1.49312700 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.23042400 3.08156800 0.32544900 H -9.56414800 -0.05	Ц	3 /1062200	7 38871500	0.02000000
H 4.58549700 2.56802300 -0.86045300 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 H -4.66758500 2.54618200 -1.49312700 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.23042400 3.08156800 0.32544900 H -6.15121200 3.52207200 0.9827500 C -9.19305900 2.0733		6 27517700	1.30071300	1 00150000
H 4.36349700 2.36802300 -0.30043300 C -2.37826600 0.34947100 -0.31094500 C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 H -4.66758500 2.54618200 -1.49312700 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.23042400 3.08156800 0.32544900 H -6.15121200 3.52207200 0.09827500 C -9.19305900 2.073		0.37317700	4.20432000	-1.00130900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4.00049700	2.50602300	-0.00045500
C -3.18506900 -0.37658900 0.57781400 C -2.91575900 1.41576700 -1.04717700 C -4.51690400 -0.03143800 0.72411400 H -2.75751600 -1.17551700 1.17298600 C -4.25062200 1.74520400 -0.89242600 H -2.29816800 1.95076000 -1.75973300 C -5.07180100 1.03072900 -0.00650300 H -5.12476200 -0.57265200 1.44090800 H -4.66758500 2.54618200 -1.49312700 C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.23042400 3.08156800 0.32544900 H -6.15121200 3.52207200 0.9827500 C -9.19305900 2.07332800 0.45274900 H -9.56414800 <t< td=""><td></td><td>-2.3/820000</td><td>0.34947100</td><td>-0.31094500</td></t<>		-2.3/820000	0.34947100	-0.31094500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C	-3.18506900	-0.37658900	0.57781400
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C	-2.91575900	1.415/6/00	-1.04/1//00
H-2.75751600-1.175517001.17298600C-4.250622001.74520400-0.89242600H-2.298168001.95076000-1.75973300C-5.071801001.03072900-0.00650300H-5.12476200-0.572652001.44090800H-4.667585002.54618200-1.49312700C-6.500577001.391623000.15415400C-7.475515000.393728000.28551000C-6.894828002.736088000.17610300C-8.814841000.725735000.43261700H-7.19146900-0.652703000.25017900C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C0.56684800-1.728976000.13150000C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H	С	-4.51690400	-0.03143800	0.72411400
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-2.75751600	-1.17551700	1.17298600
$\begin{array}{llllllllllllllllllllllllllllllllllll$	С	-4.25062200	1.74520400	-0.89242600
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Н	-2.29816800	1.95076000	-1.75973300
H-5.12476200-0.572652001.44090800H-4.667585002.54618200-1.49312700C-6.500577001.391623000.15415400C-7.475515000.393728000.28551000C-6.894828002.736088000.17610300C-8.814841000.725735000.43261700H-7.19146900-0.652703000.25017900C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	-5.07180100	1.03072900	-0.00650300
H-4.667585002.54618200-1.49312700C-6.500577001.391623000.15415400C-7.475515000.393728000.28551000C-6.894828002.736088000.17610300C-8.814841000.725735000.43261700H-7.19146900-0.652703000.25017900C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C0.56684800-1.728976000.13150000C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.75635600C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	Н	-5.12476200	-0.57265200	1.44090800
C -6.50057700 1.39162300 0.15415400 C -7.47551500 0.39372800 0.28551000 C -6.89482800 2.73608800 0.17610300 C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.23042400 3.08156800 0.32544900 H -6.15121200 3.52207200 0.09827500 C -9.19305900 2.07332800 0.45274900 H -9.56414800 -0.05224100 0.52473200 H -9.56414800 -0.05224100 0.52473200 H -8.52616400 4.12425600 0.34979000 C 0.14830700 -4.02478200 -0.52917200 C -1.04967600 -3.61972000 -1.14102600 C -1.44588700 -2.29528600 -1.12176300 C 0.56684800 -1.72897600 0.13150000 C 0.56468100 -5.44664200 -0.55463000 C 0.38278100 <td< td=""><td>Н</td><td>-4.66758500</td><td>2.54618200</td><td>-1.49312700</td></td<>	Н	-4.66758500	2.54618200	-1.49312700
C-7.475515000.393728000.28551000C-6.894828002.736088000.17610300C-8.814841000.725735000.43261700H-7.19146900-0.652703000.25017900C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.75635600C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	-6.50057700	1.39162300	0.15415400
C-6.894828002.736088000.17610300C-8.814841000.725735000.43261700H-7.19146900-0.652703000.25017900C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C0.56684800-1.728976000.13150000C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.75635600C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	-7.47551500	0.39372800	0.28551000
C -8.81484100 0.72573500 0.43261700 H -7.19146900 -0.65270300 0.25017900 C -8.23042400 3.08156800 0.32544900 H -6.15121200 3.52207200 0.09827500 C -9.19305900 2.07332800 0.45274900 H -9.56414800 -0.05224100 0.52473200 H -9.56414800 -0.05224100 0.52473200 H -9.56414800 -0.05224100 0.52473200 H -9.56414800 -0.05224100 0.52473200 H -8.52616400 4.12425600 0.34979000 C 0.14830700 -4.02478200 -0.52917200 C -1.04967600 -3.61972000 -1.14102600 C -1.44588700 -2.29528600 -1.12176300 C -0.63423500 -1.34167700 -0.48526800 C 0.56684800 -1.72897600 0.13150000 C 0.56468100 -5.44664200 -0.55463000 C 0.38278100	С	-6.89482800	2.73608800	0.17610300
H-7.19146900-0.652703000.25017900C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	Ċ	-8.81484100	0.72573500	0.43261700
C-8.230424003.081568000.32544900H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	H	-7 19146900	-0.65270300	0 25017900
H-6.151212003.522072000.09827500C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C1.3955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	C	-8 23042400	3 08156800	0.32544900
In-0.131212003.322012000.035274900C-9.193059002.073328000.45274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.56468100-5.44664200-0.55463000C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	Ч	-6.15121200	3 52207200	0.02044000
C-9.193039002.073328000.43274900H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.56468100-5.44664200-0.55463000C0.56468100-5.44664200-0.55463000C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	П С	0.10205000	2 0722201200	0.030273000
H-9.56414800-0.052241000.52473200H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.94464200-3.058955000.10557500C0.56468100-5.44664200-0.55463000C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600		-9.19303900	2.07332000	0.45274900
H-8.526164004.124256000.34979000C0.14830700-4.02478200-0.52917200C-1.04967600-3.61972000-1.14102600C-1.44588700-2.29528600-1.12176300C-0.63423500-1.34167700-0.48526800C0.56684800-1.728976000.13150000C0.56684800-3.058955000.10557500C0.56468100-5.44664200-0.55463000C-0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	н	-9.504 14800	-0.05224100	0.52473200
C 0.14830700 -4.02478200 -0.52917200 C -1.04967600 -3.61972000 -1.14102600 C -1.44588700 -2.29528600 -1.12176300 C -0.63423500 -1.34167700 -0.48526800 C 0.56684800 -1.72897600 0.13150000 C 0.94464200 -3.05895500 0.10557500 C 0.56468100 -5.44664200 -0.55463000 C 0.38278100 -6.46817700 -0.40393900 C 0.00150300 -7.80128500 -0.42609400 C 1.35133100 -8.12671100 -0.60379600 C 1.91255000 -5.78841000 -0.72956800 H -1.66086500 -4.34319400 -1.66949000 H -2.35315200 -1.98852300 -1.62959600	П	-8.52010400	4.12425600	0.34979000
C -1.04967600 -3.61972000 -1.14102600 C -1.44588700 -2.29528600 -1.12176300 C -0.63423500 -1.34167700 -0.48526800 C 0.56684800 -1.72897600 0.13150000 C 0.94464200 -3.05895500 0.10557500 C 0.56468100 -5.44664200 -0.55463000 C 0.38278100 -6.46817700 -0.40393900 C 0.00150300 -7.80128500 -0.42609400 C 1.35133100 -8.12671100 -0.60379600 C 2.30955900 -7.11769500 -0.75635600 C 1.91255000 -5.78841000 -0.72956800 H -1.66086500 -4.34319400 -1.66949000 H -2.35315200 -1.98852300 -1.62959600	C	0.14830700	-4.02478200	-0.52917200
C -1.44588700 -2.29528600 -1.12176300 C -0.63423500 -1.34167700 -0.48526800 C 0.56684800 -1.72897600 0.13150000 C 0.94464200 -3.05895500 0.10557500 C 0.56468100 -5.44664200 -0.55463000 C -0.38278100 -6.46817700 -0.40393900 C 0.00150300 -7.80128500 -0.42609400 C 1.35133100 -8.12671100 -0.60379600 C 2.30955900 -7.11769500 -0.75635600 C 1.91255000 -5.78841000 -0.72956800 H -1.66086500 -4.34319400 -1.66949000 H -2.35315200 -1.98852300 -1.62959600	C	-1.04967600	-3.61972000	-1.14102600
C -0.63423500 -1.34167700 -0.48526800 C 0.56684800 -1.72897600 0.13150000 C 0.94464200 -3.05895500 0.10557500 C 0.56468100 -5.44664200 -0.55463000 C -0.38278100 -6.46817700 -0.40393900 C 0.00150300 -7.80128500 -0.42609400 C 1.35133100 -8.12671100 -0.60379600 C 2.30955900 -7.11769500 -0.75635600 C 1.91255000 -5.78841000 -0.72956800 H -1.66086500 -4.34319400 -1.66949000 H -2.35315200 -1.98852300 -1.62959600	С	-1.44588700	-2.29528600	-1.12176300
C0.56684800-1.728976000.13150000C0.94464200-3.058955000.10557500C0.56468100-5.44664200-0.55463000C-0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	-0.63423500	-1.34167700	-0.48526800
C0.94464200-3.058955000.10557500C0.56468100-5.44664200-0.55463000C-0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	0.56684800	-1.72897600	0.13150000
C0.56468100-5.44664200-0.55463000C-0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	0.94464200	-3.05895500	0.10557500
C-0.38278100-6.46817700-0.40393900C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	0.56468100	-5.44664200	-0.55463000
C0.00150300-7.80128500-0.42609400C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	-0.38278100	-6.46817700	-0.40393900
C1.35133100-8.12671100-0.60379600C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	0.00150300	-7.80128500	-0.42609400
C2.30955900-7.11769500-0.75635600C1.91255000-5.78841000-0.72956800H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	1.35133100	-8.12671100	-0.60379600
C 1.91255000 -5.78841000 -0.72956800 H -1.66086500 -4.34319400 -1.66949000 H -2.35315200 -1.98852300 -1.62959600	С	2.30955900	-7.11769500	-0.75635600
H-1.66086500-4.34319400-1.66949000H-2.35315200-1.98852300-1.62959600	С	1.91255000	-5.78841000	-0.72956800
H -2.35315200 -1.98852300 -1.62959600	н	-1.66086500	-4.34319400	-1.66949000
	Н	-2.35315200	-1.98852300	-1.62959600

Н	1.17583500	-0.99944100	0.65392100
Н	1.85619900	-3.35029300	0.61548800
Н	-1.42735400	-6.22238900	-0.24505800
Н	-0.73655200	-8.58532700	-0.30045400
Н	3.35303400	-7.37396200	-0.90030400
Н	2.65713800	-5.01173500	-0.86825300
N	-1.02156700	0.00798400	-0.46532300
С	-10.57815700	2.42360200	0.60441600
С	1.75567400	-9.50505300	-0.62979400
С	6.04269000	6.92001700	-1.05317600
N	2.08192800	-10.61818700	-0.65104300
N	-11.69666900	2.70642100	0.72649100
N	6.88208100	7.71879400	-1.11255600
Р	4.06598300	0.07645100	1.71912500
F	3.88484400	-0.12623400	3.33291500
F	2.49531400	0.52917800	1.60294300
F	4.49756000	1.63469500	1.95967200
F	4.24756600	0.27319800	0.10491900
F	5.63214500	-0.38185400	1.83950500
F	3.62659000	-1.48414100	1.47608200

13.3. Computation of TPA⁺⁺ precomplexes, XYZ Co-ordinates

All calculations were performed using Density Functional Theory $(DFT)^{[28]}$ using the Gaussian16 software package.^[29] All minima (reactants, intermediates, products) and maxima (transition states) were optimized using the uB3LYP^[30] functional with a 6-31+G(d,p) basis set on all atoms^[31], except bromine and iodine for which the Stuttgart/Dresden Effective Core Potentials MWB28 and MWB46 (respectively) and associated valence basis sets were used.^[41] Solvation was modelled implicitly using the Conductor-like Polarisable Continuum Model (CPCM)^[32] for a solvent of acetonitrile, in which e-PRC reactions were performed. Frequency calculations were performed on all optimized structures in order to characterize minima (zero imaginary frequencies). All calculations were repeated (optimization and frequency) at the ω b97xd functional^[37] with a 6-31+G(d,p) basis set on all atoms^[31], except bromine and iodine which used the pseudoptential specified above. Solvation was modelled implicitly using the CPCM as specified above. This was deemed an acceptable working level of theory used by related studies. GaussView 5.0.9 was used for the visualisation of structures. Spin densities and molecular orbitals were obtained from formcheck (.fchk) files from Gaussian calculations and visualized in Avogadro.^[33]

In modelling the precomplexes, inspiration was taken from the orientations originally described by Hunter and Sanders.^[38] Many different orientations were attempted; sandwich π -stacking, parallel-displaced π -stacking and T-type π -stacking; only the latter two yielded convergence when arenes were placed around the peripheral aromatic rings of the TPA⁺. Placing the arene ring close to the core aromatic rings of the TPA⁺ generally led either i) to dissociation or ii) rearrangement to a complex around the peripheral aromatic rings.

The use of DFT to model dispersion interactions may not be as optimal as MP2 and coupled-cluster methods typically employed for precise determinations of binding energies.^[39] However, the computational cost of such methods for complexes of the size studies herein is prohibitively expensive. We note the successful use of DFT to model π -stacking interactions of similar or very large systems at similar levels of theory to ours, which often gave endergonic ΔG values.^[40] We note that the ω b97xd functional which was used for comparison includes empirical atom-atom dispersion corrections^[37] and generally gives comparable results to more expensive MP2 or coupled-cluster calculations for dispersion-type calculations.^[41] In fact, uB3LYP/6-31+(d,p) was found to yield results more comparable to expectations from EPR experiments in this particular case (when ω b97xd was applied to calculate input structures of T- π complexes, they often rearranged to π - π complexes). The intermolecular distances were difficult to characterize compared to the original Hunder-Sanders mode^[38] (centroid-to-centroid of the aromatic rings), since arenes were often staggered across both aromatic rings of the TPA⁺⁺ biphenyl unit. Hence, we give a range of intermolecular distances as defined in the footnote of Table S15 (see diagrams of complexes of interest for the distances).

Components	Complex	Complexation free energy		Intermolecular	
	orientationa	∆G (kca	al mol ⁻¹)	distar	nce (Å) ^b
		uB3LYP	wb97xd	uB3LYP	ωb97xd
		/6-31+G(d,p)	/6-31+G(d,p)	/6-31+G(d,p)	/6-31+G(d,p)
TpBPA:*/mesitylene	T-π (N/A)	+7.2	+4.9 (→π-π)	3.3 - 5.5	3.6 - 4.2 (π-π) ^c
T pBPA ·⁺/PhI	Τ- π "OUT"	+28.4	-	4.7 - 6.5	-
T pBPA ·⁺/PhI	Τ-π "ΙΝ"	+28.1	-	3.8 - 6.2	-
T pBPA ·⁺/PhI	π-π "OUT"	+28.3	-	5.2 - 5.5	-
T pBPA ·⁺/PhI	π-π "IN"	+26.1	-	6.2 - 6.8	-
TCBPA ^{.+} /PhCl	Τ- π "OUT"	+4.5	+3.5	4.5 - 6.8	3.2 - 5.3
TCBPA·*/PhCl	Τ-π "ΙΝ"	+5.1	+2.9 (→π-π)	4.8 - 7.4	3.7 - 4.3 (π-π) ^c
TCBPA.+/1,2-PhCICI	Τ- π "OUT"	+4.5	-	4.2 - 6.4	-
TCBPA.+/1,2-PhClCl	Τ-π "ΙΝ"	+4.7	-	4.6 - 6.9	-
TCBPA.+/1,2-PhClCl	π-π "OUT"	+6.6	-	5.3 - 5.7	-
TCBPA.+/1,2-PhClCl	π-π "IN"	N.D.	-	N.D.	-
TCBPA.+/1,3-PhClCl	Τ- π "OUT"	+4.9	-	5.3 - 6.7	-
TCBPA.+/1,3-PhClCl	Τ-π "IN"	+5.2	-	4.9 - 7.4	-
TCBPA.+/1,3-PhClCl	π-π "OUT"	Dissociated	-	Dissociated	-
TCBPA ^{.+} /1,3-PhClCl	π-π "IN"	Dissociated	-	Dissociated	-
TCBPA ^{.+} /1,4-PhClCl	T-π (N/A)	Dissociated	-	Dissociated	-
TCBPA ^{.+} /1,4-PhClCl	π-π (N/A)	+4.2	-	5.5 - 5.8	-
TCBPA ·⁺/PhBr	T-π "OUT"	+30.8	-	3.4 - 6.2	-
TCBPA ^{.+} /PhBr	Τ-π "IN"	+31.4	-	3.7 - 6.9	-
TCBPA ·⁺/PhBr	π-π "OUT"	+29.7	-	4.9 - 5.4	-
TCBPA ·⁺/PhBr	π-π "IN"	N.D.	-	N.D.	-

Table S15. Precomplexation energies and intermolecular distances for the T- π or π - π interaction.

N.D., not determined - these complexes could not be converged. ^a"IN" and "OUT" refer to the orientation of the halogen atom with respect to the TPA^{.+} N atom. ^bFor T- π complexes: the distances between the aromatic centerpoints of each biphenyl to the centerpoint of the arene were averaged and taken as the upper value. The distances between the closest biphenyl C atom and i) the arene C atom closest to the TPA^{.+} N atom and ii) the arene C atom furthest from the TPA^{.+} N atom were averaged and taken as the lower value. For π - π complexes: the distances between the aromatic centerpoints of each biphenyl to the centerpoint of the arene were averaged and taken as the lower value. For π - π complexes: the distances between the aromatic centerpoints of each biphenyl to the centerpoint of the arene were averaged and taken as the upper value. The distances between the closest biphenyl ring-junction C atom and i) the arene C atom closest to the TPA^{.+} N atom and ii) the arene C atom furthest from the TPA⁺ N atom were averaged and taken as the upper value. The distances between the closest biphenyl ring-junction C atom and i) the arene C atom closest to the TPA⁺ N atom and ii) the arene C atom furthest from the TPA⁺ N atom were averaged and taken as the lower value. ^cThe T- π complex rearranged to the π - π complex using this functional.

Mesitylene (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

21

-350.089555 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 1				
С	0.08293500	1.41031800	0.00003000	
С	-1.16521200	0.76103300	-0.00000400	
С	-1.26280700	-0.63340900	0.00000500	
С	-0.07650500	-1.38978000	0.00001700	
С	1.17990100	-0.77698900	0.00002000	
С	1.24176000	0.62855500	0.00007000	
Н	-2.07484100	1.35870500	-0.00000100	
Н	-0.13932100	-2.47634000	0.00003000	
Н	2.21422200	1.11731900	0.00008800	
С	2.45083700	-1.59709700	-0.00004800	
Н	3.06527400	-1.37740600	-0.88102100	
Н	3.06508600	-1.37788000	0.88118900	
Н	2.23343100	-2.66890200	-0.00033000	
С	-2.60867200	-1.32379300	-0.00001100	
Н	-2.72571300	-1.96600800	-0.88077800	
Н	-2.72627000	-1.96490400	0.88148800	
Н	-3.42790000	-0.59928500	-0.00075800	
С	0.15778400	2.92105700	-0.00002200	
Н	-0.33907600	3.34329400	-0.88135900	
Н	-0.33974700	3.34345700	0.88083600	
Н	1.19472800	3.26857500	0.00027800	

Mesitylene (wb97xd/6-31+G(d,p))

Solvent = MeCN (CPCM)

21

-349.966825 [@b97xd/6-31+G(d,p)]

С	1.10061300	-0.87728500	0.00452400
С	-0.21175800	-1.37159700	0.00696000
С	-1.31005300	-0.51464100	0.00166300

С	-1.08201100	0.86902400	-0.00407700
С	0.20931400	1.39163900	-0.00425600
С	1.29362300	0.50233800	-0.00059800
Н	-0.37301600	-2.44791300	0.01255700
Н	-1.93345100	1.54692400	-0.00729600
Н	2.30643300	0.90078200	-0.00122900
С	0.45092500	2.88126900	0.00231400
Н	0.93517400	3.19437700	0.93337400
Н	1.10913200	3.17694500	-0.82081700
Н	-0.48522000	3.43715800	-0.09386100
С	-2.72091300	-1.05011000	-0.00147500
Н	-3.28885300	-0.66602700	0.85202000
Н	-3.25318600	-0.74565100	-0.90871700
Н	-2.73280100	-2.14197000	0.04668300
С	2.27012800	-1.83090400	-0.00326700
Н	2.18943100	-2.55980600	0.80929100
Н	2.30870700	-2.39401800	-0.94185000
Н	3.21844500	-1.29920000	0.10912200

PhCI (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

12

-697.885158 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 1

C	-1 57114100	-1 20427300	0 00000300
Č	-0.17891700	-1.21267200	0.00000500
Č	0.49717800	-0.00001300	-0.00003100
C	-0.17891400	1.21266400	-0.00000700
С	-1.57111800	1.20428900	0.00001500
С	-2.26922400	0.00000200	-0.00000600
Н	-2.10664900	-2.14583200	0.00001200
Н	0.36954800	-2.14510000	0.00000600
Н	0.36958800	2.14507300	-0.00000700
Н	-2.10664400	2.14583700	0.00002600
Н	-3.35204500	0.00002300	-0.00000800
CI	2.26229500	0.00000100	0.00000600

PhCl (ωb97xd/6-31+G(d,p))

Solvent = MeCN (CPCM)

12

-691.702102 [ωb97xd/6-31+g(d,p)]

Charge = 0; Multiplicity = 1 C 1.57014300 1.20640300 -0.00001300

С	0.17596700	1.21538800	0.00002000
С	-0.50098100	0.00001900	0.00005000
С	0.17596500	-1.21537000	0.00001700
С	1.57013300	-1.20642300	-0.00001200
С	2.26857500	-0.00000800	-0.00000500
Н	2.10762500	2.14902100	-0.00003000
Н	-0.37333800	2.15018900	0.00000400
Н	-0.37338500	-2.15014800	0.00000500
Н	2.10757900	-2.14906000	-0.00002300
Н	3.35345300	0.00000800	-0.00002600
CI	-2.25769100	-0.00000300	-0.00001600

PhI (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

12

-243.016257 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 1				
С	3.36745000	0.00000800	-0.00000100	
С	2.66603700	1.20947600	0.00000200	
С	1.26571600	1.21837500	-0.00000200	
С	0.58474600	-0.00002300	0.00000200	
С	1.26572900	-1.21838500	0.00000300	
С	2.66607600	-1.20945300	-0.00000300	
Н	4.45317800	0.00004200	0.00000300	
Н	3.20208300	2.15417300	-0.00000200	
Н	0.72711500	2.15951300	0.00000100	
Н	0.72718500	-2.15955600	0.00000900	
Н	3.20210600	-2.15415900	-0.00000600	
I	-1.56992800	0.00000000	0.00000000	

PhBr (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

12

-244.977983 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 1

С	2.90150900	0.00000300	-0.00000100
С	2.20086200	1.21026100	0.00000800
С	0.80068200	1.22045800	-0.00000600
С	0.12889000	-0.00001400	0.00000600
С	0.80068600	-1.22046500	0.00000900
С	2.20088600	-1.21024500	-0.00000900
Н	3.98709700	0.00002900	0.00000000
Н	2.73746000	2.15441900	0.00000100
Н	0.25486500	2.15725300	-0.00000600
Н	0.25491300	-2.15728600	0.00001600
Н	2.73746600	-2.15441400	-0.00001600
Br	-1.83351100	0.00000000	-0.00000100

1,2-dichlorobenzene "1,2PhCICI" (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

12

-1151.406326 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 1

-2.39539200	0.69868200	0.00001300
-2.39538700	-0.69866600	-0.00000300
-1.18748700	-1.39785400	-0.00000700
0.02342000	-0.70074600	-0.00002300
0.02340700	0.70074800	-0.00002600
-1.18748100	1.39786700	0.00000800
-3.33061000	1.24820800	0.00002500
-3.33061600	-1.24817800	0.00000100
-1.17594800	-2.48178500	-0.00001300
-1.17595400	2.48180000	0.00003900
1.52135700	-1.61356100	0.00001200
1.52138700	1.61354700	-0.00000100
	-2.39539200 -2.39538700 -1.18748700 0.02342000 0.02340700 -1.18748100 -3.33061000 -3.33061600 -1.17594800 -1.17595400 1.52135700 1.52138700	-2.395392000.69868200-2.39538700-0.69866600-1.18748700-1.397854000.02342000-0.700746000.023407000.70074800-1.187481001.39786700-3.330610001.24820800-3.33061600-1.24817800-1.17594800-2.481785001.175954002.481800001.52135700-1.613561001.521387001.61354700

1,3-dichlorobenzene "1,3PhCICI" (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

-1151.409910 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 1

С	1.21622100	1.39536100	-0.00001400
С	1.19527100	0.00046000	-0.0008000
С	-0.00000200	-0.71993200	-0.00003100
С	-1.19528600	0.00048100	-0.00002700
С	-1.21622000	1.39536100	-0.00002300
С	0.00001400	2.08309300	0.00003700
Н	2.15820200	1.93136900	0.00002400
Н	-0.00002700	-1.80301400	-0.00001200
Н	-2.15817500	1.93141400	0.00000100
Н	-0.00000100	3.16836600	0.0008800
CI	-2.71652100	-0.88697300	0.00001800
CI	2.71652100	-0.88697300	0.00002400

1,4-dichlorobenzene "1,4PhCICI" (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

12

-1151.410145 [uB3LYP/6-31+G(d,p)]

Charge = 0: Multiplicity = 1				
Č	0.69852900	-1.21643300	0.00000800	
С	-0.69853100	-1.21643700	-0.00000700	
С	-1.38163600	-0.00000900	0.00001400	
С	-0.69852200	1.21642500	0.00000700	
С	0.69852400	1.21642900	-0.00000500	
С	1.38163600	-0.00001100	0.00001800	
Н	1.24167400	-2.15475500	-0.00000500	
Н	-1.24167900	-2.15475500	-0.00000800	
Н	-1.24169000	2.15473300	0.00000600	
Н	1.24169700	2.15473300	-0.00002300	
CI	-3.14328000	0.00000800	-0.00000500	
CI	3.14328000	0.00000700	-0.00000500	

TpBPA^{.+}.PF₆ + Mesitylene (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

Spin Density, iso = 0.0005

92

-2733.208722 [uB3LYP/6-31+G(d,p)]

Charge =	0; Multiplicity = 2	2	
С	1.95326100	3.35525000	-1.59330800
С	1.05057600	2.96497100	-0.58008200
С	0.79295400	1.62865800	-0.31674700
С	1.44809000	0.62728000	-1.06188500
С	2.35659200	0.99676500	-2.07447300
С	2.59455700	2.33768800	-2.33309800
С	2.21842300	4.78480400	-1.87050200
С	2.20420800	5.73634700	-0.83112300
С	2.45698000	7.08319800	-1.09236200
С	2.72344700	7.50989600	-2.39770800
С	2.73823900	6.57690400	-3.43998600
С	2.49200800	5.22861200	-3.17971000
Н	0.53500000	3.71940900	0.00391300
Н	0.10866300	1.35358900	0.47768600
Н	2.85096900	0.23344200	-2.66437300
Н	3.30019400	2.60005000	-3.11368700
Н	2.02266400	5.41884300	0.19072400
Н	2.45317000	7.79808300	-0.27504600
Н	2.91781100	8.55872300	-2.60064200
Н	2.93499700	6.89963200	-4.45795700
Н	2.48482800	4.52180400	-4.00335500
С	-0.11204900	-1.16852900	-0.49564100
С	-0.32507300	-2.16296500	0.48093700
С	-1.21744100	-0.60913300	-1.16893200
С	-1.61438700	-2.57830900	0.77460600
Н	0.51547100	-2.57017200	1.03126300
С	-2.49990800	-1.04078400	-0.86929500
Н	-1.06060400	0.12653100	-1.94958500
С	-2.73437800	-2.03192200	0.10950600
Н	-1.75818700	-3.31075600	1.56117500
Н	-3.33150900	-0.62957800	-1.43080200
С	-4.10757600	-2.48144000	0.42764000
С	-4.36144000	-3.81272300	0.81419400
C	-5.19509200	-1.58818200	0.35275000
С	-5.65742800	-4.23512800	1.11110800
Н	-3.54683300	-4.52875800	0.85709200

С	-6.49007100	-2.01016200	0.65502100
Н	-5.02485100	-0.55066600	0.08332600
С	-6.72652300	-3.33603900	1.03410800
Н	-5.83305300	-5.26817900	1.39591400
Н	-7.31250600	-1.30278300	0.60247900
Н	-7.73457100	-3.66527100	1.26756900
С	4.38088600	-3.52850000	-0.92299400
С	3.10830600	-3.85093100	-1.44316000
С	2.05945800	-2.94542500	-1.39901100
С	2.25817200	-1.66877300	-0.83540300
С	3.52172100	-1.32517000	-0.31352800
С	4.55644200	-2.24746500	-0.35616700
С	5.49498100	-4.50210700	-0.97132800
С	5.61817300	-5.40614800	-2.04530000
С	6.67055800	-6.32086300	-2.09205200
С	7.61876700	-6.35719500	-1.06415700
С	7.50754100	-5.46771100	0.00984000
С	6.45969200	-4.54775200	0.05487900
Н	2.93432400	-4.82888100	-1.87851400
Н	1.09544400	-3.20971700	-1.81847400
Н	3.67972400	-0.35442900	0.14307100
Н	5.52217500	-1.96343600	0.04738300
Н	4.90464700	-5.37591200	-2.86264300
Н	6.75374300	-7.00047300	-2.93488900
Н	8.43611000	-7.07113100	-1.09983000
Н	8.23334700	-5.49402500	0.81707900
Н	6.37593300	-3.88021700	0.90658800
N	1.19713100	-0.73649800	-0.79604400
Р	4.78169300	2.02332000	2.82820600
F	5.28598300	0.49603900	3.17715200
F	4.43300600	1.55468300	1.28630600
F	3.25424900	1.62492200	3.29347400
F	4.27698700	3.54941300	2.47690600
F	5.13027300	2.49104700	4.36691400
F	6.30872300	2.42029200	2.36093800
С	-10.19736400	-0.22815400	-0.79770400
С	-9.35921000	0.77796300	-1.28703200
С	-8.70295000	1.67282800	-0.42222800
С	-8.90367500	1.53863700	0.95475700
С	-9.74091000	0.53798000	1.48117600
С	-10.37802000	-0.33415100	0.59355100
Н	-9.21103900	0.87231600	-2.36114800
Н	-8.40226800	2.22402700	1.63550600
Н	-11.02930900	-1.11243900	0.98682900
С	-9.94389800	0.42000700	2.97536900
Н	-10.37451900	1.33855800	3.39097600
Н	-10.61486800	-0.40762800	3.22202500
Н	-8.99296200	0.24942900	3.49349800
С	-10.89919500	-1.18634500	-1.73425900
Н	-10.58622300	-2.22116500	-1.55159900
Н	-11.98609800	-1.15171100	-1.59651200
Н	-10.68413100	-0.95032500	-2.78023400
С	-7.80962200	2.75817200	-0.98074400
Н	-8.37778600	3.45474500	-1.60864600
Н	-7.33747100	3.33610600	-0.18130200
Н	-7.01566300	2.33675700	-1.60797000

$T\rho BPA^{+}PF_6$ + Mesitylene, π - π -type, (ω b97xd/6-31+G(d,p))

Solvent = MeCN (CPCM)

Spin Density, iso = 0.0005

92

-2732.401836 [@b97xd/6-31+G(d,p)]

Charge = 0	; Multiplicity = 2	2	
С	2.06112400	3.51711900	-1.49559300
С	0.88573600	3.25101400	-0.77657100
С	0.38738300	1.96688100	-0.67882300
С	1.05990600	0.91059400	-1.30837700
С	2.23544300	1.15581600	-2.03460600
С	2.72167500	2.44746800	-2.12324900
С	2.59927000	4.89530700	-1.58160600
С	2.55911000	5.74477000	-0.46742900
С	3.06735100	7.03850900	-0.54469200
С	3.61923100	7.50482000	-1.73732900
С	3.66259900	6.66803000	-2.85191200
С	3.15937100	5.37230400	-2.77446900
Н	0.35811500	4.05888200	-0.28102700
Н	-0.49327000	1.76185500	-0.08362100
Н	2.74483700	0.34222800	-2.53867700
Н	3.63510100	2.62864900	-2.67953300
Н	2.15054700	5.38481800	0.47213800
Н	3.03770200	7.68038300	0.32992200
Н	4.01363100	8.51410200	-1.79768300
Н	4.08383800	7.02578000	-3.78598600
Н	3.18093000	4.73644400	-3.65448400
С	-0.84021800	-0.59751000	-1.26606000
С	-1.44309700	-1.58479500	-0.47107700
С	-1.62595500	0.17931500	-2.13423100
С	-2.80702700	-1.79148700	-0.55423900
Н	-0.84539900	-2.14720300	0.23742300
С	-2.98627300	-0.04674200	-2.20962200
Н	-1.15863400	0.91680600	-2.77691900
С	-3.60663600	-1.03619500	-1.42743800
Н	-3.26444800	-2.52131600	0.10379300
Н	-3.57039700	0.52808700	-2.91958900
С	-5.06179500	-1.28512900	-1.54530700
С	-5.58291500	-2.57609500	-1.38534300
С	-5.94614000	-0.23699300	-1.83537700
С	-6.94919000	-2.81255800	-1.51585900

Н	-4.91733400	-3.40931000	-1.18218800
С	-7.31029200	-0.47288400	-1.96616200
Н	-5.57082900	0.77706800	-1.92812400
С	-7.81752900	-1.76235600	-1.80865000
Н	-7.33327000	-3.82044900	-1.39560500
Н	-7.97995100	0.35424500	-2.17887300
н	-8.88235100	-1.94634800	-1.90910600
С	3,15583000	-3.66576200	-0.79224100
C	2 00159200	-3 76555400	-1 58634500
C C	1 13745300	-2 69472700	-1 72847500
C	1 41848700	-1 48594700	-1 07159000
C	2 57267200	-1 36355100	-0 28247800
C	3 42199600	-2 44679800	-0.20247000
C	1 07307400	1 81080300	0.63762800
C	4.07307400	-4.01909500 5 65521500	1 72554800
C	5 22605000	-5.05521500	1 57905700
	5.22005000	-0.73020000	-1.57695700
	5.81210400	-7.00250100	-0.34208400
C	5.52967100	-6.17938500	0.74737400
C	4.66896800	-5.09507800	0.60081400
Н	1.77156500	-4.69700600	-2.09244800
Н	0.26086300	-2.78092400	-2.36050500
Н	2.77450100	-0.43701800	0.24142800
Н	4.31193300	-2.34142100	0.46338600
Н	3.92668500	-5.44603700	-2.69848400
Н	5.44668200	-7.36744900	-2.43383400
Н	6.48495400	-7.84639500	-0.22788500
Н	5.97525000	-6.38430200	1.71553300
Н	4.44089200	-4.47293600	1.46106200
Ν	0.54640700	-0.39228600	-1.20940500
Р	1.77494600	1.05805100	2.83984100
F	2.73964500	-0.23612200	3.11593800
F	2.70721400	1.46981400	1.55769200
F	0.83262800	0.14197200	1.86207700
F	0.81003300	2.34803200	2.56218100
F	0.84969000	0.64088900	4.12305300
F	2 71880200	1 97061900	3 81672800
Ċ	-5 26035400	0.06893000	1 70573900
C	-4 79648800	1 23831800	1 09915700
C	-3.15040000	1 60718000	1 16180600
C	-2 5600/500	0 78308800	1.10100000
C	2 003/8000	0.70500000	2 46830500
0	-2.99540900	-0.39330900	2.40030300
	-4.34327300	1 97402200	2.30702300
	-5.49907700	1.07492200	0.00002000
п	-1.50960200	1.05007900	1.92201800
Н	-4.69290000	-1.65167100	2.86330900
C	-2.02345800	-1.30554600	3.17880400
Н	-1.04030700	-0.84205900	3.27467700
Н	-2.38553000	-1.56758300	4.17812400
Н	-1.90150100	-2.24411900	2.62504600
С	-6.70925600	-0.33644300	1.61185400
Н	-7.08878900	-0.67692300	2.58016200
Н	-7.33397000	0.49182900	1.26779200
Н	-6.83143000	-1.15977000	0.89943100
С	-2.97027500	2.85961300	0.47099300
Н	-3.74417000	3.63216800	0.46336500
Н	-2.08342200	3.27188000	0.96147000
Н	-2.70914400	2.64998300	-0.57356200

 $T\rho BPA^{+}PF_6$ + lodobenzene, T- π -type, I atom pointing 'in' (uB3LYP)

83

-2626.102094 [uB3LYP/6-31+G(d,p)]

Charge = 0	; Multiplicity = 2	2	
С	-0.37901500	3.25985400	-0.15613500
С	0.15933900	2.51869100	-1.23171900
С	0.15240500	1.13249000	-1.22966500
С	-0.40743000	0.43379000	-0.13997200
С	-0.95135600	1.15614000	0.94226300
С	-0.93051500	2.54205100	0.92846400
С	-0.36563200	4.73918200	-0.16481400
С	0.68704000	5.44880800	-0.77728800
С	0.70022500	6.84412300	-0.78208100
С	-1.39347200	6.86947400	0.42909800
С	-1.40569000	5.47419000	0.43922400
Н	0.55285800	3.03598800	-2.09996700
Н	0.53654200	0.58624800	-2.08376900
Н	-1.34719200	0.62739000	1.80198500
Н	-1.31419700	3.07714300	1.79025700
Н	1.51288300	4.90819700	-1.22905400
Н	1.52638800	7.37156200	-1.24974500
Н	-2.21034100	7.41671300	0.89025200
Н	-2.24181100	4.95347100	0.89539800
С	0.67784400	-1.69958500	-0.64019600
С	0.47010800	-2.87271400	-1.39410900
С	1.99292600	-1.25267600	-0.39841100
С	1.55657500	-3.57401800	-1.89438800
Н	-0.53876400	-3.20087100	-1.61794800
С	3.06933100	-1.96882900	-0.89977300
Н	2.16318300	-0.37443200	0.21416500
С	2.88162100	-3.14407900	-1.66069900
Н	1.37334100	-4.44812500	-2.50976900
Н	4.07302400	-1.63137600	-0.66490200
С	4.03539800	-3.90043300	-2.19628300
С	3.98566200	-5.30372600	-2.31815200
С	5.21103700	-3.23519900	-2.59854500
С	5.07463000	-6.01617500	-2.82210700
Н	3.10214200	-5.84401300	-1.99254000
С	6.29702500	-3.94865400	-3.10744500

Н	5.26771700	-2.15284800	-2.53823500
Н	5.01981400	-7.09820900	-2.89730400
Н	7.18934700	-3.41574000	-3.42245400
С	-3.78561800	-3.04842900	1.40334800
С	-2.47212700	-3.51412800	1.63819400
Ċ	-1.36757200	-2.84447800	1,13544600
č	-1.54442900	-1.66716300	0.37876300
Ĉ	-2 84687900	-1 18345000	0 13628100
C C	-3 94114600	-1 86996400	0.63994400
C C	-4 95945300	-3 77188400	1 93960200
C	-4 94515600	-5 17509900	2 07356100
C	-6 05402700	-5 85622400	2 57717500
C C	-7 22694800	-3 75688200	2 83791100
C C	-6 12107300	-3.07/76000	2.00701100
С Ц	2 31232200	1 30000000	2.02921100
н Ц	0.3670/000	3 10068100	1 350/8800
	2 00044000	-3.19900100	0.47824100
	-2.99944900	-0.30315300	-0.47624100
	-4.93270300	-1.50234700	0.40000900
	-4.07378100	-5.74000400	2,66155900
п	-0.02042000	-0.93802300	2.00100800
	-8.10783100	-3.19953500	3.14203000
	-0.15083500	-1.99189900	2.25944500
N D	-0.42444200	-0.97717700	-0.13265800
P F	-5.40478200	1.82824400	-1.95021600
	-5.49963600	0.84929700	-3.26948700
	-3.79982900	1.47860600	-1.80758200
	-5.03943900	3.10417600	-2.92231500
F	-5.30818000	2.80555000	-0.62995100
F	-7.00662000	2.1/591000	-2.0921/200
F	-5.76762100	0.54970900	-0.97714100
С	7.03663100	0.19246000	-0.12422600
С	6.32639300	0.21855400	1.08237500
С	5.40252400	1.24243700	1.29850500
С	5.17354400	2.23369100	0.34271900
С	5.89164400	2.19294800	-0.85881200
С	6.82180800	1.17605700	-1.09441500
Н	7.75781500	-0.60081700	-0.29815000
Н	6.49790100	-0.54595300	1.83212400
Н	4.45440200	3.02555500	0.52069200
Н	5.71853200	2.96131300	-1.60669400
Н	7.37617300	1.15060700	-2.02764700
С	-0.34022000	7.56066400	-0.18014600
Н	-0.33048700	8.64657200	-0.18601800
С	6.23438400	-5.34200900	-3.22040500
Н	7.08066600	-5.89674700	-3.61463300
С	-7.19911800	-5.15039600	2.96303800
Н	-8.06102500	-5.68086300	3.35683700
I	4.31018600	1.29726400	3.15275200

83

-2626.101654 [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 2

С	1.14799200	3.23786300	-1.01442400
С	0.35415900	2.59346300	-0.03932300
С	0.37775800	1.21634100	0.11740000
С	1.21400200	0.42968600	-0.70161700
С	2.01587700	1.05479700	-1.67888700
С	1.97530700	2.43230300	-1.82832800
С	1.11380700	4.70782600	-1.17850000
С	-0.07199700	5.43354300	-0.94575600
С	-0.10388800	6.81963900	-1.10320200
С	2.23400600	6.80444200	-1.72372000
С	2.26634900	5.41776900	-1.57161100
Н	-0.26044900	3.18311900	0.63211300
Н	-0.21222100	0.74803000	0.89720100
Н	2.63111000	0.45445800	-2.33954900
Н	2.56690700	2.88813400	-2.61467900
Н	-0.98078600	4.90973100	-0.66639400
Н	-1.03066600	7.35850600	-0.92949200
Н	3.13625400	7.33345200	-2.01614100
Н	3.19968600	4.88759500	-1.73321800
С	0.05653000	-1.67912000	-0.26686400
С	0.06469900	-2.75115500	0.64842000
С	-1.14784300	-1.31859500	-0.90448600
С	-1.10888900	-3.43930700	0.91699900
Н	0.97850300	-3.00852500	1.17226600
С	-2.31133800	-2.02183900	-0.63153100
Н	-1.15438900	-0.52062700	-1.63855500
С	-2.32477400	-3.09668900	0.28494000
Н	-1.09012000	-4.23108300	1.65797700
Н	-3.21678200	-1.75781200	-1.16694200
С	-3.57199800	-3.83978400	0.57236300
С	-3.53979600	-5.21628900	0.87369100
С	-4.82205500	-3.18901100	0.55078000
С	-4.71662900	-5.91692200	1.14122200
Н	-2.59369000	-5.74858600	0.87279400
С	-5.99746400	-3.88992400	0.82352100
Н	-4.87485200	-2.12429500	0.34630400
Н	-4.67056900	-6.97965800	1.36019700

Н	-6.94854900	-3.36575300	0.81224400
С	4.91342500	-3.06282500	-0.91266900
С	3.71026400	-3.60500200	-1.41857200
С	2.50630900	-2.92908700	-1.29791600
С	2.46860700	-1.66868000	-0.66521200
С	3.65883500	-1.10877000	-0.15582500
С	4.85354800	-1.80131400	-0.27944500
С	6.19343800	-3.79307400	-1.04260300
С	6.22903700	-5.20189000	-1.00850800
C	7.43727500	-5.88933500	-1.12939400
С	8.61529800	-3.78631300	-1.33089400
С	7.40863800	-3.09718600	-1.20419100
Н	3.72516100	-4.55083100	-1.94911000
Н	1.60293200	-3.34722000	-1.72752900
Н	3.63761300	-0.16121200	0.37086000
Н	5.74593500	-1.36852800	0.15878900
Н	5.31165500	-5.76287000	-0.85945400
Н	7.44383800	-6.97459800	-1.08908800
Н	9.53883200	-3.23109900	-1.46605300
Н	7.40787400	-2.01303900	-1.25806200
N	1.24768200	-0.97209500	-0.54398800
Р	5.51148500	2.26854600	2.07338500
F	5.55556400	1.33372500	3.42693200
F	3.98547300	1.73224000	1.75376000
F	4.88966700	3.51245400	2.95252700
F	5.46598700	3.20155400	0.71900900
F	7.03491100	2.80217500	2.39149300
F	6.13109400	1.02128000	1.19371500
С	-4.99665800	2.52947100	0.59302200
С	-6.15327900	1.79374300	0.87915000
С	-6.87303900	1.23209100	-0.17678000
С	-6.46642500	1.38829300	-1.50299000
С	-5.30775000	2.12715400	-1.77219100
С	-4.57254400	2.69739200	-0.72858900
Н	-4.43205300	2.96919700	1.41006400
Н	-6.47817500	1.66751700	1.90603300
Н	-7.03327100	0.94874900	-2.31629500
Н	-4.98589800	2.25286400	-2.80192700
Н	-3.67539600	3.26971500	-0.94393600
С	1.04893200	7.51144300	-1.49139600
Н	1.02407000	8.59046100	-1.61154800
С	-5.95037100	-5.25696000	1.11864900
Н	-6.86558600	-5.80246400	1.32885600
С	8.63544300	-5.18504500	-1.29280700
Н	9.57519100	-5.72070500	-1.38923700
I	-8.65602300	0.10290800	0.24962600

T*p*BPA^{·+}·PF₆ + lodobenzene, π - π type, I atom pointing 'in' (uB3LYP)

83

-2626.105314 [uB3LYP/6-31G(d,p)]

Charge =	0;	Multi	plicity	v =	2
----------	----	-------	---------	-----	---

С	•	1.45627500	3.17626900	-2.04074900
С		0.38780000	2.67285700	-1.26541600
С		0.26904300	1.31940400	-0.99042300
С		1.23202700	0.41444700	-1.48329300
С		2.30621300	0.89808400	-2.25883800
С		2.40745100	2.25356900	-2.53037600
С		1.57557100	4.62214000	-2.33037800
С		0.42761700	5.42365800	-2.49313000
С		0.54133500	6.78692000	-2.76827000
С		2.95231900	6.59719900	-2.71903200
С		2.84047400	5.23270800	-2.44937000
Н		-0.33772700	3.35641900	-0.83804000
Н		-0.53786500	0.96190500	-0.36083400
Н		3.02836700	0.20524000	-2.67575700
Н		3.21715500	2.59849700	-3.16409000
Н		-0.55874200	4.97459100	-2.43128400
Н		-0.35573000	7.38443700	-2.90128300
Н		3.93634500	7.05031100	-2.79512700
Н		3.74107600	4.64449900	-2.30336500
С		-0.14745700	-1.58235100	-1.18532800
С		-0.45052600	-2.55391900	-0.20988300
С		-1.12027300	-1.23289800	-2.14377300
С		-1.70006500	-3.15510300	-0.19834400
Н		0.27791600	-2.79882600	0.55500800
С		-2.36259800	-1.84865200	-2.12364300
Н		-0.88213500	-0.51494000	-2.92059000
С		-2.68652600	-2.82237500	-1.15298800
Н		-1.92791300	-3.86651600	0.58792900
Н		-3.08040800	-1.59788900	-2.89706400
С		-4.01555700	-3.47343800	-1.13752700
С		-4.15875100	-4.81310600	-0.72356300
С		-5.16953700	-2.77023500	-1.53783900
С		-5.41149600	-5.42784500	-0.71311800
Н		-3.28366700	-5.38634400	-0.43356300
С		-6.42210900	-3.38518000	-1.52302600
Н		-5.09247600	-1.72976300	-1.83757100
Н		-5.49814600	-6.46442500	-0.40093300

Н	-7.29994700	-2.82211200	-1.82582400
С	4.59956300	-3.24723000	-0.40061000
С	3.53434200	-3.78222800	-1.15985200
С	2.39144100	-3.04322700	-1.42221700
С	2.28005400	-1.72465900	-0.93323300
С	3.33291400	-1.17135700	-0.17507900
С	4.46605400	-1.92698900	0.08415700
С	5.81461700	-4.04419300	-0.12269800
С	5.74143700	-5.44271700	0.03855000
С	6.88811200	-6.19252900	0.30322100
С	8.22202500	-4.17549400	0.24619300
С	7.07547700	-3.42350500	-0.01249600
Н	3.61958600	-4.77685500	-1.58377500
Н	1.60368000	-3.46125300	-2.03885200
Н	3.24253400	-0.17516300	0.24346300
Н	5.24106300	-1.49336700	0.70615500
Н	4.78012500	-5.94408400	-0.01590200
Н	6.80799700	-7.26748800	0.43556200
Н	9.18529400	-3.67882000	0.31602000
Н	7.16483200	-2.35129500	-0.15625100
N	1.12237200	-0.96356700	-1.20126600
Р	4.74997700	2.20816400	2.34221300
F	4.25271400	1.25643100	3.58911500
F	3.37681200	1.83279400	1.51006400
F	3.98584900	3.49736500	3.02085900
F	5.24592100	3.15797500	1.09380600
F	6.12091500	2.58091900	3.17217900
F	5.51212500	0.91587000	1.66204200
С	-8.56581300	1.49089200	-0.51045600
C	-7.32057800	1.66755000	0.10532000
Č	-6.99514600	0.87424500	1.20678800
Ċ	-7.87930500	-0.08486200	1.70351900
C	-9.12063100	-0.24872900	1.07643700
C	-9.46580700	0.53580000	-0.02816200
Ĥ	-8.82546100	2.10493000	-1.36794500
н	-6.62663500	2.41016600	-0.27273900
H	-7.61710900	-0.69592700	2.56015800
н	-9.81340800	-0.99321900	1.45794200
H	-10.42998300	0.40394100	-0.50971500
C	1.80377700	7.38008800	-2.88094600
H	1.89160700	8.44161300	-3.09257900
C	-6.54877500	-4.71668700	-1.11177500
Ĥ	-7.52365800	-5.19507500	-1.10204000
С	8.13355600	-5.56283700	0.40666300
Ĥ	9.02590100	-6.14725000	0.61047500
	-5.08413200	1.13799000	2.16387500

T*p*BPA^{·+}PF₆ + lodobenzene, π - π type, I atom pointing 'out' (uB3LYP)

83

-2626.101810 [uB3LYP/6-31+G(d,p)]

Charge =	0; Multiplicity = 2	2	
С	1.94160400	3.25352100	-1.97141700
С	0.79718500	2.82247800	-1.26391700
С	0.55397000	1.47745000	-1.03269300
С	1.46404800	0.50781600	-1.50206900
С	2.61320100	0.91843700	-2.20880600
С	2.83874100	2.26685100	-2.43777400
С	2.19250100	4.69094700	-2.21616100
С	1.12317700	5.58859800	-2.41017300
С	1.36121400	6.94353900	-2.64387800
С	3.74339400	6.55316000	-2.48920000
С	3.50732900	5.19703300	-2.26078900
Н	0.10872300	3.55367000	-0.85457900
Н	-0.31130700	1.17357500	-0.45447800
Н	3.29700100	0.17763200	-2.60760700
Н	3.70571500	2.55795600	-3.02071700
Н	0.10143700	5.22190000	-2.40542200
Н	0.52350400	7.61632800	-2.80212900
Н	4.76372300	6.92459300	-2.50830900
Н	4.34877400	4.53299800	-2.08953400
С	-0.08644800	-1.37546800	-1.34007400
С	-0.52300200	-2.34658500	-0.41606500
С	-0.97138200	-0.91817300	-2.33771400
С	-1.81685200	-2.83962700	-0.49135100
Н	0.13842600	-2.67450300	0.37801700
С	-2.26003800	-1.42582200	-2.40388400
Н	-0.63079700	-0.20117400	-3.07627900
С	-2.71798900	-2.39519200	-1.48416700
Н	-2.14682300	-3.55192300	0.25708000
Н	-2.91013300	-1.09295800	-3.20572400
С	-4.09736700	-2.92645200	-1.55727900
С	-4.37774400	-4.26066600	-1.19991800
С	-5.16382400	-2.11022700	-1.98509700
С	-5.67854300	-4.76099300	-1.27095100
Н	-3.57156200	-4.91858400	-0.89061000
С	-6.46484200	-2.61053300	-2.05043400
Н	-4.98101800	-1.07131600	-2.24145700

H -7.27395800 -1.96128500 -2.37161600 C 4.46062700 -3.43766000 -0.33461500 C 2.33924200 -3.03274100 -1.47386300 C 2.30354900 -1.72150900 -0.95477600 C 3.35052900 -1.27249400 -0.12316000 C 4.4031000 -2.12260700 0.17853900 C 5.39049800 -4.33600400 -0.01034700 C 5.39049800 -4.33600400 -0.01034700 C 5.3902900 -5.72809500 0.11243000 C 7.95302400 -4.66831300 0.4970700 C 6.86675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 3.5559600 -3.37163600 -2.14569400 H 3.31392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.63964200 H 4.40699700 -6.1508500 -0.02461600 H 7.06812500 2.75585500 0.08911500 N 1.22753400 -0.86320800<	Н	-5.87133700	-5.79532000	-1.00178700
C 4.46062700 -3.43766000 -0.33461500 C 3.40295700 -3.86709700 -1.16802000 C 2.33924200 -3.03274100 -1.47386300 C 2.30354900 -1.72150900 -0.95477600 C 3.35052900 -1.27249400 -0.12316000 C 4.40331000 -2.12260700 0.17853900 C 5.59049800 -4.33600400 -0.01034700 C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.668131300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 1.55859600 -3.37163600 -2.14569400 H 3.1392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.63964200 H 6.2936200 -7.64181300 5.0694200 H 7.06812500 2.27585500 0.08911500 N 1.22753400 -0.6	Н	-7.27395800	-1.96128500	-2.37161600
C 3.40295700 -3.86709700 -1.16802000 C 2.33924200 -3.03274100 -1.47386300 C 2.30354900 -1.72150900 -0.95477600 C 3.35052900 -1.27249400 -0.12316000 C 4.40331000 -2.12260700 0.17853900 C 5.59049800 -4.3600400 -0.1034700 C 5.3902900 -5.7280500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.86675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 3.1392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.63964200 H 4.40699700 -6.15008500 -0.02461600 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 2.75585500 0.8911500 N 1.22753400 1.862258	С	4.46062700	-3.43766000	-0.33461500
C 2.33924200 -3.03274100 -1.47386300 C 2.30354900 -1.72150900 -0.95477600 C 3.35052900 -1.27249400 -0.12316000 C 4.40331000 -2.12260700 0.17853900 C 5.59049800 -4.3360400 -0.01034700 C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 3.51392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.8911500 N 1.22753400 1.9637400 2.51945000 F 4.30273800 1.0263	С	3.40295700	-3.86709700	-1.16802000
C 2.30354900 -1.72150900 -0.95477600 C 3.35052900 -1.27249400 -0.12316000 C 4.40331000 -2.12260700 0.17853900 C 5.59049800 -4.33600400 -0.01034700 C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 3.51392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 6.29362600 -7.64181300 0.50480300 H 7.06812500 2.7558550 0.89911500 N 1.22753400 -0.86320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 5.35446500 2.926	С	2.33924200	-3.03274100	-1.47386300
C 3.35052900 -1.27249400 -0.12316000 C 4.40331000 -2.12260700 0.17853900 C 5.59049800 -4.33600400 -0.01034700 C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.31392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.08911500 N 1.22753400 1.02637000 3.75638700 F 4.30273800 1.02637000 3.2553600 F 5.35446500 2.9226	С	2.30354900	-1.72150900	-0.95477600
C 4.40331000 -2.12260700 0.17853900 C 5.59049800 -4.33600400 -0.01034700 C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.1392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.63964200 H 6.29362600 -7.64181300 0.50480300 H 8.94578400 -4.25175800 0.63964200 N 1.22753400 -0.86320800 -1.2658200 P 4.82932100 1.97537400 2.51945000 F 4.10068100 3.27918200 3.20926900 F 5.35446500 2.92263500 1.28115100 F 6.20863500 2.3010210	С	3.35052900	-1.27249400	-0.12316000
C 5.59049800 -4.33600400 -0.01034700 C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.1392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.08911500 N 1.22753400 -0.86320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 3.344771700 1.64720100 1.68125800 F 5.35446500 2.92263500 1.28115100 F 5.5559100 0.66846	С	4.40331000	-2.12260700	0.17853900
C 5.39902900 -5.72809500 0.10243000 C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.31392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 6.29362600 -7.64181300 0.50480300 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.08911500 N 1.22753400 -8.6320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 3.44771700 1.64720100 1.68125800 F 5.35446500 2.92263500 1.28115100 F 5.55559100 0.668461	С	5.59049800	-4.33600400	-0.01034700
C 6.46528700 -6.57352800 0.41128300 C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.31392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.08911500 N 1.22753400 -9.86320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 3.44771700 1.64720100 1.68125800 F 3.55559100 0.66846100 1.82822900 C -5.35446500 2.92263500 1.28115100 F 5.5559100 0.66846100 1.82822900 C -5.48531700 0.009521	C	5.39902900	-5.72809500	0.10243000
C 7.95302400 -4.66831300 0.49707700 C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.31392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 8.94578400 -4.25175800 0.63964200 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.08911500 N 1.22753400 -9.86320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 3.44771700 1.64720100 1.68125800 F 4.10068100 3.27918200 3.20926900 F 5.55559100 0.66846100 1.82822900 C -4.40522000 0.21303300 2.43489900 C -5.48531700 0.00952	С	6.46528700	-6.57352800	0.41128300
C 6.88675700 -3.82092500 0.19384000 H 3.43418900 -4.85494400 -1.61458900 H 1.55859600 -3.37163600 -2.14569400 H 3.31392700 -0.28264900 0.31782200 H 5.17227400 -1.76751800 0.85548300 H 4.40699700 -6.15008500 -0.02461600 H 6.29362600 -7.64181300 0.50480300 H 8.94578400 -4.25175800 0.63964200 H 7.06812500 -2.75585500 0.08911500 N 1.22753400 -0.86320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 3.44771700 1.64720100 1.68125800 F 3.44771700 1.64720100 1.88125800 F 5.35446500 2.92263500 1.28115100 F 6.20863500 2.30102100 3.35533600 C -5.4559100 0.66846100 1.82822900 C -5.48531700 0.0095210	С	7.95302400	-4.66831300	0.49707700
H3.43418900-4.85494400-1.61458900H1.55859600-3.37163600-2.14569400H3.31392700-0.282649000.31782200H5.17227400-1.767518000.85548300H4.40699700-6.15008500-0.02461600H6.29362600-7.641813000.50480300H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.55591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H2.856519008	C	6.88675700	-3.82092500	0.19384000
H1.55859600-3.37163600-2.14569400H3.31392700-0.282649000.31782200H5.17227400-1.767518000.85548300H4.40699700-6.15008500-0.02461600H6.29362600-7.641813000.50480300H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007	Н	3.43418900	-4.85494400	-1.61458900
H3.31392700-0.282649000.31782200H5.17227400-1.767518000.85548300H4.40699700-6.15008500-0.02461600H6.29362600-7.641813000.50480300H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-	н	1.55859600	-3.37163600	-2.14569400
H5.17227400-1.767518000.85548300H4.40699700-6.15008500-0.02461600H6.29362600-7.641813000.50480300H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300 <t< td=""><td>н</td><td>3.31392700</td><td>-0.28264900</td><td>0.31782200</td></t<>	н	3.31392700	-0.28264900	0.31782200
H4.40699700-6.15008500-0.02461600H6.29362600-7.641813000.50480300H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300H8.57697400-6.706695000.84701300I-8.35947600	н	5.17227400	-1.76751800	0.85548300
H6.29362600-7.641813000.50480300H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F3.447717001.647201001.68125800F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300H8.57697400 <td< td=""><td>Н</td><td>4.40699700</td><td>-6.15008500</td><td>-0.02461600</td></td<>	Н	4.40699700	-6.15008500	-0.02461600
H8.94578400-4.251758000.63964200H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300H8.57697400-6.706695000.84701300H8.57697400	H	6.29362600	-7.64181300	0.50480300
H7.06812500-2.755855000.08911500N1.22753400-0.86320800-1.26558200P4.829321001.975374002.51945000F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300H8.57697400-6.706695000.84701300H8.55947600 <td< td=""><td>н</td><td>8.94578400</td><td>-4.25175800</td><td>0.63964200</td></td<>	н	8.94578400	-4.25175800	0.63964200
N 1.22753400 -0.86320800 -1.26558200 P 4.82932100 1.97537400 2.51945000 F 4.30273800 1.02637000 3.75638700 F 3.44771700 1.64720100 1.68125800 F 4.10068100 3.27918200 3.20926900 F 5.35446500 2.92263500 1.28115100 F 6.20863500 2.30102100 3.35533600 F 5.55559100 0.66846100 1.82822900 C -4.10522000 0.21303300 2.43489900 C -5.48531700 0.00952100 2.31309500 C -5.64153000 2.00564100 0.92434300 C -5.64153000 2.19474100 1.05607600 C -3.49148100 1.30240700 1.80932000 H -3.51575700 -0.48545000 3.02174700 H -5.95610200 -0.83705500 2.80059900 H -3.79224900 3.04406300 0.56691200 H -2.42110700 1.45512700<	Н	7.06812500	-2.75585500	0.08911500
P 4.82932100 1.97537400 2.51945000 F 4.30273800 1.02637000 3.75638700 F 3.44771700 1.64720100 1.68125800 F 4.10068100 3.27918200 3.20926900 F 5.35446500 2.92263500 1.28115100 F 6.20863500 2.30102100 3.35533600 F 5.55559100 0.66846100 1.82822900 C -4.10522000 0.21303300 2.43489900 C -5.48531700 0.00952100 2.31309500 C -5.64153000 2.00564100 0.92434300 C -3.64153000 2.00564100 0.92434300 C -3.49148100 1.30240700 1.80932000 H -3.51575700 -0.48545000 3.02174700 H -5.95610200 -0.83705500 2.80059900 H -6.23315300 2.70155400 0.33981300 H -3.79224900 3.04406300 0.56691200 H -2.85651900 8.48716900 </td <td>N</td> <td>1.22753400</td> <td>-0.86320800</td> <td>-1.26558200</td>	N	1.22753400	-0.86320800	-1.26558200
F4.302738001.026370003.75638700F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Р	4.82932100	1.97537400	2.51945000
F3.447717001.647201001.68125800F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-6.41530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	F	4.30273800	1.02637000	3.75638700
F4.100681003.279182003.20926900F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	F	3.44771700	1.64720100	1.68125800
F5.354465002.922635001.28115100F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	F	4.10068100	3.27918200	3.20926900
F6.208635002.301021003.35533600F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	F	5.35446500	2.92263500	1.28115100
F5.555591000.668461001.82822900C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	F	6.20863500	2.30102100	3.35533600
C-4.105220000.213033002.43489900C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	F	5.55559100	0.66846100	1.82822900
C-5.485317000.009521002.31309500C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-4.10522000	0.21303300	2.43489900
C-6.235090000.912359001.55738700C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-5.48531700	0.00952100	2.31309500
C-5.641530002.005641000.92434300C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-6.23509000	0.91235900	1.55738700
C-4.260285002.194741001.05607600C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-5.64153000	2.00564100	0.92434300
C-3.491481001.302407001.80932000H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-4.26028500	2.19474100	1.05607600
H-3.51575700-0.485450003.02174700H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-3.49148100	1.30240700	1.80932000
H-5.95610200-0.837055002.80059900H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	-3.51575700	-0.48545000	3.02174700
H-6.233153002.701554000.33981300H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	-5.95610200	-0.83705500	2.80059900
H-3.792249003.044063000.56691200H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	-6.23315300	2.70155400	0.33981300
H-2.421107001.455127001.90858100C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	-3.79224900	3.04406300	0.56691200
C2.671937007.43216000-2.68295800H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	-2.42110700	1.45512700	1.90858100
H2.856519008.48716900-2.86244700C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	2.67193700	7.43216000	-2.68295800
C-6.72789000-3.93821600-1.69530500H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	2.85651900	8.48716900	-2.86244700
H-7.74028800-4.32754100-1.74815800C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	-6.72789000	-3.93821600	-1.69530500
C7.74715300-6.047981000.60861300H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	Н	-7.74028800	-4.32754100	-1.74815800
H8.57697400-6.706695000.84701300I-8.359476000.614053001.36682000	С	7.74715300	-6.04798100	0.60861300
I -8.35947600 0.61405300 1.36682000	Н	8.57697400	-6.70669500	0.84701300
	I	-8.35947600	0.61405300	1.36682000

Solvent = MeCN (CPCM)

86

-3351.684452 [uB3LYP/6-31+G(d,p)]

Charge =	0; Multiplicity = 2	2	
С	0.32705400	3.35880800	-0.84945000
С	-0.47758300	2.66096200	0.07696800
С	-0.41469000	1.28105800	0.18808200
С	0.47049000	0.55121800	-0.63179700
С	1.28152200	1.23204400	-1.56294300
С	1.20388300	2.61185700	-1.66524800
С	0.25402900	4.83239700	-0.96231800
С	-0.96400900	5.51115900	-0.76018000
С	-1.03914500	6.89516800	-0.86683000
С	0.11657200	7.63438000	-1.17668200
С	1.34104000	6.97277700	-1.37925200
С	1.40167100	5.58791000	-1.27420600
Н	-1.13016900	3.20787900	0.74837000
Н	-1.01107400	0.76869600	0.93410900
Н	1.93260100	0.67389000	-2.22572100
Н	1.80452500	3.11310200	-2.41598700
Н	-1.86793500	4.95273100	-0.54312000
Н	-1.98560000	7.40337400	-0.71912700
Н	2.23478500	7.54233100	-1.60872300
Н	2.35739200	5.09374000	-1.40997100
С	-0.62921600	-1.60721700	-0.30250400
С	-0.60923800	-2.70933900	0.57583900
С	-1.82540400	-1.26107400	-0.96260500
С	-1.76618600	-3.44357500	0.78620100
Н	0.29686100	-2.95477600	1.11781700
С	-2.97260900	-2.00846700	-0.74626900
Н	-1.83708200	-0.43974500	-1.66985700
С	-2.97206700	-3.11375200	0.13133200
Н	-1.74236600	-4.26001500	1.49933400
Н	-3.87138700	-1.75399600	-1.29683100
С	-4.20258200	-3.90452800	0.35800700
С	-4.13426700	-5.29189100	0.59386800
С	-5.46863700	-3.28647100	0.34209300
С	-5.28664700	-6.04064200	0.80411900
Н	-3.17509300	-5.79806600	0.58756600

С	-6.62832600	-4.02288900	0.55526300
Н	-5.54927100	-2.21607100	0.18787800
С	-6.54237600	-5.40746400	0.78676100
Н	-5.21934900	-7.10956200	0.97376300
н	-7.59517500	-3.53201700	0.55059700
С	4,28218200	-2.80650700	-0.84203900
Č	3.11820300	-3.37012100	-1.40916100
Ĉ	1 88955300	-2 73813100	-1 30494000
C C	1 79168700	-1 50536000	-0.62662800
č	2 94358100	-0.92564500	-0.05593000
C C	4 16396800	-1 57385200	-0 16470100
C C	5 58955900	-3 49023000	-0.95501000
C C	5 66917900	-0.40020000	-0.95637800
C	6 80/31/00	5 54553000	1 06042600
C	8 07572000	4 70040000	1 1710000
C	0.07575000	-4.79040900	1 17209500
	6 70202400	-3.36524000	1.06250600
	0.78303100	-2.74908000	-1.00350600
н	3.18242000	-4.29356300	-1.97383400
н	1.01549000	-3.16693800	-1.78145100
Н	2.87268100	-0.00114900	0.50586900
н	5.02662500	-1.13022200	0.31933600
Н	4.76917300	-5.49253100	-0.84898000
Н	6.94122300	-6.62882300	-1.04932000
Н	8.92328500	-2.80149400	-1.26652400
Н	6.74940000	-1.66541700	-1.08832100
N	0.54501200	-0.85321800	-0.52028400
С	-7.73450700	-6.17257400	1.00561900
С	9.34173900	-5.45337000	-1.28148100
С	0.04613500	9.06179900	-1.28632900
N	10.37029500	-5.99248900	-1.37141900
N	-8.70335200	-6.79405700	1.18373000
Ν	-0.01169800	10.22167000	-1.37576400
Р	4.61128300	2.41931500	2.34619000
F	4.65009100	1.45613900	3.67971300
F	3.12141700	1.82538500	1.96240400
F	3.90618300	3.61469500	3.22922700
F	4.57041100	3.37985800	1.01108000
F	6.09828900	3.00974300	2.72785800
F	5.31297100	1.21981900	1.46145500
C	-6.45016700	1.83812100	0.60766900
Ĉ	-7 72581500	1 35614700	0 91848900
C C	-8 64079400	1 16168000	-0 11695700
C C	-8 31467500	1 43554800	-1 44577000
č	-7 03/78800	1 01713200	-1 73012200
C	6 1010000	2 11205700	0 71719600
Ч	-0.10190900	1 0027/000	1 /0601500
	9 00246600	1.332/4000	1.40091000
	0.00210000	1.10000000	1.34400300
11 Ll	-9.04202000 6.77004000	1.21110100	-2.23312900
п	-0.11221800	2.1334/200	-2.11023300
		2.493///00	-0.95164900
UI .	-10.25588900	0.55462000	0.20486400

Solvent = MeCN (CPCM)

86

-3350.787340 [@b97xd/6-31+G(d,p)]

Charge = 0	; Multiplicity = 2	2	
С	0.52638900	3.20262800	-0.36656500
С	-0.31155100	2.60816200	0.58842100
С	-0.46902200	1.23531600	0.63738500
С	0.23581700	0.43121200	-0.26957800
С	1.07490000	1.00794200	-1.23224400
С	1.20784200	2.38333700	-1.27758000
С	0.69745700	4.67348700	-0.40589600
С	-0.40064400	5.52372700	-0.22149500
С	-0.24248300	6.90186100	-0.25873500
С	1.02985300	7.44300500	-0.47874000
С	2.13657300	6.60477000	-0.65990900
С	1.96529600	5.22823900	-0.62449200
Н	-0.81641300	3.22515900	1.32414900
Н	-1.09613700	0.77986500	1.39565000
Н	1.58805500	0.38088300	-1.95267300
Н	1.83670600	2.82823000	-2.04023200
Н	-1.39111200	5.10804800	-0.06759600
Н	-1.09705900	7.55525900	-0.12446900
Н	3.12125400	7.02978800	-0.81847400
Н	2.82676100	4.57776900	-0.73108100
С	-1.19401800	-1.50677600	-0.02462300
С	-1.39986900	-2.58442600	0.84887600
С	-2.27361300	-0.92839000	-0.70626900
С	-2.68499300	-3.06022300	1.04424800
Н	-0.56768000	-3.00708200	1.40057400
С	-3.55047900	-1.41624100	-0.50310100
Н	-2.10227600	-0.12213100	-1.40929600
С	-3.77893100	-2.48263100	0.38007200
Н	-2.84472900	-3.86410200	1.75454500
Н	-4.37345100	-0.97658600	-1.05732800
С	-5.15527000	-2.97891200	0.61395700
С	-5.40977000	-4.34869700	0.76126300
С	-6.22292400	-2.07531200	0.69258600

104

С	-6.70048000	-4.80939900	0.98002300
Н	-4.59882000	-5.06502500	0.68268700
С	-7.51768600	-2.52193200	0.91136300
Н	-6.03949200	-1.01027300	0.59950300
С	-7.75674700	-3.89358900	1.05586600
Н	-6.89169700	-5.87139900	1.08452800
Н	-8.33647800	-1.81412700	0.97510000
С	3.46272100	-3.44562700	-0.53196500
С	2.21541000	-3.87007000	-1.02222500
С	1.09907100	-3.06317400	-0.92001800
С	1.21273500	-1.79660600	-0.31638000
С	2.45536800	-1.35597600	0.17660200
С	3.55987900	-2.17809500	0.06541000
С	4.65354000	-4.31919400	-0.64314500
С	4.54015200	-5.70292700	-0.45133200
С	5.65270800	-6.52614300	-0.54962700
С	6.90031600	-5.96597600	-0.84821000
С	7.02934200	-4.58603600	-1.04496400
C	5,90990100	-3.77307000	-0.93963100
H	2.12727300	-4.82745800	-1.52390100
Н	0.15307700	-3.38342300	-1.34119600
Н	2.53932400	-0.39676100	0.67524200
H	4,50233000	-1.84057600	0.48181800
Н	3 57993900	-6 14060000	-0 19986800
H	5 55882800	-7 59427300	-0 39030700
Н	7 99603200	-4 15728000	-1 28331300
н	6.01311700	-2 70705000	-1 11185100
N	0.09356500	-0.96987000	-0 20801600
C	-9 09502200	-4 36453700	1 28217300
C C	8 05596700	-6.81323000	-0.95240900
с С	1 20085900	8 86896700	-0.51699800
N	8 98886800	-7 49777500	-1 03597700
N	-10 17573300	-4 74488100	1 46484200
N	1 33845500	10 02060500	-0 54813800
D	1.00040000	2 21337500	1 51310800
- E	4.60210400	1 88118700	3 00608600
F	2 8/152000	1.60282500	1 62182800
F	3 7000/700	3 69/61700	1.02102000
E	J.19004700	2 5/122000	0.07181600
F	5 87521300	2.34123000	1 /0856500
- E	4 02116000	0 72581000	1.40030300
	2 02127500	2 24826000	0 12770900
C C	5 25521100	2.34030900	-0.13770000
C C	-5.25551100	1.93919000	1 02622200
	-5.99406400	1.52104500	-1.03032200
	-3.4412/000	1.40092000	-2.31144700
	-4.11594700	1.04034200	-2.49033100
	2 24044700	2.30000700	-1.40039800
П Ц	-3.34811/00	2.09000400	
	-5.70497000	1.99730400	1.04404500
п	-0.03414600	1.10406700	-3.14908200
п	-3.0/593400	1.80030400	-3.48089200
	-2.32966500	2.00333800	-1.55441500
UI .	-1.00803/00	1.04771800	-0.80289700

TCBPA^{.+}.PF₆ + PhCl, Cl atom facing inward (uB3LYP/6-31+G(d,p))

Solvent = MeCN (CPCM)

86

-3351.683498 [uB3LYP/6-31+G(d,p)]

Charge = 0	; Multiplicity = 2	2	
С	0.54528800	3.46471000	-0.96377500
С	-0.30060900	2.81311000	-0.04057100
С	-0.30361200	1.43270600	0.08144200
С	0.55457300	0.65572100	-0.72365600
С	1.40744000	1.29015000	-1.65009900
С	1.39561500	2.67130800	-1.76355600
С	0.53976000	4.93896400	-1.09086400
С	-0.65060100	5.67211500	-0.91596200
С	-0.66311200	7.05694200	-1.03663400
С	0.52900400	7.74179000	-1.33325800
С	1.72659800	7.02537600	-1.50849800
С	1.72460700	5.64028300	-1.38970400
Н	-0.93411300	3.39568500	0.61902100
Н	-0.93148800	0.95437000	0.82417800
Н	2.03883600	0.69674500	-2.30120100
Н	2.02703400	3.13819000	-2.51120800
Н	-1.58165400	5.15559700	-0.70962600
Н	-1.58868200	7.60752600	-0.90982500
Н	2.64828900	7.55285100	-1.72794800
Н	2.65978900	5.10326300	-1.50464500
С	-0.65297400	-1.44369400	-0.39210500
С	-0.69552900	-2.54006600	0.49273400
С	-1.82469400	-1.04303600	-1.06527600
С	-1.88934100	-3.21444200	0.69722500
Н	0.19251400	-2.82671400	1.04428900
С	-3.00935400	-1.73119600	-0.85485400
Н	-1.78976600	-0.22651300	-1.77730600
С	-3.07172700	-2.82906800	0.02986200
Н	-1.91228300	-4.02640700	1.41544900
Н	-3.88969200	-1.43581600	-1.41453500
С	-4.34249400	-3.55521400	0.25047700
С	-4.34600200	-4.94205500	0.49892100
С	-5.57576800	-2.87444900	0.21583300
С	-5.53641700	-5.63057500	0.70257400
Н	-3.41339100	-5.49550800	0.50776500

Spin Density, iso = 0.0005

С	-6.77278600	-3.55067800	0.42240600
Н	-5.60207200	-1.80240500	0.05265700
С	-6.75868800	-4.93582300	0.66580100
Н	-5.52452900	-6.69993600	0.88192800
Н	-7.71376900	-3.01219400	0.40298500
С	4.19705400	-2.88997300	-0.86483300
С	3.01343600	-3.39893900	-1.44255800
С	1.81703400	-2.70499700	-1.35839400
С	1.77311200	-1.46347400	-0.69040900
C	2.94567400	-0.93789400	-0.10963300
C	4,13299700	-1.64781800	-0.19772600
C	5,46985200	-3.63912100	-0.95558800
Č	5.48026800	-5.04798300	-0.93732300
Ĉ	6 67330900	-5 75677500	-1 01999400
C	7 89125600	-5.06174100	-1 12855600
C C	7 89862700	-3 65543900	-1 15032500
C C	6 69902900	-2 95863000	-1 06194100
й	3 03804300	-4 32928100	-1 99901500
н	0.00004000	-3.09321400	-1 84237000
н	2 01531100		0 44346500
н Н	5 00083000	1 24572400	0.74540500
н Н	1 55106500	5 50713100	0.23000200
	6 66708800	6 84083800	-0.03093900
	0.00700000	2 1102400	1 24260100
	6 71021000	-3.11024000	1 10100000
	0.71031000	-1.07500400	-1.10100000
	0.00052400	-0.74990500	-0.00207500
	-7.98953400	-5.03910500	0.87722100
	9.12402000	-5.76071000	-1.21020700
	0.52262000	9.10970900	-1.45/3/300
IN N	10.12675800	-0.37605800	-1.28/52/00
IN N	-8.98984300	-6.21056300	1.04913600
N	0.51683000	10.33010100	-1.55853700
P	4.82980700	2.1/38/200	2.46725500
F	4.29343900	1.39263100	3.81221200
F	3.37505100	1.91066000	1.73654300
F	4.26884400	3.59811400	3.06924500
F	5.36392200	2.95260300	1.11985900
F	6.28138700	2.43431900	3.19585200
F	5.38826100	0.74690400	1.86239700
С	-10.11423100	0.94787200	-1.10149000
С	-8.72224400	1.05566800	-1.18443700
С	-7.98584500	1.15846200	-0.00379300
С	-8.60112000	1.15791000	1.24849100
С	-9.99402700	1.04935400	1.31325300
С	-10.75201500	0.94433100	0.14290200
Н	-10.69598000	0.86709800	-2.01468200
Н	-8.22151400	1.05922700	-2.14644500
Н	-8.00738000	1.23981100	2.15234900
Н	-10.48191900	1.04762900	2.28322000
Н	-11.83274600	0.86056500	0.20021500
CI	-6.22578300	1.29568300	-0.09711800

To confirm that the converged precomplex structure was the local minima, we ran a scan moving the PhCl partner away from the initial geometry of the our converged precomplex (structure shown above) across a co-ordinate of the biphenyl unit to which it was originally precomplexed, reoptimizing and calculating the total energy (E) at each step. As can be seen below, the energy *increases* as the PhCl partner is moved away from the discovered converged geometry above. The energy is higher when the two components are separated. Endergonic values for precomplexation are a result of the CPCM model for acetonitrile as confirmed by comparing the zero point energies for precomplexation vs. the Gibbs free energies involving the CPCM model.

Initial precomplex geometry (see above)

TCBPA^{.+}.PF₆ + PhCl, Cl atom facing inward (ωb97xd/6-31+G(d,p))

86

-3350.788360 [wb97xd/6-31+G(d,p)]

Charge = 0; Multiplicity = 2

-	-		
С	-1.50528000	-3.20704700	-1.10074000
С	-0.33011700	-2.94994000	-0.37756800
С	0.19490000	-1.67376100	-0.30824700
С	-0.45725000	-0.62144600	-0.97197400
С	-1.62044500	-0.86804100	-1.71931300
С	-2.13117900	-2.14958000	-1.77788300
С	-2.08922600	-4.56731500	-1.13313000
С	-1.26774500	-5.69649600	-1.24750200
С	-1.81648400	-6.97079900	-1.27437700
С	-3.20487100	-7.12494300	-1.18074800
С	-4.03714300	-6.00549100	-1.06074000
С	-3.47726800	-4.73621600	-1.03942000
Н	0.15257700	-3.74817600	0.17599700
Н	1.07504300	-1.47845700	0.29308600
Н	-2.09638900	-0.06244300	-2.26657900
Н	-3.01945100	-2.33680100	-2.37032800
--------	-------------	-------------	-------------
Н	-0.19274000	-5.58036900	-1.33752000
Н	-1.17705800	-7.84075700	-1.37226100
Н	-5.11068400	-6.13124200	-0.97667200
Н	-4.11811100	-3.87053200	-0.91125100
С	1.43402200	0.90384100	-0.86707400
С	1.98417100	1.88092400	-0.02227800
С	2.26644600	0.14022100	-1.69938800
С	3.35281000	2.07272900	-0.00563800
Н	1.34441900	2.44506300	0.64673700
С	3.63298300	0.35042200	-1.67462600
Н	1.83716900	-0.58595500	-2.38021800
С	4.20225800	1.30874400	-0.82226700
Н	3.77050400	2.78981500	0.69200900
н	4.26140800	-0.22534400	-2.34469700
C	5.67114500	1.48289500	-0.75068900
Ĉ	6 23330200	2 74069200	-0 49168000
C	6.52019400	0.38063800	-0.90961800
C C	7 60744400	2 89557600	-0.38409800
н	5 59679400	3 61297900	-0.38902600
C	7 89548300	0.52054500	-0.80195700
н	6 10609900	-0.60737000	-1.07586800
C	8 44117000	1 78094500	-0 53622400
Ч	8 03/21300	3 87255700	-0.33022400
н	8 5/203600	-0 3/335300	
C C	2 60001000	3 021/5500	0.54881600
C	1 42000100	1 02087200	1 20192600
C	-1.43009100	2 02026000	1 /1222800
C	-0.34014000	2.90000000	0.76662100
	-0.04040000	1.70904500	-0.70003100
	-2.01030300	1.03203900	-0.01141600
	-2.88519900	2.70320900	0.09120100
	-3.54/85300	5.06300900	-0.43337100
	-3.00273000	0.37104100	-0.30014800
	-3.93582800	7.44383800	-0.19012400
	-5.31647900	7.21434200	-0.21501500
	-5.81648900	5.91369200	-0.34921700
	-4.93269600	4.84928200	-0.45526100
н	-1.21698200	4.95942700	-1.83591600
н	0.34016400	3.07142000	-2.02810300
н	-2.22599200	0.70758200	0.51546900
н	-3.77199400	2.59572900	0.70592000
н	-1.99411500	6.55338000	-0.25923000
н	-3.55257600	8.45181200	-0.07901200
н	-6.88641300	5.74115800	-0.37557300
H	-5.32622800	3.84592100	-0.57823200
N	0.04598200	0.68426000	-0.8/52/800
С	9.86452800	1.93177900	-0.41494200
С	-6.22637300	8.32055700	-0.10415600
С	-3.77912100	-8.44159400	-1.20536300
N	-6.96125300	9.21379700	-0.01449100
N	11.01409400	2.05334800	-0.31567100
Ν	-4.24268100	-9.50502700	-1.22519000
P	-4.35467000	-1.43454800	1.75814600
F	-4.08200200	-1.22726200	3.35852400
F	-2.75389800	-1.24785400	1.46407700
F	-4.13678300	-3.04588900	1.92591000
F	-4.63086300	-1.63636000	0.15799900
F	-5.95357900	-1.61379800	2.05640900
F	-4.56724300	0.18207800	1.58739300
С	7.03238200	-1.29759100	2.17042200

С	6.17782800	-2.17500100	1.50586900
С	4.83673300	-1.82941300	1.37005000
С	4.33305600	-0.64095000	1.88604900
С	5.20202300	0.22769000	2.54402100
С	6.54949300	-0.09607600	2.68641900
Н	8.08154700	-1.55409100	2.27402100
Н	6.54911500	-3.10663700	1.09359000
Н	3.28473700	-0.39023100	1.76851000
Н	4.81894200	1.16324500	2.93864800
Н	7.22240400	0.58726300	3.19358100
CI	3.75484800	-2.91584600	0.51447900

TCBPA^{·+}·PF₆ + PhBr, T- π -type, Br atom pointing 'out' (uB3LYP)

-2904.815381 [uB3LYP/6-31+G(d,p)]

Charge = 0	; Multiplicity = 2	2	
С	1.08474700	3.43684600	-0.89492600
С	0.20396600	2.83156200	0.02764800
С	0.12186700	1.45278700	0.14466800
С	0.93324600	0.63091900	-0.66461900
С	1.81892800	1.21843300	-1.59138200
С	1.88604800	2.59871800	-1.70010700
С	1.16586100	4.90961700	-1.01495200
С	0.02177600	5.71122700	-0.82961100
С	0.09067300	7.09540600	-0.94261000
С	1.32015500	7.71012400	-1.24205700
С	2.47240100	6.92475900	-1.42832500
С	2.38900600	5.54121900	-1.31666800
Н	-0.39400700	3.44728900	0.69051700
Н	-0.53115800	1.00812900	0.88692300
Н	2.41423000	0.59192700	-2.24574800
Н	2.54171100	3.03157100	-2.44752800
Н	-0.93722700	5.24963000	-0.62052800
Н	-0.79994200	7.69940700	-0.80751600
Н	3.42268000	7.39800200	-1.65033400
Н	3.29028300	4.95043700	-1.43991500
С	-0.39238700	-1.39633800	-0.34024100
С	-0.50117400	-2.48978400	0.54289000
С	-1.53719700	-0.92556900	-1.01485600
С	-1.73378600	-3.09207800	0.74488400

Н	0.36754700	-2.82992100	1.09510200
С	-2.76163600	-1.54175500	-0.80655500
Н	-1.45216500	-0.11135700	-1.72557500
С	-2.89030300	-2.63506700	0.07700600
Н	-1.80662600	-3.90255600	1.46171300
Н	-3.62241000	-1.19341100	-1.36660800
С	-4.20291400	-3.28260700	0.29750000
С	-4.29208100	-4.66834200	0.53740700
C	-5.39123200	-2.52554600	0.27243500
Č	-5.52294900	-5,28205400	0.74263800
Ĥ	-3 39558200	-5 27895100	0.53833700
C	-6 62800600	-3 12615100	0.48079400
й	-5 35003700	-1 45301500	0.11541400
C	-6.60053000	-1.40001000	0.71508100
С Ц	-0.03303000 5 57808100	6 35131800	0.11530100
	-3.37000100	-0.33131000	0.91340300
	-7.33200400	-2.32043000	0.40940000
	4.37240700	-3.11220300	-0.80761000
C	3.15991000	-3.55975900	-1.37712400
C	2.00362200	-2.80033500	-1.29370600
С	2.03031700	-1.55363000	-0.63351700
С	3.23287100	-1.08919900	-0.06074400
С	4.37960800	-1.86325500	-0.14972400
С	5.60177600	-3.93087400	-0.89774100
С	5.53434800	-5.33827300	-0.86805200
С	6.68628400	-6.11276900	-0.94961500
С	7.94056700	-5.48669200	-1.06831200
С	8.02563000	-4.08278100	-1.10172200
С	6.86635300	-3.31986400	-1.01477900
Н	3.13130100	-4.49401300	-1.92709600
Н	1.09311600	-3.14235500	-1.77235000
H	3.25567700	-0.15374800	0.48691800
Н	5 28061600	-1 50492400	0 33536100
н	4 57649000	-5 83420300	-0 75330000
н	6 62023200	-7 19474800	-0.91471900
н	8 99137100	-3 50030300	-1 20177300
Ц	6 04403400	2 23020000	1 06/35700
N	0.94493400	-2.23920900	-1.00433700
C C	7 07117700	5 13766300	0.02020100
	-7.97117700	-3.13700300	0.92939100
	9.13103300	-0.2/94//00	-1.13412300
	1.39014900	9.13009300	-1.33744900
IN N	10.09955800	-0.92414900	-1.22352600
IN N	-9.00429200	-5.64706000	1.10279300
N	1.46097800	10.29622800	-1.45146700
P	5.23344400	2.07968600	2.29598400
F	5.10830700	1.15937600	3.65390300
F	3.68747700	1.67921600	1.88375900
F	4.67321500	3.38380200	3.12729600
F	5.35648500	2.99751800	0.93638800
F	6.77609200	2.47691500	2.70600000
F	5.79040400	0.77171200	1.46308700
С	-9.91346500	-0.02061900	-1.27527400
С	-8.66780200	0.61878300	-1.28207400
С	-8.08174800	0.94193900	-0.06021200
С	-8.69126200	0.65224500	1.15853800
С	-9.93662700	0.01235100	1.14532200
c	-10.54787500	-0.32435400	-0.06655400
Ĥ	-10 38224300	-0 27865400	-2 22027400
H	-8 17300200	0 85576000	-2 21738100
н	-8 21477200	0 91520600	2 09633500
н	-10 /2336000	_0 22008500	2.00000000
11	10.7200000	0.22000000	2.00100100

Н	-11.51361600	-0.82048100	-0.06896100
Br	-6.33743600	1.83706600	-0.05558600

TCBPA^{·+·}PF₆ + PhBr, T-π-type, Br atom pointing 'in' (uB3LYP)

86

-2904.814500 [uB3LYP/6-31+G(d,p)]

Charge =	0; Multiplicity = 2	2	
С	1.04832600	3.42933500	-0.86705600
С	0.17450200	2.81252000	0.05451900
С	0.10399100	1.43259300	0.16553700
С	0.92068200	0.62114300	-0.64882300
С	1.79905300	1.22013100	-1.57519400
С	1.85444700	2.60139300	-1.67796300
С	1.11797400	4.90327800	-0.97957700
С	-0.03087900	5.69562900	-0.78388000
С	0.02740800	7.08087100	-0.88946800
С	1.25079500	7.70619900	-1.19187800
С	2.40768700	6.93024800	-1.38843900
С	2.33488400	5.54552500	-1.28411900
Н	-0.42706100	3.42016900	0.72157700
Н	-0.54383600	0.97928400	0.90712500
Н	2.39812500	0.60151100	-2.23361200
Н	2.50490000	3.04285400	-2.42488800
Н	-0.98544900	5.22614100	-0.57225200
Н	-0.86681800	7.67762200	-0.74629600
Н	3.35337600	7.41154600	-1.61270300
Н	3.23990400	4.96221300	-1.41519400
С	-0.38597700	-1.41951500	-0.33059200
С	-0.48384600	-2.51642100	0.54948600
С	-1.53532000	-0.95841500	-1.00406400
С	-1.71020900	-3.13209300	0.74913100
Н	0.38820400	-2.84918200	1.10097300
С	-2.75330200	-1.58816900	-0.79842400
Н	-1.45836600	-0.14124000	-1.71230600
С	-2.87105200	-2.68560400	0.08157900
Н	-1.77484100	-3.94534500	1.46357700
Н	-3.61711000	-1.24764900	-1.35859600
С	-4.17663800	-3.34846700	0.29841100
С	-4.25007800	-4.73545000	0.53664700

С	-5.37400800	-2.60591400	0.27126700
С	-5.47405200	-5.36406900	0.73771000
Н	-3.34648400	-5.33547200	0.53925800
С	-6.60429900	-3.22133400	0.47496200
Н	-5.34578000	-1.53287500	0.11577900
С	-6.65971800	-4.60744100	0.70860500
Н	-5.51676800	-6.43409000	0.90930100
Н	-7.51619800	-2.63409800	0.46116200
С	4.39396000	-3.08937500	-0.81091300
C	3,18457900	-3.54634700	-1.37968200
C	2.02138400	-2.79811400	-1.29158300
Ċ	2.03761100	-1.55339300	-0.62722000
č	3.23681100	-1.07970500	-0.05493000
C	4 39057300	-1 84262000	-0 14868800
C C	5 63079600	-3 89593400	-0.90626100
C C	5 57690100	-5 30401200	-0.88131600
C	6 73605200	-6.06712100	-0.96792100
C C	7 98400300	-5 42861400	-1 08716000
C C	8 05553100	-4 02385300	-1 11598500
C C	6 88010500	-3.272/1200	-1.02300300
С Ц	3 16370300	-3.27241200	1 03270500
н Ц	1 11327100	3 1/708/00	1 76075700
	2 25197100	-3.14700400	-1.70975700
	5.25107100	1 47755200	0.49590100
	5.26903900	-1.47755200 5 90050600	0.33007000
	4.02400300	-5.60950600	-0.70020700
	0.00040900	-7.14900000	-0.93037700
	9.01035000	-3.53080800	-1.21057500
	0.95732300	-2.19089500	-1.06993300
N O	0.85874000	-0.78428100	-0.53637600
	-7.92412700	-5.24978400	0.91771500
	9.18271100	-6.20953400	-1.17820900
	1.31/8/500	9.13409100	-1.29983900
N	10.15652300	-6.84445500	-1.25190100
N	-8.95097800	-5.77279600	1.08//1500
N	1.3/1/6500	10.29434900	-1.38/81600
P	5.20160600	2.09987000	2.31319200
F	5.08554500	1.17268300	3.66720600
F	3.65828200	1.68903600	1.90122900
F	4.63231400	3.39589400	3.15097400
F	5.31552300	3.02457100	0.95744800
F	6.74165200	2.50738000	2.72277500
F	5.76769300	0.79998100	1.47381400
С	-5.91332500	2.28338700	0.65811100
С	-7.07974200	1.56006600	0.93529700
С	-7.84147900	1.09467800	-0.13429300
С	-7.48270200	1.32518200	-1.46055400
С	-6.31325700	2.05083200	-1.71818300
С	-5.52895800	2.52921500	-0.66381500
Н	-5.30974800	2.65225200	1.48213700
Н	-7.38124200	1.36835900	1.95903800
Н	-8.09338100	0.95323800	-2.27567500
Н	-6.02161900	2.23863000	-2.74730100
Н	-4.62389500	3.09176300	-0.87125800
Br	-9.47846000	0.08273500	0.24044300

-2904.817215 [uB3LYP/6-31+G(d,p)]

Charge = 0	; Multiplicity = 2	2	
С	1.98246600	3.43419900	-1.70921600
С	0.82415800	3.01799700	-1.01739400
С	0.52798600	1.67396700	-0.85483700
С	1.39582600	0.69533900	-1.38301400
С	2.55697300	1.09333700	-2.07802300
С	2.83714700	2.44143800	-2.23596200
С	2.29429300	4.87094900	-1.87605000
С	1.26359100	5.81899500	-2.03384600
С	1.55130800	7.16996700	-2.19403100
С	3.93087900	6.66962000	-2.03517200
С	3.62974400	5.32109300	-1.88024500
Н	0.16964000	3.75415100	-0.56375400
Н	-0.34278800	1.37474500	-0.28288800
Н	3.20500300	0.34773000	-2.52428500
Н	3.71085800	2.72829900	-2.81068300
Н	0.22801900	5.49709800	-2.05805500
Н	0.74872500	7.88759100	-2.32508300
Н	4.96284400	7.00304900	-2.02601300
Н	4.44135700	4.61640100	-1.73473000
С	-0.23493700	-1.12460400	-1.29879800
С	-0.69987600	-2.11625300	-0.41165600
С	-1.10711900	-0.58608700	-2.26623100
С	-2.01437500	-2.55084200	-0.49255900
Н	-0.03928000	-2.51877200	0.34782900
С	-2.41517200	-1.04046400	-2.34292600
Н	-0.74912300	0.16148700	-2.96486400
С	-2.89970600	-2.02819500	-1.45919300
Н	-2.35383000	-3.31653100	0.19638400
Н	-3.07263200	-0.61298000	-3.09211700
С	-4.29919200	-2.50451300	-1.54497800
С	-5.00805300	-2.87052100	-0.38340900
С	-4.95119500	-2.60268700	-2.79035600
С	-6.32300500	-3.31673500	-0.45729200
Н	-4.53959200	-2.78105100	0.59075000

С	-6.26404200	-3.05260900	-2.87854300
Н	-4.42147500	-2.35136700	-3.70285300
Н	-6.86013200	-3.58442700	0.44602300
Н	-6.74936900	-3.13382500	-3.84504100
С	4.22222500	-3.44779100	-0.53530800
С	3.13033200	-3.77476500	-1.36879200
С	2.10263300	-2.87230500	-1.59309500
С	2.14290800	-1.59938900	-0.98690300
С	3.22505100	-1.25410400	-0.15067600
С	4.24239900	-2.17113700	0.06659100
С	5.31492900	-4.41758900	-0.29948300
С	5.05102100	-5.80080000	-0.24429800
C	6.07299600	-6.71696000	-0.02158800
C	7.67455000	-4.88415400	0.09301300
C	6.64260100	-3.97812600	-0.12566800
Ĥ	3.10552600	-4.73102300	-1.87961900
H	1,29316300	-3.12711400	-2.26769500
Н	3 24080900	-0 29628200	0.35745500
н	5 04440900	-1 90639000	0 74696800
Н	4 03483200	-6 16513900	-0 34980800
н	5 85384800	-7 77794600	0.02899300
н	8 69332300	-4 53241200	0 21410300
н	6 87761400	-2 92102200	-0 18731200
N	1 10230700	-0 67409500	-1 21918400
P	3 28133000	1 97334700	3 23085200
F	1 65603800	1 96413000	2 97210800
F	3 53577200	1 61584900	1 64053000
F	3 32929000	3 57894300	2 87523800
F	4 90683200	1 98133900	3 48728400
F	3 028/6700	2 33073200	1 81706100
F	3 23384700	0 36652200	3 58324100
L C	-/ 00183700	1 11003300	2 00705000
C C	-4.00100700	0.6065/100	2.00700000
C	-0.23100200	0.00004100	1 7/276200
C C	-6 /01051400	1 53768100	0.66462700
C	5 10075800	2 04408000	0.00402700
C	-1 11013000	1 83751200	1 03160800
С Ц	4 41561100	0.05538400	3 00360500
н Ц	6 72228800	0.95556400	3.30300300
н Ц	7 07505600	1 606/2200	0.23510600
н Ц	4 76058600	2 60025000	0.06200800
	-4.70900000	2.00023000	2 00651000
C C	2 20000200	2.23470900	2.00031000
C	2.09000000	2 41175500	1 7000/000
	-0.90010900	-3.41173300	-1.70004000
C Pr	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-0.20101200	0.14714100
	-0.03903000	0.11923300	1.01100000
	0.40103200	-1.2010/900	0.3/3/3000
	-0.31230200	-3.0/443900	-1.19190000
	3.19330300	0.99402000	-2.33/0/900
	-9.41248200	-4.20101000	-1.00900000
	3.44000600	7.06600400	-2.49050900
IN	9.31115900	-1.90002100	0.33723300

TCBPA^{·+}·PF₆ + PhBr, π - π -type, Br atom pointing 'out' (uB3LYP)

(COULD NOT BE CONVERGED).

TCBPA^{.+}·PF₆ + 1,2-dichlorobenzene, T- π type, CI atoms pointing 'out' (uB3LYP)

-3811.285602 [uB3LYP/6-31+G(d,p)]

С	0.55626800	3.34555500	-0.87547100
С	-0.24050800	2.63830700	0.05061900
С	-0.15934700	1.25955100	0.16379300
С	0.73677000	0.54037400	-0.65368200
С	1.54028000	1.23070600	-1.58436800
С	1.44437500	2.60921100	-1.68872000
С	0.46381500	4.81788100	-0.99044700
С	-0.76343600	5.48063000	-0.79093900
С	-0.85682200	6.86338700	-0.89946100
С	0.28940700	7.61753600	-1.20854400
С	1.52283300	6.97200500	-1.40857100
С	1.60177300	5.58821300	-1.30163400
Н	-0.90154300	3.17735600	0.72012300
Н	-0.74990300	0.74034700	0.90971000
Н	2.19988300	0.68045300	-2.24531700
Н	2.03941300	3.11739400	-2.43926400
Н	-1.66023800	4.91051600	-0.57461800
Н	-1.81018100	7.35910700	-0.75382400
Н	2.40922700	7.55313500	-1.63752000
Н	2.56419300	5.10664200	-1.43530900
С	-0.33518200	-1.63147800	-0.32263900
С	-0.30228800	-2.73184200	0.55753200
С	-1.53502900	-1.30101600	-0.98411100
С	-1.45081700	-3.47877300	0.76961400
Н	0.60658200	-2.96577100	1.09996500
С	-2.67363400	-2.06088700	-0.76596000
Н	-1.55598100	-0.48151500	-1.69328000
С	-2.66059300	-3.16349600	0.11484500
Н	-1.41766800	-4.29353600	1.48432100
Н	-3.57539400	-1.81812500	-1.31693000
С	-3.88288500	-3.96576500	0.34549900
С	-3.80109900	-5.35222800	0.58201400
С	-5.15444300	-3.35903100	0.33362600
С	-4.94599200	-6.11123000	0.79658000

Н	-2.83727400	-5.84947800	0.57292700
С	-6.30667600	-4.10577300	0.55112500
Н	-5.24504400	-2.28945000	0.17917000
С	-6.20743100	-5.48939700	0.78304200
Н	-4.86854300	-7.17940800	0.96660000
Н	-7.27785800	-3.62354500	0.54958000
С	4.59215900	-2.76783100	-0.85379800
С	3.43669100	-3.34663200	-1.42307500
С	2.19977500	-2.73048600	-1.32163800
C	2.08470900	-1.49876000	-0.64418500
С	3.22783500	-0.90391500	-0.07147900
С	4.45663200	-1.53653400	-0.17724100
C	5.90851600	-3.43467500	-0.96347300
C	6.00598700	-4.84033400	-0.96590900
Ċ	7.23951300	-5.47326700	-1.06654300
Č	8.41165400	-4.70316900	-1.17239000
Ċ	8.33238700	-3.29888900	-1.17328600
Ĉ	7 09289100	-2 67838300	-1 06744800
Ĥ	3 51389400	-4 26944700	-1 98715800
н	1 33221900	-3 17075300	-1 79962600
н	3 14381600	0.01994300	0 48958700
н	5 31242300	-1 08174000	0.30856200
н	5 11323900	-5 44725100	-0.86210600
н	7 30001700	-6 55589300	-1 05638300
н	9 23435100	-2 70369200	-1 26316700
н	7 04573300	-1 59519300	-1 09153000
N	0 82949100	-0.86279200	-0 54037000
C	-7 39190700	-6 26498300	1 00669300
C	9 68631200	-5 34995400	-1 27920500
C C	0.20028700	9 04378700	-1 31986500
N	10 72188300	-5 87598300	-1.36614200
N	-8 35456200	-6 89486000	1 18884200
N	0.00400200	10 20270100	-1 41060900
P	4 84625500	2 45872700	2 33869200
F	4 88548300	1 49294100	3 67035500
F	3 36411400	1.45234200	1 94446500
F	4 12508400	3 64573100	3 21993500
F	4 80499300	3 42183300	1 00544800
F	6 32556000	3 06159300	2 73081700
F	5 56407900	1 26757400	1 45574600
Ċ	-7 05246200	0 94903900	2 29242700
C	-8 24784400	0.04000000	1 61745500
C C	-8 30828000	0.700000000	0 22770400
C C	-7.16665100	1 22596600	-0 /8630700
C C	-5 97067200	1.22590000	0.40000700
C	-5.97007200	1 33612700	1 58033000
й	-7 0156/600	0 830/0500	3 37132800
н	-0 13771000	0.0004000	2 1502/200
н	-5.13771000	1 7758/200	-0 37003000
н	-0.00-10700	1 53173100	2 00801000
CI	-4.30110300	0 51752000	_0 58/8/200
CI	-7.20016000	1.41517700	-2.22936900
			000000

-3811.285387 [uB3LYP/6-31+G(d,p)]

Charge =	0; Multiplicity = 2	2	
С	0.27937200	3.27107500	-0.75856800
С	-0.46621600	2.52479300	0.17940900
С	-0.32769600	1.14952200	0.27770000
С	0.57658100	0.47352400	-0.56724600
С	1.32970500	1.20328700	-1.51005700
С	1.17641200	2.57765800	-1.59932800
С	0.12568600	4.73943400	-0.85733500
С	-1.12156200	5.35097000	-0.62132500
С	-1.27233100	6.72978700	-0.71411800
С	-0.16484400	7.53162400	-1.04380400
С	1.08783800	6.93759400	-1.28044200
С	1.22416600	5.55716800	-1.18892700
Н	-1.13211800	3.03124000	0.86912400
Н	-0.87915100	0.60082800	1.03239000
Н	1.99503100	0.68579700	-2.19144900
Н	1.73238800	3.11558500	-2.35906200
Н	-1.98943600	4.74388500	-0.38822900
Н	-2.24056600	7.18603000	-0.54032100
Н	1.94437900	7.55572400	-1.52566500
Н	2.20122300	5.11538200	-1.35079500
С	-0.40043800	-1.74145200	-0.22983100
С	-0.30304500	-2.84609300	0.64007900
С	-1.62824000	-1.45292800	-0.85884900
С	-1.41659700	-3.63783000	0.87500000
Н	0.62750200	-3.04891000	1.15777000
С	-2.73134900	-2.25711700	-0.61807400
Н	-1.69813600	-0.62982300	-1.56067100
С	-2.65389400	-3.36419200	0.25382500
Н	-1.33423300	-4.45579300	1.58206200
Н	-3.65543100	-2.04480600	-1.14417800
С	-3.83881100	-4.21313800	0.51112900
С	-3.69959700	-5.59724500	0.73411900
С	-5.13158000	-3.65379100	0.53956600
С	-4.80936700	-6.39945100	0.97469100
Н	-2.71875500	-6.05829000	0.69411300
С	-6.24905900	-4.44387000	0.78349300
Н	-5.26527500	-2.58727600	0.39614400

С	-6.09264800	-5.82445600	1.00173700
Н	-4.68820800	-7.46524500	1.13394300
Н	-7.23687300	-3.99764600	0.81309300
С	4.55443300	-2.67539900	-0.89166100
С	3.40926900	-3.29554200	-1.43782600
С	2.15148700	-2.73071600	-1.30004400
Č	2.00389600	-1.51036100	-0.60851300
Ċ	3,13604900	-0.87529700	-0.05765000
Ċ	4.38619700	-1.45694600	-0.19937600
č	5.89399600	-3.28601600	-1.04139800
Ċ	6.04941800	-4.68628500	-1.06394000
Ċ	7.30506600	-5.26621800	-1.20310800
č	8.44136900	-4.44685400	-1.32800800
C C	8 30423700	-3 04717400	-1 30895000
c C	7 04324300	-2 48000000	-1 16483700
Ĥ	3 50898100	-4 20961400	-2 01258700
н	1 29074300	-3 20159000	-1 76086300
н	3 02907900	0.03982400	0.51378600
н	5 23451200	-0.97235400	0 27032400
н	5 18534000	-5 33081500	-0.94598600
н	7 41035500	-6 34545100	-1 20841100
н	9 17859600	-2 41434500	-1 41325600
н	6 95087600	-1 30040700	-1 17410900
N	0.72742000	-0.92567900	-0.46906700
C	-7 24116900	-6 64463100	1 25247800
C C	9 73859900	-5.03848700	-1 47493500
C C	-0 31287200	8 95414100	-1 13856000
N	10 79251500	-5 51974600	-1.59463500
N	-8 17475400	-7 31051600	1 45657500
N	-0.17473400	10 1100/100	-1 21582300
D	4 72324700	2 51625000	2 3//28600
- -	4.72324700	1 55236400	2.54420000
	4.7792200	1.00200400	1 05100000
	3 080/2200	3 60633/00	3 22/30600
	1 67123800	3 47738100	1 00088800
	6 10507500	3 13560200	2 73548700
F	5 45412000	1 33217000	2.75546700
r C	0.07846000	0.00253400	0 7380/100
C C	7 09/57700	0.00233400	1 10702200
C C	7 00104900	1 20/20200	0.28260500
C C	7 20552000	1.30439300	1.00205500
	-7.29002000	1.13347900	-1.09205500
	-0.39231700	0.39034700	-1.04/49/00
	-9.20239900	-0.10700700	-0.03300000
	-9.70007500	-0.43343000	1.45569100
		0.071094800	2.2391/000
		0.2/13/000	-2.01443900
	-10.13112800	-0./3805000	-0.99038400
	-0.72914800	2.222/0100	0.09/04/00
	-0.20028300	1.82947400	-2.2/10/100

TCBPA^{·+}·PF₆ + 1,2-dichlorobenzene, ' π - π ' complex, Cl atoms pointing 'out' (UB3LYP)

86

-3811.282264 [uB3LYP/6-31+G(d,p)]

С	1.58066600	3.44148300	-1.73653500
С	0.39665400	3.13702200	-1.03073300
С	-0.06144000	1.83365300	-0.92295200
С	0.66435300	0.78364100	-1.52193400
С	1.85083500	1.06906500	-2.22834500
С	2.29359500	2.37822900	-2.33115300
С	2.05962700	4.83692800	-1.85094700
С	1.14585200	5.90629500	-1.93300300
С	1.58762600	7.21966500	-2.04328500
С	2.96738600	7.49114400	-2.06934600
С	3.89327700	6.43566900	-1.98598100
С	3.43832700	5.12624000	-1.88035600
Н	-0.15101900	3.92468700	-0.52549400
Н	-0.95105100	1.61667300	-0.34323100
Н	2.39131900	0.27201100	-2.72566000
Н	3.18407100	2.58249400	-2.91505400
Н	0.07923300	5.71047100	-1.93765700
Н	0.87265200	8.03170700	-2.11602700
Н	4.95736900	6.64440700	-1.99658400
Н	4.16419600	4.32514700	-1.79382700
С	-1.17748000	-0.82382500	-1.49183300
С	-1.74734700	-1.80695700	-0.65783200
С	-1.99354900	-0.12044900	-2.40096300
С	-3.10564800	-2.07256900	-0.73419800
Н	-1.13290800	-2.32234900	0.07126800
С	-3.34951800	-0.40053700	-2.46872500
Н	-1.55487000	0.60684500	-3.07441700
С	-3.93765600	-1.37874200	-1.63859200
Н	-3.53272200	-2.80041200	-0.05337200
Н	-3.95295100	0.11965100	-3.20436700
С	-5.38727100	-1.66807800	-1.71387000
С	-5.87307400	-2.97446100	-1.50826300
С	-6.31202300	-0.64261900	-1.99348200
С	-7.23321900	-3.25284300	-1.58083800
Н	-5.18172600	-3.78751400	-1.31526400
С	-7.67509600	-0.90664600	-2.06413700

Н	-5.96792500	0.37666600	-2.13132200
С	-8.14310400	-2.21699300	-1.85892900
Н	-7.59166200	-4.26531400	-1.43115000
Н	-8.37619400	-0.10525100	-2.26935700
С	2.97116700	-3.70104000	-0.88429200
С	1.84311600	-3.85879800	-1.71893600
С	0.93023100	-2.83128200	-1.89494400
С	1.12697000	-1.59943100	-1.23696100
С	2.24819500	-1.42255100	-0.40049900
С	3.14855500	-2.46271500	-0.23063500
С	3.94168700	-4.80313500	-0.70135100
С	3.51824300	-6.14704600	-0.71373000
С	4.42557000	-7.18617700	-0.54199800
С	5.78960100	-6.89738600	-0.35713700
С	6.22963300	-5.56158800	-0.34358400
С	5.31135100	-4.53163200	-0.51190400
Н	1.70014200	-4.78214000	-2.26921000
н	0.09243900	-2.95827000	-2.57087600
H	2.38638700	-0.49574400	0.14479700
H	3.97808100	-2.31766900	0.45190800
H	2.46686000	-6.38481500	-0.83278200
Н	4.08346400	-8.21519600	-0.54332500
Н	7.28213000	-5.33778000	-0.20939200
Н	5 66892600	-3 50789800	-0 52162800
N	0 20496400	-0 54612500	-1 41622300
C	-9 54701700	-2 49666900	-1 93359100
C C	6 73120700	-7 96395200	-0 18305000
C C	3 42905700	8 84350000	-2 18155600
N	7 49656600	-8 83057100	-0.04208000
N	-10 68771200	-2 72407100	-1 99461100
N	3 80352700	9 94260600	-2 27311800
P	4 34856600	1 18321600	2 52403500
F	3 50866100	0.42493000	3 71847800
F	2 97881600	1 25402400	1 60833100
F	3 97862000	2 64174900	3 18835800
F	5 18617300	1 030/5700	1 3260/300
F	5 71507200	1.33343700	3 43677700
F	1 71/0/200	-0 2778/700	1 85651100
r C	5 80031600	0.27704700	3 36055800
C	-5.53051000	0.81768/00	3 0520/500
C C	-0.01401400	1 22381300	3 22/58000
C	3 23671500	0.31031200	3 71220000
C	3 6151/600	0.31931200	3.7 1220000 4 02640400
C C	4 0/157800	1 201/1600	3 95501200
	-4.94137000	-1.39141000	2 94240200
	-3.07 100000	2.00091700	2.04349200
	-5.24207400	-2.40510600	4.09760900
	-0.92214900	1 6010200	3.23333000
	-2.01221100	-1.00123000	4.4041/900
	-2.21004000	0.04521700	3.041/1200
	-0.73011100	1.92141000	2.44910000
	-4.00941029	-0.10129500	3.34499444
	-0./0038400	-1.94253584	-1./000/005
п	-2.55698139	-1.10316692	-1.50089470

-3811.288657 [uB3LYP/6-31+G(d,p)]

Charge = 0	0; Multiplicity = 2	2	
С	0.38376900	3.32371100	-0.80541100
С	-0.37035700	2.57647800	0.12498100
С	-0.23360000	1.20095800	0.22248300
С	0.67750200	0.52558600	-0.61556500
С	1.43894800	1.25619600	-1.55096900
С	1.28727500	2.63079100	-1.63964400
С	0.23244900	4.79240900	-0.90299800
С	-1.01565800	5.40517800	-0.67481900
С	-1.16422600	6.78427700	-0.76689600
С	-0.05363700	7.58525300	-1.08810400
С	1.19995700	6.99005100	-1.31676700
С	1.33410100	5.60936900	-1.22590000
Н	-1.04164700	3.08236400	0.80990000
Н	-0.79162800	0.65155100	0.97181300
Н	2.10972500	0.73920800	-2.22738100
Н	1.84996400	3.16928200	-2.39400800
Н	-1.88580100	4.79887000	-0.44827600
Н	-2.13309400	7.24142400	-0.59911400
Н	2.05887400	7.60747100	-1.55537300
Н	2.31180300	5.16675400	-1.38145500
С	-0.30191500	-1.68997800	-0.28811700
С	-0.21056700	-2.79615900	0.58056900
С	-1.52538100	-1.40051400	-0.92518900
С	-1.32567600	-3.58830500	0.80642400
Н	0.71631300	-2.99975500	1.10449300
С	-2.63015400	-2.20496700	-0.69322100
Н	-1.59036100	-0.57643100	-1.62634100
С	-2.55876300	-3.31351100	0.17738100
Н	-1.24813800	-4.40746700	1.51263200
Н	-3.55060700	-1.99175200	-1.22529300
С	-3.74547200	-4.16267800	0.42536600
С	-3.60779200	-5.54710600	0.64734800
С	-5.03838800	-3.60326900	0.44604100
С	-4.71916200	-6.34958100	0.87945100
Н	-2.62674700	-6.00818200	0.61316300
С	-6.15746000	-4.39360600	0.68178100

Н	-5.17117900	-2.53655800	0.30310000
С	-6.00254100	-5.77451100	0.89905500
Н	-4.59911900	-7.41561300	1.03794600
Н	-7.14547300	-3.94748200	0.70554400
С	4.65862700	-2.62185000	-0.90725100
С	3.51915200	-3.24035600	-1.46704100
С	2.25990800	-2.67611400	-1.34038200
С	2.10538100	-1.45787400	-0.64679100
С	3.23166800	-0.82430900	-0.08247000
С	4.48319500	-1.40567500	-0.21273200
С	5.99960700	-3.23219900	-1.04496500
С	6.15506000	-4.63242000	-1.06978700
C	7.41200900	-5.21217000	-1.19747700
Ċ	8.54965800	-4.39264000	-1.30823000
Č	8,41252100	-2.99300000	-1.28676600
Č	7.15016100	-2.42601400	-1.15425400
H	3 62491500	-4 15271900	-2 04342400
н	1 40382300	-3 14580100	-1 81103100
н	3 11811300	0.08846200	0 49137500
н	5 32652600	-0.92339800	0 26830900
н	5 28970100	-5.27711700	-0.96261100
н	7 51718800	-6 20130000	-1 20469500
н Ц	0.28800600	2 36003000	1 38020600
	7.05203200	1 34547100	1 16161400
N	0.827/1800	-1.34347100	0.51760000
C C	7 15250400	-0.07371000	-0.31709000
	-7.15259400	-0.59507000	1.14140000
	9.04020700	-4.90403000	-1.44320700
	-0.19944300	9.00003400	-1.10233700
IN N	10.90334700	-5.46512800	-1.55316200
N	-8.08/22500	-7.26153500	1.33869500
N	-0.31840900	10.16414000	-1.25921200
P	4.68375900	2.46502500	2.51/63/00
F	4.62823600	1.38425800	3.75704700
F	3.23554900	1.90208500	1.96440200
F	3.89752000	3.57185400	3.44646600
F	4.73718400	3.54310700	1.27615800
F	6.12915300	3.02469700	3.06850400
F	5.46680700	1.35425100	1.58646000
С	-6.03493200	1.73163800	0.84537200
С	-7.20213500	1.22023000	1.41851600
С	-8.21883400	0.76983400	0.57616200
С	-8.10104600	0.81669800	-0.81365300
С	-6.92120800	1.33331800	-1.35074900
С	-5.88194500	1.79383200	-0.54212900
Н	-5.23525800	2.08627200	1.48768600
Н	-7.31876100	1.17332300	2.49509200
Н	-8.89955900	0.46351700	-1.45466500
Н	-4.97604000	2.19165700	-0.98463800
CI	-9.69948600	0.12313200	1.27726100
CI	-6.74992600	1.40390600	-3.10245700

TCBPA^{.+}·PF₆ + 1,3-dichlorobenzene, T- π -type, Cl atoms pointing 'in (uB3LYP)

86

-3811.288068 [uB3LYP/6-31+G(d,p)]

Charge =	0; Multiplicity = 2	2	
С	0.79905300	3.45435600	-1.04768400
С	-0.02329500	2.76366300	-0.13149100
С	0.04224300	1.38552300	-0.00354200
С	0.94666300	0.64914000	-0.79673100
С	1.77698200	1.32331300	-1.71606200
С	1.69700300	2.70158000	-1.83496200
С	0.72297600	4.92609900	-1.17907500
С	-0.50239700	5.60163600	-1.01402800
С	-0.58067200	6.98396300	-1.13834900
С	0.57916400	7.72468700	-1.42864200
С	1.81094000	7.06630200	-1.59391800
С	1.87473700	5.68304600	-1.47165400
Н	-0.69272300	3.31532500	0.51920500
Н	-0.56747900	0.88003800	0.73630300
Н	2.44489500	0.76072500	-2.35806300
Н	2.31294400	3.19657200	-2.57752600
Н	-1.40897100	5.04154100	-0.81268100
Н	-1.53254200	7.48960900	-1.01939300
Н	2.70763800	7.63720100	-1.80803800
Н	2.83540300	5.19135400	-1.57830100
С	-0.15271200	-1.50822300	-0.45568100
С	-0.13669800	-2.59937500	0.43636000
С	-1.34432600	-1.17433200	-1.13027600
С	-1.29420800	-3.33163000	0.64991300
Н	0.76640300	-2.83625100	0.98702400
С	-2.49191500	-1.92024400	-0.91112900
Н	-1.35220500	-0.36301300	-1.84913600
С	-2.49658100	-3.01159600	-0.01629600
Н	-1.27379700	-4.13776100	1.37476700
Н	-3.38752800	-1.67514000	-1.47084400
С	-3.72927000	-3.79654500	0.21848100
С	-3.66423600	-5.17870300	0.48407500
С	-4.99437300	-3.17690900	0.18324300
С	-4.81863300	-5.92112500	0.70524100
Н	-2.70599400	-5.68659300	0.49336300

С	-6.15591300	-3.90719900	0.40752900
Н	-5.07346200	-2.10968400	0.00620000
С	-6.07330800	-5.28667100	0.66890100
Н	-4.75361900	-6.98622900	0.89822600
н	-7.12188400	-3.41492700	0.38808500
С	4,76065400	-2,71199400	-0.92505900
Č	3.60792700	-3.26988100	-1.51988800
Ĉ	2 37854500	-2 63570900	-1 43757900
Ĉ	2 27014500	-1 40584200	-0 75657500
Ĉ	3 41066000	-0.83027800	-0 16059300
C	4 63129600	-1 48212300	-0 24488900
C C	6.06811800	-3 30001300	-1 01105500
C C	6 14254400	-4 80692600	-1.01085600
C	7 36752100	-5.45036700	-1.013030000
C	8 55/03000	4 70804200	1 17/35700
C	8 /078/600	3 30270000	1 16810700
C	7 26662400	-3.30270000	1 00/02600
	2 69107500	-2.00202400	-1.00402000
	3.08197500	-4.19097200	-2.087 10100
	1.31200300	-3.00046000	-1.93240700
н	3.32935400	0.09306200	0.40187200
н	5.48364600	-1.04526400	0.26291500
н	5.23800600	-5.39970300	-0.93849300
Н	7.41031900	-6.54287700	-1.09322400
Н	9.41108400	-2.72183100	-1.23507300
Н	7.23763700	-1.57869000	-1.10285600
N	1.02119200	-0.75309100	-0.67071900
С	-7.26750200	-6.04506200	0.89943200
С	9.81987200	-5.37518900	-1.25816800
С	0.50558300	9.15049100	-1.55597500
N	10.84833000	-5.91770200	-1.32629300
N	-8.23814500	-6.66092400	1.08713400
N	0.44512400	10.30902400	-1.65982700
Р	4.96605500	2.27777500	2.62418700
F	4.44113800	1.32231900	3.85676400
F	3.57893800	1.96007600	1.79024300
F	4.24523200	3.57964100	3.32477800
F	5.48881000	3.23084200	1.38895100
F	6.35007700	2.59255700	3.45581600
F	5.68417900	0.97328700	1.92017800
С	-9.72655200	0.70621400	-0.21302300
С	-8.38995400	0.78243000	-0.60693100
C	-7.42165600	0.89255500	0.39184100
Č	-7.75705000	0.92843800	1.74532100
Ĉ	-9.10562100	0.85018400	2,10253800
Ĉ	-10 10254600	0 73845500	1 12993100
Ĥ	-8.11306800	0.75669800	-1.65377000
H	-6.98527900	1 01461300	2 50147500
 Н	-9 38295100	0 87645500	3 15146000
H	-11 14783300	0.67798900	1 40997500
CI	-5 72720000	0 99013400	-0.08158600
CI	-10 96718400	0.56626200	-1 45540300
<u>.</u>	10.00710400	3.00020200	1.100-0000

TCBPA^{·+}PF₆ + 1,3-dichlorobenzene, from ' π - π ' complex CI atoms pointing 'out' \rightarrow dissociated to a structure that is not a π - π complex, (uB3LYP)

86

-3811.286857 [uB3LYP/6-31+G(d,p)]

C	2 34007600	3 47809100	-1 38637800
C	1 16736300	3 49631800	-0 60107900
C	0 25109400	2 45789800	-0.65312700
C C	0.20100400	1 35592800	-1 50025600
C	1 65418900	1.32107900	-2 29182200
C	2 55878600	2 36933800	-2 23197600
C C	3 31425100	4 59023900	-1 32397400
C	2 88246100	5 91586400	-1 12071100
C	3 79286300	6 96489000	-1 06313900
Č	5.16765900	6.70346400	-1.20434200
C	5.61575000	5.38551600	-1.40508700
C	4.69465500	4.34607700	-1.46523200
H	0.99053900	4.31291800	0.08995800
Н	-0.62215700	2.47110800	-0.01119400
Н	1.82154000	0.49697500	-2.97567700
Н	3.42801900	2.34523300	-2.87971600
Н	1.82399600	6.13522100	-1.03234700
Н	3.44547700	7.98172800	-0.91712000
Н	6.67604200	5.18133800	-1.50465900
Н	5.05638300	3.33217000	-1.59672300
С	-1.82373300	0.56177400	-1.50625100
С	-2.68225500	-0.27774500	-0.76812500
С	-2.35339800	1.67206000	-2.19426800
С	-4.04049800	-0.00420200	-0.72156700
Н	-2.27589600	-1.10877400	-0.20325100
С	-3.71455500	1.92946900	-2.14237300
Н	-1.70453000	2.29760100	-2.79638800
С	-4.58844500	1.10186400	-1.40539600
Н	-4.67833100	-0.63459100	-0.11205500
Н	-4.10962000	2.76213500	-2.71376200
С	-6.03952200	1.38820000	-1.34924600
С	-6.97972400	0.34066300	-1.28928500
С	-6.51048800	2.71591800	-1.35349100
С	-8.34379200	0.60470700	-1.23831100

Н	-6.64608800	-0.69119300	-1.30874000
С	-7.87148100	2.99368300	-1.29852500
Н	-5.80746700	3.54145700	-1.37342100
С	-8.79688300	1.93617900	-1.24179900
H	-9 05703500	-0 21141100	-1 20326100
н	-8 21922000	4 02074900	-1 20177300
C C	0.01860700	-3 70358100	-1.231770000
C C	0.31000700	2 27271600	2 54655000
C	-0.22414400	-3.27371000	-2.34033000
	-0.07447000	-1.90034400	-2.40904000
	0.01870300	-1.03844800	-1.05452400
C	1.16/25/00	-1.44/11600	-0.94539500
C	1.60098700	-2.76023500	-1.03883700
С	1.38413300	-5.10538900	-1.92383500
С	0.46317700	-6.16065200	-2.07851000
С	0.89153300	-7.48073900	-2.15566500
С	2.26535000	-7.77326700	-2.08316300
С	3.19854800	-6.73194900	-1.93106800
С	2.75658700	-5.41637300	-1.85049300
Ĥ	-0.74438600	-3.96096900	-3.20439100
Н	-1 53105100	-1 64701300	-3 04237100
н	1 68545400	-0 75434800	-0 29205700
н	2 45805300	-3 06070500	-0 44711700
н Ц	0 60066500	5 05306000	2 11232500
	-0.000000000	-0.9000000	2.11232300
	0.17003200	-0.20300100	-2.203/0/00
	4.20004400	-0.90020000	-1.00300100
Н	3.48954000	-4.62287300	-1.75463500
N	-0.43787900	0.29244900	-1.55518200
C	-10.20162000	2.21594000	-1.18/42100
С	2.71361200	-9.13237100	-2.16353900
С	6.11194200	7.78015300	-1.14319000
N	3.07740600	-10.23692700	-2.22892200
N	-11.34306800	2.44348300	-1.14336300
N	6.87855900	8.65563000	-1.09343400
Р	4.29732600	-0.40012600	2.04352600
F	3.26696100	-0.89108500	3.23088100
F	3.04939700	0.35755000	1.27791300
F	4.61440800	0.97569600	2.88682400
F	5 32304200	0.08999300	0 85481800
F	5 54053100	-1 15830000	2 80729700
F	3 97576700	-1 77688000	1 1081/700
	2 22406400	1 04040400	2 00565200
	-2.32490400	-1.94040400	3.90505500
	-2.98/25/00	-0.72983000	4.11402800
	-2.22469700	0.43890900	4.10581200
C	-0.84525100	0.41885100	3.90003500
C	-0.21461900	-0.81133300	3.69436700
С	-0.94724600	-2.00155900	3.69622800
Н	-4.05767900	-0.69816800	4.27668500
Н	-0.27620600	1.34144600	3.89978800
Н	0.85810100	-0.84256500	3.53196100
CI	-3.03799900	1.97971100	4.36836800
Н	-0.45739200	-2.95552200	3.53810100
CI	-3.26562400	-3.43034700	3.91428300

TCBPA^{·+}.PF₆ + 1,3-dichlorobenzene, from ' π - π ' complex CI atoms pointing 'in' \rightarrow dissociated to a structure that is not a π - π complex, (uB3LYP)

86

-3811.284234 [uB3LYP/6-31+G(d,p)]

С	-1.97109700	-3.44015600	-1.56341200
С	-0.80323600	-3.39563800	-0.77183300
С	0.01938300	-2.28026400	-0.76426900
С	-0.31016100	-1.16186200	-1.55724600
С	-1.47320400	-1.18874000	-2.35409100
С	-2.28365600	-2.31276000	-2.35312700
С	-2.84440600	-4.63480800	-1.56484700
С	-2.29934400	-5.92606600	-1.42077600
С	-3.11445500	-7.05219900	-1.42461100
С	-4.50577400	-6.90547400	-1.56918600
С	-5.06665800	-5.62351200	-1.71102300
С	-4.23997500	-4.50586000	-1.71004100
Н	-0.55799800	-4.22724900	-0.12074200
Н	0.88647600	-2.25051400	-0.11438200
Н	-1.71000500	-0.34897300	-2.99709000
Н	-3.15049500	-2.33053100	-3.00420300
Н	-1.22645600	-6.05638500	-1.33115700
Н	-2.68007700	-8.04065200	-1.32389800
Н	-6.14007500	-5.50849100	-1.81301600
Н	-4.68876600	-3.52244500	-1.79715100
С	1.92167500	-0.16282800	-1.50783400
С	2.69924100	0.72836300	-0.74056800
С	2.55251100	-1.19670400	-2.22946200
С	4.07679300	0.58087300	-0.69920800
Н	2.21787800	1.49956800	-0.15042400
С	3.93159400	-1.32868800	-2.18132400
Н	1.96468800	-1.85968000	-2.85375100
С	4.72516300	-0.44709600	-1.41653700
Н	4.65343800	1.24819200	-0.06838200
Н	4.40224400	-2.10242600	-2.77775500
С	6.19691900	-0.59545000	-1.36786800
С	7.03129600	0.53591000	-1.27450800
С	6.79441400	-1.87052600	-1.41303300
С	8.41450600	0.40424100	-1.23000600

Н	6.59893700	1.53046600	-1.26243600
С	8.17617700	-2.01626500	-1.36493500
Н	6.17496700	-2.75955800	-1.45953400
С	8.99472200	-0.87614800	-1.27400700
Н	9.04492100	1.28437700	-1.16878500
Н	8.62206400	-3.00442900	-1.38980800
С	-1.22020600	3.83389800	-1.69768200
С	-0.03990200	3.54423300	-2.41638300
С	0.53846100	2.28568300	-2.37101300
С	-0.05944400	1.26797100	-1.59921500
С	-1.23845000	1.53848400	-0.87483000
С	-1.80116600	2.80414900	-0.92708100
C	-1.83305900	5.17970300	-1.75221700
Ċ	-1.03274900	6.33344300	-1.86908100
Ċ	-1.60426900	7.59980200	-1.91850700
Č	-3.00269400	7,73667300	-1.85624900
Ċ	-3.81644500	6.59521900	-1.74181300
C C	-3 23204500	5 33506700	-1 68838800
Ĥ	0.40766000	4.30062700	-3.05149400
Н	1 42138000	2 07187700	-2 96229700
н	-1 68123700	0 77766600	-0 24211700
н	-2 68328100	2 99958400	-0.32822700
н	0.04787700	6 24521100	-1 89542300
н	-0.97550300	8 47974600	-1 99752500
н	-4 89514000	6 69871800	-1 70242500
н	-3 87275800	4 46259300	-1 62219700
N	0.51798500	-0 01929900	-1 55321300
C	10 42019300	-1 01863300	-1 22563900
C C	-3 59836500	9 03927800	-1 90911900
C C	-5 35189000	-8 06246600	-1 57208300
N	-4 08234300	10 09785700	-1.95208500
N	11 57850100	-1 13436200	-1 18627700
N	-6.03917600	-9 0028200	-1 57472200
P	-4 19403100	0.08172100	2 08705600
F	-3 /13/0600	1 03561000	3 17000500
F	-2 7/096800	-0 45600200	1 52230100
F	-2.74030000	-0.43003200	3 18054700
F	-4.22203100		0.00373500
F	-5.64200600	0.62100100	2 6/070000
F	-4 16015300	1 31152300	0 00103200
r C	2 24232600	0.08088000	1 68025300
C C	2.24232000	0.90000000	4.0092000
C C	2.02343000	1 00306800	3 48851400
C	0.27105800	-1.00390000	3.40031400
C C	0.37103800	-0.33330300	3.20707900
C C	0.02421900	1 49594500	3.80301900 4.51004000
	2 6271/200	0.64262700	4.31094900
н Ц	0.021 14000 0.35160700	1 10275/00	9 7/051/00
11 Ll	-0.00400700	1 00044400	2.14031400
	-0.90390400	2 59044400	2 24605700
	2.12100100 0.69371000	-2.00044900	2.04093700
	0.003/1200	2.4004000	4.91312200
0	5.45042500	1.90420400	0.07490000

TCBPA^{.+}PF₆ + 1,4-dichlorobenzene, from 'T- π ' type complex \rightarrow dissociated (uB3LYP)

86

(DISSOCIATED) [uB3LYP/6-31+G(d,p)]

Charge = 0; Multiplicity = 2

(DISSOCIATED)

86

-3811.289982 [uB3LYP/6-31+G(d,p)]

С	-1.77765500	-3.42536900	-1.52828200
С	-0.59013900	-3.08337300	-0.84592100
С	-0.16524800	-1.76735500	-0.75700100
С	-0.92941900	-0.74224400	-1.35142200
С	-2.11950600	-1.06536800	-2.03506800
С	-2.52860900	-2.38673700	-2.11943700
С	-2.22206100	-4.83381400	-1.62137800

С	-1.28268900	-5.88043500	-1.70728500
С	-1.69248000	-7.20573500	-1.79634000
С	-3.06507300	-7.51256500	-1.79657400
С	-4.01618100	-6.48003000	-1.70986700
Ċ	-3.59321500	-5.15837200	-1.62586800
Ĥ	-0.01280000	-3 85173800	-0.34402700
н	0.72838800	-1 52177100	
н Ц	2 68081800	0.28744500	2 52027200
	-2.00901000	-0.20744500	-2.52957200
	-3.42314100	-2.01907100	-2.00000300
н	-0.22160100	-5.05/85200	-1.73145900
Н	-0.95814200	-7.99997200	-1.87235300
Н	-5.07464100	-6.71566100	-1.70112400
Н	-4.33797800	-4.37508800	-1.53671700
С	0.86877000	0.91365900	-1.36796900
С	1.43080300	1.91164600	-0.54654200
С	1.68273400	0.23019000	-2.29376100
С	2.77994800	2.21204800	-0.65245500
Н	0.81901600	2.41149000	0.19557300
С	3.02918800	0.54529100	-2.39135500
H	1 24816500	-0 50929900	-2 95650600
C	3 60957100	1 53950300	-1 57495000
н	3 20317600	2 95101100	0.01877300
 Ц	3 62072400	0.04002400	3 13062600
С С	5.02972400	1 967602400	1 60275100
	5.04000900	1.00700300	-1.00373100
	5.50373500	3.180/8100	-1.48964800
C	5.99431400	0.86757300	-1.98536100
С	6.85361800	3.50218500	-1.59528000
Н	4.79540600	3.98074100	-1.27965400
С	7.34752300	1.16871500	-2.08938000
Н	5.67516400	-0.16086600	-2.11475900
С	7.78436800	2.49153600	-1.89590900
Н	7.18777700	4.52412700	-1.45403200
Н	8.06498300	0.38652900	-2.31154400
С	-3.34367100	3.68344500	-0.69790600
С	-2.23269200	3.86821400	-1.54981500
С	-1.29593900	2.86451400	-1.73709500
C	-1.45037300	1.62970300	-1.07303700
Ċ	-2.55398900	1,42629800	-0.21907400
C	-3 47884900	2 44277600	-0.03855800
C	-4 33959500	4 76044500	-0 50290500
C	-3 05138600	6 11/8/800	-0 52/21600
C	4 99271200	7 12044400	0.32421000
C	6 22582000	6 90676700	0.12427200
0	-0.23303000	5.46006200	0.13437200
	-0.04004000	5.46006300	-0.11204400
	-5.69876600	4.45392400	-0.29247000
н	-2.12243300	4.79349800	-2.10430000
Н	-0.4/215/00	3.01141100	-2.42604300
Н	-2.65957400	0.49813400	0.33114900
Н	-4.29434300	2.27789500	0.65634800
Н	-2.90850300	6.37968900	-0.65982000
Н	-4.56747900	8.16798100	-0.34905900
Н	-7.68500900	5.20918100	0.03840900
Н	-6.02976100	3.42123200	-0.29482300
Ν	-0.50445800	0.60039100	-1.26334200
С	9.17771400	2.80971500	-2.00569700
С	-7.20188000	7.84903600	0.05252900
Ċ	-3,49376500	-8.87747800	-1.88584200
Ň	-7 98690900	8 69608500	0 20387800
N	10 30984600	3 06832100	-2 09527500
N	-3 84146000	-9 98673600	-1 95864800
	0.0 11 10000	0.00010000	1.0000-0000

-4.67905200	-1.28929400	2.60081800
-3.99455900	-0.60820100	3.93278700
-3.22793200	-1.21648500	1.82013400
-4.29729400	-2.78521800	3.16832500
-5.36102200	-1.96821500	1.26645600
-6.12650200	-1.35961100	3.37925200
-5.05711000	0.20932300	2.03055800
7.70383700	-1.14150700	2.31772700
6.92172300	-2.20297000	1.85596900
5.53808800	-2.15732000	2.02849700
4.91929000	-1.07443700	2.65361800
5.70145100	-0.01297500	3.11525600
7.08501900	-0.05788700	2.94167800
8.78028600	-1.16391600	2.19030200
7.38955000	-3.05144900	1.36944700
3.84295900	-1.05284500	2.78199100
5.23374200	0.83482800	3.60308600
4.55187200	-3.49689200	1.44800900
8.07151100	1.27941700	3.52608700
	-4.67905200 -3.99455900 -3.22793200 -4.29729400 -5.36102200 -6.12650200 -5.05711000 7.70383700 6.92172300 5.53808800 4.91929000 5.70145100 7.08501900 8.78028600 7.38955000 3.84295900 5.23374200 4.55187200 8.07151100	-4.67905200-1.28929400-3.99455900-0.60820100-3.22793200-1.21648500-4.29729400-2.78521800-5.36102200-1.96821500-6.12650200-1.35961100-5.057110000.209323007.70383700-1.141507006.92172300-2.202970005.53808800-2.157320004.91929000-1.074437005.70145100-0.012975007.08501900-0.057887008.78028600-1.163916007.38955000-3.051449003.84295900-1.052845005.233742000.834828004.55187200-3.496892008.071511001.27941700

14. COMPUTATIONAL INVESTIGATION OF TPA^{.+} Excited States

All calculations were performed using Time-Dependent Density Functional Theory (TD-DFT)^[42] using the Gaussian16 software package.^[29] Ground state geometries of TPAs^{.+} (as isolated radical cations) were obtained from optimization calculations with the CAM-B3LYP functional^[43] and a 6-31G(d,p) basis set on all atoms.^[31] Solvent was modelled implicitly using the CPCM model^[32] for i) a solvent of acetonitrile, which was the reaction solvent or ii) a solvent of dichloromethane, in which UV-vis and other spectroscopic studies were undertaken. Single point TD-DFT calculations on these optimized geometried were performed at the CAM-B3LYP/6-31G(d,p) level of theory. The first 8-10 excited states of TPAs^{.+} are reported, which correspond to their vertical excitation energies. The lowest energy excited state(s) whose absorptions overlay with the purple ($\lambda_{max} = 395$ nm) LED used are highlighted in purple. Calculations in dichloromethane were compared to those conducted using the ω b97xd/6-31G(d,p). These levels of theory were in accordance with/similar to previous studies on related compounds and therefore deemed acceptable for the purposes of this study.^[6, 22b, 44]

We note that there is a reasonable agreement between all computed and experimental UV-vis spectra, especially in the 400-580 nm region, despite the computational prediction of some transitions that are not present in the experimental spectra. Although reasonable agreement was found between UV-vis spectra in MeCN and calculations (CPCM = MeCN), poor agreement was found for the 580-850 nm region when comparing results in DCM. Due to the interference of charge-transfer interactions, vibrational transitions and symmetry breaking of states as reported for similar TPA^{.+}s in the literature,²⁵ the prediction of transitions beyond 700 nm is challenging with TD-DFT. Our observations are highly consistent with a related study on the TD-DFT of carbazoles.^[22b]

Transitions with a negligible coefficient (f < 0.0010) are labelled in red.

14.1. XYZ Co-ordinates and Computed UV-Visible Spectra

64

-1441.431053 [CAM-B3LYP/6-31G(d,p)]

Charge = 1	: Multiplicity = 2	2	
C	-2.47464400	-3.40562900	-0.00085000
Ċ	-2.81789100	-2.26438800	-0.74261400
Ċ	-2.01470100	-1.14266100	-0.74554300
Č	-0.82456700	-1.13747500	-0.00196800
C	-0 46267300	-2 27098800	0 74207500
C	-1 28269800	-3 38052700	0.74019800
C C	-3 34475400	-4 60073200	0.00003700
C	-4 73638800	-4 47113000	-0.07769500
C	-5 55327500	-5 59374900	-0.07454000
C	-4 99416100	-6 86547700	0.00113600
C	-3 61217700	-7 00730300	0.00110000
C	-2 70/31700	-5 88530800	0.07031200
Ц	-2.73431700	-2 27025000	-1 35/01500
н	-2 27708800	-2.27020000	-1 3526/300
Ц	-2.277000000	2 25600800	1 3/013300
н Ц	1 01286400	-2.23009000	1 35314400
Ц	5 18503300	3 48416000	0 11/82300
	-5.18505500	5 47419700	-0.11402300
	-0.03027100	7 74244200	-0.12300300
	-3.03273000	7.00562000	0.00151200
	-3.10/00200	-7.99502000	0.12//3100
	-1.71730300	-0.00904300	0.11495300
	-0.57060100	1.20204100	-0.00111100
	0.01510100	2.31500000	-0.74969700
	-1.72957100	1.53675100	0.74855100
C III	-0.55596200	3.57096800	-0.74672700
H	0.88643600	2.11295800	-1.36044400
C	-2.28150100	2.80128500	0.74689200
Н	-2.16126700	0.75351900	1.35955000
C	-1./1238000	3.84486600	0.00029200
н	-0.11//8100	4.34690500	-1.36311000
Н	-3.15090400	2.99421000	1.36413400
C	-2.31449500	5.19502300	0.00067100
C	-1.50922900	6.33682100	-0.08530900
С	-3.70204500	5.35820200	0.08717100
С	-2.07553400	7.60446200	-0.08242400
Н	-0.43019900	6.23412400	-0.12852900
С	-4.26729700	6.62630900	0.08496100
Н	-4.34613800	4.48640200	0.13047300
С	-3.45623600	7.75360100	0.00135000
Н	-1.43561100	8.47854600	-0.13992300
Н	-5.34522600	6.73371700	0.14286400
Н	-3.89835600	8.74425400	0.00159200
С	4.18870700	-0.43915000	-0.00152200

C 3.569 C 2.1988 C 1.3986 C 1.9994 C 3.3726 C 5.6588 C 6.495 C 7.8758 C 8.4452 C 7.6248 C 7.6248 C 6.2438 H 4.1716 H 1.737 H 1.3886 H 3.825 H 6.0638 H 9.524 H 8.5086 H 9.524 N 0.0013	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	 0.73889300 0.74041800 -0.00281400 -0.74592600 -0.74592600 -0.74289400 0.00035700 0.07989000 0.07931200 0.07931200 0.00447500 -0.07248000 -0.07703300 1.35210100 1.35210100 1.35262700 -1.35510900 0.11613700 0.12316600 -0.12316600 -0.11442200 -0.00197500 		
Excited State 1: <s**2>=0.8 116B ->125B 117B ->125B 124B ->125B</s**2>	Doublet 323 0.17271 -0.12698 0.95494	1.4983 eV	827.51 nm	f=0.4369
Excited State 2: <s**2>=0.8 114B ->125B 118B ->125B 122B ->125B 123B ->125B</s**2>	Doublet 378 0.20025 -0.51143 0.78517 0.15009	2.1065 eV	588.57 nm	f=0.2015
Excited State 3: <s**2>=0.8 122B ->125B 123B ->125B 123B ->127B</s**2>	Doublet 862 0.15605 -0.96789 -0.13990	2.1949 eV	564.88 nm	f=0.0117
Excited State 4: <s**2>=0.8 114B ->125B 115B ->125B 118B ->125B 122B ->125B</s**2>	Doublet 378 -0.21395 -0.16899 -0.82146 -0.43624	2.3038 eV	538.17 nm	f=0.0717
Excited State 5: <s**2>=0.9 122A ->126A 124A ->127A 125A ->129A 111B ->125B 116B ->125B 117B ->125B 121B ->125B 122B ->126B 124B ->125B</s**2>	Doublet 970 0.10781 -0.12474 -0.10087 -0.13854 0.11023 -0.36249 -0.84244 -0.11883 -0.13464	2.5937 eV	478.02 nm	f=0.0052

Excited State 6: <s**2>=0</s**2>	Doublet .900	2.8419 eV	436.27 nm	f=0.0008
116B ->125B	-0.49674			
117B ->125B	-0.79678			
121B ->125B	0.22138			
Excited State 7:	Doublet	3.0104 eV	411.86 nm	f=0.0029
<s**2>=0.</s**2>	.890			
114B ->125B	-0.10383			
115B ->125B	0.95176			
118B ->125B	-0.14310			
Excited State 8	: Doublet	3.2074 eV	386.56 nm	f=0.0251
<s**2>=1</s**2>	.824			
119A ->127A	-0.10301			
120A ->132A	0.15289			
121A ->133A	0.15344			
122A ->126A	0.29422			
122A ->134A	0.12630			
124A ->127A	-0.13087			
124A ->129A	0.20138			
125A ->127A	0.20463			
107B ->125B	-0.13232			
116B ->125B	-0.59075			
117B ->125B	0.23186			
119B ->131B	-0.14038			
120B ->132B	-0.15039			
121B ->127B	0.19698			
122B ->126B	-0.28537			
124B ->130B	0.12169			

Figure S70. Comparison of experimental UV-vis spectrum of **T***p***BPA**⁺ and computed UV-vis transitions at CAM-B3LYP/6-31G(d,p), CPCM = MeCN.

-1441.426158 [CAM-B3LYP/6-31G(d,p)]

Charge =	1; Multiplicity = 2	2	
С	0.33224000	4.19657700	-0.00068200
С	-0.66873400	3.55187700	0.74313800
С	-0.78804700	2.17743800	0.74519300
С	0.11073800	1.39987300	-0.00108800
С	1.12056700	2.02644800	-0.74741000
С	1.21905900	3.40253000	-0.74490000
С	0.44929600	5.66998900	-0.00027100
С	-0.69139000	6.47729900	0.08039100
С	-0.58068700	7.86108200	0.07813200
С	0.67141500	8.46237700	0.00082400
С	1.81271500	7.67077100	-0.07708600
С	1.70325000	6.28690000	-0.08042800
Н	-1.34173600	4.13731600	1.35823400
Н	-1.54347100	1.69581200	1.35394900
Н	1.79075800	1.43213600	-1.35637100
Н	1.97569000	3.87498200	-1.35993800
Н	-1.67445000	6.02025400	0.11819100
Н	-1.47579000	8.47159300	0.13099500

Н	0.75740900	9.54375400	0.00127900		
Н	2.79309900	8.13210800	-0.12954100		
Н	2.60172600	5.68027100	-0.11866200		
С	-1.26891500	-0.60514400	-0.00089400		
С	-1.49337600	-1.77211300	0.74554800		
С	-2.31625900	-0.04358200	-0.74724400		
С	-2.74352200	-2.35562600	0.74340000		
Н	-0.69875200	-2.18580500	1.35433100		
С	-3.55741500	-0.64593200	-0.74482700		
Н	-2.13639700	0.83387800	-1.35627600		
С	-3.80206700	-1.81084800	-0.00056600		
Н	-2.91440100	-3.23103800	1.35859900		
Н	-4.34474200	-0.22671000	-1.35994400		
С	-5.13682000	-2.44572000	-0.00026700		
Ĉ	-5.26614100	-3.83723700	0.07940000		
Č	-6.29774000	-1.66765900	-0.07965300		
č	-6.52013000	-4 43275200	0.07686500		
н	-4.37905800	-4 46048800	0 11647400		
Ċ	-7 55116900	-2 26430800	-0.07656900		
н	-6 22111800	-0 58624400	-0 11715100		
C	-7 66660900	-3 64852400	0.00029200		
н	-6 60169800	-5.51320100	0.00020200		
н	-8.44065900	-1.64555800	-0 128/3800		
Ц	8 64630600	111132300	0.00048400		
\hat{C}	-0.04050000	2 38660500	0.00040400		
ĉ	2 22744600	2.30009300	0.00000300		
c	2.33744000	1 09712100	-0.74003800		
ĉ	1.19470000	-1.90712100	-0.74350000		
Ĉ	1.10700400	-0.79734000	-0.00012000		
Ĉ	2.20123400	-0.40570600	0.74392900		
	3.41217800	-1.19382400	0.74213400		
	4.08757400	-3.22387300	0.00103800		
C C	4.59583100	-4.61859200	-0.07475900		
C	5.74028000	-5.40428300	-0.07182700		
C	6.99615000	-4.81036700	0.00125200		
C	7.10047300	-3.42505500	0.07418300		
C	5.95674000	-2.63830500	0.07686900		
н	2.36773500	-3.65301700	-1.35354000		
Н	0.34433800	-2.2/22/500	-1.35073500		
н	2.24235900	0.49060500	1.35070800		
Н	4.25639400	-0.90404900	1.35547300		
Н	3.62156500	-5.09434000	-0.10928800		
Н	5.65049900	-6.48422100	-0.12085600		
Н	7.89015900	-5.42479300	0.00134200		
Н	8.07645800	-2.95412400	0.12323900		
Н	6.05155800	-1.55822400	0.11105300		
Ν	-0.00010500	-0.00101600	-0.00096900		
Excite	ed State 1: De	oublet	1.8589 eV	666.96 nm	f=0.4300
	<s**2>=0.853</s**2>				
11	5B ->125B 0.262	33			
11	8B ->125B 0.147	72			
12	3B ->125B -0.146	34			
12	4B ->125B 0.914	10			
Evail	ad State 2.	oublot	1 8605 -1/	666 11 pm	f-0 1200
EXCI	S**2>=0 854	oublet	1.0005 EV	000.4111111	1-0.4200
11.	4B ->125B _0.004	34			
11	7B ->125B -0.148	13			
12	3B ->125B 0.913	97			
12	4B ->125B 0.146	34			

Excited State 3: <s**2>=0.8</s**2>	Doublet 860	2.5691 eV	482.59 nm	f=0.0034
114B ->125B	-0.17076			
117B ->125B	0.95250			
118B ->125B	0.10355			
Excited State 4:	Doublet	2.5700 eV	482.43 nm	f=0.0034
<s**2>=0.8</s**2>	860			
117B ->125B	-0.10360			
118B ->125B	0.95257			
Excited State 5:	Doublet	2.7896 eV	444.46 nm	t=0.0000
-3 2/-1. 123A ->126A	0 12862			
124A ->127A	-0.12850			
125A ->129A	0.16652			
110B ->125B	0.11313			
113B ->125B	0.18672			
122B ->125B	0.87566			
123B ->127B 124B ->126B	-0 14614			
1218 1208	0.11011			
Excited State 6:	Doublet	2.8213 eV	439.46 nm	f=0.0035
<s**2>=0.8</s**2>	867			
116B ->125B	0.97597			
Excited State 7:	Doublet	3.2220 eV	384.81 nm	f=0.0017
<s**2>=0.9</s**2>	917			
119B ->125B	0.71296			
119B ->126B	-0.15164			
120B ->125B 121B ->125B	0.63363			
1210 1250	0.17007			
Excited State 8:	Doublet	3.2228 eV	384.70 nm	f=0.0018
<s**2>=0.9</s**2>	917			
120B ->125B	-0.19404			
120B ->127B 121B ->125B	0.94841			
121B ->126B	0.10892			
Excited State 9:	Doublet	3.2238 eV	384.59 nm	f=0.0002
110B ->125B	-0 65497			
120B ->125B	0.70853			
120B ->127B	0.10149			
121B ->125B	0.10155			
121B ->127B	-0.11698			
Excited State 10:	Doublet	3.2887 eV	377.00 nm	f=0.1736
<s**2>=2.2</s**2>	274	0.2001 01		
118A ->128A	-0.10804			
119A ->136A	0.15088			
121A ->134A	-0.15257			
122A -2132A 122A ->134A	-0.10040			
123A ->127A	-0.22914			
124A ->126A	0.23036			
124A ->129A	-0.29500			

125A ->126A	0.28679
125A ->127A	0.37319
114B ->125B	0.25809
120B ->134B	0.13981
121B ->132B	0.16460
121B ->134B	0.10749
122B ->126B	-0.14068
122B ->127B	0.11564
122B ->136B	-0.12747
123B ->126B	0.18413
123B ->129B	0.22259
124B ->127B	-0.18322
124B ->129B	0.11703

TpBPA^{.+} in DCM (ωb97xd)

64

-1441.813421 [@b97xd/6-31+G(d,p)]

\sim	0 47000000	0 4000000	0 004 00000
C	-2.47269300	-3.40322900	-0.00138800
С	-1.28790300	-3.37586200	0.75404200
С	-0.46609200	-2.26402600	0.75604300
С	-0.82322500	-1.13701700	-0.00230000
С	-2.00552000	-1.14418500	-0.76055300
С	-2.81088000	-2.26802100	-0.75772700
С	-3.34451600	-4.60042200	-0.00032600
С	-2.78892100	-5.88718600	0.01383100
С	-3.60867500	-7.01196500	0.01223200
С	-4.99549800	-6.86824300	0.00214100
С	-5.55834400	-5.59263800	-0.00921800
С	-4.73977200	-4.46697900	-0.01324600
Н	-1.02473600	-4.22451000	1.37595000

Н	0.42634400	-2.24394200	1.37147000	
Н	-2.26103500	-0.28887400	-1.37598800	
Н	-3.69948500	-2.27907000	-1.37939300	
Н	-1.71032000	-6.01174400	0.00092600	
Н	-3.16325200	-8.00151100	0.01291600	
н	-5.63416600	-7.74558400	0.00312000	
Н	-0.0308/500	-5.47266900	-0.00892200	
	-5.16904400	-3.4/0/5100	-0.00121900	
C	2 19583500	0.72868700	0 75514400	
C	1 99780100	-1 16923300	-0 75576100	
Č	3.56977800	0.57455500	0.75327600	
Ĥ	1.73146500	1.49274300	1.36844400	
С	3.37387400	-1.30310800	-0.75277500	
Н	1.38576700	-1.82083100	-1.36928600	
С	4.18705800	-0.43902700	0.00039000	
Н	4.17247800	1.22913000	1.37333700	
Н	3.82844300	-2.06858600	-1.37214400	
С	5.66002000	-0.59267300	0.00043800	
С	6.49439900	0.53354700	0.01032400	
C	6.24455800	-1.86661600	-0.00955400	
	7.87803000	0.38876900	0.00737800	
	7 62800100	2 00000400	-0.00490800	
н	5 61541300	-2.00990400	0.00575800	
C	8 45006600	-0.88303900	0.00019800	
Ĥ	8.51112100	1.27057000	0.00468200	
Н	8.06638500	-3.00302900	-0.00427100	
Н	9.52941000	-0.99545900	0.00010300	
С	-1.71235700	3.84144500	0.00067500	
С	-0.55867200	3.56943100	-0.75442800	
С	0.01431600	2.31110200	-0.75764000	
С	-0.56955600	1.28203300	-0.00075900	
С	-1.72506600	1.53367300	0.75700700	
С	-2.27949400	2.80022600	0.75529900	
C	-2.31674800	5.19356800	0.00089800	
C	-1.50675400	6.33744400	-0.00969000	
	-2.07591700	7.60760500	-0.00680500	
C	-3.46246500	6 62270300	0.00102000	
C	-3 70940100	5 35197600	0.00073400	
н	-0 12462400	4 34561300	-1 37520700	
H	0.88362300	2.10665400	-1.37256900	
Н	-2.15282200	0.74950500	1.37162800	
Н	-3.14686400	2.99443400	1.37670000	
Н	-0.42575400	6.23604900	0.00507700	
Н	-1.43526600	8.48349400	-0.00469400	
Н	-3.90563300	8.74468700	0.00108100	
Н	-5.35719600	6.72871900	0.00672300	
Н	-4.35410700	4.47837200	-0.00334400	
Ν	0.00246000	-0.00076500	-0.00160700	
Excited Sta	ate 1: D	oublet	1.9301 eV	642.36 nm
<s<sup>3</s<sup>	·····Z>=0.845	10		
114D ->1 115R _>1	25B -0.130	513		
118B ->1	118B ->125B -0.20907			

124B ->125B	0.88794

f=0.4187

Excited State 2: <s**2>=0.8</s**2>	Doublet 846	1.9335 eV	641.24 nm	f=0.4166
114B ->125B	0.30625			
115B ->125B 117B ->125B	-0.13036			
123B ->125B	0.88746			
Evolted State 2	Deviblet		495 00	f-0.0000
<pre>Excited State 3: <s**2>=0.8</s**2></pre>	Doublet 858	2.5560 eV	485.08 nm	t=0.0082
114B ->125B	0.24036			
117B ->125B	0.90705			
123B ->125B	0.11087			
Excited State 1:	Doublet	2 5567 aV	184 94 nm	f=0.0082
<pre><s**2>=0.8</s**2></pre>	858	2.5507 80	404.94 1111	1-0.0002
115B ->125B	-0.24011			
117B ->125B 118B ->125B	0.24588			
124B ->125B	0.10987			
Excited State 5:	Doublet	2.8196 eV	439.72 nm	f=0.0042
<s**2>=0.8</s**2>	866			
116B ->125B	0.97412			
Excited State 6:	Doublet	2.9807 eV	415.95 nm	f=0.0000
<s**2>=1.2 1234 ->1274</s**2>	225 _0 14968			
124A ->126A	-0.15009			
125A ->129A	-0.18201			
110B ->125B	0.15374			
113B ->125B	0.23955			
122B ->125B	0.82236			
123B ->127B 124B >126B	0.18706			
1240 -> 1200	0.10750			
Excited State 7:	Doublet	3.4322 eV	361.24 nm	f=0.1575
119A ->137A	-0.13258			
120A ->134A	-0.15123			
121A ->132A	-0.13778			
123A ->126A	-0.22046			
124A ->127A	-0.22169			
124A ->129A 125A ->126A	0.29901			
125A ->120A	-0.19793			
114B ->125B	0.24974			
115B ->125B	0.17852			
119B ->134B	0.14572			
120B ->132B	0.14022			
1228 ->1268	0.19163			
1230 -21200 1238 ->120R	-0.10137			
124B ->127B	0.18061			
124B ->129B	0.22088			
Excited State 8:	Doublet	3.4326 eV	361.19 nm	f=0.1571
<\$**2>=2.2	206			
119A ->136A 120A ->133A	0.13277 -0.12388			

122A ->132A	-0.13939			
122A ->133A	0.11816			
123A ->127A	0.22110			
123A ->129A	0.29973			
124A ->126A	-0.22084			
125A ->126A	0.19735			
125A ->127A	0.43841			
114B ->125B	-0.17654			
115B ->125B	0.25078			
119B ->133B	0.13178			
121B ->132B	0.14261			
122B ->127B	0.19152			
123B ->127B	-0.18096			
123B ->129B	0.22083			
124B ->126B	0.18061			
124B ->129B	0.10639			
	Devilie	0 5 4 0 7 .) /	0.40 57	6 0 0055
	Doublet	3.5467 eV	349.57 nm	T=0.0055
<5 ²² =0.	.989			
1198 ->1238	0.40475			
1190 ->1200 1200 \1250	0.13907			
1200 - 1200	0.07720			
1200 - 21200	0.10930			
1210 - 21200	0.03313			
1210 -> 1200	0.13700			
Excited State 10:	Doublet	3.5497 eV	349.28 nm	f=0.0069
<s**2>=0.</s**2>	.989			
119B ->125B	-0.10239			
119B ->127B	-0.15540			
120B ->125B	0.72765			
120B ->126B	-0.12247			
121B ->125B	-0.59798			
121B ->127B	0.12481			

Figure S72. Computed UV-vis spectrum of **T***p***BPA**^{·+} at ωb97xd/6-31+G(d,p), CPCM = DCM.

TCBPA^{.+} in MeCN (CAM-B3LYP)

67

-1718.052984 [CAM-B3LYP/6-31G(d,p)]

С	-1.37643100	3.96799300	0.00198700
С	-0.24160700	3.60385100	-0.73771100
С	0.22094600	2.30387200	-0.74071800
С	-0.45625700	1.32474100	0.00220200
С	-1.59510800	1.67167900	0.74494700
С	-2.03972200	2.97789400	0.74172400
С	-1.86388500	5.36446800	0.00086300
С	-0.96154500	6.43345300	-0.04724500
С	-1.41188000	7.74252300	-0.04636600
С	-2.78446800	8.00097500	-0.00067400
С	-3.69778200	6.94431200	0.04597100
С	-3.23544800	5.63945400	0.04838700
Н	0.26420600	4.34173500	-1.34892100
Н	1.07510000	2.02970500	-1.34729100
Н	-2.09489000	0.92647900	1.35130300
Н	-2.89531300	3.24205800	1.35173200
Н	0.10521700	6.24215600	-0.06031000

Н	-0.7056	1400	8.56374500	-0.07453700		
Н	-4.7616	3300	7.14794900	0.07368100		
Н	-3.9512	7000	4.82570100	0.06262100		
С	1.3845	4700	-0.26799800	0.00219700		
С	1.8932	9700	-1.34373700	-0.74166300		
Ċ	2 2549	7800	0 54283300	0 74659300		
C C	3 2502	2900	-1 59401600	-0 73874500		
Ч	1 228/	2000	-1 0/53/800	-1 3/800000		
С С	2 6092	2700	0.27/12000	0 74202000		
	1 9500	7400	1 24760400	1 25400600		
	1.0099	1400	1.34700400	1.35409600		
	4.1330	4800	-0.79454300	0.00162800		
Н	3.6356	6200	-2.40089100	-1.35056000		
Н	4.2649	0400	0.881/9/00	1.35415900		
С	5.5866	3800	-1.07166200	0.00047500		
С	6.0606	4300	-2.38775500	-0.04905900		
С	6.5113	5900	-0.02200500	0.04845200		
С	7.4193	6100	-2.65293800	-0.04840700		
н	5.3612	7900	-3.21563500	-0.06322300		
C	7.8724	1700	-0.27463400	0.04567200		
Ĥ	6 1654	8300	1 00503600	0.06289800		
C	8 3302	3300	-1 50/12300	-0.00184400		
С Ц	7 7768	7500	3 67537500	0.07755100		
	0 5000	2500	0 54460900	-0.07753100		
	0.0009	2000	0.54469600	0.07301700		
0	-2.7500	00800	-3.17865000	-0.00245700		
C	-1.5643	5600	-3.25900900	0.74263000		
С	-0.6525	1400	-2.22327900	0.74664100		
С	-0.9153	4000	-1.06523100	-0.00069000		
С	-2.0977	6400	-0.96760600	-0.74956400		
С	-2.9952	0200	-2.01574900	-0.74742800		
С	-3.7212	2300	-4.29431900	-0.00155800		
С	-3.2813	7800	-5.62192800	0.05532800		
Ċ	-4 1863	1400	-6 66959100	0 05431800		
C.	-5 5563	8700	-6.39949000	-0.00016400		
C	-6 0100	5600	-5 07923700	-0.05498000		
C	5 0064	6800	4 04001000	0.05708500		
	4 2700	6000	4 12006700	1 25724200		
	-1.3709	0000	-4.13000700	1.33724300		
п	0.2398	0000	-2.28304200	1.35735200		
н	-2.2826	2200	-0.09181900	-1.35918400		
Н	-3.8846	7400	-1.94551400	-1.36215500		
Н	-2.2201	4400	-5.84125400	0.07569300		
Н	-3.8367	6700	-7.69461400	0.08924300		
Н	-7.0739	1800	-4.87208000	-0.08916400		
Н	-5.4583	8500	-3.01857900	-0.07716900		
Ν	0.0047	7400	-0.00265300	0.00151600		
С	9.7397	8900	-1.86227000	-0.00292900		
С	-6.4990	8200	-7.48111100	0.00055000		
Ċ	-3 2577	5700	9 35539300	-0 00145300		
N	_7 2596	3800	-8 35305200	0.00112700		
N	10 876	50000	2 07815800	0.00112700		
	2 6207	26400	10 44754600	-0.00303700		
IN	-3.0397	0400	10.44754000	-0.00200400		
Excited Sta	ate 1:	Do	oublet	1.7267 eV	718.05 nm	f=0.4484
	/ ∠0.0 1/3₽	_0 221	11			
1250 -	1/20	0.201	י ד 20			
1000 ->	143D 143D	0.109/	∠0 00			
1398 ->	140D	-0.1/10	00			
142B ->	143B	-0.916	10			
Excited St <s< td=""><td>ate 2: **2>=0.8</td><td>Do 87</td><td>oublet</td><td>2.1077 eV</td><td>588.25 nm</td><td>f=0.2059</td></s<>	ate 2: **2>=0.8	Do 87	oublet	2.1077 eV	588.25 nm	f=0.2059
132B ->143B 138B ->143B 141B ->143B	-0.19826 0.58539 0.74276					
---	---	-----------	-----------	----------		
Excited State 3: <s**2>=0.9 132B ->143B 133B ->143B 138B ->143B 141B ->143B</s**2>	Doublet 918 0.26032 0.15715 0.76874 -0.48473	2.3009 eV	538.85 nm	f=0.1126		
Excited State 4: <s**2>=1.(142A ->145A 143A ->146A 130B ->143B 134B ->143B 135B ->143B 135B ->143B 139B ->143B 142B ->143B</s**2>	Doublet 009 -0.10344 0.10480 -0.11172 0.24909 0.70358 -0.53562 0.15575	2.6619 eV	465.78 nm	f=0.0000		
Excited State 5: <s**2>=0.8 140B ->143B 140B ->145B 140B ->146B</s**2>	Doublet 899 0.97026 -0.13577 0.13424	2.7611 eV	449.04 nm	f=0.0014		
Excited State 6: <s**2>=1.2 140A ->144A 142A ->145A 143A ->146A 130B ->143B 134B ->143B 135B ->143B 135B ->143B 139B ->143B 141B ->144B 142B ->145B</s**2>	Doublet 267 0.18763 -0.16526 0.12093 -0.16153 -0.36996 -0.50978 -0.55685 -0.19720 0.10861 -0.11805	2.7729 eV	447.13 nm	f=0.0014		
Excited State 7: <s**2>=0.9 132B ->143B 133B ->143B 138B ->143B</s**2>	Doublet 04 0.11806 -0.95199 0.11745	2.8957 eV	428.16 nm	f=0.0031		
Excited State 8: <s**2>=2.2 136A ->150A 137A ->151A 139A ->145A 139A ->145A 140A ->144A 141A ->154A 142A ->146A 142A ->145A 143A ->145A 143A ->146A 134B ->143B 135B ->143B</s**2>	Doublet 20 -0.11646 0.10114 -0.16348 0.10158 0.30518 0.14858 -0.26935 -0.10198 0.29470 -0.11970 0.43941 -0.10185	3.0691 eV	403.98 nm	f=0.0652		

136B ->149B	0.12266
137B ->148B	-0.10200
139B ->143B	0.10372
139B ->145B	-0.24641
140B ->154B	0.15885
141B ->144B	-0.27612
142B ->146B	-0.25296
142B ->153B	-0.10650

Figure S74. Computed UV-vis spectrum of TCBPA⁺ at CAM-B3LYP/6-31G(d,p), CPCM = MeCN.

Figure S75. Comparison of experimental UV-vis spectrum of **TCBPA**⁺ and computed UV-vis transitions at CAM-B3LYP/6-31G(d,p), CPCM = MeCN.

67

-1718.044170 [CAM-B3LYP/6-31G(d,p)]

Charge = 1; Multiplicity = 2

С	•	4.20573100	-0.14578200	0.00121600
С		3.45577500	-1.06993400	-0.74133200
С		2.07651500	-1.03190800	-0.74425500
С		1.40765200	-0.04902300	0.00130400
С		2.14291200	0.88498000	0.74733100
С		3.52155000	0.82772400	0.74431900
С		5.68375800	-0.19700400	0.00065900
C		6.35321400	-1.42494300	-0.05345100
Ċ		7.73650900	-1.47924700	-0.05243700
Ċ		8,47474900	-0.29403300	-0.00096800
Č		7.82063600	0.93964400	0.05125100
Ĉ		6.43688200	0.98154300	0.05388700
Ĥ		3.96155400	-1.80640700	-1.35430900
Н		1.51272800	-1.72814900	-1.35277000
Н		1.62846500	1.61820500	1.35613100
н		4.07703600	1.52722100	1.35760500
н		5 78863100	-2 35002800	-0 07135100
н		8 24678700	-2 43451300	-0.08499600
н		8 39612500	1 85715000	0.08308400
н		5 93789000	1 94359500	0.07200000
C		-0 74148900	-1 19228100	-0 00064400
č		-1 92529900	-1 27991200	-0 74899000
č		-0.30225700	-2 29585900	0 74658400
č		-2 64894400	-2 45475600	-0 74639100
й		-2 24434400	-0 44373200	-1 35884600
C		-1 04225800	-3 46051100	0 74330700
й		0 58898400	-2 21719400	1 35686400
C		-2 22637600	-3 56578700	-0 00149700
й		-3 53851000	-2 52423000	-1 36102800
н		-0 71594600	-4 20080700	1 35808800
C		-3.01194200	-4.81882900	-0.00114900
č		-4 40988800	-4 78201800	-0.05888300
č		-2 37060100	-6.06154000	0.05702100
č		-5 15099500	-5 95126500	-0.05661200
й		-4 92676700	-3.82952500	-0.08043400
Ċ		-3 10118800	-7 237/6000	0.05567400
й		-1 28812300	-6 11276900	0.00007400
C		-4 49638500	-7 18442700	-0.00025200
й		-6.23325800	-5 01333100	
н		-2 59633900	-8 19553500	0.00200000
C		-1 97465700	3 71076900	0.00136500
č		-7.47413000	2 63124700	0.00100000
č		-1 83333600	1 40925600	0.74813500
ĉ		-0.65726400	1.40020000	0.0145800
č		0.1/10/700	2 31100/00	0.001400800
č		0.70067/00	2.51109400	0.74490000
ĉ		2 67001300	5.02410300	0.00080200
č		-2.07091300	5.0760000	0.00000200
č		-4.00000300	6 20527200	0.00700200
č		3 08579100	7 17052700	0.00409200
č		2 50070400	7 13151100	0.05514400
č		-2.09021000	6 21027200	-0.03314400
ц		2 35751/00	2 76172/00	1 35877700
11		-3.33731400	2.10113400	1.55677700

H -2.210 H 0.7424 H -0.415 H -4.650 H -5.807 H -2.019 H -0.860 N 0.0033 C -5.259 C -4.661 C 9.9083 N -5.206 N -5.874 N 11.065	09400 0.59686000 48100 2.17119400 82600 4.33028400 53300 4.16302000 70100 6.33335100 32700 8.35476400 59300 6.18541400 23600 -0.00026400 07600 -8.39984000 25400 8.74553300 80600 -0.34385100 04500 -9.37974300 00100 -0.3839570	0 1.35722500 0 -1.35413100 0 -1.35569800 0 0.07747300 0 0.08897800 0 -0.09006700 0 -0.07664500 0 0.00072300 0 0.00019100 0 -0.00116800 0 -0.00163400 0 0.00054800 00 -0.00245100		
Excited State 1: <s**2>=0.8 133B ->143B 136B ->143B 141B ->143B 142B ->143B</s**2>	Doublet 377 -0.29835 -0.17932 -0.14600 0.89167	1.9290 eV	642.75 nm	f=0.4465
Excited State 2: <s**2>=0.8 132B ->143B 135B ->143B 141B ->143B 142B ->143B</s**2>	Doublet 377 -0.29819 0.18002 0.89146 0.14601	1.9308 eV	642.14 nm	f=0.4446
Excited State 3: <s**2>=0.8 132B ->143B 135B ->143B 136B ->143B 141B ->143B</s**2>	Doublet 372 0.20394 0.83945 0.43398 -0.10470	2.5162 eV	492.74 nm	f=0.0066
Excited State 4: <s**2>=0.8 133B ->143B 135B ->143B 136B ->143B 142B ->143B</s**2>	Doublet 372 -0.20382 -0.43404 0.83951 0.10403	2.5169 eV	492.61 nm	f=0.0066
Excited State 5: <s**2>=0.8 134B ->143B</s**2>	Doublet 370 0.97584	2.7609 eV	449.07 nm	f=0.0039
Excited State 6: <s**2>=1.6 137A ->146A 141A ->145A 142A ->144A 143A ->146A 131B ->143B 140B ->143B 140B ->146B 141B ->144B 142B ->145B</s**2>	Doublet 549 -0.11754 0.22078 0.22089 0.22585 0.20152 0.71617 0.16914 -0.22905 -0.22916	2.8163 eV	440.23 nm	f=0.0000

Excited State	7: Doublet	3.0943 eV	400.69 nm	f=0.1297
<s**2>=</s**2>	2.393			
137A ->144A	-0.15583			
137A ->151A	-0.11486			
138A ->154A	0.11692			
139A ->152A	0.10199			
140A ->152A	0.10677			
141A ->144A	-0.21546			
141A ->145A	-0.10684			
142A ->144A	0.10653			
142A ->145A	-0.21569			
142A ->146A	0.31516			
143A ->144A	0.38347			
132B ->143B	0.30053			
13/B ->150B	0.12571			
138B ->152B	-0.11/23			
139B ->152B	-0.11276			
140B ->144B	-0.25197			
1410 -> 1430	-0.19271			
141B ->140B	0.24003			
142B -> 144B	-0.19209			
142B -> 140B	0.12593			
Excited State	8. Doublet	3 0947 eV	400 63 nm	f=0 1295
<s**2>=</s**2>	2.393	0.0047 01	400.00 mm	1 0.1200
137A ->145A	-0.15619			
137A ->150A	-0.11480			
138A ->153A	-0.10800			
139A ->152A	0.10603			
140A ->152A	-0.11093			
141A ->144A	-0.10701			
141A ->145A	0.21362			
141A ->146A	0.31556			
142A ->144A	-0.21615			
142A ->145A	-0.10622			
143A ->145A	0.38283			
133B ->143B	-0.30191			
137B ->151B	0.10103			
139B ->152B	0.12668			
140B ->145B	0.25273			
141B ->144B	0.19331			
141B ->146B	0.12603			
142B ->145B	-0.19056			
142B ->146B	-0.24709			
Evolted State). Doublot	2.21/1 oV	274 11 pm	f-0.0000
		5.5141 eV	374.111111	1-0.0000
1340 ->1470	-0 12023			
137A ->146A	0.16219			
138A ->152A	-0 12226			
141A ->145A	-0.24474			
142A ->144A	-0.24312			
143A ->146A	-0.20214			
131B ->143B	0.20263			
137B ->152B	-0.11417			
140B ->143B	0.59360			
140B ->146B	-0.21571			
141B ->144B	0.23453			
142B ->145B	0.23588			

Excited State 10:	Doublet	3.4809 eV	356.19 nm	f=0.0098	
<s**2>=1.</s**2>	033				
137B ->143B	0.22918				
137B ->145B	0.13585				
138B ->143B	-0.50712				
138B ->145B	-0.15323				
139B ->143B	0.75888				
139B ->145B	0.13396				

Figure S76. Computed UV-vis spectrum of **T***p***BPA**^{.+} at CAM-B3LYP/6-31G(d,p), CPCM = DCM.

TCBPA^{.+} in DCM (ωb97xd)

67

```
-1718.459448 [@b97xd/6-31+G(d,p)]
```

Charge = 1;	Multiplicity = 2	2	
С	3.45359800	2.39626600	-0.00704300
С	3.40154000	1.21519100	-0.76491600
С	2.26916000	0.42178000	-0.76955300
С	1.15269900	0.80623200	-0.00954900
С	1.18589500	1.98685300	0.75042200
С	2.32874500	2.76545100	0.74836500
С	4.67552000	3.23488900	-0.00208600
С	5.94372200	2.63922000	0.01473700
С	7.09257100	3.41730400	0.02175000
С	6.98084400	4.81228900	0.00745800
С	5.72103500	5.42190100	-0.01145000
С	4.57945800	4.63289300	-0.01401900
Н	4.24482400	0.93167000	-1.38498900
Н	2.22629000	-0.46842900	-1.38684900
Н	0.33733200	2.26127600	1.36685700
Н	2.36162400	3.65304800	1.37053700
Н	6.03688800	1.55885900	0.04620900
Н	8.07025300	2.94973200	0.04434500

Н	5.63927000	6.50272000	-0.03053600		
Н	3.60664500	5.11155900	-0.05009500		
С	0.11611300	-1.39473200	-0.00826900		
С	-0.77370300	-2.17141300	-0.76822800		
С	1.12317900	-2.01219100	0.75150500		
С	-0.65017200	-3.54849600	-0.76328500		
Н	-1.52392800	-1.69150900	-1.38641500		
С	1.22832400	-3.39090600	0.75002800		
Н	1.78355000	-1.41305800	1.36820400		
С	0.34748400	-4.18223100	-0.00496100		
Н	-1.31552100	-4.13846400	-1.38396200		
Н	1.98186300	-3.86171800	1.37177800		
С	0.46721200	-5.65918900	-0.00048900		
С	-0.67980800	-6.46408400	0.01429800		
С	1.72848600	-6.26978500	-0.01027500		
С	-0.57476600	-7.84762500	0.02003300		
Н	-1.66410500	-6.00893000	0.04587700		
С	1.84646800	-7.65240600	-0.00886700		
Н	2.62690100	-5.66255000	-0.04284800		
С	0.69173800	-8.44316700	0.00697900		
Н	-1.46626100	-8.46391600	0.04089900		
Н	2.82505900	-8.11838400	-0.02622400		
С	-3.80319200	1.79501800	-0.00222200		
С	-3.55917100	0.63236700	0.74652300		
С	-2.31206600	0.03538600	0.74787400		
С	-1.27228700	0.60366900	-0.00627500		
С	-1.49854300	1.76837800	-0.75807800		
С	-2.75355000	2.34870900	-0.75309700		
С	-5.14361400	2.42673000	0.00107000		
С	-6.30108500	1.63690100	-0.01008800		
С	-7.55893800	2.22278900	-0.00969400		
С	-7.67004300	3.61788800	0.00627900		
С	-6.52292800	4.41990100	0.02036600		
С	-5.27073800	3.82214500	0.01585600		
н	-4.34525400	0.21011900	1.36282600		
н	-2.12540200	-0.84040000	1.35890900		
н	-0.70578500	2.18387900	-1.36970200		
н	-2.93069700	3.22434500	-1.36790500		
н	-6.22165000	0.55544000	-0.04266000		
Н	-8.44996300	1.60571400	-0.02775100		
н	-6.61366600	5,49997800	0.04093300		
н	-4.38584100	4,44892200	0.04731300		
Ν	-0.00147900	0.00501800	-0.00826000		
С	0.80776900	-9.87552300	0.01015200		
C	-8.97003200	4.23052000	0.00829100		
Č	8.16713000	5.62345500	0.01183300		
Ň	-10.01890000	4,72532200	0.00985900		
N	0.90186000	-11.03148700	0.01264500		
N	9.12469900	6.27769400	0.01532600		
Excited	d State 1: E	Doublet	1.9911 eV	622.69 nm	f=0.4324
	<s**2>=0.859</s**2>				
132	B ->143B -0.34	518			
136	B ->143B -0.25	030			
142	B ->143B 0.86	919			
Excite	ed State 2: E	Doublet	1.9988 eV	620.29 nm	f=0.4275
400	<s**2>=0.860</s**2>	FC 4			
133	D-2143B -0.34	504 570			
130	D-/143D U.25	519			

141B ->143B	0.86715			
Excited State 3: <s**2>=0.8 133B ->143B 135B ->143B 136B ->143B 141B ->143B</s**2>	Doublet 867 0.28161 0.90716 -0.16231 -0.14194	2.5110 eV	493.75 nm	f=0.0159
Excited State 4: <s**2>=0.8 132B ->143B 135B ->143B 136B ->143B 142B ->143B</s**2>	Doublet 867 -0.27798 0.16246 0.90877 0.13814	2.5132 eV	493.33 nm	f=0.0154
Excited State 5: <s**2>=0.8 134B ->143B</s**2>	Doublet 868 0.97304	2.7645 eV	448.48 nm	f=0.0045
Excited State 6: <s**2>=1.8 137A ->146A 141A ->145A 142A ->145A 143A ->146A 131B ->143B 140B ->143B 140B ->145B 141B ->145B 142B ->144B</s**2>	Doublet 800 0.13255 0.24842 0.25229 -0.23642 -0.24589 0.63868 0.18812 -0.27324 -0.27324	2.9984 eV	413.50 nm	f=0.0000
Excited State 7: <\$**2>=2.4 137A ->144A 137A ->149A 138A ->150A 141A ->145A 141A ->145A 142A ->145A 142A ->145A 142A ->145A 142A ->145A 143A ->144A 132B ->143B 137B ->150B 138B ->152B 140B ->144B 141B ->145B 142B ->146B	Doublet 404 -0.16339 -0.12813 -0.13202 -0.14582 0.19420 -0.19007 -0.14736 -0.33191 0.38283 0.30434 -0.15535 0.10014 -0.26730 -0.18293 0.17763 0.27440	3.2290 eV	383.97 nm	f=0.1075
Excited State 8: <\$**2>=2.4 137A ->145A 137A ->145A 139A ->151A 139A ->153A 140A ->152A 141A ->144A 141A ->145A	Doublet 408 -0.16359 -0.12771 0.13255 -0.10273 -0.13562 0.19079 0.14675	3.2311 eV	383.72 nm	f=0.1058

141A ->146A 142A ->144A 142A ->145A 143A ->145A 133B ->143B 138B ->151B 139B ->152B 140B ->145B 141B ->144B 141B ->146B 142B ->145B	-0.33382 -0.14562 0.19281 0.38021 0.30341 0.15674 -0.13887 -0.26753 -0.17994 0.27583 -0.18106			
Excited State 9:	Doublet	3.5329 eV	350.94 nm	f=0.0001
<s**2>=1.</s**2>	.734			
137A ->146A	-0.18740			
141A ->145A	-0.23351			
142A ->144A	-0.23621			
143A ->146A	0.17444			
131D -> 143D 130B >151B	-0.33457			
140B ->143B	0.58762			
140B ->146B	-0.22395			
141B ->145B	0.19564			
142B ->144B	0.19646			
Excited State 10:	Doublet	3.6770 eV	337.19 nm	f=0.3403
<s**2>=1.</s**2>	.593			
132A ->144A	0.10101			
133A ->145A	-0.10162			
134A ->154A 125A >147A	0.10304			
135A ->147A 137A ->147A	-0.16267			
1470 ->1560	-0 10768			
143A ->144A	0.45183			
143A ->149A	-0.23153			
143A ->153A	-0.10808			
132B ->143B	-0.38555			
134B ->154B	0.11609			
135B ->147B	0.16292			
136B ->143B	-0.10919			
140B ->144B	0.12600			
142B ->143B	-0.28343			

Figure S77. Computed UV-vis spectrum of **TCBPA**^{.+} at ωb97xd/6-31+G(d,p), CPCM = DCM.

Figure S78. Comparison of experimental UV-vis spectrum of **TCBPA**⁺ and computed UV-vis transitions at CAM-B3LYP/6-31G(d,p) and ω b97xd/6-31+G(d,p), CPCM = DCM.

TdCBPA^{.+} in MeCN (CAM-B3LYP)

70

-1994.651364 [CAM-B3LYP/6-31G(d,p)]

Charge = 1	; Multiplicity = 2	2	
С	-4.17303400	0.48217600	-0.05569100
С	-3.57500100	-0.55169400	0.67720100
С	-2.20473100	-0.71753900	0.67933100
C	-1.40146900	0.16137100	-0.06286200
C	-1.98808500	1.19657100	-0.80629100
С	-3.36031000	1.34746200	-0.79981400
C	-5.64805100	0.62111100	-0.05775100
C	-6.44343200	-0.50630700	-0.26903800
С	-7.82541800	-0.42092800	-0.28954000
С	-8.44670100	0.81375600	-0.08883900
С	-7.68008600	1.95373200	0.13722200
С	-6.29015800	1.85723200	0.15297100
Н	-4.18913200	-1.21283200	1.27726500
Н	-1.74972000	-1.49326200	1.28230400
Н	-1.37168400	1.84533900	-1.41590100
Н	-3.80559500	2.12592400	-1.40721400
Н	-5.96780200	-1.46420900	-0.44243200
Н	-8.42359800	-1.30680200	-0.46565700
Н	-8.15745400	2.91016400	0.30957800
С	0.55696200	-1.28580900	-0.06156800
С	1.71442400	-1.54324700	0.68795400
С	-0.04089700	-2.30921700	-0.81168900
С	2.25616100	-2.81292400	0.68634500
Н	2.15500700	-0.76254600	1.29529100
С	0.51541800	-3.57272700	-0.80548500
Н	-0.90707800	-2.09781300	-1.42608100
С	1.66605300	-3.84564900	-0.05431100
Н	3.13160100	-3.01573400	1.29178900
Н	0.06871500	-4.34591200	-1.41815600
С	2.28435800	-5.19230300	-0.05603300
С	3.66061200	-5.31449400	-0.25425500
С	1.53465300	-6.36866600	0.14242300
С	4.27967100	-6.55295500	-0.27293400
Н	4.25296900	-4.42219900	-0.41825100
С	2.14818900	-7.61960200	0.12850100
С	3.52113800	-7.71016000	-0.08390800
Н	5.34779400	-6.62594200	-0.43800000
Н	1.55830700	-8.51301800	0.29067300
С	2.50101400	3.36810300	-0.05684800
С	2.83712400	2.23308400	-0.80612000
С	2.01744000	1.12244100	-0.81213000
С	0.83157800	1.13266100	-0.06278500
С	0.47885300	2.26600800	0.68535600

C 1.310 C 3.363 C 4.755 C 5.538 C 4.938 C 3.558 C 2.788 H 3.730 H 2.265 H -0.417 H 1.050 H 6.606 H 3.093 H 1.720 N -0.005 C 4.155 C 5.743 C -9.878 N 6.388 N 4.669 N -11.032 C -5.543 C 0.124 C 5.412 N 5.967 N -1.009 N -4.971	55500 3.3678700 42500 4.5729650 71500 4.5048390 88200 5.6574200 33800 6.8941930 13800 6.9792950 70200 5.8282470 80800 2.2290260 44700 0.2651360 36900 2.2603910 67500 4.2291960 73100 5.5883530 93300 7.9426370 96500 5.9003470 0.5100 0.0031800 12200 -8.9976350 22000 8.0823360 54400 0.9121330 87300 9.0414250 40800 -10.033175 227000 0.987907 98500 3.0515570 43300 -6.3231190 37100 3.2575740 17500 2.2702400 35300 -6.3185880 47700 4.0274120	0 0.68232300 0 -0.05891800 0 0.14591500 0 0.13065900 0 -0.08936300 0 -0.28438300 0 -0.26411700 0 -1.41794800 0 -1.42533400 0 -1.28642000 0 0.29731900 0 -0.45614000 0 -0.45614000 0 -0.43351900 0 -0.10923900 0 -0.10945600 0 -0.12608900 0 -0.1264300 0 -0.1264300 0 -0.12624300 0 -0.43769000 0 -0.43769000 0 -0.43769000 0 -0.43769000 0 -0.43769000 0 0.43769000 0 0.42382700 0 0.65758700 0 0.67682700		
Excited State 1: <s**2>=0.8 151B ->161B 155B ->161B 157B ->161B 158B ->161B 160B ->161B</s**2>	Doublet 361 -0.29342 0.19227 0.21466 -0.12416 -0.86730	1.9649 eV	630.98 nm	f=0.3705
Excited State 2: <s**2>=0.8 150B ->161B 156B ->161B 159B ->161B</s**2>	Doublet 356 -0.13954 -0.72471 -0.63637	2.1193 eV	585.03 nm	f=0.1130
Excited State 3: <s**2>=0.9 161A ->162A 150B ->161B 152B ->161B 154B ->161B 156B ->161B 159B ->161B</s**2>	Doublet 943 -0.10477 -0.34523 -0.15848 -0.11802 0.62004 -0.59932	2.3462 eV	528.45 nm	f=0.1837
Excited State 4: <s**2>=0.8 151B ->161B 153B ->161B 154B ->161B 155B ->161B 157B ->161B 160B ->161B</s**2>	Doublet 383 -0.30332 -0.55481 -0.18077 -0.68277 -0.18320 -0.11519	2.5758 eV	481.35 nm	f=0.0056

Excited State 5:	Doublet	2.7668 eV	448.12 nm	f=0.0029
150B ->161B	-0.13066			
152B ->161B	0.95091			
156B ->161B	0.11283			
Excited State 6:	Doublet	2.8648 eV	432.79 nm	f=0.0012
<s**2>=1.</s**2>	923			
155A ->165A 156A ->164A	-0.11339			
158A ->168A	0.12910			
158A ->169A	0.10064			
159A ->162A	-0.21525			
160A ->163A 160A ->164A	-0.19840 0.16752			
161A ->164A	0.17334			
148B ->161B	-0.12799			
151B ->161B	-0.11981			
153B ->161B 154B ->165B	-0.12321 -0.10793			
157B ->161B	0.51084			
157B ->164B	0.12788			
158B ->161B	-0.26956			
158B ->164B 158B ->168B	-0.11387			
159B ->162B	0.21593			
160B ->161B	0.16577			
160B ->163B	-0.18305			
160B ->164B	0.19393			
Excited State 7:	Doublet	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <s**2>=2. 154A ->166A</s**2>	Doublet 369 -0 12670	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <s**2>=2. 154A ->166A 155A ->165A</s**2>	Doublet 369 -0.12670 0.16130	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <s**2>=2. 154A ->166A 155A ->165A 156A ->163A</s**2>	Doublet 369 -0.12670 0.16130 -0.20096	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 0.11572	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.11572 -0.26653	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.11572 -0.26653 -0.26324	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 152B >166B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.11572 -0.26653 -0.26324 0.21345 0.30946 0.41242	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.11572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.11572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->161B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->163B 157B ->163B 158B ->163B 158B ->163B 158B ->164B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11809	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->161B 158B ->164B 158B ->164B 158B ->164B 158B ->168B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->163B 158B ->164B 158B ->168B 158B ->168B 159B ->162B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 157B ->163B 158B ->163B 158B ->164B 158B ->164B 158B ->162B 160B ->164B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.15427 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.23683 -0.23302	3.0023 eV	412.97 nm	f=0.0312
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->163B 158B ->164B 158B ->164B 158B ->164B 159B ->162B 160B ->164B 20100 ->164B	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683 -0.23302 Doublet	3.0023 eV 3.0460 eV	412.97 nm 407.04 nm	f=0.0312 f=0.0586
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->163B 158B ->164B 158B ->164B 158B ->164B 159B ->162B 160B ->164B Excited State 8: <\$**2>=2. 154A ->1654	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683 -0.23302 Doublet 525 -0.20923	3.0023 eV 3.0460 eV	412.97 nm 407.04 nm	f=0.0312 f=0.0586
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->164B 158B ->164B 158B ->164B 158B ->164B 159B ->162B 160B ->164B Excited State 8: <\$**2>=2. 154A ->165A 155A ->166A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683 -0.23302 Doublet 525 -0.20923 0.22526	3.0023 eV 3.0460 eV	412.97 nm 407.04 nm	f=0.0312 f=0.0586
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->164B 158B ->164B 158B ->164B 158B ->162B 160B ->164B Excited State 8: <\$**2>=2. 154A ->165A 155A ->166A 156A ->162A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683 -0.23302 Doublet 525 -0.20923 0.22526 -0.25238	3.0023 eV 3.0460 eV	412.97 nm 407.04 nm	f=0.0312 f=0.0586
Excited State 7: <\$**2>=2. 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->168A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->163B 158B ->163B 158B ->163B 158B ->164B 158B ->164B 159B ->162B 160B ->164B Excited State 8: <\$**2>=2. 154A ->165A 155A ->163A 156A ->163A 156A ->163A 156A ->163A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.15427 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683 -0.23302 Doublet 525 -0.20923 0.22526 -0.25238 -0.32491 0.12504	3.0023 eV 3.0460 eV	412.97 nm 407.04 nm	f=0.0312 f=0.0586
Excited State 7: $=2.$ 154A ->166A 155A ->165A 156A ->163A 158A ->168A 158A ->169A 159A ->162A 160A ->164A 161A ->163A 151B ->161B 153B ->166B 154B ->165B 157B ->163B 158B ->164B 158B ->164B 158B ->164B 158B ->164B 159B ->162B 160B ->164B Excited State 8: $=2.$ 154A ->165A 155A ->166A 156A ->162A 159A ->163A 159A ->164A 159A ->164A	Doublet 369 -0.12670 0.16130 -0.20096 -0.15427 -0.1572 -0.26653 -0.26324 0.21345 0.30946 0.11343 -0.15171 0.22463 0.27564 -0.10695 0.11898 0.18881 0.23683 -0.23302 Doublet 525 -0.20923 0.22526 -0.25238 -0.32491 -0.13504 -0.19267	3.0023 eV 3.0460 eV	412.97 nm 407.04 nm	f=0.0312 f=0.0586

$150B \rightarrow 161B$ $150B \rightarrow 163B$ $151B \rightarrow 162B$ $153B \rightarrow 165B$ $154B \rightarrow 161B$ $154B \rightarrow 163B$ $154B \rightarrow 164B$ $154B \rightarrow 166B$ $155B \rightarrow 162B$ $157B \rightarrow 162B$ $159B \rightarrow 163B$ $159B \rightarrow 164B$ $160B \rightarrow 162B$	-0.27416 -0.11461 0.11276 0.19226 -0.11180 -0.11651 -0.10199 -0.21145 -0.14981 -0.13790 0.26225 0.26995 0.10935 -0.11478			
Excited State 9	: Doublet	3.1773 eV	390.22 nm	f=0.0081
<s**2>=1</s**2>	.122			
160A ->164A	-0.13572			
101A ->104A 1578 >1618	-0.10919			
157B ->101B	-0.23341			
158B ->168B	0.13000			
160B ->164B	-0 14411			
	-			
Excited State 10	: Doublet	3.2793 eV	378.08 nm	f=0.0224
<5**2>=1	.626			
156A ->163A	0.10085			
157A ->172A 158A >168A	0.12340			
158A ->160A	-0.10000			
160A ->163A	0.12433			
160A ->164A	-0 17340			
161A ->163A	0.10645			
161A ->164A	-0.19541			
148B ->161B	-0.17431			
151B ->161B	-0.20954			
153B ->161B	-0.11697			
157B ->161B	0.56625			
158B ->164B	0.11734			
158B ->168B	0.18232			
160B ->161B	0.29809			
160B ->163B	0.12338			
160B ->164B	-0.16977			

Figure S79. Computed UV-vis spectrum of **TdCBPA**⁺ at CAM-B3LYP/6-31G(d,p), CPCM = MeCN.

TdCBPA^{.+} in DCM (CAM-B3LYP)

70

-1994.642135 [CAM-B3LYP/6-31G(d,p)]

Charge =	1;	Multi	plicity	y = 2	2
----------	----	-------	---------	--------------	---

C	0	3 69202100	-2 00171300	0.06077600
č		2 60884900	-2 50669100	-0.67106000
č		1 39036300	-1.85801500	-0.67217600
č		1 23551400	-0 67724400	0.07001500
č		2 30977500	-0.16545300	0.07001000
č		3 52100700	-0.827/5700	0.01020000
č		1 08203/00	-0.02740700	0.00072300
č		4.90293400	1 10013700	0.00700000
č		6 17062100	4.10913700	0.2000000
č		7 20202400	-4.02000200	0.20100300
č		7.39302400	2 70022200	0.07942000
Č		6.21421200	-2.79033200	-0.14275700
		0.21421300	-2.07790100	-0.1000
п		2.73381000	-3.39954400	-1.27237000
н		0.57301400	-2.23327300	-1.27515600
н		2.17652800	0.71968200	1.42265700
Н		4.33273500	-0.44370000	1.41160600
Н		4.05897500	-4.62631000	0.43995300
Н		6.16750600	-5.89537000	0.45439400
Н		8.34843800	-2.27528200	-0.31498100
С		-1.19937800	-0.73616400	0.06750300
С		-2.29316500	-0.28384700	-0.68565100
С		-1.30025200	-1.91547700	0.82037100
С		-3.46593300	-1.01200900	-0.68535000
Н		-2.20376800	0.60660100	-1.29527400
С		-2.48136300	-2.63024000	0.81275500
Н		-0.47130700	-2.23900400	1.43739700
С		-3.57823200	-2.19478600	0.05762200

H H	-4.2970340 -2.5610350	0 -0.67719200 0 -3.51896600	-1.29478000 1.42654500		
С	-4.8566680	0 -2.94379800	0.05535700		
С	-6.0560450	0 -2.25543300	0.24505000		
С	-4.9142330	0 -4.33792100	-0.13888900		
С	-7.2728620	0 -2.91632700	0.25870600		
Н	-6.0319250	0 -1.18427800	0.40660800		
С	-6.1335990	0 -5.01215400	-0.12984800		
C	-7.3126620	0 -4.29983800	0.07317300		
Н	-8.1913240	J = 2.36426000	0.41733200		
	-0.1003320	J -0.08291200	-0.28883200		
C	-0.1130400	J 4.19020300	0.05908700		
C	-1.0030200	0 2 07575500	0.01040300		
C C	-0.0333960	1 40091400	0.06772500		
č	0.9065370) 2 12445200	-0.68164400		
č	0.8596170	3.50415000	-0.68031000		
Č	-0.1255800	5.67185400	0.05817500		
Ċ	-1.3046360	0 6.41628900	-0.14249100		
С	-1.2821940	7.80944400	-0.13080000		
С	-0.0786510	0 8.47675900	0.08129300		
С	1.1002150	7.75297300	0.27241000		
С	1.0675300	0 6.36865900	0.25586300		
Н	-1.7729620	3.96724400	1.42204300		
Н	-1.7037570	0 1.51780600	1.43204800		
Н	1.6359000	0 1.60370700	-1.28946000		
Н	1.5665790	0 4.05861700	-1.28622000		
Н	-2.1963640	0 8.36623800	-0.29452800		
Н	2.0352690	J = 8.27433100	0.43790200		
	1.9833570		0.42189100		
C C	8 5608/80	-0.00449300 1 / 002/1100	0.00901700		
C	-0.0090400	0 01182000	0.00017300		
C C	8 6257790	-4 89992400	0.09704900		
N	-0.0306470	0 11 06771200	0.11151300		
N	-9.5838120	0 -5.54788500	0.09733000		
N	9.6173210	-5.49444100	0.10981300		
С	6.2792280	0 -0.67020000	-0.43290000		
С	-3.7295150	0 -5.10787900	-0.39886800		
С	-2.5604490	5.77255500	-0.41181500		
N	-3.5817360	0 5.27916600	-0.63715000		
N	-2.7920270	0 -5.74898700	-0.61645100		
N	6.3581270	0.45954500	-0.66672900		
Excited Sta <s< td=""><td>te 1: **2>=0.873</td><td>Doublet</td><td>2.0489 eV</td><td>605.14 nm</td><td>f=0.3770</td></s<>	te 1: **2>=0.873	Doublet	2.0489 eV	605.14 nm	f=0.3770
151B ->1	61B -0.3	1907			
154B ->1	61B -0.2	0953			
156B ->1	61B 0.1	2378			
157B ->1	61B 0.1	4386			
159B ->1	61B -0.2	5299			
160B ->1	61B 0.8	3240			
Excited Sta	ate 2:	Doublet	2.0538 eV	603.69 nm	f=0.3728
55 150P \1	∠>=U.ŏ/5 61B ∩ 2	1821			
152R -1	61B 0.3	1700			
156B ->1	61B _0.2	4387			
157B ->1	61B 0.1	2308			
159B ->1	61B 0.8	3081			

160B ->161B	0.25244			
Excited State 3: <s**2>=0. 150B ->161B 153B ->161B 154B ->161B 156B ->161B 157B ->161B 159B ->161B</s**2>	Doublet 880 -0.26966 0.80481 -0.26537 -0.27648 0.23056 -0.14908	2.4496 eV	506.14 nm	f=0.0252
Excited State 4: <s**2>=0. 151B ->161B 153B ->161B 154B ->161B 156B ->161B 157B ->161B 160B ->161B</s**2>	Doublet 880 -0.26840 0.26463 0.80119 -0.23713 -0.28692 0.14407	2.4524 eV	505.55 nm	f=0.0247
Excited State 5: <s**2>=0. 152B ->161B</s**2>	Doublet 872 0.97443	2.6733 eV	463.78 nm	f=0.0045
Excited State 6: <s**2>=2. 153A ->167A 156A ->165A 157A ->166A 158A ->164A 159A ->162A 160A ->163A 161A ->164A 149B ->161B 155B ->167B 156B ->165B 157B ->166B 158B ->161B 158B ->164B 159B ->162B 160B ->163B</s**2>	Doublet 157 -0.12066 0.16240 0.16182 0.17149 0.26244 0.26218 0.21076 0.15358 0.16174 0.13628 -0.13611 0.52538 0.23162 -0.25604 -0.25693	2.8937 eV	428.46 nm	f=0.0000
Excited State 7: <s**2>=2. 153A ->163A 156A ->165A 156A ->165A 157A ->166A 157A ->167A 158A ->162A 158A ->163A 158A ->165A 159A ->162A 159A ->164A 160A ->163A 160A ->163A 161A ->163A 161A ->163A 150B ->161B</s**2>	Doublet 526 -0.10233 0.13817 0.10597 -0.13662 -0.13077 0.10079 -0.15326 0.10793 -0.12013 0.19672 0.17714 -0.20084 -0.23046 0.13927 -0.21630 0.17392	3.0233 eV	410.10 nm	f=0.0521

$151B \rightarrow 161B$ $155B \rightarrow 165B$ $155B \rightarrow 166B$ $156B \rightarrow 165B$ $157B \rightarrow 161B$ $157B \rightarrow 164B$ $157B \rightarrow 166B$ $157B \rightarrow 162B$ $158B \rightarrow 162B$ $159B \rightarrow 162B$ $159B \rightarrow 162B$ $160B \rightarrow 162B$ $160B \rightarrow 163B$ $160B \rightarrow 164B$	-0.22385 0.12119 -0.15934 0.10434 0.11683 0.13534 0.10729 0.13816 0.12922 0.24794 0.11813 0.13386 0.13513 -0.11322 -0.23292			
Excited State 8 $=2.$ 153A ->162A 156A ->166A 156A ->167A 157A ->165A 157A ->165A 157A ->165A 158A ->162A 158A ->165A 158A ->165A 158A ->165A 159A ->164A 160A ->162A 160A ->164A 161A ->162A 161A ->162A 161A ->163A 150B ->161B 155B ->165B 155B ->166B 156B ->161B 156B ->166B 156B ->167B 157B ->165B 157B ->165B 157B ->165B 157B ->165B 157B ->165B 157B ->165B 157B ->162B 159B ->162B 150B ->163B	: Doublet .527 -0.10213 0.14030 -0.12511 0.13818 -0.10829 -0.15321 -0.10068 -0.11897 -0.10943 0.19842 -0.23092 0.19858 -0.17689 -0.21574 -0.14000 0.22239 0.17497 -0.16012 -0.12015 -0.17497 -0.16012 -0.12015 -0.11746 -0.13568 0.10734 -0.13568 0.10734 -0.13639 -0.10356 0.24647 -0.13110 -0.13430 0.11739 -0.23306 0.11772 0.13219	3.0234 eV	410.08 nm	f=0.0520
Excited State 9: <s**2>=1 153A ->167A 156A ->165A 157A ->166A 158A ->164A 159A ->162A 160A ->163A 140B ->161B 149B ->161B</s**2>	Doublet .436 0.10164 -0.14595 -0.14429 -0.15658 -0.14783 -0.14626 0.10393 0.29963	3.3672 eV	368.22 nm	f=0.0000

155B ->161B	-0.24818			
155B ->167B	-0.12953			
156B ->165B	-0.11792			
157B ->166B	0.11694			
158B ->161B	0.68616			
158B ->164B	-0.17653			
159B ->162B	0.11592			
160B ->163B	0.11686			
Excited State 10:	Doublet	3.5215 eV	352.08 nm	f=0.1849
<s**2>=1.4</s**2>	428			
152A ->171A	0.12920			
154A ->168A	-0.15589			
155A ->172A	0.10078			
161A ->162A	-0.36223			
161A ->163A	0.11260			
161A ->165A	0.11014			
161A ->169A	-0.19111			
151B ->161B	-0.29733			
153B ->168B	-0.13680			
156B ->161B	0.43811			
157B ->161B	0.27555			
159B ->161B	0.13290			

160B ->161B

-0.29187

Figure S80. Computed UV-vis spectrum of TdCBPA^{.+} at CAM-B3LYP/6-31G(d,p), CPCM = DCM.

TdCBPA^{.+} in DCM (ωb97xd)

70

-1995.088780 [@b97xd/6-31G(d,p)]

Charge = 1; Multiplicity = 2

		, I J		
С	0	3.36054900	-2.50664400	0.11125400
С		2.21905000	-2.84605600	-0.62884600
С		1.10346400	-2.02809400	-0.61989100
С		1.12164000	-0.84824400	0.14141400
С		2.25356600	-0.50401300	0.89753200
С		3.36000000	-1.33327700	0.87936000
С		4.54499000	-3.39982700	0.08695900
С		4.39284000	-4.76093300	0.36185900
С		5.48181500	-5.62119600	0.35513500
С		6.75617000	-5.12420900	0.06216400
С		6.93744500	-3.77226600	-0.22863900
С		5.83426800	-2.91748600	-0.21644200
Н		2.21742600	-3.74089400	-1.24164700
Н		0.23986900	-2.27378600	-1.22715000
Н		2.24562500	0.38394000	1.51924700
Н		4.21930200	-1.07961800	1.49002500
Н		3.40923600	-5.14834300	0.60315900
Н		5.34681100	-6.67277700	0.58030100
Н		7.92116600	-3.38754000	-0.47039600
С		-1.29409200	-0.55029000	0.13980300
С		-2.30564700	0.05732200	-0.62177100
С		-1.56501000	-1.70229500	0.89610200
С		-3.57277500	-0.49738400	-0.63220900
Н		-2.08495400	0.92809900	-1.22820700
С		-2.83790200	-2.24230700	0.87784700
Н		-0.79342200	-2.14112600	1.51813800
С		-3.85224300	-1.65467900	0.10821700
Н		-4.34564200	-0.04667400	-1.24523400
Н		-3.05113900	-3.11192400	1.48926300
С		-5.21895400	-2.23142200	0.08395400
С		-6.32018700	-1.41629100	0.35588400
С		-5.44837000	-3.58940100	-0.21620000
С		-7.61077300	-1.92685900	0.35086800
Н		-6.16209400	-0.37011500	0.59326300
С		-6.74119800	-4.11491800	-0.22649900
С		-7.81974700	-3.27967800	0.06321300
Н		-8.45283900	-1.28195700	0.57369300
Н		-6.90225000	-5.15914400	-0.46611400

С	0.491776	00 4.15980800	0.11135200			
С	-0.523956	00 3.57327400	0.87991400			
С	-0.690513	00 2.20077500	0.89652700			
С	0.171652	00 1.39219400	0.13860200			
С	1.202231	00 1.96579000	-0.62367300			
С	1.354708	00 3.34080800	-0.63088600			
С	0.674542	00 5.63197900	0.08777900			
С	-0.386138	00 6.50821700	-0.21823700			
С	-0.196553	00 7.89080300	-0.23045800			
С	1.064447	00 8.40887300	0.06444400			
С	2.130538	00 7.55265100	0.36044800			
С	1.929034	00 6.17960300	0.36623600			
Н	-1.171277	00 4.19105300	1.49250200			
Н	-1.455039	00 1.74999000	1.51879600			
Н	1.845278	00 1.34053000	-1.23238200			
Н	2.130309	00 3.78658900	-1.24413000			
Н	-1.020383	00 8.55094500	-0.47523200			
Н	3.108679	00 7.96046000	0.58793300			
Н	2.755062	00 5.52060200	0.60938800			
Ν	-0.000405	00 -0.00243800	0.14366700			
C	-9.153201	00 -3.81621800	0.05992200			
С	1.266781	00 9.83207900	0.05680600			
С	7.888254	00 -6.00995200	0.05425100			
Ν	1.432821	00 10.97907700	0.05204800			
N	-10.229218	300 -4.24677500	0.05846000			
N	8.799060	00 -6.72660800	0.04879900			
C	6.044249	00 -1.53851300	-0.56825500			
С	-4.360858	00 -4.46310600	-0.56713800			
С	-1.684745	00 6.00080800	-0.57232600			
Ν	-2.734548	00 5.60852800	-0.86859400			
Ν	-3.497662	00 -5.17856500	-0.86143000			
Ν	6.229009	00 -0.43248300	-0.86201600			
_						
Ex	cited State 1:	Doublet	2.0981 eV	590.94 nm	f=0.3438	<s**2>=0.850</s**2>
	150B -> 161B -0.	.32115				
	151B -> 161B 0.	11187				
	155B -> 161B -0.	.16117				
	156B -> 161B 0.	14251				
	157B -> 161B -0.	.29957				
	160B -> 161B 0.	82793				
		Durklat	0 4040	500.05	6 0 0 400	-0++0. 0.050
Εx	cited State 2:	Doublet	2.1016 eV	589.95 nm	f=0.3409	<\$^^2>=0.850
	150B -> 161B -0.	.11083				
	151B -> 161B -0.	.32083				
	154B -> 161B -0.	.16667				
	156B -> 161B 0.	30278				
	157B -> 161B 0.	14244				
	159B -> 161B 0.	82589				
г .,	aited State 2:	Doublat	2 4659 01	500 00 pm	f=0.0466	< <u></u>
ΞX			2.4000 ev	502.62 MM	1-0.0400	<5 22-0.072
	150B -> 101B -0.	.34723				
	154B -> 161B = 0.	21018				
		00075				
	156B -> 161B -0.	.29675				
	10/D - 2 101B = 0.	01030				
	100D -> 101B U.	20440				
F٧	cited State 4	Doublet	2 4659 0\/	502 80 nm	f=0.0473	<s**2>=0 872</s**2>
LX	151B -> 161R 0	35005	2.7003 61	502.00 HIH	1-0.0473	SU ZZ-U.07Z
	154R -> 161R _∩	52137				
		02101				

155B -> 161B 156B -> 161B 157B -> 161B 159B -> 161B	0.21847 0.60386 0.29473 -0.20769				
Excited State 5: 152B -> 161B	Doublet 0.97078	2.6844 eV	461.86 nm	f=0.0049	<s**2>=0.870</s**2>
Excited State 6: 153A -> 165A 156A -> 166A 157A -> 167A 158A -> 164A 159A -> 163A 160A -> 162A 161A -> 164A 149B -> 161B 153B -> 167B 154B -> 165B 155B -> 166B 158B -> 164B 159B -> 163B 160B -> 162B	Doublet 0.12241 -0.15565 0.15334 -0.20313 -0.27078 -0.27458 -0.20438 -0.20438 -0.18059 -0.14475 -0.11651 -0.11571 0.44143 -0.24887 0.27072 0.27381	3.0847 eV	401.94 nm	f=0.0000	<s**2>=2.298</s**2>
Excited State 7: $153A \rightarrow 162A$ $153A \rightarrow 166A$ $153A \rightarrow 170A$ $156A \rightarrow 164A$ $156A \rightarrow 165A$ $156A \rightarrow 167A$ $157A \rightarrow 166A$ $158A \rightarrow 162A$ $158A \rightarrow 162A$ $160A \rightarrow 163A$ $160A \rightarrow 164A$ $160A \rightarrow 164B$ $153B \rightarrow 164B$ $156B \rightarrow 164B$ $158B \rightarrow 162B$ $159B \rightarrow 162B$ $160B \rightarrow 163B$ $160B \rightarrow 164B$	Doublet -0.10241 0.13601 -0.10699 -0.10855 -0.13054 -0.13217 0.13097 -0.20894 -0.13688 -0.19646 -0.19847 -0.29145 -0.24719 -0.24761 -0.24719 -0.24461 -0.19747 -0.10562 -0.29220 0.16195 0.16262 0.23508	3.1745 eV	390.56 nm	f=0.0337	<\$**2>=2.580
Excited State 8: 153A -> 163A 153A -> 167A 153A -> 169A 156A -> 166A 157A -> 166A 157A -> 165A 157A -> 165A 157A -> 163A 158A -> 163A 158A -> 163A 159A -> 163A 159A -> 164A 160A -> 162A	Doublet -0.10188 0.13437 0.10625 -0.12862 0.10885 0.13323 -0.12906 -0.20969 -0.13899 0.19816 -0.29375 -0.19443	3.1752 eV	390.48 nm	f=0.0331	<s**2>=2.582</s**2>

161A -> 163A 151B -> 161B 153B -> 166B 155B -> 166B 157B -> 164B 158B -> 163B 159B -> 163B 159B -> 164B 160B -> 162B	-0.24574 -0.24395 0.19012 0.10160 -0.10577 -0.29281 -0.16336 0.23673 0.15949				
Excited State 9: 156A -> 166A 157A -> 167A 158A -> 164A 159A -> 169A 160A -> 170A 161A -> 174A 119B -> 161B 140B -> 161B 149B -> 161B 153B -> 161B 153B -> 161B 158B -> 161B 158B -> 164B 159B -> 169B 160B -> 170B	Doublet 0.13250 -0.13160 0.17991 -0.10505 0.10485 -0.11054 -0.10162 0.13922 -0.45853 -0.25018 0.10679 0.56175 0.16523 0.10188 -0.10152	3.5529 eV	348.97 nm	f=0.0001	<s**2>=1.418</s**2>
Excited State 10: $152A \rightarrow 171A$ $154A \rightarrow 165A$ $154A \rightarrow 168A$ $154A \rightarrow 171A$ $155A \rightarrow 172A$ $159A \rightarrow 163A$ $160A \rightarrow 162A$ $161A \rightarrow 162A$ $161A \rightarrow 163A$ $161A \rightarrow 166A$ $161A \rightarrow 169A$ $161A \rightarrow 169A$ $161A \rightarrow 161B$ $150B \rightarrow 161B$ $152B \rightarrow 172B$ $156B \rightarrow 161B$ $157B \rightarrow 161B$ $159B \rightarrow 161B$ $159B \rightarrow 161B$ $160B \rightarrow 161B$	Doublet -0.13226 0.11807 -0.14232 -0.11059 -0.11040 0.10331 -0.10480 0.39438 -0.27605 -0.12038 -0.20005 -0.23781 -0.12038 -0.20005 -0.23781 -0.11807 0.13315 0.10902 -0.10035 -0.12788 -0.19413 0.15654 -0.22934	3.7106 eV	334.14 nm	f=0.3194	<s**2>=1.711</s**2>

Figure S81. Computed UV-vis spectrum of TdCBPA^{.+} at @b97xd/6-31+G(d,p), CPCM = DCM.

Figure S82. Comparison of experimental UV-vis spectrum of **TdCBPA**⁺ and computed UV-vis transitions at CAM-B3LYP/6-31G(d,p) and ω b97xd/6-31+G(d,p), CPCM = DCM.

14.2 Molecular orbitals and natural transition orbitals for TPA⁺⁺ photoexcitations

For the first excited state, the ground state MOs (canonical MOs) involved in the transition were visualized, for which a clear dominant transition (probability f = > |0.7|) was observed. For higher order excited states where oftentimes no dominant configuration was present (probability f = < |0.7|), the natural transition orbitals (NTOs) were visualized. NTOs are known to offer intuitive representations of orbitals involved in any *hole-particle* excitation.^[45] Calculated canonical MOs resembled those of similar reported compounds.^[46]

TpBPA^{.+} in MeCN, CAM-B3LYP/6-31G(d,p)

Ground state:

124 (HOMO)

125 (HOMO)

Ground \rightarrow Excited state 8 MOs:

125 (HOMO)

125 (SOMO)

→

→

→

127 (LUMO+1)

126 (LUMO)

and

124 (NTO)

127 (NTO)

 \rightarrow

TCBPA^{.+} in MeCN, CAM-B3LYP/6-31G(d,p)

Ground state:

145 (LUMO)

143 (SOMO)

→

Ground \rightarrow Excited state 7 MOs:

143 (SOMO)

145 (LUMO+1)

144 (LUMO)

143 (NTO)

144 (NTO)

and

143 (NTO)

and

144 (NTO)

142 (NTO)

TpBPA^{.+} in DCM, CAM-B3LYP/6-31G(d,p)

145 (NTO)

Ground state:

 \rightarrow

124 (HOMO)

Ground \rightarrow Excited state 2 MOs:

123 (HOMO-1)

Ground \rightarrow Excited state 7 (385 nm) MOs:

125 (SOMO)

→

 \rightarrow

→

125 (SOMO)

125 (SOMO)

Ground \rightarrow Excited state 1 NTOs:

Ground → Excited state 7 (385 nm) NTOs:

Ground → Excited state 8 (385 nm) NTOs:

125 (NTO)

126 (NTO)

143 (SOMO)

≻

→

→

Ground \rightarrow Excited state 2 MOs:

141 (HOMO-1)

143 (SOMO)

144 (LUMO)

and

Ground → Excited state 8 (401 nm) NTOs:

TdCBPA^{.+} in DCM, CAM-B3LYP/6-31G(d,p)

→

159 (HOMO-1)

161 (SOMO)

and

15. X-RAY CRYSTALLOGRAPHY

Single crystal x-ray diffraction data were recorded on Agilent Technologies Supernova (for $[T\rho BPA^{+}]PF_6$), Xcalibur Gemini Ultra (for $[TCBPA^{+}]PF_6 MeCN$) or GV1000 (for TCBPA) TitanS2 diffractometers with Cu-*K*_a radiation (I= 1.54184 Å). Empirical multi-scan^[47] and analytical absorption corrections^[48] were applied to the data. Structures were solved using SHELXT^[49] using dual methods and Olex2 as the graphical interface,^[50] and least-squares refinements on *F*² were carried out using SHELXL.^[49,51] Hydrogen atoms were located in idealized positions and refined isotropically with a riding model.

CCDC 2035879 ([**T***p***BPA**^{·+}]PF₆), 2035880 ([**TCBPA**^{·+}]PF₆·MeCN) and 2038665 (**TCBPA**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.

Table	S16.	Crystallographic	data	and	structure	refinement	for	compounds	[T<i>p</i>BPA^{.+}]PF ₆ ,
[TCBP	A^{.+}] PF	₀·MeCN and TCBF	ΡΑ.						

Compound	[T <i>p</i> BPA ^{.+}]PF ₆	[TCBPA ^{.+}]PF ₆ ·MeCN	ТСВРА
Empirical formula	C ₃₆ H ₂₇ F ₆ NP	$C_{41}H_{27}F_6N_5P$	$C_{39}H_{24}N_4$
ρ _{calc} /(g/cm³)	1.396	1.427	1.311
µ/mm⁻¹	1.400	1.338	0.607
Formula weight	618.55	734.64	548.62 g mol ⁻¹
Crystal colour	dark purple	dark blue	clear yellow
Crystal shape	block	plate	prism
Crystal size/mm ³	0.373 × 0.171 × 0.109	0.605 × 0.266 × 0.065	0.16 × 0.10 × 0.06
Temperature/K	123.00(10)	123	122.97(10)
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/n	P21/c	P21/n
a/Å	9.9242(2)	10.0127(2)	9.7013(2)
b/Å	24.0647(4)	27.7882(5)	25.4439(5)
c/Å	12.6848(2)	12.2929(3)	11.5990(3)
α/°	90	90	90
β/°	103.769(2)	90.730(2)	103.924(2)
γ/°	90	90	90
Volume/Å ³	2942.36(9)	3420.04(12)	2778.95(11)
Z	4	4	4
Z'	1	1	1

Wavelength/ Å	1.54184	1.54184	1.54184
Radiation	Cu K _a	Cu K _α	Cu K _α
O minl [°]	7.346	7.864	3.474
Ømaxl°	131.8	144.51	73.756
Reflections collected	15020	12436	16698
Independent reflections	4989	6419	5374
Reflections l≥2 <i>o</i> (l)	4989	6419	4455
R _{int}	0.0164	0.0278	0.0322
Parameters	397	479	388
Restraints	0	0	0
Largest peak	0.53	0.47	0.168
Deepest hole	-0.46	-0.34	-0.238
GooF	1.031	1.043	1.060
wR₂ (all data)	0.1051	0.1322	0.1115
wR ₂	0.1029	0.1255	0.1054
<i>R</i> ₁ (all data)	0.0401	0.0610	0.0576
R ₁	0.0374	0.0493	0.0451

Figure S83 Solid-state molecular structure of [**T***p***BPA**^{•+}]PF₆ (right) Thermal ellipsoids are set at the 50% probability level. Hydrogen atoms are omitted for clarity. C atoms shown in grey, F atoms in cyan, N atom in blue, and P atom in orange. Picture of the [**T***p***BPA**^{•+}]PF₆ crystal in the diffractometer (right).

Atom	Atom	Length/Å		
P1	F2	1.5959(12)		
P1	F1	1.5855(11)		
P1	F4	1.6044(12)		
P1	F6	1.5971(12)		
P1	F5	1.5922(13)		
P1	F3	1.5772(13)		
N1	C1	1.419(2)		
N1	C13	1.386(2)		
N1	C25	1.423(2)		
C1	C12	1.397(2)		
C1	C2	1.394(2)		
C4	C11	1.404(2)		
C4	C5	1.484(2)		
C4	C3	1.401(2)		
C13	C24	1.407(2)		
C13	C14	1.408(2)		
C11	C12	1.382(2)		
C5	C6	1.401(2)		
C5	C10	1.399(2)		
C24	C23	1.371(2)		
C27	C26	1.382(2)		
C27	C28	1.405(2)		
C25	C26	1.395(2)		
C25	C36	1.395(2)		
C23	C16	1.410(2)		
C35	C28	1.402(2)		
C35	C36	1.377(2)		
C16	C17	1.473(2)		
C16	C15	1.409(2)		
C28	C29	1.477(2)		
C3	C2	1.377(2)		
C17	C18	1.401(3)		
C17	C22	1.401(3)		
C15	C14	1.371(2)		
C6	C7	1.388(2)		
C29	C34	1.398(3)		
C29	C30	1.396(2)		
C10	C9	1.387(3)		
C34	C33	1.383(3)		
C9	C8	1.387(3)		
C18	C19	1.387(3)		
C22	C21	1.381(3)		

Table S17	Bond	lengths	for	[TpBPA	• †]PF 6.
-----------	------	---------	-----	--------	------------------

Atom	Atom	Length/Å
C7	C8	1.382(3)
C30	C31	1.388(3)
C33	C32	1.384(3)
C21	C20	1.385(3)
C31	C32	1.384(3)
C19	C20	1.380(3)
-		

 Table S18. Bond angles for [TpBPA^{.+}]PF6.

Atom	Atom	Atom	Angle/°
F2	P1	F4	178.62(7)
F2	P1	F6	89.99(6)
F1	P1	F2	90.50(6)
F1	P1	F4	89.90(6)
F1	P1	F6	179.49(7)
F1	P1	F5	90.41(7)
F6	P1	F4	89.61(6)
F5	P1	F2	89.57(7)
F5	P1	F4	89.10(7)
F5	P1	F6	89.75(8)
F3	P1	F2	91.06(7)
F3	P1	F1	90.26(7)
F3	P1	F4	90.26(7)
F3	P1	F6	89.58(8)
F3	P1	F5	179.07(8)
C1	N1	C25	116.47(13)
C13	N1	C1	121.52(13)
C13	N1	C25	121.96(13)
C12	C1	N1	120.95(15)
C2	C1	N1	118.95(14)
C2	C1	C12	120.09(15)
C11	C4	C5	121.46(15)
C3	C4	C11	117.70(15)
C3	C4	C5	120.84(15)
N1	C13	C24	120.73(14)
N1	C13	C14	120.48(15)
C24	C13	C14	118.78(15)
C12	C11	C4	121.61(15)
C6	C5	C4	120.46(15)
C10	C5	C4	121.65(15)
C10	C5	C6	117.88(15)
C23	C24	C13	120.12(15)
C26	C27	C28	121.19(15)
C11	C12	C1	119.29(15)
C26	C25	N1	121.45(14)
C26	C25	C36	120.41(15)
C36	C25	N1	118.13(14)
C24	C23	C16	121.97(16)

Atom	Atom	Atom	Angle/°
C27	C26	C25	119.52(15)
C36	C35	C28	121.67(16)
C23	C16	C17	121.66(15)
C15	C16	C23	117.00(15)
C15	C16	C17	121.31(15)
C27	C28	C29	122.34(15)
C35	C28	C27	117.85(15)
C35	C28	C29	119.81(15)
C2	C3	C4	121.38(16)
C18	C17	C16	121.53(16)
C22	C17	C16	120.71(16)
C22	C17	C18	117.75(16)
C14	C15	C16	121.77(15)
C7	C6	C5	120.80(17)
C3	C2	C1	119.92(15)
C35	C36	C25	119.36(15)
C34	C29	C28	120.52(16)
C30	C29	C28	120.91(16)
C30	C29	C34	118.56(16)
C15	C14	C13	120.31(15)
C9	C10	C5	121.15(17)
C33	C34	C29	120.78(18)
C8	C9	C10	120.07(18)
C19	C18	C17	120.80(18)
C21	C22	C17	121.03(18)
C8	C7	C6	120.45(17)
C31	C30	C29	120.55(18)
C7	C8	C9	119.64(17)
C34	C33	C32	119.95(18)
C22	C21	C20	120.45(19)
C32	C31	C30	120.02(18)
C31	C32	C33	120.13(17)
C20	C19	C18	120.49(19)
C19	C20	C21	119.47(18)

Figure S84. Dihedrals of [TpBPA⁺]PF₆ visualized in GaussView 5.0.9.

Figure S85. Solid-state molecular structure of [**TCBPA**⁻⁺]PF₆·MeCN, including atom numbering scheme. Thermal ellipsoids are set at the 50% probability level. Hydrogen atoms are omitted for clarity. C atoms shown in grey, F atoms in cyan, N atoms in blue, and P atom in orange. Picture of the [**TCBPA**⁻⁺]PF₆ crystal in the diffractometer (right).

Atom	Atom	Length/Å
P1	F6	1.5832(15)
P1	F4	1.5904(17)
P1	F3	1.5907(18)
P1	F1	1.5937(16)
P1	F2	1 5923(19)
P1	E5	1 595(2)
N1	C1	$1.000(\underline{2})$ 1.412(3)
N1	C14	1 419(3)
N1	C27	1 408(3)
N3	C22	1 145(3)
N5	C40	1.134(3)
N4	C35	1 141(3)
C1	C2	1 397(3)
C1	C13	1 402(3)
C18	C17	1.402(0)
C18	C24	1 403(3)
C18	C10	1.405(3)
C14	C15	1.400(0)
C14	C26	1.401(3)
C20	C30	1.402(3)
C29	C28	1.407(3)
C29	C20	1.304(3)
C27	C38	1.403(3)
C20	C20	1.397(3)
C30	C30	1.300(3)
C30	C30	1.400(3)
C30	C30	1.400(3)
C21	C_{22}	1.400(3)
C31	C32	1.090(0)
C17	C10	1.403(3)
	C25	1.403(3)
02	C16	1.303(3)
C10	C10	1.370(3)
C13	C12	1.301(3)
C4	012	1.390(3)
C4	C3	1.401(3)
C24	C33	1.399(3)
024	023	1.300(3)
C20	C25	1.300(3)
C23	C26	1.395(3)
C37	C30	1.304(3)
C32	C33	1.380(3)
C5	C6	1.389(3)
05	011	1.403(3)
034	033	1.388(3)
034	036	1.391(3)
034	035	1.448(3)
019	020	1.374(3)
021	020	1.399(3)
C21	C22	1.442(3)
C6	C7	1.388(3)

Table S19. Bond lengths for [**TCBPA**^{.+}]PF₆·MeCN.

Atom	Atom	Length/Å
N2	C9	1.148(3)
C40	C41	1.455(4)
C8	C7	1.392(3)
C8	C10	1.383(4)
C8	C9	1.446(3)
C11	C10	1.384(3)

Table S20. Bond angles for $[TCBPA^{+}]PF_{6}$ ·MeCN.

Atom	Atom	Atom	Angle/°
		F4 E2	90.00(9)
F0 E6		F3 E1	17074(12)
F6		1 1 E2	179.74(12)
		FZ E5	09.00(10)
		F0 F2	90.73(10)
F4 E4			90.42(10)
F4 E4		E 1	$170 \ 40(11)$
F4 E1		FZ E5	179.40(11)
E3	D1		09.47(11)
F3	D1	F2	90.50(11) 80.52(11)
F3	D1	1 Z E5	170 80(11)
F1	D1	F5	89 53(11)
F2	D1		09.00(11)
F2	D1	E5	90.19(11)
C1	N1	C14	110 31(16)
C27	N1	C1	122 05(17)
C27	N1	C14	118 47(16)
C2	C1	N1	121 17(18)
C2	C1	C13	120.00(19)
C13	C1	N1	118 81(18)
C24	C18	C17	121 72(18)
C24	C18	C19	118 17(19)
C19	C18	C17	120.06(18)
C15	C14	N1	120.23(18)
C15	C14	C26	120.13(19)
C26	C14	N1	119.64(18)
C28	C29	C30	120.70(19)
C39	C27	N1	118.69(19)
C28	C27	N1	121.49(18)
C28	C27	C39	119.73(18)
C38	C39	C27	119.81(19)
C29	C30	C31	120.85(19)
C38	C30	C29	118.60(18)
C38	C30	C31	120.46(18)
C37	C31	C30	120.78(19)
C32	C31	C30	120.35(18)
C32	C31	C37	118.77(18)
C29	C28	C27	119.93(19)
C16	C17	C18	120.94(18)

Atom	Atom	Atom	Angle/°
C25	C17	C18	120.89(18)
C25	C17	C16	118.16(19)
C3	C2	C1	119.60(19)
C16	C15	C14	119.39(18)
C12	C13	C1	119.19(19)
C12	C4	C5	120.64(19)
C12	C4	C3	117.89(19)
C3	C4	C5	121.47(19)
C23	C24	C18	120.97(19)
C25	C26	C14	119.60(19)
C24	C23	C21	119.69(19)
C36	C37	C31	120.8(2)
C33	C32	C31	121.0(2)
C15	C16	C17	121.56(19)
C13	C12	C4	121.88(19)
C6	C5	C4	121.93(19)
C6	C5	C11	118.1(2)
C11	C5	C4	119.9(2)
C33	C34	C36	120.93(19)
C33	C34	C35	120.6(2)
C36	C34	C35	118.5(2)
C26	C25	C17	121.15(19)
C20	C19	C18	121.33(19)
C39	C38	C30	120.95(19)
C23	C21	C20	120.1(2)
C23	C21	C22	121.9(2)
C20	C21	C22	118.1(2)
C32	C33	C34	119.2(2)
C2	C3	C4	121.4(2)
C19	C20	C21	119.8(2)
C37	C36	C34	119.3(2)
N3	C22	C21	176.2(3)
N4	C35	C34	178.7(3)
C7	C6	C5	121.3(2)
N5	C40	C41	179.2(3)
C7	C8	C9	120.4(2)
C10	C8	C7	120.0(2)
C10	C8	C9	119.5(2)
C10	C11	C5	120.9(2)
C6	C7	C8	119.6(2)
C8	C10	C11	120.0(2)
N2	C9	C8	177.8(3)

Figure S86. Dihedrals of [TCBPA⁺⁺]PF₆·MeCN visualized in GaussView 5.0.9.

Figure S87. Solid-state molecular structure of **TCBPA**, including atom numbering scheme. Thermal ellipsoids are set at the 50% probability level. Hydrogen atoms are omitted for clarity. C atoms shown in grey and N atoms in blue.

Atom	Atom	Length/Å
N4	C24	1.417(2)
N4	C35	1.408(2)
N4	C9	1.428(2)
N1	C1	1.148(2)
C29	C28	1.396(3)
C29	C30	1.382(2)
C4	C3	1.388(2)
		1.403(Z) 1.297(2)
C8	C9	1.307(2)
C7	C6	1 405(2)
C10	C11	1.384(2)
C10	C9	1.395(2)
C6	C11	1.398(2)
C6	C5	1.490(2)
C12	C13	1.387(3)
C12	C5	1.398(2)
C32	C31	1.476(2)
C32	C33	1.397(2)
C34	C33	1.384(2)
C34	C35	1.399(2)
C19	C18	1.397(2)
C19	C20	1.385(2)
C31	C38	1.398(2)
C31	C30	1.398(2)
C18	C21	1.479(2)
C18	C17	1.402(2)
C36	C35	1.370(2) 1.401(2)
C16	C17	1.384(2)
C16	C15	1.388(2)
C2	C1	1.445(2)
C2	C3	1.389(2)
C2	C13	1.393(2)
C28	C39	1.394(3)
C28	C27	1.441(3)
C21	C22	1.400(2)
C25	C20	1.402(2) 1.206(2)
C25	C24	1.390(2)
C14	C15	1.443(2)
C14	N2	1.143(2)
C20	C15	1.389(2)
C24	C23	1.394(2)
C22	C23	1.389(2)
C38	C39	1.381(2)
<u>N3</u>	C27	1.147(3)

Table S21. Bond lengths for TCBPA.

 Table S22. Bond angles for TCBPA.

Atom	Atom	Atom	Angle/°
C24	N4	C9	118.88(13)
C35	N4	C24	121.40(13)

Atom	Atom	Atom	Angle/°
C35	N4	C9	119.60(13)
C30	C29	C28	119.90(16)
C3	C4	C5	121.49(16)
C7	C8	C9	119.99(15)
C8	C7	C6	121.67(15)
C11	C10	C9	120.17(15)
C7	C6	C5	121.15(15)
C11	C6	C7	117.09(15)
C11	C6	C5	121.68(14)
013	012	05	121.96(16)
C33	C32	031	121.75(14)
C33	C32	C31	117.09(15) 121.16(14)
C33	C34	C35	121.10(14) 120.74(15)
C20	C10	C18	120.74(13)
C38	C31	C32	120.65(14)
C30	C31	C32	121 42(15)
C30	C31	C38	117.93(15)
C19	C18	C21	121.51(15)
C19	C18	C17	117.84(15)
C17	C18	C21	120.64(15)
C10	C11	C6	121.71(15)
C37	C36	C35	120.48(14)
C34	C33	C32	121.57(14)
C17	C16	C15	119.48(16)
C3	C2	C1	120.59(16)
C3	C2	C13	119.39(16)
C13	C2	C1	119.96(16)
029	028	027	119.45(16)
C39	C28	C29	119.63(16)
C39	C20	C19	120.09(17) 122.04(15)
C22	C21	C26	122.04(13) 117 70(14)
C26	C21	C18	120 26(14)
C26	C25	C24	120.20(14) 120.31(15)
N2	C14	C15	177 2(2)
N1	C1	C2	176.49(18)
C4	C3	C2	120.18(15)
C16	C17	C18	121.62(16)
C19	C20	C15	120.49(16)
C25	C24	N4	119.42(15)
C23	C24	N4	121.72(14)
C23	C24	C25	118.86(14)
C36	C37	C32	121.99(14)
C23	C22	C21	120.97(15)
C39	C38	C31	121.43(16)
C16	C15	C14	120.90(16)
C10	C15	C20	119.79(15)
C20	C13	C24	120 67(15)
C12	C13	C24	110 78(16)
C38	C39	C28	119 83(16)
C4	C5	C6	121,28(15)
C12	C5	C4	116.98(15)
C12	C5	C6	121.74(15)
C34	C35	N4	120.62(14)
C34	C35	C36	118.14(14)
C36	C35	N4	121.24(14)
C29	C30	C31	121.28(16)

Figure S88. Dihedrals of TCBPA visualized in GaussView 5.0.9.

16. CURRENT VS. TIME PROFILE FOR REPRESENTATIVE REACTIONS

Figure S89. Current vs. time profiles for reactions forming 3aa and 3gb.

Current vs. time profiles were measured for the optimal conditions forming **3aa** (Table S9, entry 1) and **3gb** (Table S10, entry 1). Current was measured using a digital multimeter (Reichelt, UT 71D). The data do not provide much insight, aside from showing a steep initial decrease in the measured current which is clearly associated with the development of a coloured species as confirmed by spectroelectrochemistry (Section S8). The decrease in current as the radical cation is formed is unsurprising, no obvious further changes occur over time.

(from trifluorotoluene as strating material)

17. REFERENCES

- (1) Perrin, D. D.; Armarego, L. F. *Purification of Laboratory Compounds*, 3rd Ed.; Pergamon Press, New York, 1992.
- (2) Barham, J. P.; John, M. P.; Murphy J. A. J. Am. Chem. Soc. 2016, 138, 15482-15487.
- (3) Chen, C.; Zheng, Q.; Ni, S.; Wang, H. New J. Chem. 2018, 42, 4624-4630.
- (4) Li, Z.; Wu, Z.; Jiao, B.; Liu, P.; Wang, D.; Hou, X. Chem. Phys. Lett., 2012, 527, 36-41.
- (5) Zhao, Y.; Wang, Y.; Sun, H.; Li, L.; Zhang, H. Chem. Commun., 2007, 43, 3186-3188.
- (6) Huang, H.; Strater, Z. M.; Rauch, M.; Shee, J.; Sisto, T. J.; Nuckolls, C.; Lambert, T. H. *Angew. Chem. Int. Ed.* **2019**, *58*, 13318-13322.
- (7) Yi, H.; Tang, Z.; Bian, C.; Chen, H.; Qi, X.; Yue, X.; Lan, Y.; Lee, J.-F.; Lei, A. Chem. Commun. 2017, 53, 8984-8987.
- (8) Zhang, Q.; Meng, L.-G.; Wang, K.; Wang, L. Org. Lett., 2015, 17, 872-875.
- (9) Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578-5587.
- (10) Huang, H.; Lambert, T. H. Angew. Chem. Int. Ed. 2020, 59, 658-662.
- (11) Ueda, S.; Su, M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 8944-8947.
- (12) Shi, S.; Kuang, C. J. Org. Chem. 2014, 79, 6105-6112.
- (13) Huang, W.; Zhu, C.; Li, M.; Yu, Y.; Wu, W.; Tu, Z.; Jiang, H. *Adv. Synth. Catal.* **2018**, 360, 3117-3123.
- (14) Barman, M. K.; Sinha, A. K.; Nembenna, S. Green Chem. 2016, 18, 2534-2541.
- (15) Bozarth, J. M.; Clark, C. G.; Corte, J. R.; Crain, E. J.; Ewing, W. R.; Fang, T.; Harper, T. W.; Huang, C.; Kaspady, M.; Lai, A.; Lam, P. Y. S.; Li, Y.-X. C.; Lou, Z.; Luettgen, J. M.; Mathur, A.; Myers, J. E.; Neithnadka, P. R.; Osuna, H.; Pinto, D. J. P.; Rampulla, R.; Rossi, K. A.; Seiffert, D. A.; Sheriff, S.; Sun, J.-H.; Wang, Y.; Wexler, R. R.; Wong, P. C.; Wu, Y.; Yang, W.; Zheng, J. J. J. Med. Chem. **2020**, *63*, 2, 784–803.
- (16) Tsierkezos, N. G. J. Solution Chem. 2007, 36, 289-302.
- (17) Topolinski, B.; Schmidt, B. M.; Kathan, M.; Troyanov, S. I.; Lentz, D. *Chem. Comm.* **2012**, *48*, 6298-6300.
- (18) Heshmatpour, C.; Malevich, P.; Plasser, F.; Menger, M.; Lambert, C.; Šanda, F.; Hauer, J. *J. Phys. Chem. Lett.* **2020**, *11*, 7776-7781.
- (19) R. Trebino, *Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses*, Kluwer Academic Publishing Group, Dordrecht, Netherlands, **2002**.
- (20) U. Megerle, I. Pugliesi, C. Schriever, C. F. Sailer, E. Riedle, *Appl Phys B-Lasers O* 2009, 96, 215-231.
- (21) A. Nemeth, J. Sperling, J. Hauer, H. F. Kauffmann, F. Milota, Opt Lett 2009, 34, 3301-3303.
- (22) (a) Köhler, J.; Quast, T.; Buback, J.; Fischer, I.; Brixner, T.; Nuernberger, P.; Geiß, B.; Mager, J.; Lambert C. *Phys. Chem. Chem. Phys.* **2012**, *14*, 11081-11089. (b) Christensen, J. A.; Phelan, B. T.; Chaudhuri, S.; Acharya, A.; Batista, V. S.; Wasielewski M. R. *J. Am. Chem. Soc.* **2018**, *140*, 5290-5299.
- (23) D. R. Duling J. Mag. Reson. 1994, 104, 105-110.
- (24) Koschechko, V. G.; Titov, V. E.; Pokhodenko V. D. Theor. Exp. Chem. 1983, 19, 143-150.
- (25) Amthor, S.; Noller, B.; Lambert, C. Chem. Phys. 2005, 316, 141-152.
- (26) Y. Su, X. Wang, L. Wang, Z. Zhang, X. Wang, Y. Song, P. P. Power, *Chem. Sci.* **2016**, *7*, 6514-6518.
- (27) (a) Cavallo, G.; Metrangolo, P.; Roberto Milani, Pilati, T.; Priimagi, A.; Resnati, Giuseppe, Terraneo, G. *Chem. Rev.* 2016, *116*, 478-2601. (b) Riley, K. E.; Tran K.-A. Crystals 2017, *7*, 273-284.
- (28) (a) Hohenberg, P.; Kohn, W. *Phys. Rev.* **1964**, *36*, 864-871. (b) Kohn, W.; Sham, L. J. *Phys. Rev.* **1965**, *140*, 1133-1138.
- (29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. H.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F., Sonnenberg, J. L.; Williams, D. F.; Lapparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi,

M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, Ö.; Foresman, J. B.; Fox, D. J. Gaussian 16, Rev. C.01. Wallingford, CT, **2016**.

- (30) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
- (31) (a) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265–3269. (b) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650–654. (c) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639–5648.
- (32) (a) Barone, V.; Cossi, M. *J. Phys. Chem. A.* **1998**, *102*, 1995–2001. (b) Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. *J. Comput. Chem.* **2003**, *24*, 669–681.
- (33) (a) Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchinson G. R. J. Cheminformatics 2012, 4:17; (b) Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. http://avogadro.cc/
- (34) Barone, V. J. Phys. Chem. 1995, 99, 11659-11666.
- (35) Rega, N.; Cossi, M.; Barone, V. J. Chem. Phys. 1996, 105, 11060-11067.
- (36) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol Phys. 1993, 80, 1431-1441.
- (37) Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620;
- (38) (a) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525-5534; (b) Martinez, C. R.; Iverson, B. L. Chem. Sci. 2012, 3, 2191-2201.
- (39) (a) Wang, K.; Lv, J.; Miao, J. *Theor. Chem. Acc.* **2015**, 134:5; (b) Tsuneda, T.; Taketsugu, T. "π-Stacking on Density Functional Theory: A Review" in "π-Stacked Polymers and Molecules: Theory, Synthesis and Properties" (Ed.: Nakano, T.), pp. 245-270, Springer, Tokyo, **2014**. DOI: 10.1007/978-4-431-54129-5_5.
- (40) (a) da Costa, L. M.; Stoyanov, S. R.; Gusarov, S.; Tan, X.; Gray, M. R.; Stryker, J. M,.; Tykwinski, R.; de M. Carniero, J. W.; Seidl, P. R. *Energy Fuels* **2012**, *26*, 2727-2735; (b) Muraoka, A.; Hayashi, M. *Chem. Phys. Lett. 2020*, 748:137393.
- (41) Remya, K. Suresh, C. H. J. Comput. Chem. 2013, 34, 1341-1353.
- (42) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997-1000.
- (43) Yanai, T.; Tew, D. P.; Handy N. C. Chem. Phys. Lett. 2004, 393, 51-57.
- (44) Zara, Z.; Iqbal, J.; Ayub, K.; Irfan, M.; Mahmood, A. Khera, R. A.; Eliasson, B. J. Mol. Struct 2017, 1149, 282-298.
- (45) R. L. Martin, J. Chem. Phys. 2003, 118, 4775-4777.
- (46) Lin, B. C.; Cheng, C. P.; Lao, Z. P. M. J. Phys. Chem. A 2002, 107, 5241-5251.
- (47) (a) SCALE3ABS, CrysAlisPro, Aglient Technologies Inc. Oxford and GB, **2015**. (b) Sheldrick, G. M. SADABS, Bruker AXS, Madison and USA, **2007**.
- (48) (a) Clark, R. C.; Reid, J. S. *Acta Cryst. A*, **1995**, *51*, 887-897. (b) CrysAlisPro, version 171.39.37b, Agilent Technologies Inc., Oxford and GB, **2017**.
- (49) Sheldrick, G. M. Acta Cryst. A, 2015, 71, 3-8.
- (50) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Crystallogr.* **2009**, *42*, 339-341.
- (51) Sheldrick, G. M. Acta Cryst. A, 2008, 64, 112-22.